
Cyber Threat Intelligence for SOC Analysts
Nidhi Rastogi

Rochester Institute of Technology, NY
nidhi.rastogi@rit.edu

Md Tanvirul Alam
Rochester Institute of Technology, NY

ma8235@rit.edu

knowledge-driven threat intelligence models that incorporate
domain knowledge and relevant contextual information. This
work will also result in faster attack detection and mitigation
and better allocation of defensive resources. Toward these
goals, this project is exploring the following two research
directions:

1) Enable the inclusion of domain security knowledge cater-
ing to different context vs. data relevance needs. A key
challenge is to combine external abstract threat knowl-
edge with internal, domain-specific knowledge.

2) Enable robust adaptation of time and trust varying, dy-
namically changing cyber threat knowledge in domain-
specific information sources. A key challenge is to extract
meaningful information with confidence.

3) Overcome the lack of evaluation mechanisms for con-
text. A key challenge is combining ML’s precision and
accuracy to the ranked inferences of knowledge graphs
applicable to given organizational policies and trustwor-
thiness.

This paper discusses ongoing research capturing the first goal
and leaves the other two for future work.

II. MOTIVATION

A paradigm shift has been observed in understanding and
defending against evolving and complex cyber threats, from
predominantly reactive detection of attacks to proactive predic-
tion [40]. Research shows that signature and CTI knowledge
sources have historically provided data on individual threat
indicators [7], [9], [14]. This approach misses the context that
can help organizations understand how to put those indicators
together to identify a real attack or what action to take.
Cyberthreat knowledge needs to be extracted to analyze cyber
threats at scale. In the past decade, we have witnessed unprece-
dented growth of publicly available knowledge sources such
as websites, forums, and social media, as well as non-public
sources such as the Dark Web [19], [23], where attackers
congregate in underground discussion forums and chat rooms.
CTI knowledge sources can provide a stream of IoC and
analysis, often driving reactive cyber security strategies. On the
other hand, SOC analysts synthesize and contextualize com-
prehensive threat intelligence to provide reasoned and data-
driven predictions, identify underlying trends or motivations,
and deliver deeper insights that are more relevant to each
organization.

To elaborate further, we describe the CTI of malware
Cerberus– a trojan horse that targets Android mobile phone

Abstract—Cyber threat intelligence (CTI) has been valuable
to SOC analysts investigating emerging and known threats and
attacks. However, the reach is still limited, and the adoption
could be higher. While CTI has consistently proven to be a rich
source of threat indicators and patterns collected by peer security
researchers, other researchers have occasionally found them
helpful. Challenges include intelligence in the CTI documented
in an unstructured format, embedded in a large amount of text,
making it challenging to integrate them effectively with existing
threat intelligence analysis tools for internal system logs. In this
paper, we detail ongoing research in threat intelligence extraction,
integration, and analysis at different levels of granularity from
unstructured threat analysis reports. We share ongoing challenges
and provide recommendations to overcome them.

I. INTRODUCTION

Cyber threats represent a continuously evolving set of po-
tential attacks and attackers on computers, networks, and con-
nected devices [24]. Detection and mitigation of sophisticated
cyber threats require knowledge of a system’s threat environ-
ment (to determine what attacks might occur) and its system
state (to determine whether an attack has occurred). To provide
situational awareness, known as Cyber Threat Intelligence
(CTI)– knowledge about cyber attacks and emerging threats
from various external sources is distributed to defenders [25],
[38]. Unfortunately, the volume of cyber threat knowledge
can overwhelm the best SOC analysts. Additionally, the non-
uniform and informal structure of cyber threat knowledge
feeds makes it infeasible to fully automate processing. System
defenders lack the time and resources to detect and mitigate
every possible attack. These limitations mean potential attacks,
or ongoing threats, must be triaged, understood, and either
acted upon or ignored. Worse, specific cyber threat knowledge
feeds may or may not be relevant in the context of the
target system. Context incorporates current and potential future
system states, the associated risks, and policies that express
which states are not allowed.

This research will contribute to a new technological
paradigm for individualized threat intelligence based on con-
textual data to manage threat knowledge even when data
sources are sparse. This research improves the ability of
defenders to protect their systems by building semantic

Workshop on Security Operation Center Operations and Construction (WOSOC) 2023
27 February 2023, San Diego, CA, USA
ISBN 1-891562-90-8
https://dx.doi.org/10.14722/wosoc.2023.23014
www.ndss-symposium.org

banking credentials. We use the same example throughout the
paper for consistency. The Cerberus CTI describes how the
malware works and how to recognize its tactics, techniques,
and procedures (called TTPs or attack patterns). The CTI also
covers vulnerabilities of specific business technologies, such
as email, domains, and mobile devices. Consider the following
snippet from the CTI on Cerberus written by ThreatPost [1]:
“...A malicious Android app has been uncovered on the Google
Play app marketplace that is distributing the banking Trojan,
Cerberus. The app has 10,000 downloads. Researchers said
that the trojan was found within the last few days, as it was
being spread via a Spanish currency converter app (called
“Calculadora de Moneda”), which has been available to
Android users in Spain. Once executed, the malware has the
capabilities to steal victims’ bank-account credentials and
bypass security measures, including two-factor authentication
(2FA)...”

In Figure 1, we show the transition from an unstructured
threat analysis report to a structured sub-knowledge graph for
“Cerberus”. The entity extraction (e.g. application), triple
generation ⟨malware, targets, application⟩, and knowledge
graph construction (all triples combined) are detailed in
a later section. It isA “banking Trojan”, targets “Spain,
class:Location”, “Android, class:OS” devices, and uses at-
tack patterns such as “Bypass security measures”, and “Steal
victim’s bank account credentials”.

The class definitions for entities– Malware, Attack Pattern,
Location, OS, Application, are mapped to existing threat intel-
ligence ontology classes [11], [33] but modified for CTI and
also follow the STIX2.1 framework. Relationships between
them are defined by the same ontologies.

Our research proposes to extract triples from open-
access CTI sources to learn and train a threat intel-
ligence model using past malware information, includ-
ing attack patterns. The triple formed for attack pat-
terns is: ⟨Cerberus, uses,AttackPattern⟩. For example,
⟨Cerberus, uses, “Steal bank account credentials”⟩. Our
approach also maps the attack pattern in natural language to
the MITRE ATT&CK ID: T1636.

Benefits for SOC analysts: Automating the process of
attack pattern extraction can assist in threat hunting and
protection against APT campaigns. However, the same APT
campaign may manifest in different forms in different set-
tings due to various factors, such as differences in operating
systems, targeted applications, variations of the threat, and
so on. As a result, relying solely on IoCs for exact threat
hunting is unreliable since attackers can modify them to evade
detection [19]. To address this issue, it is important to use a
combination of techniques for threat hunting and protection
against APT campaigns. In addition to using IoCs, it is also
important to use behavioral and anomaly-based detection tech-
niques. These techniques involve monitoring network traffic,
system activity, and user behavior to detect abnormal activity
that may indicate an APT campaign. Our research focuses on
the behavior technique detection aspect, which we describe in
the next section.

III. APPROACH OVERVIEW

The main idea of the proposed framework, LADDER, is
to use past threat intelligence to train a threat intelligence
model that can detect semantically similar attack patterns in
threat analysis reports and infer attack tactics or techniques for
emerging attack vectors. LADDER analyzes various malware
attack patterns and maps them to the MITRE ATT&CK pattern
framework. Although the low-level details of each step are
detailed, the high-level definition of all attack patterns can be
abstracted. The ultimate goal of the framework is to use past
attack knowledge to improve threat detection and response
in the future. LADDER not only uses past attack patterns to
improve threat detection but also captures additional infor-
mation such as locations, IoCs, and system information. This
additional information helps to identify the similarity between
malware and threat actors, which enhances the effectiveness of
the threat intelligence model. By combining multiple sources
of information, the model becomes more robust and can better
identify emerging threats and potential attacks. This approach
enables security analysts to detect and respond to new threats
quickly and efficiently, reducing the risk of successful attacks.

LADDER comprises four modules for using threat intel-
ligence from CTI to provide actionable analysis to SOC
analysts. The first module aggregates unstructured threat and
attack information from diverse CTI sources. The second
module uses a knowledge graph-based approach to structure
and analyze threat intelligence. The third module trains a
threat intelligence model using the structured and analyzed
CTI. Finally, the fourth module provides inferred intelligence
to SOC analysts. Once the system is trained and ready,
a security analyst submits a corpus of unstructured threat
information into the framework. The trained system returns
inferred intelligence, but instead of simply classifying the
ingested data, it returns classes and matching instances. The
predefined classes are Malware, Malware Type, Application,
Operating System, Organization, Person, Time, Threat
Actor, Location, and Attack Pattern. Nine of the ten classes
return a list of classes and their respective instances found
in the CTI. This approach enables security analysts to quickly
and easily identify and understand potential threats and attacks
by providing a comprehensive and structured view of the threat
landscape.

A. Cyberthreat Intelligence (CTI)

CTI is typically available as after-action reports [30], un-
structured blogs, security bulletins [2], and technical reports.
To examine CTI reports, a standard approach involves perusing
the most prevalent techniques, trends, and threats observed
by the author(s), detecting, mitigating, and simulating specific
threats and techniques, and mapping ideas, guidance, and
priorities to their security measures and general strategy. SOC
analysts can use IoCs to track down and defend against known
attacks. However, it’s also important to extract information
like tactics, techniques, and procedures (TTPs) written in a
semantic format to characterize a threat attack for analysis
and future predictions.

2

A malicious Android app has been uncovered on the Google Play app marketplace that is distributing the banking trojan, Cerberus.

The app has 10,000 downloads.

Researchers said that the trojan was found within the last few days, as it
 was being spread via a Spanish currency converter app (called

 “Calculadora de Moneda”), which has been available to Android users in Spain.

Once executed, the malware has the capabilities to steal victims’ bank-account credentials and bypass security measures, including
two-factor authentication (2FA).

Application
OS

MalwareType

Application OS Location

AttackPattern
AttackPattern

Malware

Cerebrus

bypass
security

measures

Banking
Trojansteal victims’

bank-
account

credentials

Google Play

SpainAndroid

Calculadora
de Moneda

targets targets

uses

targets

uses
isA

uses

Fig. 1. For malware Cerberus, (a) Annotated CTI using BRAT, (b) Triples created from the annotated snippet, (c) Knowledge graph from the triples.

B. Concepts of threat intelligence

We extract threat intelligence concepts in the form of a
triple ⟨entityhead − relationship − entitytail⟩, also known
as a semantic triple. This triple encodes a statement in
a threat report about the malware in an RDF format
⟨subject, predicate, object⟩ expression. The entity in the
triple represents one of the ten classes from CTI reports –
Malware, Malware Type, Application, Operating System,
Organization, Person, Time, Threat Actor, Location, At-
tack Pattern. These triples aggregate in a graph called the
threat intelligence knowledge graph, which transforms the
multiple data structured, open-access CTI into a structured
format. SOC analysts can use this graph to systematically
query known threats and emerging threats and forecast trends
and attack patterns using evidence from existing knowledge in
the graph.

C. Generating Threat Intelligence Graph

Open-access CTI reports are ingested into information
extraction and machine learning models to extract relevant
entities and assert the relationship between entities to generate
a graph. These information extraction models have been pre-
trained on triples collected from hand-annotated CTI reports.
This approach allows us to construct a knowledge graph from
unstructured text sources rather than relying on pre-existing
databases constructed by domain experts.

D. Inferring Attack Patterns

The information extraction module also comprises an al-
gorithm we propose that automates attack pattern extraction
from CTI reports. As demonstrated in Figure 1(b), our al-
gorithm extracts all known malware attack behaviors and
guides us to a list of previously unseen attack behaviors.
The triple formed from extracting a new attack behavior is
⟨Cerberus, uses, conduct covert surveillance⟩.

The end-to-end process of inferring attack patterns using
our approach works in the following manner: (a) Training:
Our algorithm and other information extraction models extract
attack behaviors, classes, and relationships of all known, exist-
ing, and dormant malware, forming a knowledge graph. This
includes data on all known and existing malware. Additionally,
our algorithm also maps these behaviors to MITRE ATT&CK
pattern IDs. (b) Inference: After training is complete, the

model is ready to infer IoCs and attack patterns of emerging
threats, which can be for known and unknown malware. A
SOC analyst can query the knowledge graph by inputting a
triple with a missing tail entity. Our framework infers all blank
tail entities, including attack behaviors and all other classes,
along with a confidence score. (c) Validation: In this step,
the inferred attack patterns and IoCs are compared to those
identified by human analysts from CTI.

IV. SYSTEM DESIGN

A. Dataset Collection

We collected a meticulously curated set of 150 threat
reports from the MITRE website. These reports feature 36
Android malware such as Cerberus, Rotexy, SpyNote RAT.
Attack patterns from many of these reports exist and map
to the MITRE ATT&CK framework, alibi are paraphrased.
Using the BRAT annotation tool [39], we manually annotated
different threat concepts and their relationships, as explained
in Section III-B.

B. Information Extraction from CTI for Threat Intelligence
Graph

Extracting information from CTI to create a threat intelli-
gence graph [32] involves several steps, such as identifying
relevant sources of CTI, including open-source intelligence
(OSINT), closed-source intelligence (CSINT), social media,
dark web forums, and threat intelligence platforms (TIPs). Af-
ter determining the most valuable sources for data collection,
the following steps involve data normalization, relationship
creation between entities [4], and visualizations to create the
threat intelligence graph.

Crawling Open-access CTI sources: To ensure high
quality and reliability, we scrape threat reports only from
security companies, technology companies, and technology
news reporting companies. Many threat reports contain their
publication date within the first few sentences of the report,
typically after the title. Using this information, we prioritize
threat reports published after the year 2010, as this information
can help with tracking the progression of threats over time and
identifying patterns or trends in threat activity.

Extracting and Labeling concepts (entities): After pre-
processing and cleaning threat information collected from
multiple sources, we use state-of-the-art natural language

3

processing techniques to extract entities. We use attention
mechanism [27] models like the tner [42] to focus on specific
concepts such as threat patterns and malware information and
capture the relationships between different entities. For further
fine-tuning, we used the tner library to help improve the
accuracy of the entity extraction process, as the library con-
tains pre-trained models that have already learned to recognize
common security concepts and their relationships. In contrast,
some cybersecurity concepts like URL, IP address, email, and
file name are extracted using pattern matching techniques [31],
[46], which involves searching for specific patterns or regular
expressions within the CTI text. In addition to this approach,
we use a heuristic-based method to extract different indicators,
including URL, IP address, hash, and CVE ID, to automate
the entity extraction process further.

C. Attack Pattern Extraction

Extracting attack patterns from CTI differs significantly
from other entities as they often consist of larger blocks of
contiguous text and do not represent a single named entity.
Instead, they describe a sequence of actions a cyber threat
takes. Our proposed approach consists of three sub-tasks:
relevant sentence extraction, attack phrase extraction, and
mapping attack patterns to the MITRE ATT&CK framework,
and we describe them next.
(a) Relevant sentence extraction. The first sub-task involves
identifying sentences that describe one or more attack patterns,
such as ”exploit,” ”command and control,” or ”credential
harvesting.” We formulate the problem as a binary sentence
classification task where the sentences containing one or
more attack patterns are labeled positive while the rest are
negative. During training, the positive sentences comprise all
the annotated sentences containing attack patterns. An equal
number of negative instances are randomly sampled from the
remaining sentences to create a balanced dataset. To perform
this classification task, we use a pre-trained transformer model,
RoBERTa, fine-tuned on a large corpus of text. We add a
hidden layer before the linear layer consisting of two neurons
for the classification task to improve the model’s performance.
Once trained, the model classifies new sentences as either
positive or negative and extracts relevant sentences containing
attack patterns from CTI.

(b) Attack phase extraction. For the sentences predicted
as positive (i.e., comprising at least one attack pattern), the
second sub-task involves identifying only the relevant part(s)
of the sentence that contains the description. To achieve this,
we use a sequence tagging model similar to those used for
extracting other entities for this task. The sequence tagging
model is trained on a hand-annotated labeled dataset, where
each word in the sentence is annotated as either part of an
attack pattern description or not. We can train the sequence
tagging model on a labeled dataset, where each word in
the sentence is annotated as either part of an attack pattern
description or not. In this case, we have two classes: whether
or not a word is part of an attack pattern description, and the
model can identify all the words that belong to each attack
pattern, even if the words are not contiguous. For example,
consider the sentence:

“The malware can covertly send and steal SMS codes, open tailored
overlays for various online banks, and steal 2FA-codes”.

The model identifies three distinct attack patterns: ”send and
steal SMS codes,” ”open tailored overlays for various online
banks,” and ”steal 2FA codes.”

(c) Mapping Attack Patterns. The final sub-task maps each
attack pattern to standardized MITRE ATT&CK techniques.
MITRE ATT&CK provides a comprehensive framework com-
prising techniques and sub-techniques for understanding and
categorizing cyber threats. However, we do not consider map-
ping to sub-techniques in this work as mapping each extracted
sequence to its corresponding sub-technique MITRE ID re-
quires significant annotation effort, as the number of classes
is significantly large. For mapping to the techniques, we adopt
a semantic similarity-based approach for the mapping task. We
compute the embeddings for extracted attack pattern phrases
using a pre-trained sentence transformer model [34]. Then, we
compute the embeddings of both the title and description of the
MITRE ATT&CK ID described on the MITRE website. We
use a cosine similarity metric to find the closest match between
the extracted attack pattern and the pre-computed embeddings
of the MITRE ATT&CK IDs. Once found, the embedding
maps to the corresponding MITRE ATT&CK technique.

D. Adding Relationship to Concepts
To incorporate entity information for relation classification,

we introduce four tokens that capture the position information
of the entities. Let s be the input sentence, e1, and e2 be the
two entities in s for which we want to classify the relation.
We denote the starting and ending position of e1 and e2 in
s as (sstarte1 , sende1) and (sstarte2 , sende2), respectively. The input
sentence is:

[CLS][E1]se1[E1][SEP]sbetween[SEP][E2]se2[E2]

where, [CLS], [SEP] are special tokens used in pre-trained trans-
former models; [E1], [E2] are special tokens to mark the starting
and ending position of e1 and e2, respectively, and sbetween is the
text between the two entities, which may contain relevant contextual
information for relation extraction.

A pre-trained transformer-based relation classification
model takes sentences from CTI reports in this format as input
data and predicts the relation between e1 and e2 through a
linear layer. Our relation extraction approach only considers
pairs of entities that may have a valid relationship based on the
adopted ontology [11], [33]. For instance, we may establish a
relationship between a pair of entities of type Malware and
Application (e.g., ⟨Malware, targets,Application⟩) but not
consider a relationship between entities of type Application
and Time. Our work builds on [45], which incorporates entity
information for relation classification.

E. Querying the framework

We adopt a triple format for queries to enable SOC analysts
to query the threat intelligence graph. This querying process is
akin to knowledge graph link prediction, which involves pre-
dicting the best candidate for a missing entity in a knowledge
graph [35]. Our framework uses a link prediction approach to
infer the missing entity. We leverage the knowledge generated

4

TABLE I
RESULTS FOR NER USING DIFFERENT TRANSFORMERS (BOLD INDICATES

THE BEST RESULT)

Model Precision Recall F1-score

BERT-base 73.34 77.88 75.14
BERT-large 75.30 79.23 77.12
RoBERTa-base 41.55 41.01 40.84
RoBERTa-large 35.95 36.23 35.49
XLM-RoBERTa-base 75.32 79.06 76.98
XLM-RoBERTa-large 76.97 81.57 78.98

TABLE II
ENTITY EXTRACTION RESULT FOR DIFFERENT CLASSES USING

XLM-ROBERTA-LARGE MODEL

Class Precision Recall F1-score

Malware 78.45 83.08 80.70
MalwareType 65.64 87.18 74.89
Application 70.13 73.26 71.66
OS 89.95 96.24 92.99
Organization 73.68 74.12 73.90
Person 88.24 75.00 81.08
ThreatActor 58.33 37.84 45.90
Time 85.51 89.39 87.41
Location 93.55 89.92 91.70
Average 76.97 81.57 78.98

from the modules in our framework to learn a scoring function
for predicting the missing triple. The tensor- factorization-
based model, TuckER [6], infers the missing entity in the threat
intelligence graph.

V. EXPERIMENTS AND RESULTS

For the large-scale knowledge graph, we extract concepts
from open CTI using the modules described in our framework.
The experimental choices, setup, and results are described
below.

A. Information Extraction

We use the PyTorch [28] deep learning framework to imple-
ment the models for the information extraction and subsequent
tasks. We fine-tune the pretrained transformer models available
in Huggingface’s transformers library [44]. We use a sequence
length of 128 for training the NER models. We train the
models for 20 epochs using 32 samples per mini-batch. We
use a learning rate of 1e-5 for the base models and 1e-6 for
the large models and optimize the models using the AdamW
optimizer [21].

We split the annotated datasets based on the malware under
discussion so that the same malware-related report is not
present in two different splits. Out of 36 total malware, the
training dataset contains reports for 26; validation and the test
dataset contain reports for five malware each. The number of
documents in the train, validation, and test split are 104, 21,
and 25, respectively.

TABLE III
RESULT FOR THE RELEVANT SENTENCE EXTRACTION SUBTASK FOR

ATTACK PATTERN EXTRACTION

Model Precision Recall F1-score

BERT-base 86.50 85.20 85.84
BERT-large 86.06 85.80 85.93
RoBERTa-base 87.42 86.10 86.76
RoBERT-large 89.22 90.03 89.62
XLM-RoBERTa-base 83.00 88.52 85.67
XLM-RoBERTa-large 84.73 88.82 86.73

TABLE IV
RESULT FOR THE ATTACK PHRASE EXTRACTION SUBTASK FOR ATTACK

PATTERN EXTRACTION

Model Precision Recall F1-score

BERT-base 87.67 90.55 89.09
BERT-large 87.74 87.81 87.78
RoBERTa-base 88.53 90.12 89.32
RoBERT-large 89.19 92.14 90.64
XLM-RoBERTa-base 86.82 90.72 88.73
XLM-RoBERTa-large 88.55 91.77 90.13

1) Entity Extraction: We show the results for the entity
extraction task using different transformer models in Table
I. XLM-RoBERTa large model performs the best for this
task with an average F1 score of 78.98%. We show the
class-specific results for this model in Table II. We generally
obtain better results for classes with more samples in the
training dataset. Operating System and Location yield better
results than the other classes as they do not have much
variation in forms. Application and Organization have some
overlap between them (e.g., Facebook and Twitter can be both
Application and Organization) which reduces the performance.
The most challenging class appears to be the ThreatActor.
This is because ThreatActor is usually an Organization or
Person with malicious intent. So, this requires a thorough
understanding of the context to detect them properly. Having
a limited input length means this may not be possible to
infer from a single sentence. There are also not enough
samples for this class in the training data, further reducing
the performance.

2) Attack Pattern Extraction: We use the same malware
split as in the NER task for attack pattern extraction. There
are usually more sentences in a report that do not contain
an attack pattern description than those that do. So, we
randomly sample the same amount of negative sentences as
the number of sentences that include attack patterns to create
a balanced dataset for the sentence classification task. We
fine-tune the transformer models for sentence classification
and attack phrase extraction subtasks. We use a sequence
length of 256 to train these models. We use a mini-batch
size of 32, and the optimal learning rate from [1e-5, 5e-5, 1e-
6], optimized using the validation set. We train the sentence
classification models for 20 epochs and the attack phrase
extraction models for 30 epochs. The models are trained using

5

TABLE V
RESULT FOR RELATIONSHIP EXTRACTION

Model Precision Recall F1-score
BERT-base 93.75 92.22 92.60
BERT-large 93.78 92.46 92.62
RoBERTa-base 81.66 83.88 82.27
RoBERT-large 77.47 81.06 77.97
XLM-RoBERTa-base 81.77 83.86 81.74
XLM-RoBERTa-large 72.64 78.69 75.29

TABLE VI
CLASS-SPECIFIC RESULTS FOR RELATIONSHIP EXTRACTION

Class Precision Recall F1-score

noRelation 100.0 100.0 100.0
isA 98.6 97.3 98.0
targets 96.3 88.1 92.0
uses 46.2 33.3 38.7
hasAuthor 87.5 93.3 90.3
has 100.0 70.0 82.4
variantOf 100.0 46.2 63.2
hasAlias 26.3 71.4 38.5
indicates 75.9 97.6 85.4
discoveredIn 100.0 100.0 100.0
exploits 100.0 50.0 66.7

the Adam optimizer [18].
We show the result for the binary sentence classification

task in Table III. We get greater than 85% F1-score for all
the models with RoBERTa large performing best with an
average F1-score of 89.62%. The results for the attack phrase
extraction task are in Table in IV. Here also, we obtain the best
result using the RoBERTa-large model, with an average F1-
score of 90.64%. These results suggest that our algorithm can
detect the relevant sentences for attack patterns from the text
and extract the part of the sentence that mentions the attack
patterns with a high degree of accuracy.

To learn the optimal parameter values wt and tau, We
manually map 80 randomly selected attack pattern descriptions
annotated in our training corpus with their corresponding
MITRE ID. The optimum values for the two parameters were
0.4 and 0.6, respectively.

B. Relation Extraction

When extracting relationships from threat reports, we need
to consider every pair of entities and infer the relationship
between them. However, many pairs of entities may not have
any meaningful relationship in the context, even if they may
be valid according to the ontology. To identify such cases, we
add the class NoRelation that predicts that there is no relation
between the entities under consideration. We randomly sample
such plausible entities from the annotated documents that do
not have any annotated relation. We perform an 80:20 split for
training and inference. Since there may be a relation between
entities far apart in the document, we use a larger sequence
length of 512. Due to GPU memory constraints, we use a mini-
batch size of 16 for the large models and 8 for the smaller
models. We use the optimal learning rate from [1e-5, 5e-5,

1e-6] and train the models for ten epochs using the AdamW
optimizer.

We show the aggregate result for relation extraction in Table
V. The BERT-based model outperforms the other two models
for this task. The best result is obtained using the BERT-
large model with a 92.62% average F1-score. We show the
results for specific classes in Table VI. We do not include
attack patterns for the relation extraction task as they are
part of a single relation type (Malware uses AttackPattern).
So, we can infer the relation for attack pattern once we
identify the malware under discussion. Although discoveredIn
performed well for the annotated corpus, it was primarily
because the reports were cleaned and usually did not contain
redundant time information of malware discovery. Among
other classes, uses and hasAlias performs much worse. Context
is challenging with uses as it is usually confused with targets
since both contain the same type of head-tail entity pairs (e.g.,
Malware and Application. Relationship between two malware
(variantOf and hasAlias) is difficult to detect since they may
be expressed at a distant position in report. We note that these
results are obtained on the manually cleaned test dataset, and
the performance drops on more noisy texts.

To the best of our knowledge, there is no open-source
dataset for cybersecurity relation extraction. An early work
in [15] used semi-supervised learning with a bootstrapping
algorithm for extracting the relation between security entities.
They achieved an average F1-score of 82% on a dataset
containing 8 different relations. The work in [29] used a word
embedding model for relation extraction in cybersecurity texts.
They considered six different types of relations – hasProduct,
hasVulnerability, uses, indicates, mitigates, related-to. They
achieved an average F1-score of 92%, which is comparable
to ours. Another work in [13] introduced a relation extraction
model using the pre-trained BERT model and bidirectional
GRU and CRF and achieved an average F1-score of 80.98%.
Recent work on open information extraction [36], i.e., where
the set of relations is not predetermined, achieved an average
F1-score of 59.4%.

C. Threat Intelligence Knowledge Graph

The trained information and relation extraction models
allow us to generate triples from new threat reports. We
combine prediction from the best-performing NER model and
heuristics to extract the concepts. We perform some post-
processing to remove noisy entities extracted by the approach.
For Malware and ThreatActors, we do not include them if they
are predicted as a different class elsewhere or only mentioned
once. For example, organizations like ThreatFabric are some-
times detected as ThreatActor instead of Organization. We do
not use the entity node for relation extraction in such cases.
Next, we use the best relation extraction model to identify
the relationship between entity pairs following the ontology.
We extract and map attack patterns to their corresponding
MITRE IDs using our proposed algorithm. We identify the
malware being discussed in each report (if any) and include
the relationship with that malware and the attack patterns. We

6

TABLE VII
INFERENCE (LINK PREDICTION) RESULTS FOR DIFFERENT TRAINING AND

TEST DATASETS

KG TestSet 1 TestSet 2

Hits@3 Hits@10 Hits@30 MRR Hits@3 Hits@10 Hits@30 MRR

KG1 0.209 0.365 0.497 0.186 0.090 0.195 0.322 0.093
KG2 0.221 0.353 0.516 0.211 0.215 0.359 0.501 0.203
KG3 0.202 0.353 0.507 0.190 0.204 0.356 0.498 0.193

TABLE VIII
CLASS-SPECIFIC INFERENCE (LINK PREDICTION) RESULTS.

Class KG TestSet 1 TestSet 2

Hits@3 Hits@10 Hits@30 MRR Hits@3 Hits@10 Hits@30 MRR

AttackPattern KG1 0.354 0.634 0.847 0.314 0.212 0.441 0.657 0.210
KG2 0.444 0.700 0.940 0.420 0.453 0.694 0.936 0.415

Location KG1 0.042 0.096 0.205 0.048 0.018 0.033 0.096 0.024
KG2 0.036 0.096 0.247 0.044 0.018 0.092 0.225 0.034

Application KG1 0.100 0.165 0.230 0.086 0.032 0.094 0.178 0.040
KG2 0.026 0.083 0.126 0.030 0.040 0.102 0.129 0.034

do this by identifying the malware with the most frequent
mention in the report.

We also include triples from Virus Total (VT) to create
a larger knowledge graph to evaluate link prediction perfor-
mance in the presence of more IoCs. VT provides academic
API to access intelligence on a database of several million
malware samples. We use the VT API V3.0 [3] to extract
IoCs (contacted domains and IP addresses) and permission
requests for each malware hash collected from a larger corpus
of OpenCTI reports. We map each permission to attack pattern
and MITRE ID using our algorithm and evaluate attack pattern
prediction from querying the larger knowledge graph.

D. Inferring entities with TuckER

We create two different test sets from the hand-annotated
documents with a varying number of triples for the link
prediction task. We considered triples involving Malware
e.g., AttackPattern, Location, Application, Organization for
testing. The first test set (TestSet 1) consists of 25% of the
annotated triples and the second (TestSet 2) consists of 40%
of the triples. We experiment with three training knowledge
graphs for the link prediction task. The first one (KG1) consists
of the remaining triples in hand-annotated documents. The
second one (KG2) consists of the triples generated using our
proposed framework from 12k documents. We also extract
triples from the VirusTotal and incorporate them with KG2
to obtain the last knowledge graph (KG3). We train the link
prediction models using TuckER to predict the tail entities. We
train the models with 50 embedding dimensions with a mini-
batch size of 64. The models are trained for 1000 iterations
with an initial learning rate of 0.001.

We use Mean Rank, Mean Reciprocal Rank (MRR), and
Hits@n for evaluation. These are calculated from the ranks
of all true test triples which TuckER returns. Mean reciprocal
rank (MRR) is the average of the inverse of the ranks of all
the true test triples. Hits@n denotes the percentage of test-set
ranking where a true triple is ranked within the top n positions
of the ranking. A higher score is considered better.

We show the results for the inference (link prediction) task
in Table VII. For TestSet 1, we have similar performance

using the different training datasets for all Hits@(n) values.
However, for TestSet 2, KG1 performs much worse than
KG2. We have a difference of 16.4% @Hits 10 between KG1
and KG2. This suggests that the additional triples obtained
from a larger knowledge graph enable the model to make
better predictions. The performance for KG2 is similar on
the two test datasets suggesting better generalization ability.
Adding additional triple from VirusTotal in KG3 decreases
performance slightly compared to KG2, suggesting that the
inclusion of additional IoCs may not help with the inference
(link prediction) task. This is most likely because IoCs are
usually unique across different malware.

We show class-specific prediction result in Table VIII using
KG1 and KG2 for three different tail entities - AttackPattern,
Location and Application where the head entity is Malware.
Here the most promising result is obtained for predicting
AttackPattern. The primary reason is that we have 66 unique
attack patterns, but the number of possible tail entities is much
larger for relations involving other classes. This result suggests
that malware with similar properties may exhibit similar attack
patterns. Similar to the aggregate result above, we see no
significant drop in performance for the two test datasets for
KG2 as opposed to KG1, where there is a significant drop.

VI. RELATED WORK

This research is closely related to three areas that support
threat intelligence, especially attack pattern inference using
open-access CTI, information extraction from unstructured and
semi-structured corpus, and prediction.

CTI: Prior research has centered around building rules or
models for searching and analyzing IoCs. Most shared intel-
ligence has been limited to tracking known threat indicators
such as IP addresses, domain names, and file hashes [20],
[25], [38]. [5], [8], [37] use internal enterprise logs to capture
threat intelligence and produce attack patterns, which is not
scalable. Therefore none of these can be directly compared
to our framework and inference-generating threat intelligence
knowledge graphs. The limitation of this approach is that
there is little to no overlap in the shared information, and
no long-term analysis is possible using this intelligence. Also,
none of this research captures detailed attack patterns in a
standardized format nor utilizes CTI reports for analysis. In
[41], Thein et al. propose a neural network approach for
classifying sentences of a document into five phases of the
cyber kill chain, which are broad categories for all the phases
of a cyberattack. Similarly, [14] combines dependency parser
and heuristics to extract threat actions from a document and
map them to kill chain phases. Luo et al. [22] formulate
the event extraction as a sequence tagging task and use a
bidirectional LSTM network to solve it.

Discovering and Extracting Threat concepts: [10] im-
plement a maximum entropy model for automatically labeling
cybersecurity concepts. However, more recently, named entity
recognition (NER) models have been built to adopt a hybrid
approach combining multiple methods for NER [46]. Kim
et al. [17] built a NER system using a deep bidirectional

7

LSTM-CRF network trained on a combination of features.
The work in [12] provides a comparative study of different
neural networks, including CNN, LSTM, BERT, and CRF,
for cybersecurity NER. OpenCTI reports come from diverse
sources, and therefore ambiguity and duplication in threat
concepts are research-worthy problems. Word embeddings
have been used for entity disambiguation in [43] by clustering
entities based on their similarity in the embedding space.

Threat Intelligence Knowledge Graph: Knowledge graph
construction in the cybersecurity domain is limited compared
to other domains, such as biomedical studies. The study in
[26] implements a collaborative framework with the help
of semantically rich knowledge representation for the early
detection of cybersecurity threats. This system assimilates
ontologically defined concepts from multiple sources, such
as security bulletins, CVEs, and blogs, and then represents
it as a knowledge graph (KG) connected by these concepts.
A cybersecurity KG is constructed from open-access CTI in
[30], which contains an analysis of various cyber-attacks and
is prepared from the investigation of attacks. This system
consists of a custom NER and an entity fusion technique to
merge concepts extracted from multiple reports. SEPSES [16]
is a cybersecurity KG populated from multiple heterogeneous
cybersecurity data sources and frequently updated. An Extrac-
tion, Transformation, and Loading (ETL) periodically checks
and updates the KG as new security information becomes
available.

VII. CONCLUSION

Our ongoing research presents a framework to infer attack
patterns and other threat intelligence related to emerging
threats. By inferring attack pattern steps and other classes
such as Location, Application, OS, our framework provides
valuable evidence to security analysts when dealing with new
attacks. The proposed framework can be utilized by SOC
analysts to proactively gain insights into potential ways that an
emerging threat, described in open-access CTI, can affect their
organization’s internal network. We discuss the challenges of
extracting threat information from CTI and models that have
effectively analyzed cyber threat datasets.

REFERENCES

[1] Cerberus unleashed. threatpost.com/cerberus-banking-trojan-unleashed-
google-play/157218/.

[2] Msft security bulletin. https://msrc.microsoft.com/update-guide/.
[3] Virustotal. https://developers.virustotal.com/reference/overview.
[4] Md Tanvirul Alam, Dipkamal Bhusal, Youngja Park, and Nidhi Rastogi.

Cyner: A python library for cybersecurity named entity recognition.
arXiv preprint arXiv:2204.05754, 2022.

[5] Abdulellah Alsaheel, Yuhong Nan, Shiqing Ma, Le Yu, Gregory Walkup,
Z Berkay Celik, Xiangyu Zhang, and Dongyan Xu. {ATLAS}: A
sequence-based learning approach for attack investigation. In 30th
USENIX Security Symposium (USENIX Security 21), pages 3005–3022,
2021.

[6] Ivana Balažević, Carl Allen, and Timothy M Hospedales. Tucker: Tensor
factorization for knowledge graph completion. pages 5185–5194, 2019.

[7] Sean Barnum. Standardizing cyber threat intelligence information with
the structured threat information expression (stix). Mitre Corporation,
11:1–22, 2012.

[8] Xander Bouwman, Harm Griffioen, Jelle Egbers, Christian Doerr, Bram
Klievink, and Michel Van Eeten. A different cup of {TI}? the added
value of commercial threat intelligence. In 29th USENIX Security
Symposium (USENIX Security 20), pages 433–450, 2020.

[9] Robert A Bridges, Kelly MT Huffer, Corinne L Jones, Michael D
Iannacone, and John R Goodall. Cybersecurity automated information
extraction techniques: Drawbacks of current methods, and enhanced
extractors. In 2017 16th IEEE International Conference on Machine
Learning and Applications (ICMLA), pages 437–442. IEEE, 2017.

[10] Robert A. Bridges, Corinne L. Jones, Michael D. Iannacone, and John R.
Goodall. Automatic labeling for entity extraction in cyber security.
CoRR, abs/1308.4941, 2013.

[11] Ryan Christian, Sharmishtha Dutta, Youngja Park, and Nidhi Rastogi.
Poster: An ontology-driven knowledge graph for android malware. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 2435–2437, 2021.

[12] Soham Dasgupta, Aritran Piplai, Anantaa Kotal, and Anupam Joshi.
A comparative study of deep learning based named entity recognition
algorithms for cybersecurity. In 2020 IEEE International Conference on
Big Data (Big Data), pages 2596–2604. IEEE, 2020.

[13] Yongyan Guo, Zhengyu Liu, Cheng Huang, Jiayong Liu, Wangyuan
Jing, Ziwang Wang, and Yanghao Wang. Cyberrel: Joint entity and re-
lation extraction for cybersecurity concepts. In International Conference
on Information and Communications Security, pages 447–463. Springer,
2021.

[14] Ghaith Husari, Ehab Al-Shaer, Mohiuddin Ahmed, Bill Chu, and Xi Niu.
Ttpdrill: Automatic and accurate extraction of threat actions from
unstructured text of cti sources. In Proceedings of the 33rd annual
computer security applications conference, pages 103–115, 2017.

[15] Corinne L Jones, Robert A Bridges, Kelly MT Huffer, and John R
Goodall. Towards a relation extraction framework for cyber-security
concepts. In Proceedings of the 10th Annual Cyber and Information
Security Research Conference, pages 1–4, 2015.

[16] Elmar Kiesling, Andreas Ekelhart, Kabul Kurniawan, and Fajar Juang
Ekaputra. The sepses knowledge graph: An integrated resource for
cybersecurity. In SEMWEB, 2019.

[17] Gyeongmin Kim, Chanhee Lee, Jaechoon Jo, and Heuiseok Lim. Auto-
matic extraction of named entities of cyber threats using a deep bi-lstm-
crf network. International journal of machine learning and cybernetics,
11(10):2341–2355, 2020.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[19] Max Landauer, Florian Skopik, Markus Wurzenberger, Wolfgang Hot-
wagner, and Andreas Rauber. A framework for cyber threat intelligence
extraction from raw log data. In 2019 IEEE International Conference
on Big Data (Big Data), pages 3200–3209. IEEE, 2019.

[20] Xiaojing Liao, Kan Yuan, XiaoFeng Wang, Zhou Li, Luyi Xing, and
Raheem Beyah. Acing the ioc game: Toward automatic discovery and
analysis of open-source cyber threat intelligence. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 755–766, 2016.

[21] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101, 2017.

[22] Ning Luo, Xiangyu Du, Yitong He, Jun Jiang, Xuren Wang, Zhengwei
Jiang, and Kai Zhang. A framework for document-level cybersecurity
event extraction from open source data. In 2021 IEEE 24th Interna-
tional Conference on Computer Supported Cooperative Work in Design
(CSCWD), pages 422–427. IEEE, 2021.

[23] Arunesh Mathur, Gunes Acar, Michael J Friedman, Eli Lucherini,
Jonathan Mayer, Marshini Chetty, and Arvind Narayanan. Dark patterns
at scale: Findings from a crawl of 11k shopping websites. Proceedings
of the ACM on Human-Computer Interaction, 3(CSCW):1–32, 2019.

[24] Rob McMillan. Definition: Threat intelligence, May 2013.
[25] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and

VN Venkatakrishnan. Poirot: Aligning attack behavior with kernel
audit records for cyber threat hunting. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages
1795–1812, 2019.

[26] Sandeep Nair Narayanan, Ashwinkumar Ganesan, Karuna Pande Joshi,
Tim Oates, Anupam Joshi, and Timothy W. Finin. Early detection
of cybersecurity threats using collaborative cognition. 2018 IEEE
4th International Conference on Collaboration and Internet Computing
(CIC), pages 354–363, 2018.

8

https://msrc.microsoft.com/update-guide/
https://developers.virustotal.com/reference/overview

[27] Zhaoyang Niu, Guoqiang Zhong, and Hui Yu. A review on the attention
mechanism of deep learning. Neurocomputing, 452:48–62, 2021.

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32,
2019.

[29] Aditya Pingle, Aritran Piplai, Sudip Mittal, Anupam Joshi, James Holt,
and Richard Zak. Relext: Relation extraction using deep learning
approaches for cybersecurity knowledge graph improvement. In Pro-
ceedings of the 2019 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, pages 879–886, 2019.

[30] Aritran Piplai, Sudip Mittal, Anupam Joshi, Tim Finin, James Holt, and
Richard Zak. Creating cybersecurity knowledge graphs from malware
after action reports. IEEE Access, 8:211691–211703, 2020.

[31] Aritran Piplai, Sudip Mittal, Anupam Joshi, Tim Finin, James Holt, and
Richard Zak. Creating cybersecurity knowledge graphs from malware
after action reports. IEEE Access, 8:211691–211703, 2020.

[32] Nidhi Rastogi, Sharmishtha Dutta, Alex Gittens, Mohammad Zaki, and
Charu Aggarwal. Tinker: A framework for open source cyberthreat
intelligence. In 21st International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom’22), number
https://arxiv.org/abs/2102.05571, pages 1–14, 2022.

[33] Nidhi Rastogi, Sharmishtha Dutta, Mohammed J Zaki, Alex Gittens, and
Charu Aggarwal. Malont: An ontology for malware threat intelligence.
In International Workshop on Deployable Machine Learning for Security
Defense, pages 28–44. Springer, 2020.

[34] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings
using siamese bert-networks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 11 2019.

[35] Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata,
and Paolo Merialdo. Knowledge graph embedding for link prediction:
A comparative analysis. ACM Transactions on Knowledge Discovery
from Data (TKDD), 15(2):1–49, 2021.

[36] Injy Sarhan and Marco René Spruit. Open-cykg: An open cyber threat
intelligence knowledge graph. Knowledge Based System, 233:107524,
2021.

[37] Yun Shen and Gianluca Stringhini. {ATTACK2VEC}: Leveraging
temporal word embeddings to understand the evolution of cyberattacks.
In 28th USENIX Security Symposium (USENIX Security 19), pages 905–
921, 2019.

[38] Xiaokui Shu, Frederico Araujo, Douglas L Schales, Marc Ph Stoecklin,
Jiyong Jang, Heqing Huang, and Josyula R Rao. Threat intelligence
computing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1883–1898, 2018.

[39] Pontus Stenetorp, Sampo Pyysalo, Goran Topic, Tomoko Ohta, Sophia
Ananiadou, and Junichi Tsujii. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstrations at the 13th Con-
ference of the European Chapter of the Association for Computational
Linguistics (EACL), 2012.

[40] Nan Sun, Jun Zhang, Paul Rimba, Shang Gao, Leo Yu Zhang, and Yang
Xiang. Data-driven cybersecurity incident prediction: A survey. IEEE
communications surveys & tutorials, 21(2):1744–1772, 2018.

[41] Thin Tharaphe Thein, Yuki Ezawa, Shunta Nakagawa, Keisuke Fu-
rumoto, Yoshiaki Shiraishi, Masami Mohri, Yasuhiro Takano, and
Masakatu Morii. Paragraph-based estimation of cyber kill chain phase
from threat intelligence reports. Journal of Information Processing,
28:1025–1029, 2020.

[42] Asahi Ushio and Jose Camacho-Collados. T-ner: An all-round python
library for transformer-based named entity recognition. In Proceedings
of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: System Demonstrations, pages 53–62, 2021.

[43] Shikhar Vashishth, Prince Jain, and Partha Talukdar. Cesi: Canonicaliz-
ing open knowledge bases using embeddings and side information. In
Proceedings of the 2018 World Wide Web Conference, pages 1317–1327,
2018.

[44] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, and Jamie Brew. Huggingface’s transformers: State-of-the-
art natural language processing. CoRR, abs/1910.03771, 2019.

[45] Shanchan Wu and Yifan He. Enriching pre-trained language model
with entity information for relation classification. In Proceedings of

the 28th ACM international conference on information and knowledge
management, pages 2361–2364, 2019.

[46] Feng Yi, Bo Jiang, Lu Wang, and Jianjun Wu. Cybersecurity named
entity recognition using multi-modal ensemble learning. IEEE Access,
8:63214–63224, 2020.

9

	Introduction
	Motivation
	Approach Overview
	Cyberthreat Intelligence (CTI)
	Concepts of threat intelligence
	Generating Threat Intelligence Graph
	Inferring Attack Patterns

	System Design
	Dataset Collection
	Information Extraction from CTI for Threat Intelligence Graph
	Attack Pattern Extraction
	Adding Relationship to Concepts
	Querying the framework

	Experiments and Results
	Information Extraction
	Entity Extraction
	Attack Pattern Extraction

	Relation Extraction
	Threat Intelligence Knowledge Graph
	Inferring entities with TuckER

	Related work
	Conclusion
	References

