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Abstract—Face authentication systems are widely employed
in access control systems to ensure the security of confidential
facilities. Recent works have demonstrated their vulnerabilities
to adversarial attacks. However, such attacks typically require
adversaries to wear disguises such as glasses or hats during every
authentication, which may raise suspicion and reduce their attack
impacts. In this paper, we propose the UniID attack, which
allows multiple adversaries to perform face spoofing attacks
without any additional disguise by enabling an insider to register
a universal identity into the face authentication database by
wearing an adversarial patch. To achieve it, we first select appro-
priate adversaries through feature engineering, then generate the
desired adversarial patch with a multi-target joint-optimization
approach, and finally overcome practical challenges such as
improving the transferability of the adversarial patch towards
black-box systems and enhancing its robustness in the physical
world. We implement UniID in laboratory setups and evalu-
ate its effectiveness with six face recognition models (FaceNet,
Mobile-FaceNet, ArcFace-18/50, and MagFace-18/50) and two
commercial face authentication systems (ArcSoft and Face++).
Simulation and real-world experimental results demonstrate that
UniID can achieve a max attack success rate of 100% and 79%
in 3-user scenarios under the white-box setting and black-box
setting respectively, and it can be extended to more than 8 users.

I. INTRODUCTION

Face authentication systems verify the legitimacy of a
user by matching its face image with the corresponding user
ID stored within the database. Such systems are extensively
applied in various security-sensitive scenarios, including online
payments and control access in confidential facilities. However,
mainstream face authentication systems heavily rely on deep-
learning algorithms and have exhibited inherent vulnerabilities
to adversarial attacks [9, 12, 43], e.g., adversaries can spoof the
face authentication systems by wearing a carefully-designed
dress-up such as a glasses [32], hats [21] or masks [45].
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Fig. 1: UniID attack. During the enrollment phase, a legitimate
insider wearing an adversarial patch registers his identity into the
database to be the universal identity “Jack”. During the recognition
phase, both the insider and adversaries can pass the authentication
system as “Jack” without carrying any suspicious objects.

However, such attacks require adversaries to wear disguises
during every authentication, which may raise suspicion and
reduce their attack impacts.

In this paper, we ask that “Can we spoof the face au-
thentication without any camouflage?” Theoretically, if an
insider can enroll the identities of all the given adversaries
into the database, they can pass the target face authentication
system without any disguise. It would grant them the ability
to engage in organized criminal activities such as espionage
or terrorist attacks. However, in practice, it is not feasible
since an ordinary user typically lacks permission to access and
modify the database. Hence, we propose the UniID attack,
which injects a universal identity through the necessary but
often-overlooked enrollment phase of the face authentication
workflow. The basic idea of UniID is to register a universal
identity with an insider wearing a carefully-crafted adversarial
patch, which manipulates the face feature representation of
the insider and thereby allows him to be an “average face”
that incorporates the common feature of multiple adversaries.
Specifically, we envision the following attack scenario as
shown in Fig. 1: During the enrollment phase, an insider
strategically wears an adversarial patch to register his identity
in the database, effectively becoming the universal identity. In
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the subsequent recognition phase, the target system can not
only authenticate insiders but also enable authentication of all
given adversaries without requiring any kind of disguise.

Deploying UniID in scenarios involving multiple ad-
versaries against black-box commercial face authentication
systems poses challenges since UniID must ensure that
multiple adversaries can successfully pass face authentication
simultaneously with high confidence scores. Therefore, the
key to successfully launching UniID attack is to answer the
following questions: a) How to ensure its effectiveness with
the insider and multiple adversaries simultaneously? b) How
to make it available under the black-box setting? c) How to
increase the physical robustness so that it can be deployed in
the real world?

To overcome the above challenges, we propose a series of
algorithms to optimize the adversarial patch. First, to maximize
the number of enabled adversaries, we propose an attacker
selection method based on feature engineering to carefully
choose the appropriate adversaries. Next, we use the multi-
target joint-optimization approach to generate an adversarial
patch that enables both insiders and multiple adversaries to
successfully bypass the face authentication system simultane-
ously. To address the black-box setting, we use agent model
balance and connect dropout schemes to enhance the transfer-
ability of the adversarial patch. Finally, we implement color
shift calibration and utilize Expectation over Transformation
(EoT) to enhance the physical robustness of UniID, ensuring
its reliability under real world conditions.

To validate our attacks, we conduct both simulation and
real-world evaluations with six face recognition models, i.e.,
FaceNet, Mobile-FaceNet, ArcFace-18/50, MagFace-18/50,
and two commercial face authentication systems, i.e., ArcSoft
and Face++. In summary, our contributions include the points
below:

• We identify the vulnerability in the face authentication
system that enables multiple adversaries to be success-
fully authenticated by registering a universal identity in
the enrollment phase.

• We design UniID that can build an adversarial patch with
the common feature of adversaries, making the legitimate
user register a universal identity into the database, thus
achieving a stealthily spoofing attack against face authen-
tication systems.

• We validate UniID on six face recognition mod-
els (FaceNet, Mobile-FaceNet, ArcFace-18/50, and
MagFace-18/50), and two commercial face authentication
systems (ArcSoft and Face++) in the laboratory setup.
We achieve a max attack success rate of 100% in 3-user
scenarios (1 insider and 2 adversaries) under the white-
box setting and can extend to more than 8-user scenarios.
We can also achieve a max attack success rate of 79%
in 3-user scenarios when transferring to the black-box
setting.

The goal of this paper is to offer a more comprehensive
and systematic analysis of face authentication security, urging
service providers to focus on security issues across all phases
of the workflow to make face authentication systems more
secure. To enhance the security of existing systems, we rec-
ommend three defense methods: a) Enhancing the ability of
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Fig. 2: The workflow of a face authentication system consists two
phase: (1) Enrollment phase, and (2) Recognition phase.

face authentication systems to distinguish different identities.
b) Detecting adversarial examples at both the enrollment and
recognition phases. c) Using assembled models to increase the
attack difficulty.

II. BACKGROUND

In this section, we first present the workflow and face
extraction scheme of the face authentication system, and then
introduce the adversarial attacks against the face authentication
system.

A. Face authentication system

Face authentication is a widely-used biometric method for
verifying the identity of a user. Typically, a standard face
authentication system involves two phases: (1) The enrollment
phase for registering a new ID, and (2) the recognition phase
for verifying the identity, as shown in Fig. 2.

Enrollment Phase. A face authentication system requires a
new user to enroll to be a legitimate user. The enrollment phase
usually includes first requiring a face image from the user, then
extracting the embedding feature vector of the provided image
using the feature extraction model, and finally storing it in the
database as the User ID.

Recognition Phase. When a user requests identity verifi-
cation, the face authentication system first captures the user’s
face image and then determines whether the user is legitimate
by rejecting strangers whose identity is not enrolled in the
database. If the user is regarded as a legitimate one, the system
will further identify the user as the one with the highest
similarity score in the database.

For instance, when visitor A is trying to verify his identity,
the face authentication system first extracts his embedding fea-
ture vector f(A) with the feature extraction model f(·). Then,
the feature vector f(A) will be compared with each legitimate
user’s ID by calculating the similarity score Simi(A,Xi),
where Xi represents the ith user in the database. If all
similarity scores are below the threshold θ, visitor A will
be rejected as illegal access. Otherwise, visitor A will be
successfully accessed as the legitimate user in the database
with the highest similarity score.
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B. Face feature extraction

Compared to image classification, face authentication
presents an open-set task as the user’s face images are seldom
represented in the training dataset. Consequently, the face
authentication system cannot directly determine the identity
categories of input face images. Instead, it relies on feature
comparison to distinguish between different identities, which
renders feature extraction the most critical aspect of the
process. Currently, convolutional neural networks (CNNs) are
typically used for feature extraction, mapping the input face
image into a high-dimensional feature vector. To accurately
capture facial features, the feature extraction models must be
trained on a large-scale face image dataset before deployment
in the face authentication system.

In this context, we introduce two stages of the face extrac-
tion model: training and deployment.

Training: A face feature extraction model is designed to
represent a face image in a high-dimensional feature space
where the feature vectors of the same identities are clustered,
and those of different identities are separated. To achieve
this, the model is trained as a closed-set classification task
on vast datasets like VGGFace2 [6], MS1M-ArcFace [10],
among others, to learn the distribution of face images of
different identities. Specifically, through loss functions such
as TripletLoss [31], ArcFaceLoss [10], etc., the model learns
to minimize the inter-class distance while keeping the features
of different classes separable. After training, the model can
map the input face image into a specific region in the high-
dimensional space where the face images of the same identity
are close by.

Deployment: When deployed in a face authentication sys-
tem, the feature extraction model serves as a feature extractor
rather than a classifier. Therefore, the fully connected layer
located at the end of the CNN model is removed, and the
output of the last layer is used as a high-dimensional feature
vector. By comparing the distances between the feature vectors
of different input face images, the face authentication system
distinguishes various identities.

C. Adversarial attacks against face recognition

The face authentication system relies on feature vectors
to recognize identities, which makes it susceptible to spoofing
through the forging of feature vectors of legitimate users. Since
the face feature vectors are typically extracted by CNN models,
which have been shown to be vulnerable to adversarial attacks.
By adding small perturbations, adversarial examples can spoof
face recognition by identifying illegal attackers as legitimate
users as follows: {

f(x) = cgt
f(x+ δ) = ct ̸= cgt

(1)

where f(·) is the face feature extraction model, cgt is the
correct identity of the input image x, ct is the target identity
that the adversary attempts to be, and x+ δ is the adversarial
example. Moreover, the perturbation δ can be calculated by
the model, the input image, and the target identity as follows:

argmax
δ

J(f(x+ δ), ct) (2)

(1) Pixel-wise Perturbation

(2) Patch-based Perturbation

“Aaron Eckhart” “Hugh Grant”

𝑥Input: 𝛿Perturbation: 𝑥 + 𝛿Adversarial Example:

“Aaron Eckhart” “Hugh Grant”

𝑥Input: 𝛿Perturbation: 𝑥 + 𝛿Adversarial Example:

Fig. 3: Two types of adversarial perturbations: (1) Pixel-wised per-
turbation, (2) Patch-based perturbation.

where J(·, ·) is the loss function for solving δ, which can
be resorted to numerous gradient-based approaches [7, 14] or
evolutionary optimization methods [15].

In fact, as shown in Fig 3, there are two types of perturba-
tions: ① Pixel-wised perturbation, a.k.a., global adversarial
perturbation, which refers to the perturbation added over all
pixels of the entire image. It is widely used in the digital
domain [9, 12] since it can achieve a good attack performance
while slightly changing the pixel values. However, this kind
of perturbation may not be practical in the physical domain
since adversaries cannot manipulate every pixel in the real
world, and moreover, the perturbations are easily affected by
environmental noises. ② Patch-based perturbation refers to
the perturbation added in a specific area of the input image.
Such perturbations are not constrained by the limited pixel
value changes and appear in the form of patches, and thus
are easier to deploy in the real world. In addition, with
the help of transformation algorithms such as Expectation
Over Transformation (EOT) [4], the patch-based perturbations
can resist environmental noise and enhance their robustness
in practice. Moreover, for the stealthiness of the patches,
adversaries usually utilize real-existing objects as the carries
for adversarial patches, such as Adv-hat [21], Adv-glasses [32],
Adv-makeup [42], etc.

However, these adversarial attacks usually focus on the
recognition phase and require adversary-dependent disguises
every time when an adversary tries to authenticate, which could
increase the likelihood of being detected by security guards.

In this paper, we aim to investigate a spoofing attack that
injects a universal identity into the database during the often-
overlooked enrollment phase, enabling multiple adversaries to
be successfully authenticated for unlimited times.

III. THREAT MODEL

In this paper, we investigate the feasibility of granting
several adversaries legitimate identities by enrolling an in-
sider with a universal identity. Specifically, we consider the
following attack scenario: An insider tries to allow several
adversaries to bypass the face authentication systems for
malicious purposes such as stealing confidential information.
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Fig. 4: Face presentation in the high-dimensional space. We manipu-
late the position of the anchor to launch our attack.

However, only the insider has permission to enroll himself
as a legitimate user. To achieve the attack goal, the insider
may try to disguise himself by such as wearing an adversarial
patch to enroll a face with biometric information of multiple
people, i.e., the universal identity. After enrollment, the insider
can still be correctly identified in the daily routine (without
carrying the adversarial patch) and more than one adversary
can be identified as the identity of the insider by the target
face authentication system.

To achieve the aforementioned attack, we assume the
insider and adversaries are cooperators. The capability of the
attackers includes providing face images of themselves to the
insider. The capabilities of the insider are as follow:

Model Knowledge. We assume the insider may have
either white-box or black-box access to the face authentica-
tion system. In the white-box setting, the adversary has full
knowledge of the target face authentication system, including
the architecture of the recognition model and its gradient
information. In the black-box setting, the adversary has no
knowledge of the target face authentication system and can
only get the decision made by the recognition model.

Enroll Capability. We assume the insider can enroll an
identity through (1) uploading photos via web or smartphone
apps, or (2) taking photos on the spot. For the first case, we
assume the insider can upload a face image with disguises
and successfully enroll since to the best of our knowledge,
the uploaded photo will not be examined by machines or
humans yet. For instance, access control devices such as
HikVision [17] and Invixium [20] allow users to upload face
photos to complete the enrollment process. For the second
case, we assume the insider can wear a disguise and complete
enrollment on the spot without raising suspicions, e.g., when
security guards are not present or not paying attention, as
discussed in the user study in Sec. VII.

IV. PRELIMINARY ANALYSIS

The key to fulfilling the attack goal is to allow the insider
wearing a disguise can be recognized as all adversaries by
face authentication systems. To achieve this, we investigate the
possibility of constructing an “average face” of adversaries at
the feature level using adversarial attacks.

Insider Adversaries
Origin Image

Average Face

0.99 0.66 0.20 0.18

0.89 0.57 0.43 0.31

Fig. 5: An illustration of preliminary analysis results. The images
from left to right are: the enrolled face images, the images of the
insider and the images of the adversaries. The numbers under the
images are the confidence scores.

TABLE I: Attack Success Rates under Different Number of Attackers

Number of Attackers Attack Success Rate
1 90.0% (9/10)
2 22.2% (10/45)
3 3.3% (4/120)

4-10 0% (0/848)

A. Basic Idea

As described in Sec. II, the face authentication systems
determine the identity by comparing the distance between fea-
ture vectors. Therefore, the “average face” at the feature level
refers to the feature vector that is positioned in close proximity
to all adversaries within the high-dimensional feature space.
To achieve this, our basic idea is to manipulate the position
of the insider’s feature vector towards the central region of
the adversaries’ feature vectors through adversarial attacks, as
shown in Fig. 4. Since the face authentication system utilizes
a fixed threshold to establish the decision boundary radius
for determining the legitimacy of access, both the insider
and adversaries can be identified as the insider as long as
the decision boundary encompasses the feature vectors of the
adversaries.

B. Preliminary Results

In this paper, we employ a patch-based adversarial attack
to generate the “average face” due to its portability and
ease of deployment in real-world scenarios. To investigate its
feasibility, we conduct experiments under a white-box setting
against a commonly used face recognition model, ArcFace-
18. [10]. Specifically, we fist randomly select one insider and
ten adversaries from the face dataset LFW [19]. Then, we
optimize the adversarial patch by a gradient-based optimization
algorithm Fast Gradient Sign Attack (FGSM) [14]. During the
experiments, we permute the ten adversaries to form 1,023
different combinations, ranging from one to ten adversaries.
For each combination, we optimize an adversarial patch with
a fixed size 25×25 pixels and place it on the right cheek of the
insider to create the “average face”. To validate the effective-
ness of each “average face”, we calculated the similarity score
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Fig. 6: Overview of UniID: The insider first selects a proper attacker combination from the candidates. Then, he generates the adversarial
patch using the gradient-based optimization method, enhances the transferability of the adversarial patch to make it effective under black-box
systems, and finally calibrates the color and shape shifts to make the patch practical in the real world.

between the “average face”, the insider and the adversaries.

From the illustration shown in the Fig. 5, we find: (1)
For the legitimacy of the insider, we compare the similarity
scores between the “average face” and the various images of
the insider. As a result, the similarity scores only decrease by
∼ 0.1, indicating the adversarial patch has minimal impact on
the identification of the insider. Since the similarity score is
much higher than the default threshold (0.24), the insider can
pass the face recognition model in his daily routine without
any restrictions. (2) For the multiple adversaries, compared
to the similarity scores with the origin image of the insider,
their similarity scores with the “average face” all surpass the
default threshold, which indicates that our notion of multiple
adversaries simultaneously using one identity (i.e., the univer-
sal identity) to bypass face authentication is feasible.

However, as illustrated in Tab. I, the attack success rate
declines sharply with an increase in the number of adversaries.
This decline can be attributed to the random selection of
adversaries, which may result in interactions between multiple
adversaries and make it challenging for adversarial patches to
converge during the optimization process.

Based on these observations, two challenges remain to be
addressed: ① When dealing with a specific insider, it is crucial
to carefully choose the appropriate adversaries to ensure the
successful execution of our attack. ② Although our attack has
been demonstrated to be feasible in the digital world, further
efforts are required to maintain its effectiveness in real-world
scenarios.

V. ATTACK DESIGN

To achieve the attack goal, it is important to answer the
following questions:

• Q 1: How to select the appropriate adversaries to ensure
the effectiveness of our attack?

• Q 2: How to enhance the transferability of adversarial
patches to address the black-box setting?

• Q 3: How to increase the physical robustness of adver-
sarial patches such that they can be deployed in real life?

To address these questions, our attack incorporates three
modules, as shown in Fig. 6. The Attacker Selection module
chooses appropriate adversaries by feature engineering to

(a) (b) (c) (d)

Fig. 7: Cases for different attackers: (a) One attacker is close to the
insider while the others are far away. (b) Both attackers are far away
from the insider. (c) Both attackers are close to the insider but stand
on opposite sides. (d) Both attackers are close to the insider and
situated together.

enable a maximum number of adversaries. The Adversarial
Patch Generation module finds the most suitable location
to place the adversarial patch and generates its content that
enables multiple attackers and the insider to pass the face au-
thentication simultaneously. The Black-box Transfer module
enhances the transferability of the adversarial patch using agent
model balance and connect dropout to address the black-box
setting. The Physical Implementation module calibrates the
color shift caused by the printing-capturing process and uses
the EoT strategy to improve its robustness in the physical
world. In the following sections, we present these attack
building blocks in detail.

A. Attacker Selection

Based on the preliminary analysis, we find that given
a specific insider, different adversaries may exhibit different
attack success rates. With appropriate adversary candidates,
we can maximize the number of enabled adversaries. In the
following, we propose a ranking method to select the most
appropriate combination of attackers.

1) Multi-attackers Analysis: To explore the potential im-
pact of different attacker combinations, we analyze the distri-
bution of face-embedding features in high-dimensional space.
We identify two scenarios where generating adversarial patches
may be difficult or even impossible: ① When the attackers are
too far away from the insider: Our attack aims to manipulate
the insider’s anchor to the center of the attackers by adding
an adversarial patch. However, if the distance between the
optimization target (attacker) and the initial sample (insider) is
too large, the anchor may fail to optimize to a point where its
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decision boundary can cover both of them, as shown in Fig. 7
(a), (b). Additionally, for portability reasons, the adversarial
patches must be limited in size and wearing position, which
further restricts the distance between the optimized anchor and
the original one of the insider, making it difficult to cover
attackers that are too far away. ② When the attackers are
located on either side of the insider: In this scenario, as shown
in Fig. 7 (c), the optimization process of an adversarial attack
oscillates between different attackers and eventually fails to
generate an effective adversarial patch.

To avoid the aforementioned issues, an optimal combi-
nation must ensure that the attackers and the insider are as
close to each other as possible, while the attackers themselves
are tightly clustered, as shown in Fig. 7 (d). In light of this,
we propose two metrics to determine whether an attacker
combination is appropriate. For ①, we use the similarity metric
which is the average cosine similarity to indicate the distance
between an attacker combination and the insider. Specifically,
if we select a N -attackers combination A : {A1, ..., An}, the
distance shall be as follows:

Sim(V,A) =
1

N

N∑
i=1

f(V ) · f(Ai)

|f(V )| × |f(Ai)|
(3)

where the N is the number of attackers, f(V ) is the embedding
feature of insider, and f(Ai) is the embedding feature of i
th attacker. For ②, we utilize the average cosine similarity
between attackers as an aggregation metric to indicate whether
the attackers are clustered together as follows:

Agg(A) =
1

N2

N∑
i=1

N∑
j=1

f(Ai) · f(Aj)

|f(Ai)| × |f(Aj)|
(4)

2) Combination Choosing: In the attack scenario defined
in Sec.III, we can select the most appropriate N -attackers
from a set of attacker candidates to launch our attack. In gen-
eral, we can get the appropriate combination by maximizing
Sim(V,A) + Agg(A). However, we have observed that the
combinations of attackers selected from different face recog-
nition models can vary significantly. A combination selected
from one model may not be feasible in other models. This
is because different face recognition models typically employ
various backbones and are trained from different datasets,
leading to inconsistencies in feature representation.

To address this challenge, we propose assembling multiple
models to select the appropriate combination, as follows:

argmax
A

{ 1

M

M∑
m=1

(Simm(V,A) +Aggm(A))} (5)

where M is the number of assembled models, Simm(V,A)
and Aggm(A) are the similarity metric and aggregation metric
of m-th face recognition models. In this paper, we evaluate a
variety of face recognition models with backbones consisting
of VGG-16 [34], MobileNet [18], IRSE-18, and IRSE-50 [10],
which are trained on the CASIA [41] and MS1MV2 [10]
datasets. We find that a combination selected from such diverse
models can successfully attack multiple models simultaneously
and can even transfer to the black-box setting.

Insider Adversary Saliency Map Insider + AP

Max Value𝜕𝑓𝐴(𝑉)

𝜕𝑉

Fig. 8: Patch position choosing. The location is determined by
applying the coordinate of maximum value in the saliency map from
the insider and adversaries.

B. Adversarial Patch Generation

Our attack relies on the use of an adversarial patch, which
is carried by the insider to enroll his identity. In this subsection,
we determine the most appropriate position for placing the
adversarial patch, striking a balance between attack effective-
ness and the convenience of deployment. Then, we generate
the contents of the adversarial patch through a gradient-based
optimization algorithm in a white-box setting.

1) Position Choosing: In a physical adversarial attack, it
is crucial to balance patch portability and attack effectiveness.
Typically, the eye region plays a significant role in distinguish-
ing between different identities. However, adding patches to
this region may cause the insider to fail the face detection
and liveness detection phases during enrollment. Conversely,
adding a patch to the chin or cheek regions has limited impact
on detection but results in reduced attack effectiveness.

To address this issue, we construct a saliency map based
on the forward derivative [26], and utilize a mask to avoid
covering the eye region. The saliency map identifies the
contribution of each pixel when it is classified as an attacker.
As shown in Fig. 8, we determine where to add the patch by
maximizing the saliency map, using the following formula:

S(V,A)[p, q] =
∑
A∈A

∂fA(V )

∂Vp,q
×Mask (6)

where (p, q) is the coordinate of a pixel in the image of the
insider, fA(V ) denotes the similarity score when the insider
V is classified as an attacker A, and the Mask is a binary
image where the eye region is set to 0 and others are set to 1.

2) Content Generation: Once we have determined the most
appropriate position, our next step is to generate an adversarial
patch that can be used to carry out the attack. To achieve
this, we utilize a gradient-based optimization method MI-
FGSM [11]. Additionally, we have formulated a loss function
that considers two significant factors: (1) multi-target similarity
loss that aims to enhance the similarity between the attackers’
faces and the perturbed face in scenarios where multiple
attackers are involved. (2) content smooth loss that minimizes
the noise effect resulting from the printing-capturing process.
We strive to make the pixels of the optimized patch as smooth
as possible, thereby reducing the impact of any distortions
or anomalies that may arise during the generation of the
adversarial patch. In short, the loss function is as follows:

L = αLsim + βLtv (7)

where α and β are the weights of the multi-target similarity
loss and the content smooth loss, respectively.
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(a) (b)

Multi-target Similarity Loss. In contrast to other ad-
versarial attacks, our approach involves the collaboration of
multiple attackers working in tandem. As explained earlier, our
aim is to shift the insider’s anchor by introducing an adversarial
patch that repositions it at the center of the attackers. To
achieve this, we first compute the average embedding features
of the attackers and use this as the central point in the high-
dimensional space where the attack is executed:

f(A)avg =
1

N

N∑
n=1

f(An) (8)

where f(·) is the target model, An is the n-th attacker, N is
the number of attackers. Then, we make the target model to
identify the attackers as the insider. Thus, the similarity loss
is as follows:

Lsim = 1− f(V, δ) · f(A)avg
|f(V, δ)| × f(A)avg|

(9)

where V is the insider and δ is the adversarial perturbation.

Content Smooth Loss. Since our attack is intended for
deployment in the physical world, the adversarial patch will
need to be printed and captured by a camera. However, if the
internal pixel values of the patch are not continuous, variations
in the patch’s color distribution may arise during the printing-
and-capturing process, which could reduce the effectiveness of
the attack in the real world. To overcome this challenge, we
utilize a total variation (TV) loss function to smooth out the
color distribution of the patch pixels as follows:

Ltv =
∑
i,j

√
(xi,j − xi+1,j)2 + (xi,j − xx,j+1)2 (10)

where xi,j is the pixel value of the adversarial patch x at the
coordinate (i, j).

C. Black-box Transfer

Face authentication systems used in real-world scenarios
often operate as black-box systems. As a result, we try to
improve the transferability of our attack to make it effective
against various unseen models. To accomplish this, we opti-
mize the adversarial patch using a mount of agent models with
random connection dropout.

1) Agent Model Balance: A straightforward black-box
transfer approach is to calculate the average similarity of
outputs from multiple models as the optimization objective.
However, different models may have varying gradients, and
simply averaging their outputs can cause over-optimization of

models with larger absolute gradient values while neglecting
those with smaller ones. This can potentially affect the ef-
fectiveness of the attack. To balance the relative relationship
between the gradients of each model, we use the Leaky ReLU
function. By doing so, we make the contribution of each agent
model closer in the process of patch generation. The Leaky
ReLU function is based on a ReLU and is commonly used as
an activation function in model training [25]. It is defined as
follows:

LeakyReLU(x) =

{
x, IF x ≥ 0

slope ∗ x, IF x < 0
(11)

where slope is the angle of the negative slope. The balanced
loss can be obtained from the following function:

Lbalance =
1

M

M∑
m

LeakyReLU (Lm
sim − ε) (12)

where Lm
sim denote the similarity loss of the m-th agent model,

respectively, and the ε denote the balance threshold which is
set as 0.4 in this paper. Based on this, the loss function now
becomes as follows:

L = αLbalance + βLtv (13)

where α and β are the weights of the agent model balance
loss and the content smooth loss, respectively.

2) Connection Dropout: Dropout is an essential technique
for effectively training deep neural networks. By randomly
dropping units and their connections, this technique helps to
prevent overfitting, which is a common problem in complex
models. While dropout is typically applied at the fully con-
nected layer, it can have a significant impact on overall training
performance.

To generate the adversarial patch in our application, we
employ dropout between convolutional layers. This approach
allows us to increase the potential configurations of sub-
networks and combine them iteratively, resulting in a more
effective overall approach [44]. However, due to the correlation
between close units in convolutional layers, information from
a dropped unit can still be passed to the next layer through
adjacent units. To address this issue and further optimize
dropout, we have devised square dropout, which drops units
in a square region of a feature map together. This approach
ensures that all units within the same region are dropped,
thereby preventing correlated information from being passed
to the next layer and making dropout even more effective in
preventing overfitting.

In particular, a face model comprises multiple convolu-
tional layers and an excessive amount of dropout can hinder
the recognition capabilities of the model. Therefore, we have
opted to incorporate square dropout solely between blocks, as
depicted in Fig. ??. For a face model, given the feature Vi from
the i-th block, we randomly generate a mask Mi as follows:

Pointsi = Random Sample
(
p/size2,W,H

)
Mi = Square Apply (Pointsi, size,W,H)

(14)

where p is the possibility of dropout, size is the side length
of the dropped square region, W and H are the width and
height of Vi, Random Sample(·) denotes generating scattered
points as the center of square dropout, and Square Apply(·)
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represents generating square mask centered on the points.
Then, we apply the mask and normalize the features as follows:

V ′
i = Vi ×Mi × Count(Mi)/Count Ones(Mi) (15)

where V ′
i is the dropped feature, and Count(·) and

Count Ones(·) calculate the size of the input vector Mi and
the number of 1 in it, respectively.

D. Physical Implementation

To make our attack practical in the real world, we try to
improve the robustness of the generated adversarial patch in
this subsection. Specifically, to mitigate the negative impact
of color shift and shape deformation caused by the printing-
capturing process, we have adopted two methods: (1) We have
developed an MLP model that maps the color transformation
from the digital world to the physical world, which is used for
pre-calibrating the color shift. (2) We have incorporated the
Expectation of Transformation (EoT) technique to enhance the
patch’s resilience against deformation.

1) Color Shift Calibration: When executing a physical
adversarial attack, the color distortion caused by the printing-
capturing process can potentially lessen the effectiveness of our
attack. Since the color transformation from the digital world to
the physical world is a non-linear function, we have employed
a Multi-Layer Perceptron (MLP) model to simulate it. Prior to
training the model, we extracted 4096 colors (each consisting
of 16 shades of red, green, and blue) to construct a color board
denoted as Bd. This board represents most of the colors in
RGB mode. We then captured the printed color board using
a camera, which we refer to as Bp. By combining these two
color boards, we created a training sample {Bd, Bp} to train
the MLP model, allowing it to learn the color transformation
function.

During each step of the adversarial patch optimization, we
utilize the MLP model to transform the color space. Once the
patch has been fully optimized, we print the pre-calibrated
patch to initiate our attack. This helps eliminate any potential
color shift during the printing-capturing process.

2) Expectation of Transformation: In addition to the color
shift issue, the user-camera distance and angle can also result in
shape deformation of the adversarial patch, ultimately leading
to a decrease in attack performance. To tackle this problem,
we utilize the Expectation of Transformation (EoT) technique
to enhance the shape robustness of the adversarial patch in
the physical world during the optimization phase. The EoT
method involves constructing a transform distribution T that
encompasses position, scaling, rotation, affine, and brightness
adjustments. Then, by randomly choosing a transformation
function t ∈ T at each step of the optimization process,
the EoT can convert the origin adversarial patch δ into a
“physical” patch δ∗ as follows:

δ∗ = argmin
δ

Et∼T [L[f(V,A, t(δ)), f(A)]] (16)

where t is the transformation function that is randomly sam-
pled in contribution T . δ∗ is the transformed patch and δ is
the original patch. V and A are the insider and attackers,
respectively.

TABLE II: The Backbone Networks and Training Datasets of Target
Models

Target Models Backbone Training Dataset Threshold
FaceNet VGG-16 VGGFace 0.409

Mobile-FaceNet MobileNetV2 MS-Celeb-1M 0.305
ArcFace-18 IRSE-18 CASIA 0.24
ArcFace-50 IRSE-50 MS1MV2 0.24
MagFace-18 IRSE-18 CASIA 0.24
MagFace-50 IRSE-50 MS1MV2 0.24

VI. EVALUATION

In this section, we evaluate our attack in two aspects:
(1) simulated attack evaluation, where the adversarial patch
is generated against face recognition models with public face
datasets, and (2) real-world evaluation, where the adversarial
patch is deployed in the physical world to attack the com-
mercial face authentication systems/devices. We use the attack
success rate (ASR) as the metric to evaluate our attack both
in simulation evaluation and real-world evaluation.

A. Simulation Evaluation

1) Experimental Setup: For the simulation evaluation, we
generate adversarial patches in the white-box setting. The
models and datasets used as targets for this evaluation are as
follows:

Target models. We evaluate our attack using six face
recognition models, i.e., FaceNet, Mobile-FaceNet, ArcFace-
18/50 and MagFace-18/50. The former two are the representa-
tive face recognition model while the last four are the state-of-
the-art models. The backbone networks, training datasets and
default threshold of the models are list in the Tab. II.

Datasets. We use two face datasets LFW [19] and
CelebA [24] in the simulation evaluation. LFW contains
13,233 face images for 5,749 identities, and CelebA contains
202,599 face images for 10,177 identities. For both datasets,
we randomly choose 100 identities as the insiders and select
the attacker combinations using the proposed attacker selecting
method.

Attack Metric. We define our attack to be successful when
all attackers in the combination A can be recognized as the
insider as follows:

AS = 1{
∑
A∈A

1θ(cos[f(V + δ∗), f(A)] > θ) = L(A)} (17)

where the 1 is the indicator function, L(A) is the attacker
number of combination A, and θ is the threshold of the target
model. Based on this, we use the attack success rate (ASR)
as the metric in the simulation evaluation, which is the ratio
of the number of successful attacks over the total number of
conducted attacks. Thus, the metric can be formulated as:

ASR =
1

N

N∑
n=1

ASn × 100% (18)

where the ASn is the n-th of the conducted attack. Specifically,
each attack we denote is an attack launched against a specific
insider and its corresponding attacker combination.
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TABLE III: Overall Performance of UniID with Two Datasets Against Six Different Face Recognition Models.

Target Models Datasets Number of Attackers
1 2 3 4 5 6 7 8 9 10

FaceNet
LFW 99% 97% 88% 74% 61% 43% 32% 23% 13% 11%

CelebA 99% 86% 73% 53% 38% 26% 15% 16% 14% 10%

Mobile-FaceNet
LFW 100% 85% 56% 31% 15% 5% 2% 1% 0% 0%

CelebA 97% 75% 58% 47% 28% 14% 14% 8% 4% 4%

ArcFace-18
LFW 100% 100% 93% 84% 66% 50% 36% 22% 17% 11%

CelebA 100% 99% 90% 82% 73% 65% 56% 50% 50% 36%

ArcFace-50
LFW 99% 85% 57% 13% 5% 2% 0% 0% 0% 0%

CelebA 99% 82% 48% 28% 15% 2% 1% 1% 0% 0%

MagFace-18
LFW 100% 100% 93% 86% 69% 51% 42% 33% 18% 12%

CelebA 100% 99% 92% 88% 79% 74% 64% 63% 54% 52%

MagFace-50
LFW 100% 85% 50% 16% 6% 2% 1% 0% 0% 0%

CelebA 97% 77% 35% 17% 10% 6% 3% 0% 0% 0%
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Fig. 9: Impact of different patch position.

2) Overall Performance: In this subsection, we first eval-
uate the effectiveness of our attack on different target models
under their default thresholds in the white-box setting. We
select 1 to 10 attackers for each of the 100 insiders in the
LFW and CelebA datasets to launch our attack and calculate
the attack success rates. To ensure consistency, during the
experiments, the patch size is constant in 25 × 25 pixels and
the patch position is located in the eyebrow region. The results
shown in Tab. III demonstrate that our attack can achieve an
overall average success rate of 99.1%, 87.1%, 69.4%, 51.6%,
38.8%, 28.3%, 22.2%, 18.1%, 14.2%, and 11.3% for 1 to 10
attackers, respectively. Among the target models, we find the
ArcFace-18 and MagFace-18 are more vulnerable than other
models because they use a simple backbone structure IRSE-
18 and are trained by a small-scale dataset CASIA that only
contains 49,4414 face images for 10,575 identities. The above
two reasons limit the models’ ability to distinguish different
faces and lead them easier to be attacked. For the testing
datasets, we find that the attack performance of CelebA is
better than LFW. The reason is that CelebA has more identities,
which makes it easier to select suitable attacker candidates.
Additionally, to evaluate the generalization capabilities across
diverse face images, we conduct the cross-dataset evaluation
between LFW and CelebA, and the results demonstrate that
our attack performs similarly across different datasets as it
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Fig. 10: Impact of different patch size.

does on a single dataset. All the detials about the experiments
can be found in Appendix A.

Overall, our attack is feasible to be successfully launched
under 6 attackers for all six models and two datasets and can
achieve to be conducted under more than 10 attackers with
certain models.

3) Impact of Patch Details: In this section, we explore
various factors that could affect the effectiveness of our attack.
Specifically, we investigate the impact of patch size and
position on the adversarial effects of our attack. To streamline
our analysis, we focus on the MagFace-18 model and measure
the ASR using the LFW dataset. To ensure a fair evaluation,
we maintain a constant patch size of 25 × 25 pixels when
assessing the effect of patch position. Similarly, we restrict
the patch position to the eyebrow region when evaluating
the impact of patch size. This helps us avoid any mutual
interference between these two variables and obtain reliable
results.

Impact of Patch Position. To investigate how patch posi-
tions can impact attack success rates, we conduct experiments
by placing the patch on five distinct facial regions: the eyebrow,
nose, left cheek, right cheek, and mouth. Our results, as
depicted in Fig. 9, indicate that all regions can achieve similar
ASR >90% when the number of attackers is less than 4.
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However, as the number of attackers increases, performance
significantly drops first in the mouth region and then in the
cheek region. This is because these areas are less crucial for
face feature representation, and modifying their pixel values
does not lead to the anchor feature shifting into the center of
a significant number of attackers, which is typically located far
away from the origin anchor. In contrast, the eyebrow region
and nose tip region show better performance because they
are important for distinguishing between different identities
in face recognition models, and slight pixel value changes in
these regions can result in a significant feature shift in high-
dimensional space. However, since the nose tip region typically
protrudes from the face, it may not be practical to wear an
adversarial patch in this location.

Thus, considering both attack performance and patch porta-
bility, the eyebrow region emerges as the most suitable area
for launching our attack among the five regions tested.

Impact of Patch Size. The size of the patch is a critical
factor that determines attackers’ ability to manipulate pixels
and directly affects the success rate of our attack. In order to
investigate its impact, we conducted experiments with patch
sizes ranging from 5 × 5 pixels (0.2% of the face image) to
35 × 35 pixels (9.7% of the face image).

Our results, as shown in Fig. 10, indicate that an exces-
sively small patch size cannot successfully launch an attack.
When the patch size is larger than 20 × 20 pixels, our attack
can be successfully launched even with more than 10 attackers.
The reason for this is that a 5 × 5 patch only covers 0.2% of the
face image, such minor changes in the face image have little
effect on feature representation. As the patch size increases, we
can manipulate more pixels, which gives the patch the ability
to significantly influence the feature representation.

4) Impact on Different Thresholds: Face authentication
systems use thresholds to determine whether a visitor is a legit-
imate user, and different thresholds can affect the performance
of our attack. To study its impact, we initially analyze the
distribution of similarity scores for matched pairs, unmatched
pairs and UniID-adversary pairs. From the results shown in
Fig. 11, we observe that the similarity scores of UniID-
adversary pairs predominantly range between 0.2 and 0.6.
Additionally, the number of unmatched pairs rises significantly
when the similarity score exceeds 0.3.

Therefore, we conduct experiments by setting the thresh-
olds from 0.2 to 0.6. During the experiments, we use the
MagFace-18 model as the target for simplicity and counted
the number of successful attacks under different thresholds.

From the results shown in Fig. 12, we find that the
performance of our attack decreases as the threshold increases.
Specifically, our attack can still be successful even if the
threshold is increased to 0.6, and it can remain effective with
more than 2 attackers when the threshold is ≤ 0.56. Raising the
threshold makes the face authentication model more stringent
when distinguishing between different identities, leading to a
decrease in the performance of our attack. However, increasing
thresholds may seriously weaken the generalization ability of
the face authentication model, resulting in missed identification
for the same person. Therefore, we calculated the True Accept
Rate (TAR) of the target system, which indicates the percent-
age of authorized users with correct matches to legitimate
users, as follows:

TAR =
TP

TP + FN
(19)

where TP is the true positive samples, i.e., the number of
authorized users with correct matches to legitimate users, and
TP + FN is the number of legitimate users.

Commercial face authentication systems typically require
a TAR of over 99.9% to ensure reliable user authentication
under different lighting conditions, facial angles, and makeup
variations. However, as illustrated in Fig 12, when the thresh-
old is increased, the TAR of the system decreases to 0.6.
This means that nearly 40% of legitimate users are unable to
authenticate themselves using their own facial image, making
this unacceptable for commercial face authentication systems.
Therefore, merely increasing the threshold as a defense ap-
proach is unrealistic given practical constraints.

5) Black-box Transferability: In most commercial face
authentication systems, attackers are unable to gain any knowl-
edge about their underlying models. Instead, they can only
obtain the output decision. In this paper, we optimize the ef-
fectiveness of an adversarial patch using multiple agent models
and evaluate its performance in black-box models that were
not used in the optimization process. Specifically, we optimize
the patch across 11 agent models with varying backbones
and training datasets. We then select three face authentication
models (ArcFace-18, MagFace-18, and MagFace-50) and two
commercial face authentication API/SDK systems (ArcSoft [3]
and Face++ [13]) as our black-box models for launching
the attack. We calculate the ASR under various numbers of
attackers and use the same default thresholds as those in Tab.II.
For ArcSoft and Face++, we set the thresholds at 0.8 and 0.63,
respectively, as recommended by their manufacturers.
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TABLE IV: The Attack Performance in Black-box Models

Target Models Number of Attackers
1 2 3

ArcFace-18 95% 79% 45%
MagFace-18 98% 71% 36%
MagFace-50 95% 62% 20%

Face++ 81% 45% 20%
ArcSoft 86% 27% 12%

Models. According to the results presented in Table IV, our
attack successfully transferred to black box face recognition
models, with an average Attack Success Rate (ASR) of 96%,
70.7%, and 33.7% under scenarios involving one, two, and
three attackers, respectively. However, when compared to the
attack performance under white box conditions, we observe a
drop in ASR of nearly 4% for one attacker, 25% for two at-
tackers, and 40% for three attackers. This drop in performance
can be attributed to the varying structures and parameters
of the backbones used by different models, as well as the
diverse datasets they were trained on. As a result, the feature
representation spaces they map are heterogeneous, which can
impact the effectiveness of our attack. In particular, as the
number of attackers increases, the impact of heterogeneity in
feature space becomes more significant.

Commercial systems. Our attack is also able to transfer
to commercial face authentication systems, as demonstrated
by the results in Tab. IV. Under scenarios involving one, two,
and three attackers, we achieve an average ASR of 81%, 45%,
and 20% against Face++, and 86%, 27%, and 12% against
ArcSoft, respectively. However, compared to the models, the
transferability of our attack appear to be worse. This can
be attributed to the use of more robust models and stricter
thresholds by commercial systems to prevent misidentification.
Nonetheless, our attack is still capable of confusing these
commercial systems under such severe conditions, highlighting
the potential threat that it poses to real face authentication
systems.

B. Real-world Evaluation

1) Experimental Setup: During our real-world evaluations,
we perform attacks in the physical world to target commercial
systems. Specifically, for each insider-attacker combination,
we optimize an adversarial patch with a size of 40 × 20
pixels from agent models. We then print the patch as a
70mm × 35mm physical patch and affix it to the eyebrow
and nose region of the insider in the real world. After the
insider has enrolled their face into the target models or systems,
attackers verify the identity without carrying any suspicious
devices or wearing any makeup, as part of a normal face
authentication process. During our experiments, since it is
not feasible to physically validate on the datasets, we have
recruited volunteers to conduct the attacks. In the following
sections, we provide detailed information on the target models,
volunteers, and metrics used in our evaluation.

Target model. We evaluate our attack under two commer-
cial face authentication API/SDK ArcFace and Face++ in the
real-world setting.

TABLE V: Overall Performance of UniID with 20 Volunteers
Against Two Commercial Systems in Real World

Metric Target Models Number of Attackers
1 2

ASR
Face++ 87% 41%
ArcSoft 86% 47%

Fsucc
Face++ 84.3% 71.1%
ArcSoft 86.5% 61.5%

Volunteers. We have recruited 20 volunteers to capture
their facial images for evaluating the effectiveness of our attack
in real-world scenarios, including 15 males and 5 females
between the ages of 20 and 30. Approval of all ethical and
experimental procedures and protocols was granted by Science
and Technology Ethics Committee of Zhejiang University.

Metric. In the real-world evaluation, we use two metrics:
(1) The attack success rate (ASR) defined in simulation eval-
uation, and (2) The attack success rate in consecutive frames
(Fsucc) which indicates the attack ability against the target
systems in the real-world setting.

Fsucc =
1

C

C∑
c=1

1θ(cos[f(V + δ∗), f(A)] > θ) (20)

where C is the number of consecutive frames, 1 is the indicator
function, and θ is the threshold of the target model. Note that
a higher Fsucc indicates that our attack can be successfully
launched more easily in the real world. In other words, a higher
Fsucc score suggests that the adversarial patch created by our
agent model is more effective at evading face authentication
systems, making it easier for attackers to impersonate the
insider without being detected.

2) Overall Performance: To assess the overall performance
of our approach, we carry out cross-validation experiments
involving 20 volunteers. Specifically, we calculate the average
ASR and Fsucc under both one- and two-attacker scenarios.
All face images, including those of insiders and attackers, are
captured under typical indoor lighting conditions of 300lx illu-
mination intensity. By evaluating performance across multiple
volunteers, we can gain insights into how well our approach
generalizes to different individuals. Additionally, capturing im-
ages under common lighting conditions is important to ensure
that our results reflect real-world scenarios where lighting
conditions could vary.

The results presented in Tab. V demonstrate the effective-
ness of our attack against different commercial face authentica-
tion systems. For Face++, we achieve an average ASR of 87%
and 41% under one- and two-attacker scenarios, respectively.
Similarly, for ArcSoft, we attain an average ASR of 86%
and 47% under one- and two-attacker scenarios, respectively.
Notably, we observe that the attack performances against both
target systems are similar. This suggests that our approach can
transfer to different commercial face authentication systems
while maintaining its effectiveness. Regarding Fsucc, our at-
tack achieves a success rate of over 84% and 60% under one-
and two-attacker scenarios, respectively. This indicates that our
adversarial patch can successfully deceive the target systems
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Fig. 13: The attack effectiveness under various light conditions.

within less than two frames, making it highly effective in real-
world scenarios.

We also evaluate our approach under multi-attacker scenar-
ios and find that the ASR drops to ≤ 2% when the number
of attackers ≥ 3. This may be due to the weakening of the
adversarial patch’s effectiveness during the printing-capturing
process involved in physical deployment. Nevertheless, our
approach remains a significant threat to real-world face authen-
tication systems as it can successfully work against commercial
systems.

3) Impact on Light Conditions: Commercial face authen-
tication systems can be deployed both indoors and outdoors,
making attackers vulnerable to different light conditions during
the authentication process. To evaluate the impact of light
conditions on our attack, we conduct experiments by varying
the background illumination intensity from 100 lx to 600 lx,
which encompasses most light conditions in both indoor and
outdoor scenarios.

Our results, as shown in Fig. 13, indicate that our attack
maintains an ASR of above 80% and a Fsucc of over 85%
when the illumination intensity is between 200 lx to 400 lx
lx. However, when the illumination intensity is either excessive
or deficient, our attack’s performance starts to decline. In
particular, at 600 lx lx, the ASR drops to nearly 10%, while
Fsucc drops to nearly 20%. This happens because an excessive
or deficient illumination intensity can cause the camera to
capture overexposed or underexposed images, leading to a
decrease in the attack’s effectiveness.

Notably, the illumination intensity in most indoor scenarios
is around 300 lx, while outdoor illumination intensity is
generally less than 600 lx unless the camera faces direct
sunlight. As such, our attack can be successfully launched in
most realistic light conditions and can tolerate some variation
in illumination intensity.

4) Impact on Cameras: In order to attack commercial face
authentication systems, an adversary may need to contend with
various camera brands and models, each with different resolu-
tion settings. This is because face authentication providers may
use cameras from different vendors. To evaluate the impact of
these factors on our attack effectiveness, we considered both
camera models and resolutions.

To ensure that there is no mutual interference between
camera models, we set all cameras to a resolution of 480p
during our evaluations. When evaluating the impact of camera
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Fig. 14: The attack effectiveness under various camera models and
resolutions.

resolutions, we use the same camera (the Logitech model) for
consistency. For simplicity, we select ArcSoft as the target
system for our experiments.

Impact of camera models. Different brands of cameras
can vary in terms of image size, sharpness, color saturation,
and other factors that may affect the effectiveness of our attack.
To investigate this impact, we conducted our attack using
three camera models: Logitech C92E, Philips SPL6306BM,
and Orbbec Astrapro.

As shown in Figure 14 (left), we find that our attack was
similarly effective across different camera models, with an
ASR greater than 80% and Fsucc >85%. This is likely because
commercial systems are typically trained on datasets collected
from a wide range of image sources, including various camera
brands and models, giving them robust generalization ability.
In fact, our attack manipulates the feature anchor of an insider
into the vicinity of the attacker’s feature spaces. As long as the
target system can accurately map input face images into the
correct feature space, our attack can be successfully launched.
The robustness of commercial systems satisfies this condition,
which allows our attack to cope with different camera models.

Impact of camera resolutions. In addition to camera
models, face authentication systems may also be set to different
resolutions, which can affect the effectiveness of our attack. To
study this impact, we conducted experiments using cameras
with resolutions ranging from 120p to 1080p.

As shown in Figure 14 (right), we find that our attack
maintained an ASR greater than 80% under all resolutions we
tested. However, Fsucc dropped to 67% when the resolution
was set to 120p, indicating that our attack is more difficult to
successfully launch under low-resolution cameras. The reason
is that the face authentication system first detects and crops
the face area before scaling it to a fixed size (e.g., 112 × 112
pixels) and then feeding it into the feature extractor. When
low-resolution images are scaled up to a larger size through
interpolation, they introduce noise and affect the authentication
results. On the other hand, high-resolution images are com-
pressed to a fixed size, ensuring that the scaled face images
are nearly the same as those with increased resolutions. Since
the camera resolutions used in face authentication are all larger
than 240p, our attack remains threatening.
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TABLE VI: Summary of Questionnaire Survey

No. Question

1
Have you used face photos to enroll for a FAS?

(Yes / No)

2
Which type of enrollment methods did you use?

(Uploading photos / Taking photos on the spot / Both)

3
Were you supervised during the enrollment process?

(Yes / No)

0 10 20 30 40 50

Q3

Q2

Method 1 Method 2 Both Yes No

Fig. 15: The results of user study. (a) Question 2: 48.08% of
participants chose Method 2 (taking photos on the spot), 23.08%
of participants chose Method 1 (uploading photos), and 28.84% of
participants chose both. (b) Question 3: 15.38% of participants chose
Yes and 84.63% of participants chose No.

VII. USER STUDY

In this section, we conduct a user study to measure users’
attitudes towards the enrollment phase of the face authenti-
cation systems. Our aim is to investigate (1) what types of
enrollment methods are widely used (Q2 in Tab. VI), and (2)
whether the enrollment is supervised in real-world scenarios
(Q3 in Tab. VI). To achieve these goals, we recruited 52
volunteers and conducted a questionnaire survey for each
participant. The volunteers include 32 males and 20 females
with ages ranging from 20 to 60 years old, and they all have
prior experience in using face authentication systems. Approval
of all ethical and experimental procedures and protocols was
granted by Science and Technology Ethics Committee of
Zhejiang University.

From the results shown in Fig. 15 (up), we find 23.08% of
participants chose to upload the photos, 48.08% of participants
chose to take photos on the spot, and 28.84% of participants
chose both methods. It indicates that both types of enrollment
methods are widely used in real-world face authentication
systems. For the method of uploading photos, to the best of
our knowledge, users can upload their face photos in a private
environment, and the uploaded photos will not be checked
by humans or machines yet. Therefore, it is feasible for an
insider to wear a disguise and complete the enrollment process
under this type of enrollment method. For the method of
taking photos on the spot, according to the results shown
in Fig. 15 (bottom), we find the face enrollment process is
often unsupervised by security guards in real-world scenarios,
with 84.63% of participants choosing the unsupervised option.
Therefore, in this paper, we assume the insider can wear the
disguise and complete enrollment without raising suspicions,
e.g., when security guards are not present or not paying
attention. Additionally, given guards typically lack information
security backgrounds, it is possible that the attack could suc-

ceed even under their supervision, as they might not recognize
it as a malicious attempt.

VIII. DISCUSSION

In this section, we discuss the potential countermeasures
against our attack and the limitation of our attack.

A. Countermeasures

Improving Model Robustness. Our attack exploits vulner-
abilities in CNN-based feature extraction algorithms employed
by face authentication systems. To enhance the robustness of
these models, we can implement two approaches: (1) train
more robust models that maximize the separation between
individual identities within the feature space, and (2) incor-
porate handcrafted features such as SIFT [27], LBP [5, 8],
and HOG [22], as adversarial attacks are not effective against
these features.

Detecting Adversarial Patches. Our attack employs ad-
versarial patches during the enrollment phase to manipulate
the feature anchors of the insider, enabling adversaries to
bypass face authentication. Detection techniques such as Patch-
Gard [37] and PatchCleaner [38] can aid in identifying the
presence of these adversarial patches during the enrollment.
We conduct evaluations of such defense methods on the
MagFace-50 model and observe that the attack success rate
of UniID remains at 79% under a single adversary scenario.
Therefore, using a patch detection methods designed for image
classification tasks cannot easily defeat our attack.

Using Multiple Models. Adopting a multi-model fusion
technique may help to fortify the defense against our attack.
Such fusion process can be able to detect and counteract
attacks that may have succeeded at the individual model level.
Moreover, the increased complexity resulting from the deploy-
ment of diverse models and the fusion features presents hurdles
for attackers, thereby reducing the possibility of successful
breaches.

B. Limitations

Our attack has the following limitations at present. First,
affixing an adversarial patch to the victim’s face may alter
security guards, although they do not presently monitor users
during the enrollment phase. To enhance the stealthiness of
our attack, we can generate the adversarial patch with more
natural content by employing content constraint methods such
as Adv-makeup [42]. Second, our attack need an insider
to enroll the UniID, which introduces additional challenges
when attempting to execute the attack in real-world scenarios.
To alleviate this difficulty, we intend to explore the feasibility
of projecting the adversarial patch onto the face of legitimate
users during the enrollment process, thus making them the
unwitting victim. Lastly, the target systems we attack are
all RGB-based face authentication systems. However, some
systems employ infrared light for identifying individuals dur-
ing nighttime recognition. In such cases, we can employ an
infrared projector to project infrared adversarial patches onto
the insider’s face, thereby achieving our attack. We will address
these issues and continue to improve and refine our attack in
future work.
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IX. RELATED WORKS

In this section,we summarize the related work on face
spoofing attacks, including the multiple-identity face spoofing
attack and the backdoor attacks against face recognition.

A. Multiple-identity face spoofing attack

Face Morphing Attacks. Adversaries can fool the face
authentication systems by fusing the several images to a
synthetic face image that contains characteristics of multiple
identities, which is known as the face morphing attack. In such
attacks, there are two primary paradigms: (1) Morphing in
the image space: In this approach, the synthetic face image is
generated by interpolating between the face images of different
identities [30, 36]. (2) Morphing in the feature space: This
technique fuses the feature vectors of different identities and
uses Generative Adversarial Networks (GANs) [2, 28, 35]
or adversarial training [33] to reconstruct a photorealistic
synthesized face image. These attacks essentially create a
realistic “average face” in the digital world and have proven
to be effective in bypassing face authentication systems, even
fooling human experts [29]. However, these attacks can only be
executed by injecting the morphed face image through cyber
hijacking, which limits their ability to pose a threat to face
authentication systems in the physical world.

Universal Adversarial Attacks. An Universal adversarial
attack is the attack strategy that allows for targeting multiple
objectives using a single perturbation or patch. To against the
face recognition, Amada T et al. [1] utilized global pixel-level
adversarial perturbations to launch the multiple-identity attack
against four face recognition models, both in white-box and
black-box setting. However, the practical deployment of pixel-
level perturbations in the physical world remains challenging,
rendering them ineffective for attacking real-world face au-
thentication systems. In contrast, Yang et al. [40], and Adv-
Mask[45] developed a universal patch-based adversarial attack
against face detection model in the physical world, enabling
adversaries to evade face detection in surveillance systems.
Although their methods effectively conceal identity, they do
not succeed in fooling face authentication systems.

Compared to existing works, our attack generates a uni-
versal adversarial patch capable of executing a multi-identity
attack against face recognition tasks. Moreover, our attack is
a physical attack against black-box systems, which boosts the
threat to face authentication systems in the real world.

B. Backdoor attacks against face recognition

Backdoor attacks [16, 39] inject specific triggers into face
recognition models by poisoning a small ratio of the training
data. This manipulation causes the target system to misidentify
individuals when these triggers are present. However, these
backdoor attacks often assume that adversaries can directly
access the training data, which is unrealistic in commercial
systems. In contrast, Li et al [23] proposed a method where
backdoor triggers are injected during the enrollment phase
without requiring direct access to the training data. Nonethe-
less, the adversary still needs to carry the specific trigger
during the recognition phase. Unlike these prior works, our
attack employs an adversarial patch that can be considered a
special backdoor trigger injected during the enrollment phase.

However, our method distinguishes itself by removing the
need for the adversary to disguise themselves in order to
successfully deceive the face authentication system during the
recognition phase.

X. CONCLUSION

In this paper, we investigate the feasibility of allowing
multiple adversaries to perform face spoofing attacks without
any additional disguise and propose UniID which enables
insiders to register a universal identity into the face recog-
nition database by wearing an adversarial patch. Evaluations
with six face recognition models and two commercial face
authentication systems, ArcSoft and Face++, demonstrate the
effectiveness of UniID in both the simulation and the real
world. This work injects a universal identity by leveraging
the necessary enrollment phase within the workflow of face
authentication, which can be extended to other enrollment-
verification systems. Future directions include investigating
the threat of UniID to other open-set tasks beyond face
authentication.
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APPENDIX

A. Attack Performance of Cross-datasets Evaluation

To evaluate the attack performance of cross-datasets against
the six tested models, we conducted experiments by selecting
insiders and attackers from different datasets. Specifically, we
randomly selected 100 individuals from either the LFW or
CelebA dataset as insiders and selected the attacker combi-
nations from the other dataset. Similar to Section VI-A1, the
patch size is fixed at 25 x 25 pixels, with the patch position
located in the eyebrow region. We used the ASR metric to
evaluate the attack performance as well in this section.

The results demonstrate that the success rate of our attack
varies depending on the dataset used to select insiders and
attackers. When we select insiders from the LFW dataset and
attackers from the CelebA dataset, our attack achieved an
average success rate of 99.8%, 97.8%, 90.7%, 85.7%, 77.7%,
71.8%, 66.2%, 52.3%, 55.8%, 54.3% for 1 to 10 attackers,
respectively. when we selected insiders from the CelebA
dataset and attackers from the LFW dataset, the average
attack success rates is 99.3%, 88.3%, 71.7%, 50.3%, 40.7%,
31.2%, 24.5%, 19.2%, 14.3%, 11.2% for 1 to 10 attackers,
respectively. This difference in results can be attributed to the
CelebA dataset having more identities, allowing for a more
suitable combination of attackers when used as an attacker
dataset.
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