UniID: Spoofing Face Authentication By Universal Identity

Zhihao Wu¹, Yushi Cheng*^{1, 2}, Shibo Zhang¹, Xiaoyu Ji*¹, Wenyuan Xu¹

¹ Ubiquitous System Security Lab (USSLAB), Zhejiang University ² ZJU-UIUC Institute, Zhejiang University

{zhihaowu, yushicheng, zhsb, xji, wyxu}@zju.edu.cn

Face Authentication Systems are everywhere!

Smart Phone Unlock

Access Control

Home Unlock

Financial Payments

Source: Grandviewresearch

Are face authentication systems secure?

Spoofing Face Authentication Systems

☐ Adversarial Attacks

Target

Attacker

Adv-Glass

Adv-Hat

Adv-Makeup

Spoofing Face Authentication Systems

□ Adversarial Attacks

Target

and the second

Adv-Glass

Adv-Hat

Adv-Makeup

Properties:

- ☐ Specially designed (1v1)
- **□** One-time effective
- **□** Easily detectable

Not practical and stealthy enough in the real-world

Spoofing Face Authentication Systems

Adversarial Attacks

Not practical and stealthy enough in the real-world

Face authentication system

Existing attacks and defenses

Spoof attacks through recognition phase become difficult!

The enrollment phase is overlooked!

The enrollment phase is overlooked!

Self-uploading

The enrollment phase can be a new entry point for spoofing attacks!

NDSS 2024

Our basic idea

Our basic idea

Enrollment Phase

Injecting UniID sounds intuitive, but not trivial.

Average Face

Facts:

- > Attackers have no permission to access the database
- > Average face doesn't exist in real life

Facts:

- > Attackers have no permission to access the database
- > Average face doesn't exist in real life

Average Face

Our method:

> Try to find an "average face" at the feature level

Insider

Insider

C1: For a specific insider, selecting attackers is important

C1: For a specific insider, selecting attackers is important

The choice of insider is restricted!

C1: For a specific insider, selecting attackers is important

- > Q1: How to determine the appropriate attackers?
- Q2: How to address the black-box setting?
- Q3: How to increase its physical robustness in real life?

C2: Real-world face authentication systems are fully black-box settings

- Q1: How to determine the appropriate attackers?
- > Q2: How to optimize the adversarial patch under the black-box setting?
- Q3: How to increase its physical robustness in real life?

C3: The insider need to take photos on-site to upload his enrollment image

- Q1: How to determine the appropriate attackers?
- Q2: How to optimize the adversarial patch under the black-box setting?
- > Q3: How to increase its physical robustness in real life?

□ Multi-attackers Analysis:

□ Multi-attackers Analysis:

Case a & b:

The attackers are too far away from the insider

□ Multi-attackers Analysis:

- Case a & b:
 - The attackers are too far away from the insider
- Case c:

The attackers are located on either side of the insider

□ Multi-attackers Analysis:

Case a & b:

The attackers are too far away from the insider

Case c:

The attackers are located on either side of the insider

Case d:

The attackers and the insider are as close to each other as possible

☐ Attacker Combination Choosing:

> Case a & b:

The attackers are too far away from the insider

Case c:

The attackers are located on either side of the insider

Case d:

The attackers and the insider are as close to each other as possible

Similarity Metric

Aggregation Metric

 $Sim(V, A) = \frac{1}{N} \sum_{i=1}^{N} \frac{f(V) \cdot f(A_i)}{|f(V)| \times |f(A_i)|}$

☐ Attacker Combination Choosing:

> Case a & b:

The attackers are too far away from the insider

Case c:

The attackers are located on either side of the insider

Case d:

The attackers and the insider are as close to each other as possible

Similarity Metric

$$Sim(V, A) = \frac{1}{N} \sum_{i=1}^{N} \frac{f(V) \cdot f(A_i)}{|f(V)| \times |f(A_i)|}$$

Aggregation Metric

$$Agg(V, A) = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{f(A_j) \cdot f(A_i)}{|f(A_j)| \times |f(A_i)|}$$

☐ A straightforward method: Assembled-models

Surrogate Models Model 1 **Target Model** Transfer Model 2 **Authenticated!** Model 3

☐ The transferability is insufficient when targeting commercial systems

Surrogate Models Commercial Model 1 **Systems** Face* Transfer ☐ High threshold Model 2 ☐ Irregular models sensetime Model 3

☐ Reason: Imbalanced gradients

☐ Gradient imbalance reduces effectiveness

Surrogate Models Model 1 Model 2 Model 3

Optimization Process

Gradient Direction - · - ▶ Optimization Direction — ->

☐ Agent Model Balance

Optimization Process

Gradient Direction - · - ▶
Optimization Direction - - >

Q3 -> Physical Implementation

☐ The printing-capturing process is a non-linear function

Q3 -> Physical Implementation

□ Color-shift Calibration:

Q3 -> Physical Implementation

□ Color-shift Calibration:

☐ Shape-distortion Calibration:

Expectation of Transformation (EoT)

Transform Distribution

$$\delta^* = \arg\min_{\delta} \mathbb{E}_{t \sim T}[\mathcal{L}[f(V, \mathbb{A}, t(\delta)), f(\mathbb{A})]]$$

The adversarial patch will be calibrated at each step of the optimization.

Evaluation

- ☐ Simulation Evaluation
 - > Overall Performance
 - > Impact of patch factors
 - Impact of threshold settings
- ☐ Real-world Evaluation
 - Overall Performance
 - Impact of light conditions
 - > Impact of camera settings

Simulation Evaluation

□ Overall Performance :

- Datasets: 100 users in LFW & CelebA
- Target models: FaceNet, Mobile-FaceNet, ArcFace-18/50, MagFace-18/50, Face++, ArcSoft

Table 1: Overall Performance in White-box Models

Target Models	Number of Attackers					
	1	2	3		7	
FaceNet	99%	92%	81%		24%	
M-FN	98%	80%	57%		8%	
Arc-18	100%	99%	92%		46%	
Arc-50	99%	83%	53%		1%	
Mag-18	100%	99%	92%		53%	
Mag-50	98%	81%	43%		2%	

• ASR: The attack success rate

Under white-box setting

- > ASR: 100% in 3-Users Scenario (1 Insider + 2 Attckers)
- Can Extend to 8-Users Scenario

Simulation Evaluation

□ Overall Performance :

- Target models: FaceNet, Mobile-FaceNet, ArcFace-18/50, MagFace-18/50, Face++, ArcSoft
- Datasets: 100 users in LFW & CelebA

Table 2: Overall Performance in Black-box Models

Target	N	umber of Attack	ers
Models	1	2	3
Arc-18	95%	79%	45%
Mag-18	98%	71%	36%
Mag-50	95%	62%	20%
Face++	81%	45%	20%
ArcSoft	86%	27%	12%

ASR: The attack success rate

Under Black-box setting

- > ASR: 91% in 2-Users Scenario (1 Insider + 1 Attckers)
- > ASR: 57% in 3-Users Scenario (1 Insider + 2 Attckers)

Evaluation – simulation attack

- **□** Attack Effectiveness:
 - Patch Position
 - Patch Size

UniID is better to deploy in the eyebrow region with 30*30 size (7% of face)

Evaluation – simulation attack

□ Attack Effectiveness:

> Threshold Setting

The distribution of similarity scores

Impact of different thresholds

40% of legitimate users are unable to authenticate

Merely increasing the threshold cannot simply block our attack

Real-world Evaluation

☐ Overall Performance

Target system: Face++ & ArcSoft

Datasets: 20 volunteers

Table 3: Overall Performance of UniID in Real World

Metric	Towart System	Number of Attackers		
Metric	Target System -	1	2	
ACD	Face++	87%	41%	
ASR	ArcSoft	86%	47%	
F_succ	Face++	84.3%	71.1%	
	ArcSoft	86.5%	61.5%	

• ASR: The attack success rate

• F succ: The attack success rate in consecutive frames

Real-world Evaluation

- ☐ Attack Effectiveness
 - Light Conditions
 - Cameras settings

UniID is robust to various cameras in most light conditions

Discussion and Countermeasures

\square Goal:

- > Offering a systematic analysis of face authentication security
- urging service providers to focus on security issues across all phases of the workflow to make face authentication systems more secure

□ Countermeasures:

- Enhancing the ability to distinguish different identities
- > Detecting adversarial examples at both the enrollment and recognition phases
- Using assembled models to increase the attack difficulty

Conclusion

- ☐ We identify the vulnerability in the face enrollment phase that enables multiple attackers to be successfully authenticated without any disguise.
- ☐ We design UnilD that make the legitimate user register a universal identity into the database, thus achieving the spoofing attack.
- ☐ This vulnerability exists in other authentication systems that require an enrollment process.

UniID: Spoofing Face Authentication by Universal Identity

NDSS 2024

https://github.com/USSLab/UniID

Corresponding Authors:

yushicheng@zju.edu.cn xji@zju.edu.cn

USSLAB Website: www.usslab.org

