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Cryptographic API misuses

Java Cryptography Architecture (JCA)

C libraries, e.g. OpenSSL crypto library 
(libcrypto)

be misused due to

Weak cipher?
Hardcoded key, IVs or salts?
Collision-prone hashing?
Legacy SSL versions?
Broken certificate validation?
Non-CSPRNGS?
…



Cryptographic API misuse detectors

• Previous works on statically detecting potential cryptographic misuses
• MalloDroid: SSL/TLS usage in Android applications [CCS ’12]
• CryptoLint: Cryptographic misuse detection in Android applications [CCS ’13]
• CryptoREX: Cryptographic misuse detection in IoT Devices [RAID ’19]
• CogniCryptSAST with CrySL: using domain specific languages to validate crypto 

misuse in Java and Android applications [TSE ’19]
• CryptoGuard: High-precision detection in Java and Android applications[CCS ’19]

Misuse AlarmsStatic DetectorsApplications



Cryptographic API misuse detectors

• Previous works on statically detecting potential cryptographic misuses
• MalloDroid: SSL/TLS usage in Android applications [CCS ’12]
• CryptoLint: Cryptographic misuse detection in Android applications [CCS ’13]
• CryptoREX: Cryptographic misuse detection in IoT Devices [RAID ’19]
• CogniCryptSAST with CrySL: using domain specific languages to validate crypto 

misuse in Java and Android applications [TSE ’19]
• CryptoGuard: High-precision detection in Java and Android applications[CCS ’19]

Misuse AlarmsStatic DetectorsApplications

Open-source State-
of-the-art detectors
for IoT and Android
apps
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• Motivation
• If bug detectors report too many false alarms, developers will refuse to use them.

[Why don’t software developers use static analysis tools to find bugs?, ICSE13]

• Are the violations actual cryptographic misuses or false alarms?
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Methodology

• We collected a dataset for evaluation
• For CryptoGuard and CogniCryptSAST: 

• Collected 3489 apks from an open-source Android applications repository
• For CryptoRex:

• Collected 1177 firmware images from same vendors according to its paper

• We manually analyzed the alarms using the following procedures
• Merge alarms based on reported misuses’ method signature.
• Sort the merged alarms by their occurrence in apps.
• Analyze root cause of top-10 offending methods.
• Sample additional alarms by choice.



Overview of results

• There is a gap between misuse alarms and actual vulnerabilities that can
be fixed by developers.
• We consider 2 types of false alarms: False positives (FPs) and Ineffectual 

True Positives (ITPs).
• We conclude 19 false alarm patterns from 4 types of root causes.

Real-world Programs

True
positive

FPs from
implementation of
static analysis

ITPs from:
- imprecise modeling of rules
- valid usage contexts
- standard mandates

Approximation



FP: non-existent data flows

• Broken def-use chains due to variable reassignment in CryptoGuard
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FP: non-existent data flows

Use set: {$r5, $r2, r0.pwd, "jks"}

However, the method KeyStore.getDefaultType() returns
a constant String "jks", considered as constant password
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Refined results

• We implemented the refinement and rerun it on the same data set.
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• A bug in detection of hard-coded arrays in CogniCryptSAST

byte[] r0;
r0 = newarray (byte)[256];

Jimple IR

• Idiosyncrasies of the IR need to be carefully considered.

• Detectors need thorough testing and evaluation based on real-world 
datasets with sufficient sample size.
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• Reasonable iteration counts considered insecure in CogniCryptSAST
§ Requires the PBE iteration count: 10000 > 1000 (minimum requirement of the time)

• Reasonable key sizes considered insecure in CryptoGuard
§ Requires EC key size to be 512 bit long ≈ RSA 15360 >> RSA 2048
§ ITP Examples:
• A 256-bit key for ED25519 
• A 384-bit key for ECDSA-384 
• Android 6-13 (API 23- 33): default key size EC 256, RSA 2048

• Constant seeds assumed to always make outputs of SecureRandom 
predictable in CryptoGuard
• Android 7+ (API 24+): a given seed is always used as a supplement to randomness
• Older versions depend on choices of providers
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• Narrow whitelist constraints in detecting MITM in CryptoGuard
• Requires session to influence return value of verify method via def-use relations

Influence return value through control
flows (if-else) without def-use relations



ITP: Overly narrow whitelists

• IVs must come from SecureRandom in CogniCryptSAST
• ITP example: decryption mode

• Key materials to construct SecretKeySpec must come from existing
SecretKey or Key objects in CogniCryptSAST
• ITP examples:

• Loading the bytes from key files, network
• Generating a byte array with SecureRandom



ITP: Overly narrow whitelists

• IVs must come from SecureRandom in CogniCryptSAST
• ITP example: decryption mode

• Key materials to construct SecretKeySpec must come from existing
SecretKey or Key objects in CogniCryptSAST
• ITP examples:

• Loading the bytes from key files, network
• Generating a byte array with SecureRandom

• Justify the adopted lower bounds by clearly citing the standards or
recommendations of the time.

• Blacklists modeling requires to capture sufficient conditions of a misuse.
Labels of confidence (sufficient v.s. necessary conditions) can be helpful.

• Whitelists modeling is hard as it requires the understanding of common 
legitimate patterns. Mining and testing code repositories can be helpful.



ITP: misuse rules v.s. usage contexts

• All usage of AES-ECB considered insecure
• ITP example: AES-ECB can be used as the raw AES block cipher for implementing 

other secure modes of operation, e.g., AES-EAX mode in Google’s Tink library



ITP: misuse rules v.s. usage contexts

• All usage of non-CSPRNGs considered insecure
• non-CSPRNG can be used in other security-insensitive scenarios,
e.g., UI animation on Android
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ITP: misuse rules v.s. usage contexts

• All usage of collision-prone hash functions considered insecure
• ITP examples: MD5 can be utilized for hashing files as an index for local cache 

lookup or for logging purposes, e.g. Facebook’s SoLoader library

• ITPs come from legitimate usage context where they provide sufficient
guarantees and desirable performance.

• We recommend detectors target specific usages that are vulnerable
under a well-defined threat model.
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• We evaluate our found patterns on 
FindSecBugs.
• An open-source industrial tool for finding 

security bugs in Java and Android 
applications based on SpotBugs.

• 5 patterns also apply, but avoid requiring
IV from SecureRandom in decryption 
mode.
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Takeaway

• Cryptographic misuse static detectors exhibit many unnecessary false 
alarms in our real-world evaluation.

• The false alarm patterns come from the imprecision in static analysis, 
coarse modeling of cryptographic misuses and overlooking usage context.

• For future works:

• Tighten the decision boundary of static analysis.

• Thoroughly scrutinize real-world results on top-N offending methods.

• Use real-world patterns can help refine their approximations.
• For measuring the security of apps, detectors must be used with care.



Thank You!

https://github.com/kynehc/crypto-detector-evaluation-artifacts
Our artifact is available:

ykchen@ie.cuhk.edu.hk
y1kang.com

Questions?



Backup Slides Next



Cryptographic API misuses

• An example of hardcoded password and salt.



Detect Cryptographic API misuses

• Detect cryptographic API misuses via static analysis

e.g., Backward data flow
analysis
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Rules for Cryptographic API misuse

• CogniCryptSAST with CrySL



Overview of results

• 19 false alarm patterns from 4 
types of root causes



However, it wrongly assign “newarray 
(byte)[256]” to arrayLocal instead of r0.

extractSootArray.keySet.size() is 0 ≠≠ 1
isHardCodedArray() returns True.

FP: incorrect detection of hardcoded arrays



FP: incorrect handling of call-return edges
• A FP example of incorrect handling of call-return edges of CFG in CryptoREX

4096 is captured by its backward slicing
without considering the call-return edge
from sub_464F0()


