
TALISMAN: Tamper Analysis for Reference Monitors

Frank Capobianco∗†, Quan Zhou∗†, Aditya Basu∗, Trent Jaeger∗§‡ and Danfeng Zhang∗¶‡
∗The Pennsylvania State University, §University of California, Riverside, ¶Duke University

{fnc110, quan.zhou, aditya.basu}@psu.edu, trentj@ucr.edu, danfeng.zhang@duke.edu

Abstract—Correct access control enforcement is a critical
foundation for data security. The reference monitor is the key
component for enforcing access control, which is supposed to pro-
vide tamperproof mediation of all security-sensitive operations.
Since reference monitors are often deployed in complex software
handling a wide variety of operation requests, such as operating
systems and server programs, a question is whether reference
monitor implementations may have flaws that prevent them from
achieving these requirements. In the past, automated analyses
detected flaws in complete mediation. However, researchers have
not yet developed methods to detect flaws that may tamper with
the reference monitor, despite the many vulnerabilities found
in such programs. In this paper, we develop TALISMAN, an
automated analysis for detecting flaws that may tamper the
execution of reference monitor implementations. At its core,
TALISMAN implements a precise information flow integrity anal-
ysis to detect violations that may tamper the construction of
authorization queries. TALISMAN applies a new, relaxed variant
of noninterference that eliminates several spurious implicit flow
violations. TALISMAN also provides a means to vet expected uses
of untrusted data in authorization using endorsement. We apply
TALISMAN on three reference monitor implementations used in
the Linux Security Modules framework, SELinux, AppArmor,
and Tomoyo, verifying 80% of the arguments in authorization
queries generated by these LSMs. Using TALISMAN, we also
found vulnerabilities in how pathnames are used in authorization
by Tomoyo and AppArmor allowing adversaries to circumvent
authorization. TALISMAN shows that tamper analysis of reference
monitor implementations can automatically verify many cases
and also enable the detection of critical flaws.

I. INTRODUCTION

Correct enforcement of access control is critical for pro-
tecting data security. For example, in the early 2000s, a flurry
of Internet-scale worms exposed weaknesses in access control
enforcement in operating systems [1]. Security researchers
proposed that security-sensitive software, such as operating
systems and server programs, must enforce access control in a
manner that complies with the reference monitor concept [2],
[3], which requires complete mediation of all security-sensitive
operations by tamperproof reference monitors verified to be
correct through complete testing. As a result, reference monitor
implementations were created for several software systems,
including Linux [4], the X Server [5], Postgres [6], and
Apache [7].

†The authors contributed equally to this work.
‡Most of this work is done while the authors were working at Penn State.

Access control authorizes requests from clients to per-
form security-sensitive operations, so malicious clients may
want to exploit incorrect reference monitor implementations
to gain unauthorized access. For example, researchers found
that clients could bypass authorization in Linux in some cases
because its reference monitor implementation did not ensure
complete mediation [8], [9]. However, concerns about tamper-
ing the reference monitor implementations was not examined.
The assumption at the time was that since the reference mon-
itor implementations were integrated with the host programs
(i.e., the operating systems and server programs), a flaw in the
host program would be no different from a flaw in the reference
monitor. However, in the 20-plus years since the introduction
of these reference monitor implementations, the mindset has
changed. Most host programs include defenses, such as ASLR,
to hide critical data from adversaries even when a vulnerability
is exploited. In addition, interest in privilege separation [10],
[11], [12] within programs and even operating systems has
only increased, aiming to prevent access to critical data even
if a component of the program is compromised. As a result,
detecting whether reference monitor implementations may be
tampered is becoming more important.

In the past, researchers developed several automated anal-
yses to detect failures in complete mediation [13], [14], [15],
[16], [17], [18], [19], [8], [9], [20]. Such analyses detect
the absence of authorization checks [13], [20], [9], detect
inconsistent use of authorization checks [8], [16], and propose
placements and/or repairs for missing checks [14], [15], [17],
[18], [19]. These methods use control flows to determine what
authorization checks are expected at particular points in the
program. More recent work detects missing security checks
more broadly (i.e., for mediating other kinds of accesses)
by detecting missing checks [21], inconsistent checks [22],
as well as generating check placements [23], [24]. Similarly,
data flow analysis [24], [25], [21] has been used to detect
program points that may leak data. For example, King et
al. [24] use information flow analysis to detect where data
flows may violate a security policy to generate placements for
security checks to mediate those data flows. While there are
many analyses that have been proposed to detect failures in
mediation and leakage, we are not aware of analyses targeting
the tamperproof requirement of reference monitors1.

Prior work on tamper-resistant software [26], [27], [28],
[29] has generally involved digital rights management, pro-
tecting the integrity of the code and how it executes through
forms of obfuscation. For the tamperproof reference monitor
requirement, the problem is somewhat different. In this case,
we want to ensure that any data used by a reference moni-
tor to construct the authorization queries used to check for

1The verified to be correct requirement of reference monitors has not been
examined either, but we focus on the tamperproof requirement in this paper.

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.241031
www.ndss-symposium.org

mailto:fnc110@psu.edu
mailto:quan.zhou@psu.edu
mailto:aditya.basu@psu.edu

authorized access satisfies a set of integrity requirements for
the reference monitor. This problem is complicated by the fact
that the construction of authorization queries depends on the
operation requests that are made by untrusted clients of the host
program. However, we observe that reference monitors only
need to convert the operation requests into monitor-specific
subjects, objects, and operations to construct authorization
queries. This is typically done in a common manner for each
reference monitor implementation, enabling untrusted inputs
to be endorsed in many cases using a few common methods.

In this paper, we develop TALISMAN, a system for tamper
analysis of reference monitor implementations. At its core,
TALISMAN is a field-sensitive, information flow integrity anal-
ysis that detects tampering between the data used by the
reference monitor (i.e., sources) and authorization queries (i.e.,
sinks). However, we find that standard noninterference is too
restrictive (i.e., reports many safe code) because it is common
for a reference monitor to perform multiple sequences of
authorization queries depending on the client inputs. According
to strict noninterference, such code violates the integrity policy
since low-integrity inputs interfere with the existence/absence
of high-integrity authorization queries. To address this lim-
itation, we define relaxed noninterference, which more pre-
cisely captures the intended integrity policy: the sequence of
authorization queries checked can be a choice of the reference
monitor based on the operation request. TALISMAN automates
the information flow analysis by constructing information
flow problems from reference monitor code (i.e., identifying
and labeling sources and sinks), detecting information flow
integrity violations, and applying integrity endorsement. The
few remaining violations indicate issues that require manual
assessment, which may be caused by ad hoc or complex
implementations or true tamper issues in need of vetting.

We applied TALISMAN to evaluate three reference mon-
itor implementations of the Linux Security Modules (LSM)
framework, Linux’s access control enforcement system. The
AppArmor [30], SELinux [31], and Tomoyo [32] LSMs are
three distinct reference monitor implementations from three
separate organizations that perform Linux access control using
their own approaches2. Using TALISMAN, we analyzed 145
hook functions with 351 arguments to authorization queries,
finding that the integrity of 80% of the arguments can be veri-
fied including those that can be endorsed. By applying relaxed
noninterference, TALISMAN reduces the integrity violations
due to implicit flows by approximately 60% for SELinux
and 90% for Tomoyo and AppArmor, greatly reducing the
subsequent effort in removing false positives. Of the remaining
cases, TALISMAN found information flow violations where
the ad hoc use of pathnames for authorization presents a
vulnerability that can allow unauthorized access, due to differ-
ences in canonicalization between the Tomoyo and AppArmor
LSMs and the Linux file systems. The addition of runtime
endorsement to prevent tampering incurs less than a 0.14 µs
of overhead for each of the LSMs for LMBench 3.0, except
when inode_permission is endorsed, which causes some
redundant overhead as discussed in Section VIII-F.

2Several reference monitor implementations for server programs, such
as Apache [33], Postgres [34], and X Server [5] were all developed in
coordination with the SELinux community. So their implementations are
similar to SELinux as discussed in section II-A.

1 static int inode_has_perm(const struct cred *cred,
struct inode *inode, u32 perms, struct
common_audit_data *adp) {

2 ...
3 validate_creds(cred);
4 if (unlikely(IS_PRIVATE(inode)))
5 return 0;
6

7 sid = cred_sid(cred);
8 isec = inode->i_security;
9 return avc_has_perm(sid, isec->sid, isec->sclass,

perms, adp);
10 }

Fig. 1. Function inode_has_perm from SELinux

In this paper, we make the following contributions:

• We develop an information flow analysis based on
the novel principle of relaxed noninterference, which
allows the sequence of authorization queries run by a
reference monitor to depend on the untrusted operation
request, as intended by reference monitor implemen-
tations.

• We develop a tamper analysis tool, called TALISMAN,
that provides field-sensitive, information-flow analysis
for a three-dimensional integrity lattice that detects
violations of relaxed noninterference3.

• We apply TALISMAN to three reference monitor im-
plementations of the Linux Security Modules frame-
work, namely AppArmor, SELinux, and Tomoyo, find-
ing that the integrity of 80% of the arguments to au-
thorization queries can be verified. In addition, using
TALISMAN enables us to find a security vulnerability
caused by the difference in how file pathnames are
canonicalized between AppArmor/Tomoyo and Linux
file systems, which could allow unauthorized access.

We have reported the file pathname vulnerability to a Linux
VFS maintainer, who has confirmed the problem, and the
AppArmor and Tomoyo communities. We are exploring patch
options.

II. PROBLEM DEFINITION

In this section, we examine the impact of tampering on
reference monitors and define the problem of tamper analysis
for reference monitors.

A. Tampering of Authorizations

Reference monitors, such as Linux Security Modules [4]
(LSMs) like AppArmor [30], SELinux [31] and Tomoyo [32],
authorize operation requests from their clients. Authorization
determines whether a subject (e.g., client user, process, etc.) is
allowed to perform an operation (e.g., read, write, etc.) upon
an object (e.g., file, socket, etc.). We find that authorization
may be prone to tampering in at least three ways. We use the
LSMs as example although the problems are common in other
systems as well.

Case 1 (Store Security Identifiers in Host Program Struc-
tures). We find that reference monitors often store the security

3The source code is accessible at https://github.com/isolachine/talisman.

2

https://github.com/isolachine/talisman

1 static int apparmor_file_open(struct file *file,
2 const struct cred *cred) {
3 profile = aa_cred_profile(cred);
4 if (!unconfined(profile)) {
5 struct inode *inode = file_inode(file);
6 struct path_cond cond =
7 { inode->i_uid, inode->i_mode };
8

9 error = aa_path_perm(OP_OPEN, profile,
10 &file->f_path, 0,
11 aa_map_file_to_perms(file), &cond);
12 fcxt->allow = aa_map_file_to_perms(file);
13 }
14 return error;
15 }

Fig. 2. An AppArmor hook function apparmor_file_open

identifiers for authorization in the host program data structures.
For example, SELinux stores a security identifier in the field
i_security for each inode, as shown in Figure 1. The
security identifier isec is extracted (line 8) for authorization
by the function avc_has_perm at line 9. This security data
is set by SELinux when the inode object is created. But since
the security identifier is stored in the inode object, which
is used in many system call operations, it is prone to illicit
modification, even when using defenses like KASLR. Should
this happen, the authorization process can be tampered by
using the modified security identifiers. In this case, we expect
that the inode’s security identifier should be unmodified after
its creation by SELinux; a simple check by the reference
monitor can validate that fact.

Case 2 (Incorrect Use of Operation Request Input).
Some uses of the operation requests submitted by clients for
authorization can lead to vulnerable behaviors when done
incorrectly. Figure 2 shows that the AppArmor function
apparmor_file_open, which authorizes file access, uses
the value file->f_path as the security identifier for the file
object in the call to aa_path_perm on line 9, which makes
the authorization decision. However, the canonicalization of
the pathname by AppArmor differs from that performed by
Linux file systems (and may vary among Linux file systems
as well), causing AppArmor to check its policy incorrectly.
Researchers recently found that this problem manifests it-
self when using file systems supporting case-preserving nam-
ing [35]. For example, a user may provide the name “FOO” for
a pathname element, but the recent support for case-preserving
directories in the Linux Ext4 file system may resolve that name
to a file named “foo”. If AppArmor checks whether access is
permitted to “FOO” rather than “foo”, incorrect authorization
may result, as we detail in Section VIII-C. We note that
Tomoyo also uses pathnames for security identifiers for files,
leading to the same problem.

Case 3 (Authorization Bypass). LSMs often use data from
the object itself in conditional statements that may result in
bypassing authorization entirely. Consider the snippet of code
from the function inode_has_perm in Figure 1. If the
function IS_PRIVATE at line 4 returns true, the function
returns 0 (i.e., the request is authorized) without invoking the
authorization function avc_has_perm. Conditions that use
inputs to the hook function (i.e., the inode argument) to allow
authorization to be bypassed are common, but raise the risk of
incorrect authorization if users can modify the value used in the
conditional. We aim to detect such risky cases automatically

Authorization Function
Subject Object Ops

Authorization Decision

Hook Function
Inputs

Imports

Authorization Query

- Low Integrity - High Integrity

Reference
Monitor Data

Access Control
Policy

Fig. 3. Authorization in modern reference monitor implementations, show-
ing low-integrity and high-integrity data. Authorization uses two functions:
(1) hook functions to construct authorization queries and (2) authorization
functions to compare the query to the monitor’s access control policy.

to enable vetting.

B. The Tamper Problem for Reference Monitors

Figure 3 shows the tampering problem abstractly. First,
we find that modern reference monitor implementations divide
the task of authorization into two parts, which we designate
as the hook function and the authorization function. First,
hook functions transform client inputs specifying each op-
eration request into a monitor-specific authorization query,
which specifies the subject, object, and operations to authorize
using the reference monitor’s own security identifiers. Then,
authorization functions compare the security identifiers for the
subject, object, and operations in the authorization query to the
reference monitor’s access control policy to determine whether
to authorize the request (i.e., determine the authorization
decision).

Figure 3 shows that tampering is possible because the
reference monitors use client-provided inputs and imports, in
addition to high-integrity reference monitor data, in creating
authorization queries. Inputs are the arguments passed directly
to the hook function for the operation request. The arguments
include the program resources used to compute security iden-
tifiers for subjects, objects, and operations. Imports are ad hoc
program data (e.g., global variables) used by the reference
monitor. Both of them may be modified in a manner that
could cause incorrect authorization decisions. In the previous
section, clients provide file pathnames as input that cause an
LSM to compute an incorrect object security identifier (Case
2). In addition, LSMs may compare client inputs (inode) to
kernel-defined values (IS_PRIVATE) to determine whether to
perform authorization at all (Case 3).

The reference monitor concept [2] was proposed in 1972
to define a set of design requirements for secure authorization
in operating systems. The reference monitor concept consists
of three requirements of any reference monitor: (1) it must
provide complete mediation of all security-sensitive operations;
(2) it must be tamperproof; and (3) its operation must be
verified to be correct via complete testing. Researchers have
explored a variety of techniques to assess the correctness of
authorization, particularly complete mediation, by assessing
control flow [13], [20], [9], [8], [17], [18], [14], [15], [16] (i.e.,
all control flows to security-sensitive operations are mediated)
and data flow [36], [37], [24], [25] (i.e., all accesses to data

3

obey an information flow policy). However, those techniques
do not detect tampering.

In this paper, we propose a tamper analysis to detect when
and how hook functions violate a tamperproof requirement
in constructing authorization queries. More specifically, we
check that the arguments to authorization queries (i.e., the
subject, object, and operation identifiers) are constructed in
a manner free from tampering through the use of low-integrity
inputs and imports (Cases 1 and 2 above). When low-integrity
inputs and imports are used to construct authorization queries
in an expected manner, we want to endorse these cases with
minimal effort, when possible. In addition, our analysis detects
cases where authorization may bypass evaluation of one or
more authorization queries, and then reports the impact on
authorization correctly with respect to the reference monitor
semantics (Case 3).

C. Information Flow Analysis

Information flow control provides a fine-grained control
on information propagation. Unlike traditional access control
policies, information flow control offers an end-to-end security
guarantee, known as noninterference [38]. In the context of
information integrity of reference monitors, noninterference
means that low-integrity (i.e., untrusted) inputs will never tam-
per high-integrity (i.e., trusted) authorization queries. To define
integrity, we follow the widely-used lattice-based model [39]
where information integrity is modeled as security levels drawn
from an integrity lattice. More specifically, let data d1 and d2’s
integrity be levels ℓ1 and ℓ2 (drawn from a security lattice L)
respectively. Then, d1 may flow to d2 if and only if ℓ2 ⊑ ℓ1
(i.e., d1’s integrity level is at least as high as d2’s). Note that
an expressive lattice-based model is needed for analyzing the
integrity of modern reference monitor implementations, as it
cannot be simply categorized as trusted or untrusted; the data
used in authorization has multiple possible sources, purposes,
etc., as we elaborate in Section VI-A.

A variety of methods have been proposed to validate
that an information flow policy is successfully enforced in a
system, including dynamic and static analyses [40]. In this
paper, we employ static information flow analysis due to its
soundness guarantee: validated code obeys integrity policy
in all possible executions. Although static information flow
analysis is well-studied in the literature, reference monitors
present unique challenges that we tackle in this paper. First,
noninterference is known to be too restrictive when analyzing
non-trivial systems [40]. In this paper, we propose a variant
of noninterference that is more suitable for tamper analysis of
reference monitors: it reduces spurious implicit flow violations
in the reference monitors we evaluate by 58% to 91% relative
to the strict noninterference. Second, endorsement, like its
counterpart for secrecy, declassification, is often application-
specific. In this paper, we develop a systematic approach of
endorsing information flow integrity violations for common
cases. Third, analysis precision is crucial due to the non-trivial
codebase of reference monitors. We identify the bottlenecks
of existing static information flow analysis and apply several
improvements that remove false positives that account for 65%
to 91% of the positives in the evaluated reference monitors
found by a more naive implementation. We elaborate on the
above technical innovations in Sections V and VI.

III. SOLUTION OVERVIEW

We propose TALISMAN, which performs tamper analysis
on reference monitors. The TALISMAN architecture is shown in
Figure 4. TALISMAN operates in three steps to determine how
authorization queries may be tampered and endorse common
cases. First, TALISMAN generates an information-flow problem
for each of the hook functions by identifying and labeling
its data sources using an integrity lattice. Second, TALISMAN
employs a relaxed variant of noninterference, we call relaxed
noninterference, to detect information-flow violations from
the hook function’s information-flow problem, accounting for
information flows that only differ in the sequences of sinks they
may visit to reduce spurious implicit flow violations. Third,
TALISMAN employs endorsement to resolve information-flow
violations for expected transformations. The result is a set of
tamperproof hook functions and/or remaining information-flow
violations to be resolved manually.

Not all information-flow violations remaining are neces-
sarily errors or vulnerabilities. There are some cases where
hook functions create complex scenarios that we discuss in
Section VIII. While some cases can be endorsed (e.g., some
code of Case I and categories for Case II), the remaining may
be addressed by endorsements that we have not designed yet.
Thus, we further classify the remaining cases to distinguish
the challenges that may remain. Notably, as described in Sec-
tion VIII-C, the use of pathnames in Tomoyo and AppArmor
is vulnerable to exploitation as currently implemented, so the
functionality must be changed to enable tamperproof operation
(e.g., Case 2 in Section II-A). In addition, as described in
the Section VIII-B, we find that some cases may be best
addressed by code refactoring while others depend on implicit
information from the kernel that needs to be made visible to
the analysis and preserved as the kernel changes (e.g., Case 3
in Section II-A). These lessons may impact the future design of
authorization modules, in the kernel and elsewhere, to ensure
tamperproof operation.

IV. THREAT MODEL

Figure 3 shows our threat model. We assume that the
reference monitor code, including hook functions and autho-
rization functions, is high integrity (i.e., trusted). Any reference
monitor data defined by the reference monitor itself in these
functions is assumed to be high integrity as well.

On the other hand, we assume that all data external to the
reference monitor is low integrity (i.e., untrusted), including
any inputs to the reference monitor from the program and other
program imports. In this paper, tampering is possible if an
authorization query is built using low integrity data that has
not been endorsed using a trusted endorser of the reference
monitor (e.g., using high integrity data stored by the reference
monitor).

We assume that the reference monitor is type-safe. Histor-
ically, analyses to validate complete mediation [13], [20], [9],
[8], [17], [18], [24], [25], [14], [15], [16] assumed type safety,
yet were valuable in finding real vulnerabilities in access
control enforcement. Further, we assume that memory errors
that may be present in the kernel do not modify the reference
monitor data or execution. That is, the reference monitor is
still assumed to be high integrity.

4

Construct
Information-

Flow Problem

Compute
Information-

Flow Violations

Resolve
Information-

Flow Violations

Integrity Lattice Relaxed
Noninterference

Reusable
Endorsement

Program
Source Code

Hook Functions

Sink Functions

Tamperproof
Hook

Functions
and/or

Remaining
Information-Flow

Violations

Fig. 4. TALISMAN overview - Rectangular boxes represent inputs, where as rounded boxes represent computation steps that transform hook functions into
tamperproof hook functions and/or report remaining information-flow violations.

While this threat model covers only a subset of the possible
attack vectors from the kernel via misuse of user process input,
any failure of the reference monitor to achieve tamperproofing
under this threat model will also apply in more powerful threat
models. We discuss strengthening the threat model and further
countermeasures to prevent tampering in Section IX.

V. DESIGN PRINCIPLES

In this section, we propose a methodological approach in
handling the tampering analysis with information flow control.
We first show the limitation of the standard noninterference for
LSM tamper analysis and propose its variant to accommodate
our threat model. Then, we show the design of our static
information flow analysis as well as plugging the relaxed
noninterference into the analysis.

A. Notation

In the context of information integrity, the focus of this
paper, we consider a deterministic program (e.g., a hook
function) H whose small-step semantics has the form of

⟨c, µ⟩ call(s,⃗v)−−−−−−→ ⟨c′, µ′⟩

Here, c and c′ are commands, µ and µ′ are the memory states
(i.e., mapping from variables to their values) and → represents
the transition from c to c′ in one evaluation step. When c calls
one of the predefined sink functions s with parameter values v⃗,
we annotate the transition with call(s, v⃗) above the transition
edge; otherwise, we leave it empty. We use v⃗ to represent the
sink function call’s actual parameters (i.e., the values being
passed to the function). We intentionally leave the semantics
abstract here as the noninterference definition is applicable to
any concrete semantics with the format above.

In our context, H is the invocation of one of the predefined
hook functions of interest, and H terminates with a return
value that represents an authorization decision (i.e., pass or
fail). Starting from its entry command c0 and memory state
µ0, H emits a sequence of transitions in the following form:

⟨c0, µ0⟩ → ⟨c1, µ1⟩
call1(s3 ,⃗v1)−−−−−−−−→ ⟨c2, µ2⟩ → ...

→ ⟨cn−1, µn−1⟩
call2(s5 ,⃗v2)−−−−−−−−→ ⟨cn, µn⟩

The subscript of call is its corresponding index among all
sink calls in the small-step semantics. In the execution trace
above, there are two sink calls (call1 and call2) emitted by
c1 and cn−1 that invoke sink functions s3 and s5 respectively.

For simplicity, we use the term trace, written as τ , to
represent a finite sequence of all sink calls in the order of
their corresponding index found in the small-step semantics.
More specifically, we write ⟨c0, µ0⟩ ↪→ τ when c0 under µ0

emits a trace τ . For the example above with two sink calls
call1 and call2, we simply write

⟨c0, µ0⟩ ↪→ (call1(s3, v⃗1),call2(s5, v⃗2))

instead of its full small-step semantics.

For a trace τ , we also denote its return value as a numerical
number R(τ) ∈ Z. A hook function returns an numerical
code to represent a successful or failed check, thus respectively
granting or denying the requested permission.

As discussed in Section II-C, we follow the widely-used
lattice-based model [39] where information integrity is mod-
eled as security levels drawn from an integrity lattice. We use L
to denote an integrity lattice and introduce the concrete lattice
that we use in tamper analysis in Section VI. To specify the
integrity levels of data sources and sink functions, we assume
a source-label map S4 and a sink-label map I respectively. In
particular, S specifies the integrity levels of used data (e.g.,
global variables, function inputs, constants)

S(x) → ℓ ∈ L

whereas I specifies the integrity levels on each sink function

I(s, i) → ℓ ∈ L

where ℓ is the integrity level for the i-th parameter of s.

Finally, two memory states µ and µ′ are ℓ-equivalent,
written as µ ≈ℓ µ′, if they share the same values on all data
at or above a security level ℓ ∈ L:

µ ≈ℓ µ
′ ⇐⇒ ∀x. ℓ ⊑ S(x) ⇒ µ(x) = µ′(x)

B. Strict Noninterference and Its Limitations

Consider a hook function H with inputs of various in-
tegrity levels. Informally, noninterference requires that for
any two different executions of H where only low-integrity
inputs change, the high-integrity parameters of any called
sink function must stay the same. Such restrictions imply
that an attacker who controls low-integrity inputs may never
tamper the values of high-integrity parameters passed into sink
functions. More formally,

4The computation that constructs the mapping is explained in Sec. VI-B.

5

1 static int apparmor_ptrace_traceme(
2 struct task_struct *parent) {
3 int error = cap_ptrace_traceme(parent);
4 if (error)
5 return error;
6

7 return aa_ptrace(parent, current, PTRACE_MODE_ATTACH);
8 }

Fig. 5. Source code for apparmor_ptrace_traceme.

Definition V.1 (Strict noninterference). A hook function H
satisfies strict noninterference if for any integrity level ℓ ∈ L
and any two arbitrary ℓ-equivalent memory states µ0 ≈ℓ µ′

0,
we have:

⟨H, µ0⟩ ↪→ τ ∧ ⟨H, µ′
0⟩ ↪→ τ ′ ∧

∀i, s, v⃗. calli(s, v⃗) ∈ τ =⇒ (calli(s, v⃗′) ∈ τ ′ ∧
(∀1 ≤ j ≤ sa. ℓ ⊑ I(s, j) ⇒ v⃗[j] = v⃗′[j]))

However, the strict noninterference property is too conser-
vative for analyzing security hooks: it might reject many secure
ones. We use the apparmor_ptrace_traceme function
in Figure 5 as a representative example. This function checks
whether the subject parent task (with integrity label ℓ1)
has the permission to trace the object, the current process
(with integrity label ℓ2). In this example, the designated sink
function is aa_ptrace. Consider two execution traces. The
first trace returns a non-zero error code at line 5 due to a failed
check on the relationship between parent and current
at line 3, resulting in no sink calls. The second trace passes
the check at line 3 and eventually reaches the sink function.
According to Definition V.1, this hook function violates strict
noninterference because a sink call found in one trace cannot
be found in another trace. In other words, the sequence of sink
call is influenced by low integrity data. But this is clearly a
false alarm, given that the early return at line 5 is intended
and correct because an error is detected and there is no need
for a further access control check. It is also very common
for a security hook to call different sink functions based on
its operation parameter (e.g, file read vs. file write). Such
influences on the selection of sink functions are also part of
the intended functionality of the authorization process.

C. Relaxed Noninterference

Based on the observation above, we argue that the threat
to tamperproof reference monitors is that an attacker might
control untrusted inputs to either tamper the input values
passed to sink functions or bypass all sink functions and trick a
hook function to return success (e.g., value 0 in LSMs) when
it should not. Hence, we present a relaxed noninterference
that allows untrusted inputs to change the sequence of sink
function calls, or bypass them completely when it is safe
to do so. Note that although confidentiality and integrity are
usually considered as duals in terms of noninterference, relaxed
noninterference is uniquely designed for tamper analysis, as
from the confidentiality perspective, any absence of a sink
function call also leaks information via implicit flows and/or
side channels.

Consequently, to relax strict noninterference, we only need
to (1) make sure untrusted input cannot bypass all sink calls

and return success, and (2) compare the sink calls that can be
matched between two different traces, which is captured by
the relaxed noninterference we introduce next.

Definition V.2 (Relaxed noninterference). Let SUCCESS be
a success code. A hook function H satisfies relaxed noninter-
ference if for any integrity level ℓ ∈ L, any two ℓ-equivalent
memory states µ0 ≈ℓ µ

′
0, we have:

⟨H, µ0⟩ ↪→ τ ∧ ⟨H, µ′
0⟩ ↪→ τ ′∧

Case I:
(|τ | = 0 ∧ |τ ′| > 0) =⇒ R(τ) ̸= SUCCESS

And Case II:
∀i, s, v⃗. (calli(s, v⃗) ∈ τ ∧ calli(s, v⃗′) ∈ τ ′)

=⇒ (∀1 ≤ j ≤ sa. ℓ ⊑ I(s, j) =⇒ v⃗[j] = v⃗′[j])

Here, Case I allows trace τ to bypass all sink calls when
the authorization fails (i.e., an error code is returned). In other
words, it rules out the unsafe scenario of bypassing sink calls:
when untrusted input leads to a trace that bypasses all sink
calls that appear in any other trace (|τ | = 0 ∧ |τ ′| > 0) and
the hook function H returns success (R(τ) = SUCCESS). Note
that the symmetric case (where |τ | > 0 and |τ ′| = 0) is also
ruled out when we flip µ0 and µ′

0 (and hence τ and τ ′) in the
for-all quantifier in the definition.

Case II captures the relaxation on noninterference: if a sink
call (e.g., the one at Line 7 in Figure 5) is found exclusively
in one of the two traces, no noninterference check is needed,
allowing the reference monitor to choose the authorization
queries to make based on the operation requests. Therefore, the
example shown in Figure 5 that violates Definition V.1 in fact
satisfies Definition V.2. Note that the relaxed noninterference
still checks the matching sink calls on both traces to ensure
that none of their parameters are tampered (the last line in
Case II). For example, a low-integrity value cannot be used as
the first parameter of sink function aa_ptrace since for the
traces that do reach line 7, such a low-integrity value might
vary and hence, fail the check at the last line in Case II.

We note that while relaxed noninterference reduces spu-
rious implicit flow violations of standard noninterference, the
remaining violations are not necessarily errors or vulnerabil-
ities. For example, a Case I violation that bypasses all sink
calls and returns success might be intentional and correct from
a functionality perspective. For example, the hook function in
Figure 6 checks if profile is confined or not at line 7. When
it is unconfined, it directly returns 0 without calling the sink
function aa_task_setrlimit. This code violates Case I
but its behavior is functionally correct. However, we choose to
use Case I since (1) “functional correctness” is hard to formal-
ize, and (2) each violation of Case I represents a potential risk
that worth being reported for further analysis. In Section VI-D,
we introduce simple bypass endorsers to further reduce the
number of cases that violates relaxed noninterference.

In theory, relaxed noninterference might remove errors or
vulnerabilities that does impose integrity risk. However, we
believe that this is very unlikely since only certain implicit
flows that only affect the sequence of sink function calls are
removed; all explicit flows and other forms of implicit flows
are still being checked. Moreover, we are not aware of any
known errors or vulnerabilities being removed.

6

1 static int apparmor_task_setrlimit(
2 struct task_struct *task, unsigned int resource,
3 struct rlimit *new_rlim) {
4 struct aa_profile *profile = __aa_current_profile();
5 int error = 0;
6

7 if (!unconfined(profile))
8 error = aa_task_setrlimit(profile, task, resource,

new_rlim);
9 return error;

10 }

Fig. 6. Source code for apparmor_task_setrlimit.

D. Information Flow Analysis

To analyze whether a hook function satisfies relaxed nonin-
terference (Definition V.2) or not, we follow an existing static
information flow analysis [41] that collects information flow
constraints of the form E1 ⊑ E2 where E1 and E2 (called
constraint elements) can be either an integrity level ℓ ∈ L or a
constraint variable to be solved. Intuitively, constraints state the
information flow restrictions w.r.t. the partial ordering relation
of lattice L.

Given source and sink labeling functions S and I, we
assign a hook function’s input level to the one as specified
in S and assign distinguished constraint constant to each
parameter in each sink function call as specified by I. By the
soundness result of [41], the program being analyzed satisfies
strict noninterference (Definition V.1) if the corresponding set
of constraints is solvable (e.g., by using a Rehof-Mogensen
solver [42]).

To close the gap between strict and relaxed noninterference,
we first note that Case I is relatively easy to identify on a
control-flow graph with a constant-propagation analysis. For
Case II, we note that no check is needed when different
sequences of sink function calls occur on two traces. Hence,
our tamper analysis utilizes the control-flow graph of source
code, and avoids tainting a program-counter (pc) label of
a branching instruction when all of its branches lead to
different sequences of sink function calls. For instance, the
branch at line 4 of Figure 5 leads to two control flows: one
without any call to aa_ptrace, and one with one call to
aa_ptrace. Hence, pc label after line 4 remains untainted
by the label of error, which is tampered by parent at
line 3. Consequently, the tamper analysis successfully reasons
that there is no illegal information flow from parent to the
parameters of aa_ptrace. So it accepts the program.

E. Constructing Information Flow Problems

TALISMAN constructs information flow problems to per-
form tamper analysis for hook functions. An information flow
problem consists of a set of sources with their respective labels
and a set of sinks with their respective labels, where the labels
are drawn from the integrity lattice defined in Section VI-A.

To construct information flow problems for the above anal-
ysis, we need to identify and label the sources that may affect
the value of the authorization query arguments at the sinks,
which are known for each reference monitor, as described
in Section VII. To do that, we employ a backward static
taint analysis from each of the sink function arguments on
a Program Dependence Graph (PDG) representation [43] of
the hook functions and its supporting functions.

TALISMAN’s backwards taint analysis traverses PDGs start-
ing from each sink argument until the analysis reaches either an
input (i.e., a hook function argument) or an import that has no
incoming data dependencies (e.g., a global variable or constant
value). Inputs are assigned to labels based on their position
among the arguments in the hook function. Reference monitors
typically order arguments to hook functions based on their
purpose. For imports, their labels depend on where they are
defined (i.e., whether they are defined in a program or monitor
source file). Globals and program-defined root objects that are
not constants are labeled as external to the reference monitor.
Constants are assumed to be immutable by adversaries.

F. Endorsing Information Flows

Since the task of hook functions is to transform operation
requests, consisting of low-integrity inputs, into authorization
queries, whose arguments must be high integrity, most hook
functions cause integrity violations. However, most reference
monitors use a small number of common methods for trans-
forming inputs, so our claim is that many violations can be
resolved by a small number of simple endorsers. Violations
occur due to explicit flows and implicit flows, so we propose
general approaches to endorse these two types of violations.
We describe examples of specific information flow violations
and their endorsements in LSMs in Section VI-D.

In an explicit flow violation, low-integrity data (inputs
and/or imports) is used to assign values to high-integrity
authorization query arguments. In some cases, explicit flows
may be endorsed because reference monitors vet sensitive
kernel resources at creation time and assign security identifiers
(i.e., high-integrity data generated by the reference monitor
for use in authorization) to these resources that should be
immutable (or only modified by the reference monitor). Thus,
given knowledge of how the security identifiers are assigned
to resources (e.g., in one or more fields in the resource’s
structure), endorsers can be added to store this security data
on creation and validate the integrity of this security data
upon its use in authorization by identifying their accesses (i.e.,
reads and writes). To identify where the security identifiers
used by the reference monitors in authorization is stored, we
perform a parameter access analysis of automated privilege
separation [44] to collect the fields accessed by the hook
function and the authorization function for the input resources
(i.e., including resources reachable from the input references
indirectly). We then add code to compare this set of fields
to the set of fields whose values are set by the reference
monitor at creation time. When inputs are provided to the hook
function, they are then endorsed if they match the expected
values assigned on creation.

In an implicit flow violation, low-integrity data (inputs
and/or imports) are used in conditions that determine the values
assigned to the authorization query. While such conditions can
be ad hoc, reference monitors often check low-integrity data
to determine whether it matches known, constant values. In
many cases, these conditions compare resource fields or oper-
ation values against constant values using bitwise or equality
comparisons. When the constants are used in these simple
comparisons, then we assume they endorse the implicit flows
created by these conditions (i.e., by endorsing the specific
input value or bit value). The specific endorsement depends

7

monitor

input

external

(a) Location

dynamic

static

(b) Value

⊥

objsub op

⊤

(c) Purpose

Fig. 7. Three dimensions of the integrity lattice

on whether these constants are associated with operations or
resources, which we currently identify manually as described
in Section VI-D.

VI. APPLYING TAMPER ANALYSIS

We describe the application of TALISMAN for tamper anal-
ysis as applied to SELinux, AppArmor, and Tomoyo LSMs.
Results of this analysis are detailed in Section VIII.

A. LSM Integrity Lattice

We first define the integrity lattice that TALISMAN uses.
One key finding is that the integrity of authorization decisions
is determined from multiple perspectives, leading to a three-
dimensional lattice shown in Figure 7.

Location. Based on the threat model in Section III, the LSM
(monitor) is higher integrity than the kernel (external). A
common pattern is for the kernel to pass authorization request
inputs to LSMs through authorization APIs. To distinguish
between inputs received via the LSM authorization API and
other kernel data received as ad hoc imports, we define the
intermediate integrity label input, which is higher integrity than
external, although both are lower integrity than required for
authorization queries arguments (i.e., monitor).

Value. LSMs are expected to predict the data used in authoriza-
tion queries because they define this data or it is constant. The
value dimension differentiates predictable data from other data
whose values are not statically predictable, by labeling as static
or dynamic, respectively, where static has higher integrity.

Purpose. Authorization queries enable LSMs to check whether
a subject may perform an operation on an object. We use the
purpose dimension to separate data relevant to each of these
aspects of an authorization query, with corresponding levels for
subject, object, and operation. Values derived from data with
more than one purpose is labeled as ⊥. This is the lowest
integrity level since its purpose is unknown. For example, ⊥
cannot flow to object since it might be derived from subject.

The Integrity Lattice. Combining the aforementioned three
dimensions, the integrity lattice L follows partial ordering on
each integrity dimension. That is, if the label of datum A, lA
meets or exceeds (i.e., has at least as high an integrity level)
the label of datum B, lB , then A is more “trusted”. This is
written as lB ⊑ lA.

B. Constructing Information Flow Problems

To construct information flow problems using the method
of Section V-E, TALISMAN must label sources according to the

LSM lattice. Each LSM has well defined sinks, whose argu-
ments must be ⟨monitor, static, purpose⟩, where purpose
refers to the appropriate purpose level for the argument.

Source labeling. TALISMAN locates source inputs and imports
using the analysis described in Section V-E, and here we
describe how this analysis is extended to label the sources
using the integrity lattice in Section VI-A. The label for the
Location dimension is determined by whether the source is a
hook function parameter (input) or not. Globals are defined as
imports (external). For static data (e.g., constants and macro
definitions), we use the location of their corresponding defi-
nitions in the source code to identify their source. Constants
or macros defined in LSM files are labeled as monitor and
others are labeled as external. We describe the implementation
used to find their definitions in Section VII. The label for the
Value dimension is based on whether a data source is static or
dynamic. This is determined based on whether the LLVM IR
represents the source as a constant (static) or not (dynamic).
Labeling the purpose dimension is done using the patterns
implied by the hook APIs. Resources and operations are passed
as arguments, while the process is typically retrieved via well-
known functions or macros.

C. Information-Flow Analysis for LSMs

In many LSM hook functions, a single data structure
holds information for multiple purposes in separate fields. To
precisely analyze LSMs, we need to differentiate these fields
in a data structure and properly handle union types.

Figure 8 shows a concise layout of generic data structure
tomoyo_request_info, used for storing authorization
queries in Tomoyo. This data structure is commonly created
in hook functions where a subset of its fields are used in
authorization query processing. To allow precise information
flow analysis, it is important to enable field-sensitivity, i.e.,
labeling data at the granularity of data structure fields and array
indices. To do so, we use the type information associated with
data structures and arrays to precisely track the security label
of each memory block within a data structure or array. The
information flow constraints are created based on this fine-
grained labeling, granting us the ability to differentiate infor-
mation flows on a field granularity. When type information
is unavailable (e.g., in the presence of aliasing and generic
(void) pointers), we conservatively treat the target in a field-
insensitive way, retaining the soundness of the analysis.

tomoyo_request_info in Figure 8 also uses unions
to store object and operation information in its param field
with nine variants, each with different memory layouts and
sizes. A naive analysis loses field-sensitivity for unions, as
a union variant’s field might share memory with another
variant’s fields with different integrity labels. Hence, param
in Tomoyo would have the least integrity label among all of its
variants (i.e., ⊥), introducing many false positives. To tackle
the challenge, we observe that each hook function only uses
one variant of union type. Hence, it is possible to gain field-
sensitivity in a per-function analysis. More specifically, we
leverage the type casting instruction on the union value to
extract the actual variant being used. Note that the byte-wise
information analysis is still sound when multiple variants of
a union type are used, since each byte is constrained multiple
times when multiple casts exist.

8

1 struct tomoyo_request_info {
2 struct tomoyo_obj_info *obj;
3 struct tomoyo_execve *ee;
4 struct tomoyo_domain_info *domain;
5 union {
6 struct {
7 const struct tomoyo_path_info *filename;
8 const struct tomoyo_path_info *match_path;
9 u8 operation;

10 } path;
11 ...
12 struct {
13 const struct tomoyo_path_info *type;
14 const struct tomoyo_path_info *dir;
15 const struct tomoyo_path_info *dev;
16 unsigned long flags;
17 int need_dev;
18 } mount;
19 ...
20 } param;
21 struct tomoyo_acl_info *matched_acl;
22 u8 param_type;
23 ...
24 };

Fig. 8. Layout of struct tomoyo_request_info

D. Endorsing Information Flows

We examine two cases based on the approaches described
in Section V-F for an explicit flow and an implicit flow.

Endorsing Explicit Flows Dynamically: Security Iden-
tifiers. We use the function selinux_file_open from
SELinux shown in Figure 9 as an example of endors-
ing subject and object security identifiers. We specify
that the inode and task security structures are stored at
file→f_inode→i_security and cred→security,
respectively. Applying the parameter access analysis [44] (see
Section V-F) identifies that only the sid and sclass fields of
the inode’s security structure (isec) are accessed within the
authorization function (i.e., since they are the only fields passed
in line 47), so only these fields of the inode security structure
require endorsement. For the task, the sid and create_sid
fields of the task’s security structure (from the cred resource)
must be endorsed. The calls to the task and inode endorsers
are on lines 12 and 16, respectively, of Figure 9. Note that the
endorsement code on line 24 adds the file security state for
the newly opened file for later endorsement.

To endorse the expected (i.e., LSM-defined) values of the
kernel resources, the task and inode, we must record the
mapping between those resources and the assigned values of
the fields used in authorization (e.g., sid and sclass for
the inode) produced by the LSM at resource creation time.
Thus, we need to uniquely identify resources to ensure that
we checked the expected values for those resources. For tasks,
their identity is determined by their thread ID. For inodes, they
are uniquely identified by a combination of device number
(inode→i_rdev) and inode number (inode→i_ino).
We specify these identifying sources manually for each re-
source type. However, there are only ten distinct kernel re-
source types used in authorization for the hooks we have
evaluated. Finally, endorsers retrieve the values of the security
identifier fields assigned for each relevant resource based on
its identity (i.e., type and values of its uniquely identifying
fields); if the values of the security identifier fields assigned
for this resource matches those in the security identifier being
used, the endorsement passes.

1 static int selinux_file_open(struct file *file,
2 const struct cred *cred) {
3 struct file_security_struct *fsec;
4 struct inode_security_struct *isec;
5

6 fsec = file->f_security;
7 isec = file_inode(file)->i_security;
8

9 /* Endorse: verify task */
10 __u64 val;
11 val = EXX_VALUE_SELINUX_TASK(tsec);
12 exx_verify(&exx_se_task, EXX_KEY_TASK(get_current()),

&val, sizeof(val));
13

14 /* Endorse: verify inode */
15 val = EXX_VALUE_SELINUX_INODE(isec);
16 exx_verify(&exx_se_inode, EXX_KEY_INODE(isec->inode),

&val, sizeof(val));
17

18 fsec->isid = isec->sid;
19 fsec->pseqno = avc_policy_seqno();
20

21 /* Endorse: add file */
22 void *dup = exx_dup((void *) fsec, sizeof(*fsec));
23 if (dup)
24 exx_add(&exx_se_file, EXX_KEY_FILE(file), dup,

sizeof(*fsec));
25

26 return file_path_has_perm(cred, file, open_file_to_av(
file));

27 }
28

29 static int file_path_has_perm(const struct cred *cred,
30 struct file *file, u32 av) {
31 return inode_has_perm(cred, file_inode(file), av, &ad)

;
32 }
33

34 static int inode_has_perm(const struct cred *cred,
35 struct inode *inode, u32 perms,
36 struct common_audit_data *adp) {
37 struct inode_security_struct *isec;
38 u32 sid;
39

40 validate_creds(cred);
41 if (unlikely(IS_PRIVATE(inode)))
42 return 0;
43

44 sid = cred_sid(cred);
45 isec = inode->i_security;
46

47 return avc_has_perm(sid, isec->sid, isec->sclass,
perms, adp);

48 }

Fig. 9. Hook function selinux_file_open, including the endorsement
of task and inode’s security state as well as recording endorsement information
for file’s security state (in red). The endorsement data for the task is added in
the selinux_bprm_committed_cred() hook and for inode it is added
in the selinux_d_instantiate() hook.

Endorsing Implicit Flows Statically: Authorization By-
pass. LSMs allow bypass of an authorization function un-
der some conditions. For common cases, we manually iden-
tify and assess the expected conditions. One example is
the unlikely(IS_PRIVATE(inode)) check in Figure 9
(line 41), which checks if the filesystem-internal bit in an inode
flag is set, which results in returning early and falling back on
the kernel for authorization. Since these checks all compare
low-integrity values to constants, we add these endorsers to the
information flow model for analysis using the static analysis
approach in Section V-D, so there is no runtime overhead.

Other cases of bypass often involve checks for errors in
the input (e.g., invalid operations or null pointers). We find it
unusual that these cases sometimes return 0 (i.e., “authorized”).
But further inspection finds that the kernel, instead of the
LSMs, handles these suspicious cases and denies access.

9

TABLE I. HOOK VERIFICATION RESULTS INCLUDING THE “HOOKS VERIFIED” AND UNVERIFIED UNDER “HOOKS REMAINING” - THE “HOOKS WITH
INTEGRITY VIOLATIONS” SHOWS THE NUMBER OF HOOKS THAT FAILED FOR EACH CASE I AND CASE II CAUSE (E.G., FOR EACH ARGUMENT). A HOOK

MAY FAIL IN MULTIPLE WAYS, SO THE SUM OF HOOKS ACROSS ALL FOUR CAUSES IS GREATER THAN THE NUMBER OF “HOOKS REMAINING”.

Hook Verification Hooks with Integrity Violations
Total

Hooks
Hooks

Analyzed
Hooks

Verified
Hooks

Remaining
Return 0
(Case I)

Subject
(Case II)

Object
(Case II)

Operation
(Case II)

SELinux 178 102 63 39 29 23 31 17
Tomoyo 28 23 0 23 23 5 23 4
AppArmor 34 20 0 20 12 0 20 0

Hence, these unusual cases are also endorsed. However, we
still believe that a better approach is to assign specific error
codes for their corresponding scenarios. Doing so will increase
the transparency of the authorization process by removing
ambiguity of the error code 0, and in turn, make the whole
system more robust.

VII. IMPLEMENTATION

We implemented TALISMAN in C++ using the LLVM
framework, consisting of the following main components.

Information Flow Analysis. We implement the information
flow analysis on top of PIDGIN [41], which uses DSA [45] as
its point-to analysis. Our extension to handle field-sensitivity,
union types and so on contains ∼13K LoC. The interprocedu-
ral and context-sensitive analysis generates information flow
constraints which has a straightforward graph representation.
All paths from sources to sinks are checked for potential gaps
(i.e., the source has lower or incompatible integrity label).

Backwards Taint Source Identifier. The backwards taint
analysis is implemented in C++, consisting of ∼6K LoC as
an LLVM 9.0 optimization pass and it is built on a PDG gen-
erated by PtrSplit [46], which is a field-sensitive but context-
insensitive analysis. Once the PDG has been constructed,
taint analysis is performed over the PDG as a simple graph-
based search algorithm to traverse data- and control-flow paths
through the program. Once a data source is identified (via
inspecting LLVM instruction types), that source is labeled
based on metadata found during the taint analysis and data
computed in the Clang front-end analysis.

Constant Value Analyzer. We implemented a front-end Clang
analysis, consisting of ∼350 LoC, over the Clang 9.0 abstract
syntax tree (AST), which generates a list of definitions and
uses for globally defined integers and enumerations. We lever-
age the Clang 9.0 pre-processor tool pp-trace to reconstruct
macro metadata and create a list of definitions and uses for all
macros within a given source code package. Metadata regard-
ing constants is used by the taint-based source identification
tool to label data accordingly.

Dynamic Endorser Placement. We prototyped automation for
endorser placement for verifying values. This analysis was im-
plemented with ∼700 LoC as another LLVM 9.0 optimization
pass along with ∼100 LoC of Python scripting to bridge the
output from the information flow analysis with the dynamic
endorser placement. This analysis leveraged the parameter
access analysis of automated privilege separation [44] to de-
termine the fields to verify against expected values. In order to
explore some of the performance implications of endorsement,
as described in Section VIII-F, we found that we needed to
explore more options to assess their performance impact. As

a result, the endorsement code evaluated in Section VIII-F is
implemented manually.

VIII. EVALUATION

TALISMAN was evaluated on three popular LSMs, namely
SELinux [31], Tomoyo [32] and AppArmor [30]. We perform
the analysis leveraging the LLVM toolchain, which is applied
to the Linux 3.195. Although this kernel version was released
in 2015, the changes to LSM hook functions are not sub-
stantial. Comparing version 3.19 with a modern LTS version
(5.15.119), among the 102, 23 and 20 analyzed hook functions
across SELinux, Tomoyo and AppArmor, only 18, 2 and 7
functions underwent any substantial structural change in their
logic, respectively. The remaining functions either stayed intact
or only experienced minor adjustments such as modifications
due to an API change, which we define manually anyway.
We leave migrating the outdated toolchain in order to analyze
modern Linux kernels as future work.

A. Hook Verification Results

Table I shows the results of the TALISMAN hook ver-
ification for the three LSMs. There are 173, 28 and 34
hook functions in total for SELinux, Tomoyo and AppArmor,
respectively. TALISMAN was evaluated on 102, 23 and 20
of them, respectively, omitting only the hooks that lack any
authorization function call. After both information flow anal-
ysis and expected endorsement, the Hooks Verified column
shows that 63 hooks were verified for SELinux, but none
were verified successfully for Tomoyo or AppArmor because
they use pathnames, which creates a vulnerability described
in Section VIII-C. The Hooks Remaining column lists the
number of hook functions whose validation requires manual
effort, possibly including code changes.

The columns for Hooks with Integrity Violations of Table I
show the number of hooks with Case I and Case II integrity
violations, with respect to Definition V.2. Case II violations
are further distinguished by the specific authorization query
arguments that have an integrity violation (i.e., subject, object,
operation). Note that a hook may have an integrity violation for
multiple sink calls and/or multiple arguments to each sink call,
which is why the sum of the number of hooks with integrity
violations across these four columns is greater than the number
of hooks remaining to be verified.

For Case I violations, the number of hooks that have
statements that “return 0” (i.e., authorized) without invoking

5The main reason for analyzing a relatively old version is the limited
compatibility of the points-to analysis used by TALISMAN. We implemented
TALISMAN on top of PIDGIN [41], which uses DSA [45] as its points-
to analysis. Unfortunately, DSA is only supported up to LLVM 3.7, which
prevents us from analyzing newer kernel versions directly.

10

TABLE II. ARGUMENT VERIFICATION RESULTS - THE NUMBER OF ARGUMENTS WITH INTEGRITY VIOLATIONS, WITH THE INTEGRITY VIOLATIONS
LISTED BY CATEGORY. THREE CATEGORIES, NAMELY SUBJECT LOOKUP, OBJECT LOOKUP (SELINUX ONLY), AND LABEL CREATION ARE EXPECTED

ENDORSEMENTS. THE REMAINDER CURRENTLY REQUIRE MANUAL ENDORSEMENT AND/OR CODE REFACTORING.

Sink Arg Verification Args with Violations by Category
Sink
Args

Args
Verified

Args
Endorsed

Args
Remaining

Subject
Lookup

Object
Lookup

Label
Creation

Op
Use

Subject
Metadata

Multiple
Authorizations

False
Positives

SELinux 282 243 188 39 0 0 0 17 7 7 8
Tomoyo 33 13 11 20 0 12 0 4 0 4 0
AppArmor 36 25 12 11 0 11 0 0 0 0 0

any authorization query are shown. A significant fraction of
the authorization hooks for each LSM exhibit this violation, re-
quiring additional work to validate that the interaction between
the LSM hook functions and the kernel correctly respond to
errors detected by the hook function even though they return a
successful authorization code. Our manual inspection has not
revealed any vulnerabilities caused by this coding practice, but
we discuss remediation of these cases in Section VI-D.

For Case II violations, TALISMAN detects the number of
hooks in which subjects, objects, and/or operations cannot be
verified to be high integrity, which are shown in the last three
columns of Table I. For subjects and operations, SELinux
hook functions have the most hooks with remaining integrity
violations, because their hook functions are more complex,
as we discuss in Section VIII-B. For objects, all LSMs have
integrity violations, although every Tomoyo and AppArmor
hook function fails, as described below.

B. Argument Verification Results

Table II shows the impact of TALISMAN’s verification
at a per argument granularity for the authorization queries.
Recall that we require all arguments passed to authorization
queries (sinks) are high integrity per Case II of Definition V.2.
The left-hand side shows the number of arguments that are
verified, including those that can be endorsed, 80% overall
and 39-86% across LSMs. Note that the number of argument
violations can be less than the number of hook violations
because some functions are used in multiple hooks. The right-
hand side shows the argument violations by category of causes.
We determined these causes manually based on study of the
code. There are six such causes, plus false positives, detailed
below.

Subject Lookup. This refers to violations due to looking up
the subject’s security identifiers (e.g., ID number or names-
pace) from the kernel. Violations from this category can be
endorsed, which we discuss in Section VI-D.

Object Lookup. This relates to violations due to looking up
the object identifiers (e.g., ID numbers or pathnames). We
can endorse violations based on numeric object identifiers
(SELinux only), which we also discuss further in Section VI-D.
The violations for Object Lookup in Table II for AppArmor
and Tomoyo result from the vulnerabilities described in Sec-
tion VIII-C.

Label Creation. This refers to cases where objects are labeled
upon creation. SELinux (primarily) uses subject identifier
information to generate object identifiers when objects are
created. This approach simplifies Object Lookup endorsement,
as described in VI-D, but raises an information flow violation
on the purpose dimension (i.e., a subject-to-object information

flow). These cases are endorsed by validating that the ID
assigned to the newly created object matches the value stored
in the subject’s task_security_struct.

Op Use. This covers the violations caused by an explicit data
flow to the operation argument of the authorization function
from a low integrity source. Endorsing these cases requires
knowing the acceptable operation values for a given hook
function, which in most cases requires manual effort. However,
once known, these values can be checked statically. We provide
an example of this scenario in a case study in Appendix A-C.

Subject Metadata. This refers to cases where SELinux
uses subject metadata in capability hooks (e.g., uses
CAP_MAC_ADMIN) that creates an information flow from the
subject to the object being checked. In these cases, a subject
security ID is being used in place of an object. The subject
being passed as an object could be the same subject making the
request or another subject. In either case, we must determine
manually which subject label matches the subject label used
as an object in the authorization function to endorse.

Multiple Authorization. This covers cases where some
SELinux and Tomoyo authorization functions perform multiple
types of authorization within one hook function, where an
object in one authorization may be used as a subject in another
authorization. This causes information flow violations in the
purpose dimension because we have to map the input subjects
and objects among multiple authorizations. Identifying the
specific subjects and objects for the individual authorizations
must be determined manually for each of these cases.

False Positives. These are due to imprecision in the static
analysis. In these cases, multiple separate data structures are
merged into a single memory block in the points-to analysis
employed by TALISMAN, leading to subject and object data to
appear to flow to each other.

These categories describe the primary causes of integrity
violations that we observed through manual investigation of
the violations. The misuse of pathnames in AppArmor and
Tomoyo in Object Lookup is the main cause of those verifica-
tion failures.

As described in Section VI-D, integrity violations that
involve retrieving LSM-generated data, such as security iden-
tifiers for subjects (Subject Lookup) and objects (Object
Lookup), can be endorsed by recording security identifiers
on creation and retrieving that data when needed. Label
assignment is also of a well-defined style in LSMs, so these
can be endorsed as well (Label Creation). As a result, all
the integrity violations for Subject Lookup, Object Lookup,
and Label Creation, which retrieve such security identifiers
for subjects and objects (for SELinux only) do not result in
violations in Table II. However, we find that other categories

11

TABLE III. THE NUMBER OF GAPS FOR CASE II VIOLATIONS INVOLVING IMPLICIT FLOWS WHEN STRICT AND RELAXED NONINTERFERENCE ARE
APPLIED - FOR EACH LSM AND VIOLATION DIMENSION, TWO DIFFERENT COUNTS ARE COMPARED (I.E., STRICT NONINTERFERENCE/RELAXED

NONINTERFERENCE). SUBSTANTIAL REDUCTION OF VIOLATIONS CAN BE OBSERVED WITH RELAXED NONINTERFERENCE.

sub
↓
obj

sub
↓
op

obj
↓
sub

obj
↓
op

op
↓
sub

op
↓
obj

dynamic
↓

static

input
↓

monitor

external
↓

monitor

% of
reduction

SELinux 84/15 18/0 92/31 15/9 295/124 413/169 51/28 298/134 651/295 58.0%
Tomoyo 53/0 48/0 14/4 81/8 27/3 69/16 149/11 216/19 113/12 90.5%

AppArmor 28/0 1/0 34/0 3/1 9/0 45/0 9/7 46/6 99/14 89.8%

are too ad hoc to expect endorsement at present. Fortunately,
the number of arguments impacted by the these cases is
modest.

One case of interest is Multiple Authorizations, where
a single hook authorizes multiple operations. Examples of
such hook functions are selinux_msg_queue_msgsend
in SELinux and tomoyo_socket_connect for Tomoyo.
The former hook function authorizes whether a process can
send a message to a queue and whether a message may be
put in the queue. Considering multiple inputs interacting with
subjects and objects, integrity violations result. However, we
find that these separate authorization tasks could be factored
into independent hooks that could be run in parallel (i.e., akin
to LSM stacking [47]), which would enable verification of the
construction of each of the independent authorization queries.
Perhaps multiple LSM authorization queries could be coded
independently and integrated safely into a single, efficient
implementation to enable maintainable tamper analysis.

C. Object Lookup Vulnerabilities

We encountered an issue with Object Lookup endorsement
for AppArmor and Tomoyo, which both use pathnames as
security identifiers for objects in authorization. The problem
is that the file pathnames checked against the access control
policy by AppArmor and Tomoyo may differ from the file
pathnames used by the file system to retrieve the file, which
may result in unauthorized access in general. We have reported
this issue to the Linux Ext4, AppArmor, and Tomoyo main-
tainers. These vulnerabilities may not have been recognized
without tamper analysis.

Recent work found that name canonicalization differences
among file systems can lead to vulnerabilities when copying
files from one file system to another [35]. Both AppArmor and
Tomoyo ignore the canonicalization rules of the underlying
file systems, which can lead to incorrect policy enforcement.
For example, AppArmor permits the specification of “deny”
rules, so we created a file named config on a case-insensitive
directory in an Ext4 file system and added a rule to deny access
to config. We then submitted a file open request for a file
named CONFIG in the same directory. AppArmor will allow
access to CONFIG as the name differs from config, but the
Ext4 file system canonicalizes CONFIG in that case-insensitive
directory to config, allowing access to that file when access
should be denied. As a result, we are unable to endorse the
violations until the AppArmor and Tomoyo canonicalizations
are aligned with or directly uses the canonicalization of the
physical file system. Fixing this problem is non-trivial because
Ext4 now allows case-sensitivity to be changed dynamically.

The TALISMAN information flow analysis finds informa-
tion flow integrity violations that cannot be addressed by

TALISMAN’s endorsers. In examining the remaining violations,
we found that some violations could allow unauthorized ac-
cess (i.e., are vulnerabilities) because AppArmor and Tomoyo
ignore case (in)sensitivity. Once it became clear that path
canonicalization in file systems differs from AppArmor and
Tomoyo, the vulnerability could be identified. Using path-
names in authorization has long been a controversial topic [48].
At a minimum, keeping the LSMs’ use of pathnames consistent
with the file system is required.

D. Impact of Relaxed Noninterference

To evaluate the effectiveness of relaxed noninterference, we
compare the number of violations involving implicit flows (i.e.,
an integrity violation whose information flow path contains
at least one implicit flow edge) when strict and relaxed
noninterference are applied. The result is shown in Table III,
where each cell shows the number of violations under strict
and relaxed noninterference, respectively. Note that we count
only the integrity violations where implicit flows are involved,
as others are unaffected by the noninterference definition.

We observe that relaxed noninterference significantly re-
duces the number of violations, by ∼90% for both Tomoyo
and AppArmor, and by ∼60% for SELinux. Thanks to relaxed
noninterference, the otherwise prohibitively high false positive
rate is significantly reduced. SELinux saw a lower reduction
rate compared to the others. The primary reason is similar
to our observation in Section VIII-A: SELinux uses a coding
pattern with nested branches followed by many authorization
query calls. This pattern introduces many implicit flows that
cannot be removed by relaxed noninterference.

It is worth emphasizing that most of the reported violations
are true positives with regard to relaxed noninterference. As
acknowledged in Table II, there are only 8 false positives (all
from SELinux), at the granularity of arguments, out of the
70 remaining positives. Violations of relaxed noninterference
do not necessarily imply exploitable vulnerabilities. Rather,
they are potential vulnerabilities that entail further analysis
(i.e., endorsement). Even though endorsement addresses most
potential vulnerabilities, they remain true positives as they pose
potential risks.

E. Impact of Field-Sensitivity

In Section VI-C, several improvements of static anal-
ysis are introduced to support fine-grained field-sensitivity
in order to reduce false positive rates. Next, we investigate
the effectiveness of those improvements by comparing the
number of violations reported by the baseline analysis (i.e.,
the implementation in [41]) and TALISMAN. Since the baseline
analysis lacks support for tainting constants and has minor

12

TABLE IV. THE NUMBER OF GAPS FOR CASE II VIOLATIONS BETWEEN THE BASELINE ANALYSIS AND THE FIELD-SENSITIVE ANALYSIS - FOR EACH
LSM AND VIOLATION DIMENSION, TWO DIFFERENT COUNTS ARE COMPARED (I.E., BASELINE/FIELD-SENSITIVE). SUBSTANTIAL REDUCTION OF

VIOLATIONS CAN BE OBSERVED WITH FIELD-SENSITIVITY ENABLED.

sub
↓
obj

sub
↓
op

obj
↓
sub

obj
↓
op

op
↓
sub

op
↓
obj

dynamic
↓

static

input
↓

monitor

external
↓

monitor

% of
reduction

SELinux 270/55 4/0 203/18 6/3 13/0 16/0 18/11 515/231 357/177 64.7%
Tomoyo 54/0 48/0 85/0 134/0 44/0 74/0 227/24 448/62 149/33 90.6%

AppArmor 58/0 0/0 38/6 0/0 3/0 3/0 2/2 110/54 66/29 67.5%

TABLE V. FILE SYSTEM LATENCY BENCHMARKS IN LMBENCH 3.0 -
BENCHMARKS COMPARE BASELINE AND ENDORSED VERSION TO

COMPUTE PERFORMANCE OVERHEAD.

read write stat fstat open/close

SELinux (Same)
Base 0.1081 0.1055 0.4350 0.1083 0.9752
Endorsed 0.1397 0.1408 0.4565 0.1328 0.9903
Overhead (µs) 0.0316 0.0353 0.0216 0.0245 0.0151
Overhead (%) 29.19% 33.48% 4.96% 22.59% 1.55%
#bytes / #fields 16 / 4 16 / 4 16 / 4 16 / 4 16 / 4

SELinux (All)
Base 0.1081 0.1055 0.4350 0.1083 0.9752
Endorsed 0.1618 0.1624 0.6015 0.1328 1.2424
Overhead (µs) 0.0537 0.0569 0.1666 0.0245 0.2672
Overhead (%) 49.68% 53.93% 38.29% 22.59% 27.40%
#bytes / #fields 32 / 8 32 / 8 16* / 4* 16 / 4 32* / 8*

AppArmor
Base 0.1112 0.1099 0.5391 0.2512 1.0784
Endorsed 0.1295 0.1283 0.6422 0.3603 1.2171
Overhead (µs) 0.0184 0.0184 0.1030 0.1092 0.1387
Overhead (%) 16.51% 16.77% 19.11% 43.46% 12.86%
#bytes / #fields 128+ / 14 128+ / 14 128+ / 14 128+ / 14 128+ / 14

Tomoyo
Base 0.1036 0.1021 1.6543 1.3478 2.0849
Endorsed 0.1041 0.1028 1.7824 1.4751 2.1913
Overhead (µs) 0.0005 0.0006 0.1281 0.1273 0.1064
Overhead (%) 0.53% 0.61% 7.74% 9.45% 5.10%
#bytes / #fields - / - - / - 56+ / 11 56+ / 11 56+ / 11

SELinux (Same) and SELinux (All) — Since AppArmor and Tomoyo only support
a subset of the LSM file authorization hooks, we compare the same hooks (i.e., those
supported by other LSMs) and all hooks used by SELinux.
* — SELinux (All) must endorse the security metadata for every inode accessed in stat
and open, adding 8 bytes and 2 fields per inode.
+ — Tomoyo and AppArmor additionally must endorse variable length pathnames,
ranging from 5–108 and 1–192 bytes for AppArmor and Tomoyo, respectively.
read/write — Note that Tomoyo does not authorize read/write and AppArmor often only
authorizes the task, only requiring endorsement of 13 fields and 96 bytes.

flaws in capturing some implicit flows, we disabled these two
features for a fair comparison. The result is shown in Table IV.

We observe that across all three LSMs, the improvements
in static analysis reduce the number of reported violations
in Tomoyo by 90% and those in SELinux and AppArmor
by about 65%. Since both the baseline and TALISMAN are
sound, the reductions remove false positives in the baseline
implementation. For the higher reduction rate in Tomoyo, the
primary reason is that Tomoyo, as shown in Figure 8, uses
complex data structures with nested unions to organize all three
components of the authorization request and pass the single
data structure into its authorization functions. Our fine-grained
field-sensitivity handles this scenario well by tainting only
the corresponding fields with high accuracy while maintaining
soundness.

F. Performance Overhead

We implemented run-time endorsers across the three LSMs
and evaluated the performance with endorsement on file system

latency benchmarks of LMBench 3.0 on a server with Intel i5-
7400@3.0 GHz with 16 GB RAM. For each LSM, we gather
measurements for a baseline system without any endorsers and
a TALISMAN-modified system with endorsement for subjects
and objects dynamically, added as described in Section VI-D.
We focus on the impact of endorsement on the system call
latency for file system calls, including open, stat, and fs-
tat, which invoke LSM hook functions to authorize access,
which use endorsers in the TALISMAN version. Specifically,
the read and write benchmarks call the hook function for
file_permission, the fstat and stat benchmarks call the
hook function for inode_getattr, and the stat and open
benchmarks call the hook function for file_open, for which
we measure the endorsement overhead.

The detailed results are shown in Table V, which shows
the overhead and the number of bytes and fields endorsed for
each benchmark. First, we compare SELinux (Same), App-
Armor, and Tomoyo when utilizing the same set of LSM hook
functions. Note that the authorization implementations differ
significantly, such that the base latencies vary significantly
among LSMs. For example, the base latency for fstat is
more than 10X greater for Tomoyo than for SELinux. Thus,
we find it useful to compare the raw overhead in µs, seeing
that SELinux (Same) has the lowest overhead latency for
stat, fstat, and open/close, mainly due to the fact
that AppArmor and Tomoyo must endorse pathnames, which
may be up to 192 bytes long. Tomoyo and AppArmor have
lower latencies for read and write because they do not
authorize those system calls or only authorize a small fraction,
respectively.

However, SELinux authorizes paths used to open a file by
authorizing access to each inode accessed in resolving a path-
name, rather than by checking the pathname string. In SELinux
(All), we include endorsement for inode_permission,
which SELinux uses to authorize inodes, but is not used
by the other LSMs6. When we include the endorsement
for authorizing inodes, we find that the overhead latency
for SELinux (All) exceeds that of AppArmor and Tomoyo
for stat and open/close. One reason for the additional
overhead is that the hook inode_permission is invoked
on each inode, causing redundant endorsement of the subject
lookup for each inode in a path. We estimate the overhead of
redundant subject lookup endorsement to be as much as half of
the overhead latency by removing subject lookup endorsement
in inode_permission. Based on results via perf, over
90% of system calls invoke inode_permission no more
than five times, but the maximum is 40 invocations. Second,
we expect that some inodes must be endorsed frequently (e.g.,
the root directory inode), and we do not yet implement a

6SELinux also enforces the inode_follow_link, but the LMBench
cases do not use links, which should be infrequent in general.

13

fast path for endorsing commonly-authorized inodes. Thus,
opportunities for significant optimizations remain, which we
leave as future work.

IX. DISCUSSION

In this section, we discuss a few issues about the design
and evaluation of tamper analysis in reference monitors.

One question is whether future reference monitors should
store all their high integrity state themselves to enhance tamper
verification, rather than on data structures maintained by the
host (i.e., kernel or server) program. When the current ref-
erence monitor implementations were built in the mid-2000s,
the assumption was that the host program was as trusted as
the reference monitor. However, researchers now assume that
the host program may be compromised and have additional
defenses (e.g., KASLR/ASLR) to protect critical data from
compromise even if the host program has a vulnerability.
TALISMAN stores the mappings between subjects/objects and
their security identifiers for endorsement. An advantage of
isolating LSMs is that we would only need to endorse a
single security object reference (8 bytes) rather than the entire
security state (can be over 300 bytes) because the security
object would be isolated from illicit modification in an isolated
LSM.

Another question is whether tamper analysis of reference
monitors is worthwhile if the host program will just do
whatever it wants after authorization. We argue that verifying
that a reference monitor will operate in a tamperproof manner
is still a valuable guarantee, as it has been assumed for years
as part of the reference monitor concept [2], [3]. However,
currently, there is no mechanism deployed in the host programs
that restricts them to obey the reference monitor. The DATS
architecture for web applications [49] limits request processing
to a restricted set of permissions. Given recent efforts in
privilege separation [44], [50], restricting the permissions of
host programs after authorization is future work.

In this paper, we evaluate tamper analysis on three Linux
Security Modules. Given that reference monitor implementa-
tions have been applied to a variety of server applications,
such as X Server [5] and Apache [7], a question is whether
these should be considered in the evaluation. However, we find
that these LSMs differ more significantly than the reference
monitor implementations across programs. The LSMs evalu-
ated were all developed and are all maintained by separate
organizations, resulting in significant differences. The refer-
ence monitors cited above were all developed in collaboration
with the SELinux community and reflect the same approach
to generating and storing security identifiers and designing
hook functions. Some prior work on verifying complete media-
tion [17], [18] examined multiple programs, but the placement
of hooks in programs is much more program-specific than
the implementation of hook functions, which are often reused
across programs. Thus, we believe that examining multiple
LSMs provides more diversity than examining multiple refer-
ence monitors developed by the same community.

To apply TALISMAN to reference monitors other than
LSMs, there are two major sources of manual efforts. First,
we need to identify the authorization functions. For each of
them, the expected integrity labels of each argument need

to be specified. The labeling effort may vary based on the
complexity of each reference monitor. For the evaluated LSMs,
the effort is quite small thanks to only 9 authorization functions
in total. Second, we need to categorize and apply appropriate
endorsers (when possible) to violations of relaxed noninterfer-
ence, which requires a deeper understanding of the reference
monitors. We observed that each violation category exhibits
similar coding patterns, facilitating this task. We might also
need to develop domain-specific endorsers, but the 3 generic
endorsement function templates for LSMs likely can be reused.

In the future, researchers should explore tamper analysis
with stronger threat models to account for other threats, such
as memory errors that may tamper the reference monitor
data or execution. Traditionally, reference monitors trust the
program in which they are deployed, but that assumption is
no longer acceptable. Modern operating systems and server
programs now aim to protect security-critical code and data
from tampering (e.g., via KASLR and ASLR, respectively).
Researchers have also advocated privilege separation [12],
[10], [11] as a means to isolate a component from memory
errors, and recent work automates many tasks in privilege
separation for applications [46] and the kernel [44], [50].
Ideally, future tamper analyses can leverage such techniques.

X. RELATED WORK

Reference Monitor. A variety of prior work analyze to what
extent production code adheres to the reference monitor con-
cept; however, their focus is on whether a reference monitor
provides complete mediation of all security-sensitive opera-
tions, rather than whether a reference monitor is tamperproof,
the research question of this paper.

Muthukumaran et al. [17], [18] present methods for auto-
matically identifying authorization hook placements for C code
using the observation that all choices made by users through
input must be authorized. Ganapathy et al. [14], [15], [16] rely
on code-level specification of the sensitive operations to infer
which hooks are necessary to guard a sensitive operation. In
[20], Tan et al. rely on the assumption that mature code bases
that contain security code typically have most security hooks
in place. They developed a static analysis to infer sensitive
operations from the current hooks and verified the code base
for missing checks.

Zhang et al. [9] develop a type-based static analysis tool
to verify the correctness of hook placement in LSMs, while
Edwards et al. [8] leverage dynamic analysis to do the same.
Son et al. [13] verify the consistency of authorization hooks in
web applications. Their approach relies on common patterns
to identify security sensitive objects and operations within a
database, and it takes advantage of web applications that are
designed around predefined roles.

Information Flow Control. We develop a static information
flow analysis to validate if a reference monitor is tamperproof.
While using information flow analysis to validate an integrity
policy is not a new idea, to the best of our knowledge, this is
the first comprehensive study of integrity issues in LSMs.

Moreover, the relaxed noninterference definition is novel. A
declassification policy [51], [52], [53], [54], [55], [56], [57],
[58], [59] weakens noninterference by deliberately releasing

14

(i.e., declassifying) sensitive information. On the other hand,
an endorsement policy weakens noninterference by deliber-
ately tampering (i.e., endorsing) high-integrity information.
Unlike well-studied declassification policies, how to weaken
noninterference for data integrity is less studied in the litera-
ture. Cecchetti et al. [60] propose transparent endorsement, a
mechanism for downgrading integrity while defending against
adversarial exploitation. However, transparent endorsement is
defined on systems where both confidentiality and integrity
interplay, while our paper focuses on integrity only. It is also
possible to interpret a declassification policy under the duality
of confidentiality and integrity, but as discussed in Section V-B,
the dual of relaxed noninterference in the confidentiality realm
is inappropriate, as the absence of a sink call also leaks
information via either implicit flows or side channels.

XI. CONCLUSIONS

In this paper, we present TALISMAN, a tamper analysis for
reference monitor implementations. TALISMAN implements a
precise field-sensitive, information-flow integrity analysis us-
ing a novel relaxed noninterference, which both greatly reduce
false implicit flow violations. We evaluate TALISMAN on three
popular Linux Security Modules: SELinux, Tomoyo, and App-
Armor. For SELinux, we find that 62% of its hook functions
and over 86% of its arguments to authorization queries can
be verified as safe from tampering. Due to the complexity of
some hook functions, some arguments to authorization queries
in other hook functions cannot be verified, but TALISMAN
identifies these cases automatically. Using TALISMAN, we find
that Tomoyo and AppArmor use a vulnerable approach to
determine the security identifier for file objects, which could
be exploited. Thus, TALISMAN provides a valuable tamper
analysis to detect and remediate issues in reference monitor
implementations.

ACKNOWLEDGMENTS

The authors would like to thank our anonymous reviewers.
This research was sponsored by National Science Foundation
grants CNS-1816282 and CNS-1942851. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

REFERENCES

[1] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J.
Turner, and J. F. Farrell, “The inevitability of failure: The flawed
assumption of security in modern computing environments,” in Pro-
ceedings of the 21st national information systems security conference,
vol. 10, 1998, pp. 303–314.

[2] J. P. Anderson, “Reference monitor,” Computer security technology
planning study, vol. 2, 1972.

[3] T. Jaeger, “Reference monitor.” 2011.
[4] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman,

“Linux security modules: General security support for the linux kernel,”
in 11th USENIX Security Symposium (USENIX Security 02), 2002.

[5] “X Access Control Extension Specification,” https://www.x.org/
releases/X11R7.5/doc/security/XACE-Spec.html, accessed: 2022-12-1.

[6] K. Kohei, “Security enhanced postgresql,” 2013.
[7] D. Walsh, “Selinux/apache.” [Online]. Available: https://fedoraproject.

org/wiki/SELinux/apache

[8] A. Edwards, T. Jaeger, and X. Zhang, “Runtime verification of autho-
rization hook placement for the linux security modules framework,” in
Proceedings of the 9th ACM Conference on Computer and Communi-
cations Security, 2002, pp. 225–234.

[9] X. Zhang, A. Edwards, and T. Jaeger, “Using {CQUAL} for static
analysis of authorization hook placement,” in 11th USENIX Security
Symposium (USENIX Security 02), 2002.

[10] D. Brumley and D. Song, “Privtrans: Automatically partitioning pro-
grams for privilege separation,” in USENIX Security Symposium,
vol. 57, no. 72, 2004.

[11] A. Berman, V. Bourassa, and E. Selberg, “Tron: Process-specific file
protection for the unix operating system.” in USENIX, 1995, pp. 165–
175.

[12] N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege escala-
tion.” in USENIX Security Symposium, vol. 9, 2003.

[13] S. Son, K. S. McKinley, and V. Shmatikov, “Rolecast: finding missing
security checks when you do not know what checks are,” in Proceedings
of the 2011 ACM international conference on Object oriented program-
ming systems languages and applications, 2011, pp. 1069–1084.

[14] V. Ganapathy, T. Jaeger, and S. Jha, “Automatic placement of authoriza-
tion hooks in the linux security modules framework,” in Proceedings of
the 12th ACM conference on Computer and communications security,
2005, pp. 330–339.

[15] ——, “Retrofitting legacy code for authorization policy enforcement,”
in 2006 IEEE Symposium on Security and Privacy (S&P’06). IEEE,
2006, pp. 15–pp.

[16] V. Ganapathy, D. King, T. Jaeger, and S. Jha, “Mining security-sensitive
operations in legacy code using concept analysis,” in 29th International
Conference on Software Engineering (ICSE’07). IEEE, 2007, pp. 458–
467.

[17] D. Muthukumaran, T. Jaeger, and V. Ganapathy, “Leveraging” choice”
to automate authorization hook placement,” in Proceedings of the 2012
ACM conference on Computer and communications security, 2012, pp.
145–156.

[18] D. Muthukumaran, N. Talele, T. Jaeger, and G. Tan, “Producing hook
placements to enforce expected access control policies,” in International
Symposium on Engineering Secure Software and Systems. Springer,
2015, pp. 178–195.

[19] S. Son, K. S. McKinley, and V. Shmatikov, “Fix me up: Repairing
access-control bugs in web applications.” in NDSS. Citeseer, 2013.

[20] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou, “Autoises: Auto-
matically inferring security specification and detecting violations.” in
USENIX Security Symposium, 2008, pp. 379–394.

[21] K. L. Lu, A. Pakki, and Q. Wu, “Detecting missing-check bugs via
semantic-and context-aware criticalness and constraints inferences,” in
Proceedings of the 28th USENIX Conference on Security Symposium,
2019.

[22] D. Liu, Q. Wu, S. Ji, K. Lu, Z. Liu, J. Chen, and Q. He, “Detecting
missed security operations through differential checking of object-based
similar paths,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, 2021, pp. 1627–1644.

[23] K. Lu, A. Pakki, and Q. Wu, “Automatically identifying security
checks for detecting kernel semantic bugs,” in Computer Security–
ESORICS 2019: 24th European Symposium on Research in Computer
Security, Luxembourg, September 23–27, 2019, Proceedings, Part II 24.
Springer, 2019, pp. 3–25.

[24] D. King, S. Jha, D. Muthukumaran, T. Jaeger, S. Jha, and S. A. Seshia,
“Automating security mediation placement,” in European Symposium
on Programming. Springer, 2010, pp. 327–344.

[25] C. Skalka, D. Darais, T. Jaeger, and F. Capobianco, “Types and
abstract interpretation for authorization hook advice,” in 2020 IEEE
33rd Computer Security Foundations Symposium (CSF). IEEE, 2020,
pp. 139–152.

[26] D. Aucsmith, “Tamper resistant software: An implementation,” in
International Workshop on Information Hiding. Springer, 1996, pp.
317–333.

[27] H. Chang and M. J. Atallah, “Protecting software code by guards,” in
ACM Workshop on Digital Rights Management. Springer, 2002, pp.
160–175.

15

https://www.x.org/releases/X11R7.5/doc/security/XACE-Spec.html
https://www.x.org/releases/X11R7.5/doc/security/XACE-Spec.html
https://fedoraproject.org/wiki/SELinux/apache
https://fedoraproject.org/wiki/SELinux/apache

[28] B. Horne, L. Matheson, C. Sheehan, and R. E. Tarjan, “Dynamic self-
checking techniques for improved tamper resistance,” in ACM Workshop
on Digital Rights Management. Springer, 2002, pp. 141–159.

[29] M. Jacob, M. H. Jakubowski, and R. Venkatesan, “Towards integral
binary execution: Implementing oblivious hashing using overlapped in-
struction encodings,” in Proceedings of the 9th workshop on Multimedia
& security, 2007, pp. 129–140.

[30] C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu, P. Wagle, and
V. Gligor, “{SubDomain}: Parsimonious server security,” in 14th Sys-
tems Administration Conference (LISA 2000), 2000.

[31] S. Smalley, C. Vance, and W. Salamon, “Implementing selinux as a
linux security module,” NAI Labs Report, vol. 1, no. 43, p. 139, 2001.

[32] T. Harada, T. Horie, and K. Tanaka, “Towards a manageable linux
security,” in Linux Conference, vol. 2005, 2005.

[33] “Apache HTTPD Server Project,” https://httpd.apache.org/docs/2.4/, ac-
cessed: 2022-12-1.

[34] P. G. D. Group, Jun 2023. [Online]. Available: https://www.postgresql.
org/

[35] A. Basu, J. Sampson, Z. Qian, and T. Jaeger, “Unsafe at any copy: Name
collisions from mixing case sensitivities,” in 21st USENIX Conference
on File and Storage Technologies (FAST 23), 2023.

[36] A. C. Myers, “Jflow: Practical mostly-static information flow control,”
in Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, 1999, pp. 228–241.

[37] A. C. Myers and B. Liskov, “A decentralized model for information
flow control,” ACM SIGOPS Operating Systems Review, vol. 31, no. 5,
pp. 129–142, 1997.

[38] G. Barthe, P. R. D’argenio, and T. Rezk, “Secure information flow
by self-composition,” Mathematical Structures in Computer Science,
vol. 21, no. 6, pp. 1207–1252, 2011.

[39] D. E. Denning, “A lattice model of secure information flow,” Commu-
nications of the ACM, vol. 19, no. 5, pp. 236–243, 1976.

[40] A. Sabelfeld and A. C. Myers, “Language-based information-flow
security,” IEEE Journal on selected areas in communications, vol. 21,
no. 1, pp. 5–19, 2003.

[41] A. Johnson, L. Waye, S. Moore, and S. Chong, “Exploring and
enforcing security guarantees via program dependence graphs,” ACM
SIGPLAN Notices, vol. 50, no. 6, pp. 291–302, 2015.

[42] J. Rehof and T. Mogensen, “Tractable constraints in finite semilattices,”
Science of Computer Programming, vol. 35, no. 2, pp. 191–221, 1999.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167642399000118

[43] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program de-
pendence graph and its use in optimization,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 9, no. 3, pp.
319–349, 1987.

[44] Y. Huang, V. Narayanan, D. Detweiler, K. Huang, G. Tan, T. Jaeger,
and A. Burtsev, “{KSplit}: Automating device driver isolation,” in 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), 2022, pp. 613–631.

[45] C. Lattner, A. Lenharth, and V. Adve, “Making context-sensitive points-
to analysis with heap cloning practical for the real world,” ACM
SIGPLAN Notices, vol. 42, no. 6, pp. 278–289, 2007.

[46] S. Liu, G. Tan, and T. Jaeger, “Ptrsplit: Supporting general pointers
in automatic program partitioning,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017,
pp. 2359–2371.

[47] J. Edge, “Lsm stacking and the future.” [Online]. Available:
https://lwn.net/Articles/804906/

[48] Corbet, “The apparmor debate begins.” [Online]. Available: https:
//lwn.net/Articles/181508/

[49] C. Hunger, L. Vilanova, C. Papamanthou, Y. Etsion, and M. Tiwari,
“Dats-data containers for web applications,” in Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, 2018, pp. 722–736.

[50] D. McKee, Y. Giannaris, C. O. Perez, H. Shrobe, M. Payer, H. Okhravi,
and N. Burow, “Preventing kernel hacks with hakc,” in Proceedings
2022 Network and Distributed System Security Symposium. NDSS,
vol. 22, 2022, pp. 1–17.

[51] A. Askarov and A. Sabelfeld, “Gradual release: Unifying declassifica-
tion, encryption and key release policies,” in 2007 IEEE Symposium on
Security and Privacy (SP’07). IEEE, 2007, pp. 207–221.

[52] A. Banerjee, D. A. Naumann, and S. Rosenberg, “Expressive de-
classification policies and modular static enforcement,” in 2008 IEEE
Symposium on Security and Privacy (sp 2008). IEEE, 2008, pp. 339–
353.

[53] N. Broberg and D. Sands, “Paralocks: Role-based information
flow control and beyond,” in Proceedings of the 37th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 2010, pp. 431–444. [Online]. Available: http://doi.acm.org/
10.1145/1706299.1706349

[54] A. Sabelfeld and D. Sands, “A per model of secure information flow in
sequential programs,” Higher-order and symbolic computation, vol. 14,
no. 1, pp. 59–91, 2001.

[55] R. Giacobazzi and I. Mastroeni, “Abstract non-interference: Parame-
terizing non-interference by abstract interpretation,” ACM SIGPLAN
Notices, vol. 39, no. 1, pp. 186–197, 2004.

[56] ——, “Adjoining declassification and attack models by abstract inter-
pretation,” in European Symposium on Programming. Springer, 2005,
pp. 295–310.

[57] P. Li and S. Zdancewic, “Downgrading policies and relaxed noninterfer-
ence,” in Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, 2005, pp. 158–170.

[58] A. Sabelfeld and A. C. Myers, “A model for delimited information
release,” in International Symposium on Software Security. Springer,
2003, pp. 174–191.

[59] A. Sabelfeld and D. Sands, “Dimensions and principles of declas-
sification,” in 18th IEEE Computer Security Foundations Workshop
(CSFW’05). IEEE, 2005, pp. 255–269.

[60] E. Cecchetti, A. C. Myers, and O. Arden, “Nonmalleable information
flow control,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 1875–1891.

APPENDIX A
CASE STUDIES

1 static int selinux_msg_queue_msgsnd(struct msg_queue *
msq, struct msg_msg *msg, int msqflg)

2 {
3 isec = msq->q_perm.security;
4 msec = msg->security;
5

6 /* Can this process write to the queue? */
7 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
8 MSGQ__WRITE, &ad);
9 if (!rc)

10 /* Can this process send the message */
11 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
12 MSG__SEND, &ad);
13 if (!rc)
14 /* Can the message be put in the queue? */
15 rc = avc_has_perm(msec->sid, isec->sid,

SECCLASS_MSGQ,
16 MSGQ__ENQUEUE, &ad);
17

18 return rc;
19 }

Fig. 10. Source code for selinux_msg_queue_msgsnd

A. selinux msg queue msgsnd

The function selinux_msg_queue_msgsnd governs
access to create messages and place them on the queue. The
code for this hook function can be found in Figure 10 and has
been truncated for brevity. This function takes two objects, a
message queue and corresponding message, as arguments. The
authorization process performs three checks. The first check on
line 7 authorizes the process to write to the queue, the second

16

https://httpd.apache.org/docs/2.4/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.sciencedirect.com/science/article/pii/S0167642399000118
https://www.sciencedirect.com/science/article/pii/S0167642399000118
https://lwn.net/Articles/804906/
https://lwn.net/Articles/181508/
https://lwn.net/Articles/181508/
http://doi.acm.org/10.1145/1706299.1706349
http://doi.acm.org/10.1145/1706299.1706349

check on line 11 authorizes the process to send the message,
and finally a third check on line 15 authorizes the message to
be placed on the queue.

Our analysis identifies a violation on line 15, where the
security field of the message is passed to the first argument
of the policy checking function avc_has_perm. This case
demonstrates an added complexity where objects are some-
times treated as subjects. Endorsing this information flow
requires validating that the object security ID generated by the
LSM from the subject’s metadata corresponds to the subject
security ID passed to the authorization function on line 15. We
argue that this violation and need for endorsement could be
avoided entirely by separating the authorization function and
pushing the check to authorize the message to be placed on
the queue into its own authorization function to preserve the
integrity of sensitive data.

B. selinux inode mkdir

There are a number of SELinux hooks which are dedi-
cated to authorizing the creation of filesystem objects. These
functions include selinux_inode_mkdir (directory cre-
ation), selinux_inode_mknod (filesystem node creation),
selinux_inode_symlink (symbolic link creation), and
selinux_inode_create (file creation). In all cases, the
function may_create is called.

1 static int may_create(struct inode *dir,
2 struct dentry *dentry,
3 u16 tclass)
4 {
5 const struct task_security_struct *tsec =

current_security();
6 u32 sid, newsid;
7

8 rc = security_transition_sid(sid, dsec->sid, tclass,
9 &dentry->d_name, &newsid);

10

11 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &
ad);

12 if (rc)
13 return rc;
14

15 return avc_has_perm(newsid, sbsec->sid,
16 SECCLASS_FILESYSTEM,
17 FILESYSTEM__ASSOCIATE, &ad);
18 }

Fig. 11. Source code for may_create

The code snippet in Figure 11 has been truncated for
readability and depicts the two final authorization checks per-
formed. Our analysis identifies an information flow violation
regarding the subjects and objects passed as input. More
specifically the analysis identifies that a subject B, (newsid),
is created using subject A’s metadata and passed to a call to the
policy checking function avc_has_perm on line 11 as the
second argument, which is expected to be an object. This data
is subsequently passed to another call to avc_has_perm on
line 15 as the first argument, which is expected to be a subject.

This cross-domain interaction should be considered benign
and expected for any hook authorizing operations for creating
objects, as these objects require some form of ownership or
subject association. As mentioned above, a number of SELinux
hooks rely on may_create, and thus this problem affects all
of them. In order to endorse that a subject can be used as an

object we deploy a run-time endorser to verify that the security
ID from the subject’s metadata that is being used to generate
the new object ID corresponds to the object security ID that
is passed to the authorization function on line 15.

1 static inline u32 aa_map_file_to_perms(struct file *file
)

2 {
3 int flags = file->f_flags;
4 u32 perms = 0;
5 if (file->f_mode & FMODE_WRITE)
6 perms |= MAY_WRITE;
7 if (file->f_mode & FMODE_READ)
8 perms |= MAY_READ;
9 if ((flags & O_APPEND) && (perms & MAY_WRITE))

10 perms = (perms & ˜MAY_WRITE) | MAY_APPEND;
11 if (flags & O_TRUNC)
12 perms |= MAY_WRITE;
13 if (flags & O_CREAT)
14 perms |= AA_MAY_CREATE;
15 return perms;
16 }

Fig. 12. Source code for aa_map_file_to_perms, a function used to
determine file operations

C. apparmor file open

Figure 12 shows aa_map_file_to_perms, a function
used by apparmor_file_open, which is an AppArmor
hook function that authorizes a subject to open a file with a
varying set of operations (e.g., read, write, append, etc). In
this example operations that are stored in the f_flags and
f_mode members of the file structure are compared against
a variety of external constants. External constants, such as
MAY_READ, FMODE_WRITE, and O_TRUNC are all globally
defined in the kernel. This control block contributes to 19
information flow violations related to selecting the operation.

Endorsement in this example requires determining the set
of expected values that are compared to the permissions in
the f_flags and f_mode members of the file structure.
The comparisons are performed using bitwise operations and
require manual effort to determine the correct set of values. If
all values can be vetted this can be endorsed statically. The
implicit flows created by the comparisons discussed above
decide which external constant is assigned to the variable
perms. Assignments are performed through bitmasking, a
common practice in the Linux kernel. Appropriate permission
values need to be determined through manual effort in order
to properly endorse the permissions that are passed to the
authorization function.

17

	Abstract
	I Introduction
	II Problem Definition
	II-A Tampering of Authorizations
	II-B The Tamper Problem for Reference Monitors
	II-C Information Flow Analysis

	III Solution Overview
	IV Threat Model
	V Design Principles
	V-A Notation
	V-B Strict Noninterference and Its Limitations
	V-C Relaxed Noninterference
	V-D Information Flow Analysis
	V-E Constructing Information Flow Problems
	V-F Endorsing Information Flows

	VI Applying Tamper Analysis
	VI-A LSM Integrity Lattice
	VI-B Constructing Information Flow Problems
	VI-C Information-Flow Analysis for LSMs
	VI-D Endorsing Information Flows

	VII Implementation
	VIII Evaluation
	VIII-A Hook Verification Results
	VIII-B Argument Verification Results
	VIII-C Object Lookup Vulnerabilities
	VIII-D Impact of Relaxed Noninterference
	VIII-E Impact of Field-Sensitivity
	VIII-F Performance Overhead

	IX Discussion
	X Related Work
	XI Conclusions
	Acknowledgments
	References
	Appendix A: Case Studies
	A-A selinux_msg_queue_msgsnd
	A-B selinux_inode_mkdir
	A-C apparmor_file_open

