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Reference Monitors [Anderson, 1972]
• Definition: Enforcement of access control policy in a system 

over subjects’ ability to perform operations on objects.
• Properties

• Complete mediation
• Tamper-proof
• Verifiable
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Reference Monitors
• Linux Security Module (LSM)

• An example: granting or denying 
the request from process P of 
writing to file F.
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Tamper-proof Reference Monitors
• Existing tampering of RM

• Security identifiers stored in host program
• Incorrect use of request input
• Authorization bypass

Problem Definition
• A static tamper analysis to detect 

violations of the tamper-proof 
requirement in LSM.

• A systematic endorsement mechanism for 
benign violations.
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• Modeling the tamper-proof property as an information flow 
control problem.

• Challenges
• Standard noninterference reports too many false positives.
• Manually endorsing each benign violation is impractical and error prone.

Approach Overview
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Tamper Analysis as an Information Flow Problem
• Three dimensions of the integrity lattice.
• Source: Any data flowing into the authorization functions.
• Sink: Arguments of the authorization functions.
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Strict Noninterference
• For any two different executions where only low-integrity sources 

change, the high-integrity sink function calls must stay intact.
• The sink function parameters must not change.
• Sink functions calls must match across different executions.
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Strict Noninterference
• For any two different executions where only low-integrity sources 

change, the high-integrity sink function calls must stay intact.
• The sink function parameters must not change.
• Sink functions calls must match across different executions.

• Strict noninterference rejects benign code!
int apparmor_ptrace_traceme(task_struct *parent) {
  int error = cap_ptrace_traceme(parent);
  if (error)
    return error;
  else
    return aa_ptrace(parent, current, PTRACE_MODE_ATTACH);
}

T1 T2
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Relaxation of Strict Noninterference
• Allow return of non-zero error code without a sink function call.

int apparmor_ptrace_traceme(task_struct *parent) {
int error = cap_ptrace_traceme(parent);
if (error)

return error;
else

return aa_ptrace(parent, current, PTRACE_MODE_ATTACH);
}

Justification
• The request fails preliminary checks. 
• No permission will be granted.
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• Allow inputs to influence the sequence of sink function calls.
int apparmor_ptrace_traceme(task_struct *parent) {
int error = cap_ptrace_traceme(parent);
if (error)

return error;
else

return aa_ptrace(parent, current, PTRACE_MODE_ATTACH);
}

Justification
• The intended functionality of the authorization process requires calls 

to different sink functions or even skip sink functions based on its 
parameters.

Relaxation of Strict Noninterference
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Relaxed Noninterference

Integrity guarantees
• Untrusted inputs cannot bypass all sink calls and return success.
• Low-integrity inputs affecting authorization decisions are captured.
* Formalization provided in the paper.

T1 T2 int apparmor_ptrace_traceme(task_struct *parent) {
int error = cap_ptrace_traceme(parent);
if (error)

return error;
else

return aa_ptrace(parent, current, PTRACE_MODE_ATTACH);
}
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Endorsing Benign Violations
• Allow intended authorization bypass returning 0 (success).

int apparmor_path_chmod(path *path, umode_t mode) {
if (!mediated_filesystem(path->dentry->d_inode))

return 0;
...

}

Static endorsement
• Publicly accessible objects: !mediated_filesystem(inode),
unlikely(IS_PRIVATE(inode)), etc.

• Subjects with admin privilege
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Endorsing Benign Violations
• Endorse input data from the untrusted kernel with dynamic 

integrity check.
int apparmor_ptrace_traceme(task_struct *parent) {
endorse_record(parent); // record low-integrity data
...
return aa_ptrace(parent, current, PTRACE_MODE_ATTACH);

}

// in aa_ptrace, before decision is made
endorse_verify(parent); // verify recorded data is unmodified

Dynamic Endorsement
• Verify security identifiers’ integrity status with reusable endorser 

templates.
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Endorsing Benign Violations
• More complex cases 

• Multiple authorization checks.
• Intertwined data on the purpose dimension.

• Solution
• Manual justification based on system requirements and policy.
• Manual insertion of endorsers.
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Evaluations - Relaxed Noninterference
• 145 hook functions across 3 different LSM implementations

Integrity violations found by Relaxed NI (Strict NI) in each dimension

Relaxed noninterference removes 69.4% of false positives.

Purpose Value Location Total FP 
Reduction

SELinux 348 (917) 28 (51) 429 (949) 805 (1917) 58%

Tomoyo 31 (292) 11 (149) 31 (329) 73 (770) 91%

AppArmor 1 (120) 7 (9) 20 (145) 28 (274) 90%
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Evaluations - Endorsement
• 145 hook functions across 3 different LSM implementations

Remaining flawed hook functions after endorsement and their root cause
Hook Verification Violations

Analyzed Verified Remaining
Flawed

Case I Case II

Return 0 Subject Object Operation

SELinux 102 63 39 29 23 31 17

Tomoyo 23 0 23 23 5 23 4

AppArmor 20 0 20 12 0 20 0
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Remaining flawed hook functions after endorsement and their root cause
Hook Verification Violations

Analyzed Verified Remaining
Flawed

Case I Case II

Return 0 Subject Object Operation

SELinux 102 63 39 29 23 31 17

Tomoyo 23 0 23 23 5 23 4

AppArmor 20 0 20 12 0 20 0

18



Remaining Flaws
• Bad coding style

• Returning 0 on failed null-pointer checks
• Returning 0 on invalid operations

• Exploitable vulnerabilities
The object lookup vulnerability 

• Unknown
• Require justification from system 

requirements and policy specification

 53 hooks
 25 hooks

 All 43 hooks in 
     AppArmor and Tomoyo

 37 hooks
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Identified Vulnerabilities
• The object lookup vulnerability in AppArmor and Tomoyo

• Mismatch between case-insensitive file-system and case-sensitive 
canonicalization in LSMs

Subject: Process P
  Object: File “/usr/foo”
  Operation: Write 

Allow: …
 Allow: …
 Deny: Any write to “/usr/FOO”
 Deny: …

Hook Input Access Control Policy

Query

No deny rule found, 
allow access
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Summary
• Tamper-proof property can be modeled as an information flow 

integrity problem.
• Vanilla noninterference too strict for practical use, especially 

when implicit flows must be considered.
• Relaxation of strict noninterference removes most false positives 

in the tamper analysis.
• Further endorsement of information flow can be applied to 

benign integrity violations.
• TALSIMAN identifies exploitable security vulnerabilities in 

reference monitors.
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THANK YOU!
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