
TALISMAN: Tamper Analysis for
Reference Monitors
Frank Capobianco1, Quan Zhou1, Aditya Basu1, Trent Jaeger1,2 and Danfeng Zhang1,3

1Penn State, 2UC Riverside, 3Duke University
29 February 2024

Reference Monitors [Anderson, 1972]
• Definition: Enforcement of access control policy in a system

over subjects’ ability to perform operations on objects.
• Properties

• Complete mediation
• Tamper-proof
• Verifiable

2

Reference Monitors [Anderson, 1972]
• Definition: Enforcement of access control policy in a system

over subjects’ ability to perform operations on objects.
• Properties

• Complete mediation
• Tamper-proof Very few prior work
• Verifiable

3

Reference Monitors
• Linux Security Module (LSM)

• An example: granting or denying
the request from process P of
writing to file F.

Inputs

Authorization Query

Reference
Monitor Data

Decision

Hook Function

Authorization function

Untrusted
(Low Integrity)

Trusted
(High Integrity)

Untrusted
Kernel

Access
Control
Policy

File FProcess P

4

Tamper-proof Reference Monitors
• Existing tampering of RM

• Security identifiers stored in host program
• Incorrect use of request input
• Authorization bypass

Problem Definition
• A static tamper analysis to detect

violations of the tamper-proof
requirement in LSM.

• A systematic endorsement mechanism for
benign violations.

Inputs

Authorization Query

Reference
Monitor Data

Decision

Hook Function

Authorization function

Untrusted
(Low Integrity)

Trusted
(High Integrity)

Untrusted
Kernel

Access
Control
Policy

File FProcess P

5

• Modeling the tamper-proof property as an information flow
control problem.

• Challenges
• Standard noninterference reports too many false positives.
• Manually endorsing each benign violation is impractical and error prone.

Approach Overview

6

Tamper Analysis as an Information Flow Problem
• Three dimensions of the integrity lattice.
• Source: Any data flowing into the authorization functions.
• Sink: Arguments of the authorization functions.

monitor

input

external

Location

static

dynamic

Value

operationsubject object

┴

┬

Purpose

7

Strict Noninterference
• For any two different executions where only low-integrity sources

change, the high-integrity sink function calls must stay intact.
• The sink function parameters must not change.
• Sink functions calls must match across different executions.

8

Strict Noninterference
• For any two different executions where only low-integrity sources

change, the high-integrity sink function calls must stay intact.
• The sink function parameters must not change.
• Sink functions calls must match across different executions.

• Strict noninterference rejects benign code!
int apparmor_ptrace_traceme(task_struct *parent) {
 int error = cap_ptrace_traceme(parent);
 if (error)
 return error;
 else
 return aa_ptrace(parent, current, PTRACE_MODE_ATTACH);
}

T1 T2

9

Relaxation of Strict Noninterference
• Allow return of non-zero error code without a sink function call.

int apparmor_ptrace_traceme(task_struct *parent) {
int error = cap_ptrace_traceme(parent);
if (error)

return error;
else

return aa_ptrace(parent, current, PTRACE_MODE_ATTACH);
}

Justification
• The request fails preliminary checks.
• No permission will be granted.

10

• Allow inputs to influence the sequence of sink function calls.
int apparmor_ptrace_traceme(task_struct *parent) {
int error = cap_ptrace_traceme(parent);
if (error)

return error;
else

return aa_ptrace(parent, current, PTRACE_MODE_ATTACH);
}

Justification
• The intended functionality of the authorization process requires calls

to different sink functions or even skip sink functions based on its
parameters.

Relaxation of Strict Noninterference

11

Relaxed Noninterference

Integrity guarantees
• Untrusted inputs cannot bypass all sink calls and return success.
• Low-integrity inputs affecting authorization decisions are captured.
* Formalization provided in the paper.

T1 T2 int apparmor_ptrace_traceme(task_struct *parent) {
int error = cap_ptrace_traceme(parent);
if (error)

return error;
else

return aa_ptrace(parent, current, PTRACE_MODE_ATTACH);
}

12

Endorsing Benign Violations
• Allow intended authorization bypass returning 0 (success).

int apparmor_path_chmod(path *path, umode_t mode) {
if (!mediated_filesystem(path->dentry->d_inode))

return 0;
...

}

Static endorsement
• Publicly accessible objects: !mediated_filesystem(inode),
unlikely(IS_PRIVATE(inode)), etc.

• Subjects with admin privilege

13

Endorsing Benign Violations
• Endorse input data from the untrusted kernel with dynamic

integrity check.
int apparmor_ptrace_traceme(task_struct *parent) {
endorse_record(parent); // record low-integrity data
...
return aa_ptrace(parent, current, PTRACE_MODE_ATTACH);

}

// in aa_ptrace, before decision is made
endorse_verify(parent); // verify recorded data is unmodified

Dynamic Endorsement
• Verify security identifiers’ integrity status with reusable endorser

templates.

14

Endorsing Benign Violations
• More complex cases

• Multiple authorization checks.
• Intertwined data on the purpose dimension.

• Solution
• Manual justification based on system requirements and policy.
• Manual insertion of endorsers.

15

Evaluations - Relaxed Noninterference
• 145 hook functions across 3 different LSM implementations

Integrity violations found by Relaxed NI (Strict NI) in each dimension

Relaxed noninterference removes 69.4% of false positives.

Purpose Value Location Total FP
Reduction

SELinux 348 (917) 28 (51) 429 (949) 805 (1917) 58%

Tomoyo 31 (292) 11 (149) 31 (329) 73 (770) 91%

AppArmor 1 (120) 7 (9) 20 (145) 28 (274) 90%

16

Evaluations - Endorsement
• 145 hook functions across 3 different LSM implementations

Remaining flawed hook functions after endorsement and their root cause
Hook Verification Violations

Analyzed Verified Remaining
Flawed

Case I Case II

Return 0 Subject Object Operation

SELinux 102 63 39 29 23 31 17

Tomoyo 23 0 23 23 5 23 4

AppArmor 20 0 20 12 0 20 0

17

Evaluations - Endorsement
• 145 hook functions across 3 different LSM implementations

Remaining flawed hook functions after endorsement and their root cause
Hook Verification Violations

Analyzed Verified Remaining
Flawed

Case I Case II

Return 0 Subject Object Operation

SELinux 102 63 39 29 23 31 17

Tomoyo 23 0 23 23 5 23 4

AppArmor 20 0 20 12 0 20 0

18

Remaining Flaws
• Bad coding style

• Returning 0 on failed null-pointer checks
• Returning 0 on invalid operations

• Exploitable vulnerabilities
The object lookup vulnerability

• Unknown
• Require justification from system

requirements and policy specification

 53 hooks
 25 hooks

 All 43 hooks in
 AppArmor and Tomoyo

 37 hooks

19

Identified Vulnerabilities
• The object lookup vulnerability in AppArmor and Tomoyo

• Mismatch between case-insensitive file-system and case-sensitive
canonicalization in LSMs

Subject: Process P
 Object: File “/usr/foo”
 Operation: Write

Allow: …
 Allow: …
 Deny: Any write to “/usr/FOO”
 Deny: …

Hook Input Access Control Policy

Query

No deny rule found,
allow access

20

Summary
• Tamper-proof property can be modeled as an information flow

integrity problem.
• Vanilla noninterference too strict for practical use, especially

when implicit flows must be considered.
• Relaxation of strict noninterference removes most false positives

in the tamper analysis.
• Further endorsement of information flow can be applied to

benign integrity violations.
• TALSIMAN identifies exploitable security vulnerabilities in

reference monitors.

21

THANK YOU!

	TALISMAN: Tamper Analysis for Reference Monitors
	Reference Monitors [Anderson, 1972]
	Reference Monitors [Anderson, 1972]
	Reference Monitors
	Tamper-proof Reference Monitors
	Approach Overview
	Tamper Analysis as an Information Flow Problem
	Strict Noninterference
	Strict Noninterference
	Relaxation of Strict Noninterference
	Slide Number 11
	Relaxed Noninterference
	Endorsing Benign Violations
	Endorsing Benign Violations
	Endorsing Benign Violations
	Evaluations - Relaxed Noninterference
	Evaluations - Endorsement
	Evaluations - Endorsement
	Remaining Flaws
	Identified Vulnerabilities
	Summary
	THANK YOU!

