
BliMe:
Verifiably Secure Outsourced Computation

with Hardware-Enforced Taint Tracking

Hossam ElAtali
University of Waterloo

hossam.elatali@uwaterloo.ca

Lachlan J. Gunn
Aalto University
lachlan@gunn.ee

Hans Liljestrand
University of Waterloo

hans@liljestrand.dev

N. Asokan
University of Waterloo

Aalto University
asokan@acm.org

Abstract—Outsourced computing is widely used today. How-
ever, current approaches for protecting client data in outsourced
computing fall short: use of cryptographic techniques like fully-
homomorphic encryption incurs substantial costs, whereas use
of hardware-assisted trusted execution environments has been
shown to be vulnerable to run-time and side-channel attacks.

We present Blinded Memory (BliMe), an architecture to
realize efficient and secure outsourced computation. BliMe con-
sists of a novel and minimal set of instruction set architecture
(ISA) extensions implementing a taint-tracking policy to ensure
the confidentiality of client data even in the presence of server
vulnerabilities. To secure outsourced computation, the BliMe
extensions can be used together with an attestable, fixed-function
hardware security module (HSM) and an encryption engine
that provides atomic decrypt-and-taint and encrypt-and-untaint
operations. Clients rely on remote attestation and key agreement
with the HSM to ensure that their data can be transferred
securely to and from the encryption engine and will always be
protected by BliMe’s taint-tracking policy while at the server.

We provide an RTL implementation BliMe-BOOM based on
the BOOM RISC-V core. BliMe-BOOM requires no reduction in
clock frequency relative to unmodified BOOM, and has minimal
power (<1.5%) and FPGA resource (≤9.0%) overheads. Various
implementations of BliMe incur only moderate performance
overhead (8–25%). We also provide a machine-checked security
proof of a simplified model ISA with BliMe extensions.

I. INTRODUCTION

Outsourced computation has become ubiquitous. While
cost-effective, outsourced computation introduces confidential-
ity concerns because the clients’ sensitive data must be sent
to the cloud service provider (CSP)’s servers for processing
by some (possibly third-party) application software. Malicious
CSPs or software can misuse client data. Furthermore, even if
the CSP is trusted, other malicious actors may compromise the
sensitive data through run-time attacks or side-channel leakage.

One solution to this problem is to use cryptographic tech-
niques such as fully-homomorphic encryption (FHE) which
allow arbitrary computation on encrypted data. With FHE, the

server receives and processes only encrypted data. However,
FHE incurs very large performance overheads, orders of mag-
nitude worse than processing the plaintext directly [62]. An
alternative is to use hardware-assisted security mechanisms
like trusted execution environments (TEEs) present in modern
central processing unit (CPU) architectures, which can poten-
tially ensure security while maintaining performance. A TEE
provides isolation for each client from the server operating
system (OS) as well as from other clients. But bugs in server
software can lead to run-time attacks. Furthermore, most
TEE implementations offer only limited resistance to side-
channel attacks [14], [15], [45]. Therefore, the need remains
for an efficient and effective approach to protect outsourced
computation even in the presence of software vulnerabilities
and side channels.

Our goal is to address this need via minimal hardware
changes. We design a minimal set of extensions for the RISC-V
instruction set architecture (ISA) to preserve data confidential-
ity even in the presence of software vulnerabilities or side
channels. The extensions and the accompanying attestation
architecture, which together we call Blinded Memory (BliMe),
allow a client to send conventionally encrypted data to a remote
server, so that the CPU can decrypt and process the data
without allowing it or any data derived from it to be exfiltrated
from the system. Computation results are returned only after
encryption with the client’s key.

We do this by having the CPU enforce a taint-tracking
policy preventing client data from being exported from the
system. Prior work on hardware-enforced taint tracking [67]
provide an untaint instruction to extract results, implicitly
assuming that software invoking this instruction is trusted,
making them vulnerable to run-time or speculative execution
attacks [53]. In contrast, BliMe uses a small attestable, fixed-
function hardware security module (HSM) and an encryption
engine to facilitate secure import and export of data between
clients and servers; decryption on server-side always results
in tainted plaintext. This allows BliMe to provide its security
guarantees to multiple independent clients, who do not need
to trust server software, including the OS. Consequently,
BliMe protects not just against side channels, but even against
malware and run-time attacks that allow an attacker to execute
arbitrary server software. Our contributions are:

• BliMe, an architecture with a set of taint tracking ISA
extensions for preventing exfiltration of sensitive data
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(Section IV).

• BliMe-BOOM, an RTL implementation of the BliMe
ISA extensions, incorporated into the speculative out-
of-order RISC-V core BOOM (Section V).

• A machine-checked proof of the dataflow security of
the BliMe taint-tracking policy applied to a simplified
model ISA (Section VI).

• A performance evaluation of BliMe-BOOM showing
minimal run-time, power and area overheads (Sec-
tion VII).

II. BACKGROUND

A. Trusted Execution Environments

TEEs isolate trusted applications (TAs)—programs within
TEEs—from software outside the TEE as well as from other
TAs. In addition to TA isolation, TEEs also provide remote
attestation to assure clients that the code and configuration
of server-side components are what they expect. TEEs are
already present in several x86, Arm and RISC-V CPUs, and
are available to clients through CSPs such as Amazon, Google,
and Microsoft.

TEEs contain a root of trust for attestation, typically in the
form of a unique attestation key embedded in the hardware
at the time of manufacture. The remote attestation protocol
first authenticates the hardware by having the server prove
that its TEE possesses this key, which is certified by the
device manufacturer. After authentication, remote attestation is
provided by “measuring” the system: the code, configuration,
and state of the system are checked by the TEE to assure the
client that they are as expected.

Despite the claimed isolation guarantees, TEEs still suffer
from certain vulnerabilities. Isolation only prevents malicious
processes from naively accessing a TA’s data through direct
memory access. Remote attestation and code attestation only
assure the clients that the system is set up as expected and that
the code used to process the data is unmodified. Software bugs,
present even in attested code, can lead to run-time attacks that
circumvent client isolation, giving adversaries direct access to
sensitive data. Despite many defenses, memory vulnerabilities
and run-time attacks are still pervasive.

B. Side-channel leakage

Even if the software is bug-free, side-channel leakage can
occur due to vulnerabilities or data-dependent behavior in the
underlying hardware. Side channels are observable outputs of
the system that are not part of the system’s intended outputs.
Prominent examples of CPU side channels are execution
time, memory access patterns, observable microarchitectural
state (such as the state of shared caches, branch predictors
and performance counters), voltage and electromagnetic ra-
diation [43], [32], [16], [37], [35], [29]. Side-channel leakage
can occur when an adversary is able to infer information about
the sensitive data by observing the system while the data is
processed. For example, if a conditional branch instruction
depends on a sensitive value and the execution time of each
branch is different, an adversary can infer some information
about the sensitive value by monitoring the time it takes to

complete the branch. Another example is when a sensitive
value is used to index an array in memory; the memory
access pattern, which is the sensitive address in this case, can
change the observable state of a shared cache, or result in an
observable request on the main memory bus.

Modern CPUs employ a variety of performance optimiza-
tions in the form of speculation and out-of-order execution that
amplify the leakage caused by data-dependent behavior [36],
[31], [52], [61], [46], [61], [18], [10], [34], [12], [50], [69].
This behavior is largely transparent to software developers,
making it difficult to detect when benign-looking code can
cause side-channel leakage.

III. PROBLEM DESCRIPTION

A. Usage scenario

The scenario we target is where several clients send data to
a remote server for outsourced computation. Each client starts
a session with the server, sends its data, and the server in-
vokes some potentially untrusted, third-party software (“server
software”) to perform computation on the data (possibly in
combination with the server’s own data). Once computation
completes, the results are sent to the client. Data import/ex-
port and computation can repeat multiple times per session.
Data exchange between clients and servers is secured using
authenticated encryption. Multiple clients may connect to the
server simultaneously, leading to multiple parallel sessions.

Execution of server software that can leak any information
about client data must be prohibited, even when attackers can
run malware on the server, exploit vulnerabilities in the server
software, or use side channels to extract data. In other words,
sensitive client data must not flow to any observable output,
nor to any other client.

B. Goals and objectives

We now identify design requirements. The first relates to
security.

SR—Confidentiality: When a client provides sensitive input
data to the server, no party other than that same client can
infer anything about this data, other than its length.

Malware running on the server may attempt to gain access
to the data, or the software processing the sensitive data may
itself be malicious, but must not be allowed to reveal sensitive
data outside the system, or to anyone other than the original
client.

The next requirement relates to performance.

PR—Fast execution: The design will not significantly
reduce the performance of software accepted by the CPU,
compared to running the same software on a similar proces-
sor without such protections.

It is important to ensure that any solution does not exces-
sively degrade performance. Elimination of side channels may
prevent certain optimizations, resulting in some overhead, but
some high-performance security-critical software has already
been hand-written in assembly to eliminate side channels,

2



Fig. 1. BliMe Overview. The client completes a cryptographic handshake
with HSM 1⃝, which stores the resulting shared key in a protected register
for use by the encryption engine 2⃝. The client encrypts its secret data, which
the server software decrypts with the aid of the encryption engine, while
atomically marking the decrypted data as blinded 3⃝. The server software
can then perform the requested computation on the resulting blinded data in
a verifiably leakage-resistant manner 4⃝, and encrypt the output using the
encryption engine 5⃝ for the client.

and solutions that significantly reduce its performance may
prove unsuitable in applications that make heavy use of such
software.

The final requirement relates to backwards-compatibility.

CR—Backwards compatibility: Software that does not leak
sensitive data, by covert channels or otherwise, will run
successfully.

A large portion of server software does not process sensi-
tive data. It is important from a practical point that existing
software can run on the new hardware: if this is not the case,
then a new software stack will be needed, greatly limiting
utility.

Moreover, there is also software that handles sensitive data
but that already does so safely, such as side-channel-resistant
cryptographic software. It is equally desirable that this secure
and well-tested software will continue to run on our hardware.

IV. DESIGN

A. System overview

Figure 1 shows an overview of BliMe. The server’s soft-
ware, including the OS, runs on top of a CPU that contains
1) the BliMe extensions, which enforce a taint-tracking policy
on all software running on the CPU (Section IV-D), and 2)
a BliMe encryption engine, used for data import and export
(Sections IV-C2 and IV-C4). A HSM is used to perform remote
attestation, assuring the client that the server uses BliMe.
The HSM is a separate fixed-function component sharing few
resources with the CPU, reducing its exposure to side-channel
attacks. The client knows how to verify the root of trust
for attestation embedded within the HSM, which contains a

key exchange engine responsible for negotiating a session key
between with the client. The HSM provides this session key
securely to the encryption engine without exposing it to the
server software.

B. Adversary model

We suppose that the server hardware, including the BliMe
extensions, encryption engine, and the HSM, is implemented
correctly.

The adversary has control over all server software, includ-
ing the OS, and can make it behave as it sees fit, including
making inferences based on side channel information such as
memory access patterns and instruction traces.

Attacks against the hardware itself are currently out-of-
scope; the client assumes that the attacker cannot use physical
means to make the hardware act differently from its specifi-
cation. We discuss this in Section IX-E. Side-channel attacks
that require physical access (e.g., differential power analysis)
are also out-of-scope.

C. Protocol

In this section, we outline the steps needed to perform safe
outsourced computation using BliMe.

1) Remote attestation and key agreement: Before sending
any data to the server, a client first performs a handshake (Fig-
ure 1- 1⃝) with the HSM, which consists of remote attestation
and agreement on a session key. Remote attestation is provided
by the HSM to assure the client that the assumptions made in
the adversary model hold. It attests two properties. First, the
HSM attests that it is genuine using the root-of-trust embedded
within it at manufacture, as described in Section II-A. Second,
the HSM attests to the client that it is embedded in server
hardware incorporating BliMe.

At the end of remote attestation, the client and HSM
agree on a client-specific session key. The HSM stores this
key inside the encryption engine using a secure channel
(Figure 1- 2⃝), along with a unique blindedness tag identifying
the client from which data was sourced; this is most simply
implemented cryptographically using a sealing key shared by
the two components. The encryption engine uses the session-
specific key in two atomic functions that it exposes to the
server software: data import and data export.

2) Data import: Once the handshake is complete, the client
locally encrypts its data using the session key, and sends the
resulting ciphertext to the server. The server software calls
the encryption engine’s data import function on the ciphertext.
The encryption engine then atomically decrypts the ciphertext
using the sealed session key, and taints the resulting plaintext
by marking it as “blinded” (Figure 1- 3⃝). This is done by
setting a blindedness tag attached to the data in registers and
memory. The blindedness tag is an n-bit integer, which takes
the value zero when its associated data is not blinded. Other
values indicate that the data is blinded, and from which of
2n − 1 clients the data is sourced. In the minimal case where
n = 1, this tag is a single bit that indicates whether or not the
data is blinded.
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Data import atomically decrypts data using the session
key and marks it as blinded.

3) Safe computation: Now, the server software can perform
the requested computation on the blinded plaintext data (Fig-
ure 1- 4⃝). The BliMe CPU extensions apply a taint-tracking
policy, limiting the operations that can be done on blinded data;
this prevents the server software from directly exfiltrating the
data or even leaking it through side channels. Any operations
forbidden by the taint-tracking policy cause the server to fault.
The policy ensures that the final results and any intermediate
results derived from the data are also blinded. More details are
in Section IV-D.

4) Data export: Once the computation is complete, the
server software calls the encryption engine’s data export func-
tion to atomically encrypt the blinded results and mark the
ciphertext as non-blinded (Figure 1- 5⃝), which is done by
zeroing the blindedness tag. The server software can then send
the ciphertext back to the client, who can decrypt it. The
encryption engine ensures that blinded data is only encrypted
with the session key corresponding to its blindedness tag. As
the adversary controls the data to be encrypted, this encryption
must be secure against adaptive chosen-plaintext attacks in
order to prevent the adversary from using this ability to identify
the ciphertexts corresponding to particular plaintexts.

Data export atomically encrypts data using the session
key and marks it as non-blinded.

D. Taint-tracking policy

We use taint tracking to prevent sensitive data from flowing
to observable outputs. First, we define which parts of the
system can be tainted. We split the system state into two types:

• Blindable state consists of the values (not addresses)
of lines in the cache, values in registers except the
program counter, and values in main memory, as well
as all busses and queues used to transfer these values.
Each of these is extended with a blindedness tag.

• Visible state consists of information that may be ex-
posed outside the system, and must therefore never
contain sensitive data. It includes all microarchitec-
tural state that does not have a blindedness tag
associated with it, e.g., the program counter, addresses
of lines in the caches, branch predictor state, and
performance counters. As the program counter encap-
sulates control flow, making it part of visible state
forbids blinded data from affecting control flow.

We then define the list of observable outputs we consider in
BliMe: visible state, non-blinded blindable state, the addresses
of memory operations sent to main memory, the execution
time of an instruction or set of instructions, and fault signals.
Note that once blindable state becomes blinded, it is no longer
observable. We exclude outputs that require physical access to
be observed, such as voltage and electromagnetic radiation.

The taint-tracking policy is defined as follows (and as
shown in Table I). An instruction with a blinded input (i.e.,

which takes at least one input with a non-zero blindedness
tag) yields a blinded value for each output that depends
on a blinded input, with the same blindedness tag as the
input. An instruction that receives blinded data from multiple
sources will raise a fault. If an instruction attempts to affect
any observable output except non-blinded blindable state in a
manner that depends on the value of a blinded input, a fault is
raised, since this can otherwise be used to exfiltrate sensitive
data. This effectively means that the program cannot use a
blinded value as the address of a jump, branch or memory
access, or use instructions whose completion time or fault
status depends on a blinded value. For example, BliMe prevents

• Cache-timing side-channel attacks by prohibiting
blinded values from being used as addresses for load-
s/stores, and

• Timing attacks by forbidding blinded-value-dependent
control flow (prohibiting both altering PC based on
blinded values, and instructions of variable duration
from using blinded values). Measuring program execu-
tion time will reveal nothing about the blinded values;
the adversary will obtain the same information as if
they ran the same program over a blinded array of
zeroes of the same length.

• Transient execution attacks by preventing any blinded
values from being used in speculation decisions. Spec-
ulatively executed instructions can still use blinded
values (and maintain their blindedness tags through-
out this transient execution), but the result of any
prediction decision (e.g., whether a branch is taken,
or what the next return address might be) cannot
rely on blinded values. This same concept applies
to all data-dependent hardware optimizations; blinded
values cannot be used to decide on whether or how
an optimization is applied.

The blindedness of any given value is not sensitive; this
means that it is safe for the ISA to include instructions that
query whether or not a given value is blinded.

E. BliMe-compliant software

BliMe’s restrictions on application software are the same
as those required of anyone developing secure side-channel-
resistant code (even without BliMe hardware modifications):
they must adhere to constant-time coding principles [5], in-
cluding data-oblivious control flow and memory access, and
must not explicitly exfiltrate sensitive data outside the system.
An example of such practices being used today can be found in
the development of cryptographic libraries, the compatibility
of which we show in Section VIII. Concretely, for software to
be BliMe-compliant, it must not attempt to:

1) use blinded data in any control-flow decisions,
2) use blinded data as the target address for any jump

or branch instructions,
3) use blinded data as the address for any memory

operations, including using blinded data as an offset
or index,

4) use blinded data as an operand for an instruction
whose execution time depends on the value of that
operand (e.g., variable-time division instruction),
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Instruction Tag (Ø=unblinded, ?=“don’t care”) Decision Result tag

Arithmetic/Logic†

If # of cycles depends on value of any blinded operand Fault -
Otherwise:

Op1 Op2
Ø Ø Propagate Ø
a Ø Propagate a
a a Propagate a
a b Fault -

Branching

Addr Condition ops
Ø Ø Propagate Ø
a ? Fault -
? a Fault -

Load

Addr Data in memory
Ø Ø Propagate Ø
a ? Fault -
Ø a Propagate a

Store

Addr Data in register
Ø Ø Propagate Ø
a ? Fault -
Ø a Propagate a

† See Section IX-D for a discussion on data-dependent faults.
TABLE I. BLIME TAINT-TRACKING POLICY RULES FOR ALL INSTRUCTION TYPES. TAGS a AND b ARE

ARBITRARY BUT DIFFERENT. SWAPPING THEM PRODUCES AN EQUIVALENT RESULT.

5) mix blinded data belonging to separate security do-
mains, i.e., with different blindedness tags, and

6) write blinded data to any peripherals, e.g., displays,
network devices, disk drives.

Note that BliMe does not require software developers
to be aware of how the CPU behaves speculatively. BliMe
ensures that all blinded data cannot be leaked by hardware
optimizations, including speculation (Section IV-D).

These requirements do not limit what can be computed.
A much more restrictive historical CPU, Zuse’s Z3, lacks
conditional branching and indirect addressing but can simulate
any finite-tape Turing machine [49]. BliMe allows conditional
branching and indirect addressing on non-sensitive data as well
as all of Z3’s functionality, making it as powerful as but more
efficient than Z3. Therefore, BliMe can simulate any finite-tape
Turing machine.

V. IMPLEMENTATION

In this section, we first present the common architectural
changes required to implement BliMe (Section V-A), and then
describe how these were applied to the out-of-order RISC-V
BOOM core [70] to obtain BliMe-BOOM (Section V-B).

The implementation covers the hardware needed for safe
computation (Section IV-C3), including taint tracking and
enforcement of the security policy (Section IV-D). We do not
include the HSM in the implementation. Components with
similar functionality already exist, such as Google’s Titan-
M chip [39] or Apple’s Secure Enclave Processor (SEP) [2];
the HSM is configured to perform the attested handshake and
provide correct client IDs, and the system integrator provides
the secure channel between HSM and encryption engine in the
form of a shared key embedded in each component.

A. Architectural changes

The architectural changes needed to implement BliMe
can be grouped into two main categories: taint tracking, and
handling of policy violations.

Taint-tracking is performed on registers and memory. Due to
the load-store architecture of RISC-V, these can be handled
separately.

Registers and ALU operations. For each register, we
maintain a blindedness tag. Any ALU operation that reads
from a blinded register, blinds its output register by default.
However, this is a conservative approximation, and implemen-
tations can make exceptions in order to more accurately model
instruction dataflows. For example, if a register is XORed with
itself, the result is not blinded because the result is always zero,
irrespective of the input value. Similar exceptions can be used
for other situations in which an instruction takes blinded inputs
but its output does not depend on said blinded inputs.

Memory. Blindedness is tracked in using a tagged-memory
approach, with a blindedness tag being attached to each
physical address, in both main memory and in each cache.
Whenever a value is stored into memory from a register,
the memory bytes inherit the blindedness of the register. The
reverse holds for memory reads. To reduce overheads, multiple
consecutive bytes in memory, forming a tag granule, can share
the same tag. For tag granule sizes larger than a single byte,
we introduce an additional BliMe policy rule to prevent mixing
blinded data belonging to separate security domains: if a store
instruction attempts a partial write of blinded data (e.g., a byte)
with tag a to a granule in memory (e.g., of size 8 bytes) with
tag b, the instruction must fault.

New Instructions. We introduce two new instructions,
blnd and rblnd, that correspond to the data import and
export operations, respectively (Sections IV-C2 and IV-C4).
The instructions encrypt and decrypt data with a supplied key,
writing the result into memory in unblinded or blinded form
respectively.

Handling violations is needed in four situations:

1) Attempting to write blinded values to the PC register:
Jumps and conditional branches relying on blinded
registers, either as a jump destination address or as
part of a conditional check, are forbidden.

2) Attempting to use blinded values in an instruction
whose execution time depends on the blinded input
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value.
3) Attempting to read from or write to memory using a

blinded value as an address: This occurs when a load
or store uses a blinded register either as the address
base or offset.

4) Attempting to write blinded data to an “unblindable”
memory location. This allows a system to specify
whether certain memory-mapped peripherals have
access to blinded data.

Any of the above causes an illegal instruction fault.

We implemented the architectural changes in Spike [48],
a C++ RISC-V ISA simulator, to enable quick testing of our
extensions.

B. BliMe-BOOM

To demonstrate BliMe on a complex and realistic compu-
tation platform that relies heavily on speculation to achieve
high performance, we implemented BliMe in RTL on the
BOOM [70] core and Chipyard [1] system-on-chip (SoC).
BliMe taint-propagation rules are also enforced during any
speculative execution thereby preventing sensitive values from
being leaked even by Spectre-type attacks [31].

We implemented two variations of BliMe with different
tag configurations: BliMe-BOOM-1 with single-bit blinded-
ness tags and byte-level granularity, and BliMe-BOOM-8
with eight-bit blindedness tags and 8-byte (i.e., word-level)
granularity.

The BOOM core is written in Chisel, which is a hardware
construction language embedded in Scala [6]. Chisel defines
common built-in data types, such as unsigned integers (UInt)
and Boolean values (Bool), used to attach semantic meaning
to bits in digital circuits. Chisel also allows user-defined data
types to be created by composition and inheritance. Taking
advantage of this feature, we create a Blinded data type as a
composition of a blindedness tag and a variable-length vector
of bits, and use this type throughout the design. As Scala
(and, by extension, Chisel) is strongly-typed, this allows the
compiler to ensure that blinded values cannot be separated
from their blindedness tags except by code that is aware of
the Blinded type. It also allowed us to identify all locations
in the code where blinded data can propagate and prevent any
unintended leakage caused by hardware optimizations such as
speculation.

1) Registers: Register files are modified to use the Blinded
type, thereby storing a blindedness tag alongside the register
contents.

2) Main Memory & Caches: A region of memory is
allocated for the storage of blindedness tags, and made in-
accessible to software. We expand the L1 data and L2 caches
to include blindedness tags alongside each granule of data.
The L1 instruction cache does not need blindedness tags;
blinded values are not allowed to be executed, so whenever a
blinded value is read into the cache, it is replaced with a zero,
and its ‘valid instruction’ metadata bits are unset, making it
inaccessible. The L2 cache includes logic to translate misses
into two operations to main memory: one for the actual data,
and one for the blindedness tags.

It is also possible to optimize the design for the specific
case where the blindedness tags are small relative to their as-
sociated data, with carefully-designed logic reducing the ratio
of blindedness tag requests to data requests, thereby reducing
overhead. However, a limitation in Chipyard’s TileLink imple-
mentation allows data to be read only at an 8-word granularity,
yielding a 64-bit effective minimum tag size. Therefore, even
for 8-bit tags, the memory controller ties up the bus for seven
additional cycles to transmit unneeded words. This is not a
limitation of BliMe, but of Chipyard. We forego implementing
the extensive modifications required to the memory controller
and instead investigate the effect of this optimization using
gem5 [38] in Section VII-B.

3) Pipeline Stages: In BOOM, instructions are decoded in
the instruction decoder stage into micro-ops, which are stored
in the reorder buffer until they are issued to an execution unit
and committed. Execution units contain different functional
units that can perform specific operations. We modified all
functional units to either propagate blindedness (e.g., addition
of blinded values), or fault when the operation is unsafe to
perform with blinded operands (e.g. memory address genera-
tion).

The functional unit responsible for memory address genera-
tion faults when blinded operands are used to generate a virtual
address. Furthermore, if the page table walker finds a blinded
page table entry (PTE), it zeroes it before storing it in the
translation-lookaside buffer (TLB). This ensures that virtual-
to-physical address translation by the load-store unit cannot
be used to load from a blinded physical address. Any load or
store attempting to use a blinded physical address directly will
fault.

4) Encryption engine: The encryption engine, which per-
forms atomic blind-and-decrypt and encrypt-and-unblind op-
erations using the ChaCha20 stream cipher, is built as a
RoCC accelerator [3, p. 3] containing a pipelined ChaCha20
implementation with a 19-cycle latency. This allows this func-
tionality to be accessed using a set of instruction opcodes
reserved for accelerators, and allows it to be used by an
unmodified C compiler using RISC-V intrinsics.

5) Speculation: Speculatively executed instructions are
subject to the same checks as non-speculative instructions
regarding blinded operands. Branch prediction can also never
depend on blinded data. This is done by blocking all blinded
data flows into the prediction logic. We 1) zero out any blinded
instruction fetched into the instruction cache, 2) prevent any
feedback from the execution units to the prediction logic
regarding faulting branch decisions based on blinded data. By
ensuring that both the speculation decision and the speculative
execution do not leak sensitive data, we block all speculative
side channels. This is in a similar vein to Speculative Taint
Tracking (STT) [68] but, unlike STT, we do not untaint after
the instructions leave the speculative state and the security
policy on the data remains in effect.

Note that, for BliMe-BOOM, only non-constant-time op-
erations, which always fault or are rolled back, affect spec-
ulation. Constant-time code, with no secret-data-dependent
branching or memory accesses, speculates normally without
overhead. This is because BOOM does not have any other
data-dependent speculation (e.g., data-dependent prefetchers).
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Fig. 2. Protocol summary. A key agreement protocol is used to obtain secret
keys, shared by the client and HSM. The HSM securely transports these keys
to the encryption engine, which atomically decrypts and blinds the client data,
performs safe computation on it, then atomically encrypts and blinds the client
data before it is returned to the client.

For microarchitectures with such speculation, it must be dis-
abled (only) on blinded data.

VI. SECURITY EVALUATION

A. Protocol

Computation using BliMe takes the form of the protocol
shown in Figure 2. This is equivalent to the protocol described
in Section IV-C. The attacker obtains only encrypted client
data, the encryption of an arbitrary computation on the plain-
text data, along with leakage from the computation by the
server code, shown as a cloud in Figure 2.

If the key agreement protocol and secure channel protocols
are secure against active attackers, then the messages provide
the attacker with no information on either the session keys,
input data from the client, or the result of the computation.
Thus, the attacker gains information on the client data only if
the computational leakage (during the Safe Computation phase
in Figure 2) reveals some information. It is therefore sufficient
to show that the leakage is independent of the decrypted
plaintext, in order to meet requirement SR.

B. Safe computation

The decrypted plaintext, shown in Figure 2, is always
marked as blinded. Therefore, it is sufficient to prove that the
safe computation functionality described in Section IV-C3 does
not leak any information on any state marked as blinded.

We do this by constructing a model ISA using the F*
programming language [56], and proving that its visible and
non-blinded states are independent of the blinded values in
memory: that is to say, no changes to the blinded values
containing sensitive data, after a computational step, result in
any change to the non-blinded values or blindedness bits that
can be observed by the attacker.

Our approach is as follows:

1) Define a low-level model of the server in terms of
registers, memory cells, cache line allocations, and
arbitrary transitions between states, and a security
definition with respect to this model that meets the
requirements of Section VI-A.

2) Define a more detailed architectural model that ex-
presses instructions in terms of register and memory
reads/writes, and a security definition that implies the
low-level security definition from step 1.

3) Define a minimal instruction architecture that imple-
ments standard arithmetic operations with special-
case taint propagation rules from Section IV-D, and
prove that it satisfies the security definitions from
steps 1 and 2.

1) Definitions: We begin by defining equivalence relations
on values that may be blinded. We define a recursive type
multiBlinded1 that represents a blindable value:

1 type blindedness_domain =

2 x:FStar.UInt8.t{˜(x = FStar.UInt8.zero)}
3 type multiBlinded (#t:Type) =

4 | MultiClear: v:t

5 -> multiBlinded #t

6 | MultiBlinded: v:t

7 -> d:blindedness_domain

8 -> multiBlinded #t

Then, a blinded value v with tag d is represented by the
value MultiBlinded v d, and a non-blinded value v by
MultiClear v.

We say that two such values a and b are equivalent, denoted
a ≡ b, if they are both MultiBlinded with the same tag,
or if they are both MultiClear and have equal values.

We define equivalence of lists of multiBlinded values
similarly: two lists ℓ1 and ℓ2 are equivalent, denoted ℓ1

list≡ ℓ2,
if their lengths are equal, and each of their values is equivalent.

2) Low-level system model: The system is modelled in
Cpu.fst by a system state type containing the following data:

• the program counter (pc), containing a 64-bit un-
signed integer pointing into memory,

• an array of register values, each containing a blindable
64-bit unsigned integer,

• an array of memory values, each containing a blind-
able 64-bit unsigned integer, and

• an array of cache line assignments, each containing a
64-bit unsigned integer representing the address of the
corresponding value in the cache.

We then define an equivalence relation
state≡ (equiv_system

in the model) on the system states S, such that two system
states are equivalent if they have equal program counters and
cache line assignments, their registers and memory have equal
blindedness tags, and their non-blinded values are equal.

1We include links to specific modules and theorems where they are
mentioned. The full model is available at https://blinded-computation.git
hub.io/blime-model/.
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We model the execution of instructions using a single-
cycle fetch-execute model (step in the model), with each
instruction completing in a single cycle2. An instruction I ∈ I
is loaded from memory at the program counter address; if pc
points to an instruction marked as blinded, then it jumps to a
fault handler at address 0. Otherwise, the state of the processor
is transformed according to an instruction-dependent execution
mapping X : I × S → S. We denote a single processor step

PX(s) =


X(s.MEMORY[s.PC], s), if s.PC points to

non-blinded memory,
s with s.PC = 0 otherwise.

The security of the execution mapping X is defined such
that X is secure if for all states s1 and s2, equivalent input
states yield equivalent output states (is_safe in the model):

∀s1, s2 ∈ S : s1
state≡ s2 =⇒ PX(s1)

state≡ PX(s2). (1)

That is, X is secure, if after each step in a computation,
the values of blinded registers and memory locations do not
influence the blindedness of any component of the output state,
nor the values of any unblinded value in the output, meaning
that the attacker cannot infer anything about the blinded state.

3) Load-store model: The low-level system model de-
scribed in Section VI-B2 is simple and easy to understand,
but since the execution mapping X has unmediated access to
the state, there is no easy way to express the taint propagation
rule from Section IV. In InstructionDecoder.fst we describe a
higher-level model that allows us to better express statements
about data flows between registers.

This model (the “load-store model”) includes some mi-
croarchitectural details. Its execution mapping is defined in
the function decoding_execution_unit in terms of two
functions:

• An instruction decoder, a function that takes as input
an instruction word, and returns a decoded instruction
containing an opcode, a list of input registers, and a
list of output registers–either normal registers or pc.

• Instruction semantics, a function that performs the
actual computation, taking as input a decoded in-
struction and a list of multiBlinded register in-
put values, and which returns a fault bit, a list of
multiBlinded register output values with blind-
edness bits, and a list of memory operations, each of
which indicates a load or store between a register and
an address in memory.

• A cache policy, a function that accepts a set of cache
line assignments and a memory operation, and returns
a new set of cache line assignments.

The execution mapping then takes the instruction word, de-
codes it, reads the input operands from the initial system state,
performs the computation, and if it does not raise a fault,
increments pc, writes the results to registers, and performs

2To analyze the effects of features like speculation and variable-duration
instructions, where instructions are not executed and committed sequentially,
a more detailed microarchitecture-specific system model is needed where the
model includes a wider range of internal processor state.

the stores and loads, updating the cache line assignments. In
the event of a fault, pc is set to a fixed value.

The decoded instructions never depend upon blinded data
as, from Section VI-B2, attempts to execute a blinded value
as an instruction results in a fault, and the execution mapping
is never called. Therefore, the safety of the execution mapping
can be demonstrated by analyzing only the instruction seman-
tics, as shown in the load-store model’s main safety theorem.

We define instruction semantics safety similarly to how
we defined execution mapping safety in Equation (1): for all
instruction words, executing the instruction semantics function
with equivalent lists of input operand values raises a fault
in both cases, or neither case raises a fault and both yield
equivalent output operand lists and memory operation lists3.

We then use this to prove the theorem each_load
store_execution_unit_with_redacting_equiv
alent_instruction_semantics_is_safe that an
execution mapping defined by any instruction decoder and
safe instruction semantics is safe, no matter what cache policy
is in use.

We next use the model to show the safety of a concrete
ISA.

4) Model ISA: Ideally, we would now apply the analysis
above to a formal model extracted from the design of a real-
world processor. However, this is a major undertaking in its
own right that is beyond the scope of this paper. We therefore
analyze a simplified model ISA with eight instructions in
ISA.fst: STORE, LOAD, BZ (branch if zero), ADD, SUB, MUL,
AND, and XOR.

Each instruction accepts two input registers and one out-
put register—the exceptions being STORE and LOAD, which
require only two registers, one for the memory address, and
one for the source or destination register respectively, and BZ,
whose output is always written to pc.

Each instruction specifies the blindedness of its outputs, as
described in Section IV-D. By default, each instruction marks
its output as blinded if any of its inputs are (consistently)
blinded, or raises a fault where some of its inputs are blinded
but have inconsistent blindedness tags. However, there are
some special cases that deviate from this treatment in order
to better capture the data dependencies of the instructions and
handle modifications of visible state:

• STORE and LOAD instructions raise faults if their
address input is blinded.

• SUB and XOR instructions yield an unblinded value
zero if both their inputs are the same register.

• MUL and AND instructions yield an unblinded value
zero if one of their inputs is an unblinded value zero.

• BZ raises a fault if its comparison input is blinded.

We then show in the model ISA’s main safety theorem
sample_semantics_are_safe that these instruction se-
mantics, defined in sample_semantics, are safe as de-
scribed in Section VI-B3, and that the architecture with these

3Memory operations are defined to be equivalent where they are between
the same register and the same address in memory.
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Unmod. BliMe-BOOM-1 BliMe-BOOM-8
Value Value ∆ [%] Value ∆ [%]

Power (W) 37.783 38.137 +0.9 38.319 +1.4

Resources
LUTs 460480 478950 +4.0 501847 +9.0

Registers 357179 371024 +3.9 388956 +9.0

TABLE II. EFFECT OF BLIME-BOOM MODIFICATIONS ON POWER
CONSUMPTION AND FPGA RESOURCE USAGE (UNMODIFIED BOOM VS.

BLIME-BOOM-1 AND BLIME-BOOM-8).

semantics is therefore safe according to the definition given in
Equation (1).

This demonstrates that the taint tracking approach proposed
in Section IV-D is secure in general, and that the special cases
that we have considered do not allow an attacker to violate
the dataflow security definition from Equation (1). This means
that, so long as the external peripherals with which an outside
observer can interact do not expose blinded data, an observer
cannot infer anything about the blinded data in the system,
satisfying objective SR.

VII. PERFORMANCE & RESOURCE USAGE EVALUATION

A. BliMe-BOOM

Incorporating BliMe into BOOM affects logical complexity
(hence maximum clock rate), and the number of cycles that
certain operations will take due to the additional memory
accesses required to fetch the blindedness tags. Therefore, we
evaluate the overall performance of BliMe-BOOM using both
the maximum clock rate, and the number of clock cycles taken
to execute a program.

We synthesized BliMe-BOOM using the FireSim [26]
FPGA-hosted simulation tool to measure the change in re-
source consumption and maximum clock rate. Table II shows
the power estimate and FPGA resource usage provided by
Vivado, indicating low overheads for both BliMe-BOOM-1
and BliMe-BOOM-8. Vivado timing analysis reported a Worst
Negative Slack (WNS) of 0.018ns for both modified and
unmodified cores, indicating no significant reduction to the
maximum clock rate.

To determine the effect of BliMe-BOOM’s memory mod-
ifications on performance, we ran the SPEC2017 Integer
benchmark suite on both BliMe-BOOM variations using the
ref workload. BliMe-BOOM-1 was run with 8GiB of main
memory, and BliMe-BOOM-8 with 14GiB of main memory,
so that both systems have 7GiB of addressable memory. This
avoids the risk that the performance of the benchmarks is
affected by differences in available memory. The results are
shown in Figure 3; the average overhead across all benchmarks
is 23% for both BliMe-BOOM-1 and -8. This overhead,
however, stems from the Chipyard limitation mentioned in
Section V-B. As we show below in Section VII-B, appropriate
memory optimization can substantially reduce this overhead.

B. Memory optimization

In Section V-B, we mentioned that an implementation
optimized for small blindedness tags can improve its perfor-
mance by reducing the ratio of blindedness tag requests to data
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Fig. 3. Overhead of BliMe-BOOM-1 and BliMe-BOOM-8 relative to
unmodified BOOM, as measured using SPEC2017. The average overhead was
23% for both BliMe-BOOM-1 and BliMe-BOOM-8.

requests. We investigate this by simulating both the optimized
and unoptimized designs using the gem5 simulator [38], where
it is straightforward to reduce the memory request size for tags,
and comparing their performance.

Gem5 is run in RISC-V full-system mode with the O3 out-
of-order processor model. The cache configuration was chosen
to match that used in Section V-B: 16kB each for private L1D
and L1I, and 256kB for private L2. Main memory was 7GB of
Dual Channel DDR3-1600 DRAM. In addition, we modified
the memory model to generate the extra requests used to read
and write blindedness tags, with the ratio of blindedness tag
to data request sizes being configurable as either 1:1 (as used
in BliMe-BOOM) or 1:8 (as in the proposed optimization).

Since gem5 is much slower than native execution using a
field-programmable gate array (FPGA), following the approach
taken in prior work [68], we ran the SPEC CPU 2017 Integer
benchmark suite with the ref workload in each configuration
and measured the number of cycles taken to execute and
commit 1 billion instructions after skipping the first 10 billion
instructions in order to allow the benchmark proper to start.
Table III compares the performance results for BliMe-BOOM-
1, BliMe-BOOM-8 and BliMe-gem5. With the gem5 model
configured in unoptimized mode, the average overhead of
25% is similar to that of both BliMe-BOOM-1 and -8 (23%).
With the model configured in optimized mode, the overhead
reported by gem5 is reduced to 8%. The detailed benchmark
results comparing the two configurations is shown in Figure 4.
Therefore, we conclude that if the optimizations are imple-
mented in hardware (by making the needed modifications to
the memory subsystem in the Chipyard SoC as mentioned in
Section V-B), similar overhead reductions can be achieved.
As a result, for a tag-to-data size ratio of 1:8, 8% is a fairer
representation of BliMe’s overhead in real deployments by
hardware manufacturers. Use of tag caches [25] would reduce
overheads even further. The earlier figure of 23%, on the other
hand, corresponds to a tag-to-data size ratio of 1:1.

The closest comparisons to BliMe, oblivious instruction
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Implementation Avg. overhead (%)
BliMe-BOOM-1 23
BliMe-BOOM-8 23

BliMe-gem5 25
BliMe-gem5 Optimized 8

TABLE III. AVERAGE OVERHEADS OF RUNNING SPEC2017 ON
BLIME-BOOM-1 AND -8, BLIME-GEM5 AND BLIME-GEM5 OPTIMIZED.

THE AVERAGES ARE CALCULATED FOR THE FULL BENCHMARKS ON
BLIME-BOOM-1 AND -8, AND FOR 1 BILLION INSTRUCTIONS ON

BLIME-GEM5 AND BLIME-GEM5 OPTIMIZED. THE GEM5 SIMULATION OF
THE UNOPTIMIZED SYSTEM SHOWS AN AVERAGE OVERHEAD OF 25%,

SIMILAR TO THAT OF BOTH BLIME-BOOM-1 AND -8 (23%).
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Fig. 4. Overhead before and after applying the optimization from Section V-B,
as measured using gem5 simulator to execute 1 billion instructions of
SPEC2017. The optimization reduces the average overhead on gem5 from
25% to 8%.

set architecture (OISA) [67] and FHE, suffer from signifi-
cantly higher overheads. OISA’s fastest benchmarks (matrix-
mult and neural-net) incur approximately 35% overhead with
larger-than-cache inputs, whereas FHE is several orders of
magnitude slower [62]. Overall, given the moderate impacts on
performance and resource usage discussed in Sections VII-A
and VII-B, we conclude that requirement PR is satisfied.

VIII. COMPATIBILITY EVALUATION

For backwards compatibility with existing code (require-
ment CR), two types of code are important: code that processes
exclusively non-blinded data, and code that is already side-
channel resistant and processes blinded data.

BliMe’s taint tracking policy (Section IV-D) changes the
behavior of the processor only where an instruction depends
upon a blinded input value. Therefore, code that exclusively
processes non-blinded data is unaffected.

Code that processes blinded data will fault if it attempts
to modify an observable output in a way that the processor
determines to be dependent on the blinded data. To evaluate
whether the BliMe implementations have met requirement CR,
we must therefore determine whether side-channel-resistant
code will comply with the BliMe taint-tracking policy.

BliMe faults when blinded data attempts to flow to non-
blindable observable outputs (Section IV-D). Existing side-
channel-resistant code already prevents the program counter
and the addresses of memory operations from being affected
by blinded data, e.g., as in [7]. Data flows of blinded data
to other visible state, execution time and fault signals (Sec-
tion IV-D) are prevented by design. Therefore, side-channel-
resistant code is compatible with BliMe’s taint-tracking policy,
so long as only sensitive data is blinded. We successfully
ran stream cipher encryption/decryption with a blinded key
using the TweetNaCl [8] library, demonstrating the backwards
compatibility of BliMe.

However, the CPU cannot identify cases where the result
of a computation remains blinded even though it no longer
contains any sensitive data. For example, it will not be possi-
ble to branch on the result of the decryption/verification of
an authenticated encryption, meaning that its cryptographic
application programming interfaces (APIs) will need to be
modified so that its control flow does not depend on whether
the verification was successful. In practice, this means that any
computation must always continue as though verification was
successful, with any failure being indicated by a flag that is
returned to the client (Section IX-D).

IX. FUTURE WORK

A. Compiler support to improve deployability

The security guarantees of BliMe are enforced solely by
the hardware modifications without requiring any compiler
support. We saw that some existing side-channel resistant
code successfully runs on BliMe (Section VIII). Developers
can write new BliMe-compliant code. However, this can be a
challenge, particularly for larger programs because 1) manual
data-flow tracking can be too complex, and 2) BliMe-unaware
compilers might inadvertently induce data-flow dependencies
not evident in the source language. Consequently, compiler
support can increase deployability by (a) verifying code com-
patibility, and where possible (b) automatically transforming
non-compliant code to an equivalent compliant variant, or
(c) semi-automatically transforming the code by identifying
problematic pieces of code to be manually rewritten by the
developer.

To verify compliance, one approach is to use binary
analysis. This has a number of drawbacks. Binary lifting is
itself error-prone [28], and could induce uncertainty. Focusing
on binary representation makes it difficult to generate useful
error messages. Instead, we opt for augmenting the compiler
so that we can use the intermediate representation (IR) for
transformations, provide useful error messages through the
front-end, and control the machine-code generation.

To transform code, we can employ known rules for safe
coding like cryptocoding [5], and use compiler-specific ap-
proaches that aid both analysis and verification. Specifically,
we can use techniques such as function cloning to improve
the accuracy of the static data-flow tracking and to avoid in-
strumentation of data-flows that at run-time are not necessarily
blinded. For instance, a function could be called in multiple
places, both such that its arguments are never tainted, and
that they may be tainted. By cloning the function we can
avoid needlessly instrumenting and tainting the non-blinded
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data-flow and instead only taint the cloned variant of the
function. We are currently exploring both the adaption of
existing software-only approaches such as Constantine [9], and
implementing BliMe-specific analysis and transformations.

Because complete program analysis is undecidable [47],
we cannot guarantee that any approach detects all compliant
code. Given memory-safe code, we require a sound analysis
that rejects all non-compliant code and accepts only code that
will not result in a taint-tracking policy violation fault at run-
time.

B. Handling large numbers of clients

BliMe as described above can handle 2n − 1 simultaneous
clients with an n-bit blindedness tag. This means that the
ability to handle larger numbers of clients will require a
logarithmic increase in memory overhead. This can be made
configurable at boot-time, allowing servers to trade main
memory capacity for a larger number of simultaneous clients.
Another approach, however, is to overcome this overhead by
multiplexing the same blindedness tag value across multiple
clients, and using an OS trusted by clients—e.g., by using
remote attestation of a well-known certified OS—to prevent
data from flowing between programs that share blindedness
tag values. In the extreme case, this reduces to a single-bit
blindedness tag, as implemented in BliMe-BOOM-1.

This OS has several tasks. On context switch, the OS
asks the encryption engine to export the current client key
by “sealing” it (i.e., encrypting it using a key known only to
the encryption engine), and provides a previously sealed key,
corresponding to the incoming process, which the encryption
engine can unseal and set as the new current client key. Thus,
even though the OS never sees any client key in the clear,
it must be trusted to load the correct sealed key onto the
encryption engine.

The normal process isolation features of the OS ensure that
a client cannot access another client’s blinded data directly
or any of the client session keys held by the OS. Because
different processes may share blindedness tag values, the OS
must further ensure that an application cannot transfer blinded
data to other applications via system calls or other inter-process
communication (IPC) mechanisms. Preventing a client from
accessing another client’s blinded data ensures two things: 1)
an application serving one client cannot use the encryption
engine to encrypt and unblind blinded data originating from
another client, and 2) computation can never use blinded data
belonging to two different clients, since there would be no
clear way to determine the ownership of the result. Therefore,
processed data is only encrypted and exported with a key
corresponding to the client from which the input data was
originally imported. Note that we only rely on the OS to
prevent clients from having direct access to other clients’
blinded data. We do not rely on the OS code being side-channel
resistant, because blinded data is protected from side channels
by the hardware.

C. Enabling safe local processing

BliMe extensions can be usefully applied on the local
machine as well. Since an application processing blinded data

cannot infer anything about the data other than its length, it can
safely process data belonging to other users or applications.

For example, the OS can allow an application to read data
from a file that is normally inaccessible to the application with
the constraint that any data read will be marked as blinded.
This makes it possible to build useful computational pipelines
while strongly adhering to the principle of least privilege.

D. Handling secret-dependent faults

In BliMe, a fault’s occurrence cannot depend on a secret
value, since the fact that it occurs (or not) can leak information.
For example, if a div-by-zero fault will occur if the divisor is
a blinded data item with a value zero, and this faults leads to
an interrupt handler being called, the change in control flow
will reveal that the blinded value was zero. On the other hand,
if it does not occur, it reveals that the value was not zero.
We therefore do not allow blinded values to be used in such
situations. To avoid this limitation, we might instead suppress
faults depending on blinded data, so that the control flow
remains as if the fault did not occur. The client can be informed
of this fault and that the computation results are invalid by
setting a blinded bit in some protected storage (e.g., a special
register) when the fault occurs, so that the software can convey
this bit to the client as part of the returned encrypted results.

E. Defending against other attacks

Rowhammer [30] is a vulnerability in modern dynamic
random-access memory (DRAM) modules that threatens the
integrity of data. Due to the high proximity of DRAM cells,
toggling a row of cells at a sufficiently high rate can result in
bit flips in adjacent rows. Exploits of this phenomenon by a
remote adversary have been continuously demonstrated despite
the number of proposed defenses [41]. We make the common
and reasonable assumption that reading data from any address
in memory retrieves the last value that was written to that
address; this includes the extra blindedness tag. Rowhammer
is an orthogonal vulnerability requiring orthogonal defenses
to ensure memory integrity. Other fault-injection attacks based
on dynamic voltage and frequency scaling (DVFS), such as
CLKscrew [57], V0LTpwn [27] and Plundervolt [40], produce
similar attack patterns and are also out of scope.

Attacks that require physical access to the server are also
out of scope. Physical access enables full read-write side-band
access to memory through direct connection to the DRAM
bus. It also facilitates more powerful side-channel attacks, such
as those relying on power [32], electromagnetic [16], [37] or
temperature measurements [24], or fault-injection attacks, such
as VoltPillager [13], that can break HSM confidentiality and
integrity guarantees. We leave an adversary model that includes
physical access to future work.

X. RELATED WORK

Taint tracking. A large body of work exists on taint
tracking, also called dynamic information flow tracking (DIFT)
[55]. Hu et al. [23] present a survey that includes several
hardware-based taint-tracking techniques with varying goals
and security/performance trade-offs, and at different abstrac-
tion layers. Speculative Taint Tracking [68] applies taint track-
ing to the results of speculatively executed instructions to
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prevent them leaking information. Tiwari et al. [58] propose
taint tracking at the gate level, and use it to create a processor
that is able to track all information flows, but has a limited ISA
and suffers from large overheads. Taint tracking can also be
performed purely in software. Data flow integrity is a form of
taint tracking that protects software against non-control data
attacks by using reaching definitions analysis [11]. Pointer
tainting [65] is another defense against non-control data attacks
that taints user input and detects an attack when a tainted value
is dereferenced as a pointer.

Data-oblivious execution. Preventing side-channel leakage
requires covering several observable outputs. Several algo-
rithms have been proposed to obfuscate data-dependent mem-
ory access patterns [17], [54], [59], [4]. However, they all
come at a significant cost to performance. Other work has
focused on making code constant-time to prevent leakage
through execution timing. An example is Constantine [9],
which extends LLVM to compile code into constant-time
binaries. It relies, however, on dynamic analysis to identify
vulnerable code for transformation. This can be imprecise
as full execution path coverage is not guaranteed, potentially
leading to some vulnerable code not being transformed.

Lee et al. [33] propose DOVE to protect sensitive data
used in outsourced computation from side channels. DOVE
uses a frontend to transform the client application code to a
custom data-oblivious representation called a Data Oblivious
Transcript (DOT). The DOT is then sent to a trusted interpreter
(the backend) on the server, which verifies that the DOT is data
oblivious and then runs it on the sensitive data. The trusted
interpreter must be run within a TEE, such as an Intel SGX
enclave, as it is part of the trusted code base (TCB).

Yu et al. [67] develop an OISA that performs run-time
taint tracking of sensitive values and adds a duplicate set of
instructions to the ISA. Each operand of the additional instruc-
tions is defined as either safe or unsafe. Using any tainted
values as unsafe operands results in a fault. The hardware
guarantees that computation is oblivious to safe operands and,
therefore, that any sensitive values used as safe operands are
not leaked through side channels. OISA offers taint and untaint
instructions and relies on the application code to use them
correctly to taint/untaint sensitive values during computation.
Consequently OISA is not applicable for our usage scenario
described in Section III-A, where outsourced computation is
carried out by potentially untrusted, third-party, application
code, for multiple simultaneous clients. Although OISA could
use remote attestation to verify the server-side application
code, remote attestation of arbitrary third-party application
code is neither realistic nor scalable. Furthermore, software
vulnerabilities in the application code can allow adversaries to
untaint arbitrary sensitive values through the OISA’s untainting
instruction, which is exposed to any software running on the
main CPU.

Point solutions for side-channel attacks. The literature
contains a variety of side-channel attacks that leak information
through the processor’s caches [66], [21], [42], [22], [20].
Defenses against these attacks rely on temporal or spatial
isolation between processes; the cache is either flushed on
context switches or is partitioned in such a way that each
process uses a separate fixed portion of the cache [44], [63].
However, this results in unnecessary overhead when processing

non-sensitive data. Other methods change the cache architec-
ture or replacement policy but also suffer from unnecessary
overheads [51], [64]. The cache attacks mentioned above are
usually used as building blocks to create covert channels for
more sophisticated attacks such as Meltdown and Spectre [36],
[31]. In response, a range of defenses have been proposed to
stop these sophisticated attacks [68], [19]. However, they do
not address the main source of information leakage (which is
the data-dependent memory access pattern) but rather provide
point solutions for specific attacks.

XI. CONCLUSION

We introduced BliMe, a new approach to outsourced com-
putation that uses hardware extensions to ensure that clients’
sensitive data is not leaked from the system, even if an attacker
is able to run malware, exploit software vulnerabilities, or use
side channel attacks. BliMe does this while maintaining com-
patibility with existing side-channel-resistant code, and without
reducing performance significantly. In designing BliMe, we
follow the design pattern of using a separate, discrete hardware
security component in conjunction with the main CPU, com-
mon on both servers [60] and end user devices [39]. By using
such a remotely attestable fixed-function HSM in combination
with taint-tracking ISA extensions, BliMe can provide func-
tionality similar to that of fully homomorphic encryption, but
achieving native-level performance by replacing cryptography
with hardware enforcement.
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APPENDIX A
EXAMPLES OF BLIME-COMPLIANT APPLICATIONS

In this section we present two examples of code that ad-
heres to constant-time principles and can therefore run without
faulting on BliMe. We also show how to use BliMe’s blinding
and unblinding operations with these examples. Both examples
were adapted from the OISA work by Yu et al. [67]. The first
example is data-oblivious matrix multiplication and requires
no changes. The second is a function to find the maximum
value in an array. We present the initial code and then show
how to manually transform it to make it data-oblivious.

A. Matrix multiplication

Listing 1 shows the code for matrix multiplication. The
code is already data-oblivious, i.e., adheres to the restrictions
in Section IV-E. It therefore does not require any changes. In
Listing 1, we also show how encrypted data from the client
is preprocessed to decrypt-and-blind it, and how the result is
postprocessed to encrypt-and-unblind it.

B. Finding the maximum

Listing 2 shows non-data-oblivious code for finding the
maximum value in an array of integers. The blinding and
unblinding operations are similar to those in Listing 1, and
we therefore skip them for brevity.

Initially, the only blinded data is that inside arr. In the first
iteration, blinded data from arr gets loaded into max_val on
line 6. In the second iteration, the blinded value in max_val
is used in a branching condition on line 4, resulting in a BliMe
violation and a fault.

We can make this code data-oblivious by linearizing the if
condition using predicated execution. The transformed code is
shown in Listing 3.
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1

2 // int *A, *B, *C;

3 // with sizes szA, szB, szC, respectively

4

5 // Here, the input matrices A and B are

6 // populated with unblinded encrypted data

7 // from the client, e.g., through some

8 // network interface

9

10 // We first decrypt-and-blind A and B:

11 blind(A, szA);

12 blind(B, szB);

13

14 // Now, A and B contain blinded plaintext

15

16 int C_nrow = A_nrow;

17 int C_ncol = B_ncol;

18 assert (A_ncol == B_nrow);

19 for(int i = 0; i < C_nrow; i++){

20 for(int j = 0; j < C_ncol; j++){

21 for(int k = 0; k < A_ncol; k++){

22 C[i*C_ncol + j] +=

23 A[i * A_ncol + k] * B[k * B_ncol + j];

24 }

25 }

26 }

27

28 // Now, C contains the blinded plaintext result

29 // We must then unblind C ...

30

31 unblind(C, szC);

32

33 // ... which gives us the result as

34 // unblinded ciphertext that we can then

35 // send back to the client

36

Listing 1. Data-oblivious code for matrix multiplication.

1 int FindMax(int arr[] /*blinded*/,

2 int N /*unblinded*/){

3 int max_val = -1;

4 for (int i = 0; i < N; i++){

5 if (arr[i] > max_val){

6 max_val = arr[i];

7 }

8 }

9 }

Listing 2. Non-data-oblivious code for finding the maximum value in an
array of integers.

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

BliMe’s evaluation consists of three parts: security (Section
VI), performance (Section VII - Table III, Figures 4) and
resource usage (Section VII - Table II).

1 int FindMax(int arr[] /*blinded*/,

2 int N /*unblinded*/){

3 int max_val = -1;

4 for (int i = 0; i < N; i++){

5 int predicate = arr[i] > max_val;

6 max_val = (predicate * arr[i]) |

7 (!predicate * max_val);

8 }

9 }

Listing 3. Data-oblivious code for finding the maximum value in an array
of integers after manual transformation.

• Security: The security evaluation is done by running
the provided model in F* and confirming that it passes
verification.

• Cycle-accurate performance: The performance eval-
uation is done by running SPEC CPU17 on two gem5
implementations, BliMe-gem5 and -gem5 Optimized.
These can be run entirely on commodity hardware but
are only used to run 11 billion instructions of each
SPEC CPU17 benchmark; running the benchmarks to
completion requires an infeasible amount of time. The
performance of BliMe-gem5 is an estimate of the per-
formance of BliMe-BOOM-1 and -8. This is because
the only performance overhead introduced by BliMe is
the additional memory accesses to tags, which take the
same number of cycles for both BliMe-BOOM-1 and
BliMe-BOOM-8. BliMe-gem5 Optimized corresponds
to an optimized version that is not possible on BliMe-
BOOM due to a limitation in Chipyard not BliMe
(Section V.B.2).

• Resource usage & clock frequency: The power,
resource usage and clock frequency overheads are ob-
tained by synthesizing BliMe-BOOM-1 and -8 using
Xilinx Vivado on an Amazon Web Services (AWS)
instance. This is done by running FireSim scripts.

1) How to access: Our artifact is available at https://gith
ub.com/ssg-research/BliMe, and archived at https://doi.org/10
.5281/zenodo.10161487.

2) Hardware dependencies: Obtaining the overheads re-
quires the use of AWS. This is because we use FireSim scripts
that must be run on AWS.

3) Software dependencies: F* and gem5 implementations
were tested on Ubuntu 20.04.

4) Benchmarks: We use the SPEC CPU 2017 benchmark
suite for the gem5 performance evaluation, which must be
obtained separately from https://www.spec.org/cpu2017/.

B. Artifact Installation & Configuration

Docker is required for security evaluation using F*. Instal-
lation then proceeds according to the README.

The full FireSim evaluation requires an AWS instance
running the AWS FPGA Developer AMI. The README in the
repository describes how to start and configure a suitable in-
stance. Installation then proceeds according to the README.
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The gem5 evaluation requires a Ubuntu Linux system.
Installation then proceeds according to the README in the
repository.

C. Major Claims

• (C1): A simplified model ISA with BliMe extensions
is formally verified to maintain the confidentiality of
blinded data.

• (C2): An unoptimized BliMe implementation incurs a
25% performance overhead. Optimization reduces this
to 8%.

• (C3): BliMe has low power and FPGA resource usage
overheads.

D. Evaluation

1) Experiment (E1): [1 human-minute + 1–2 compute-
hours]: This machine-checks the F* model to verify that the
confidentiality of blinded data cannot be broken (C1).

[Preparation] Build the Docker container from the
model/ directory of the repository.

[Execution] Run the Docker container built in [Prepara-
tion] without arguments.

[Results] The container will output the message
All verification conditions discharged
successfully.

2) Experiment (E2): [30 human-minutes + 24 compute-
hours]: This runs 11 billion instructions of each SPEC CPU
2017 benchmark on BliMe-gem5 and BliMe-gem5 Optimized.
The first 10 billion instructions are used to warm-up the
system. The results of E2 provide an estimate for claim C2
in terms of number of cycles. We show in E3 that the time for
each cycle (clock frequency) does not change, which means
that the performance overhead is dependent only on the change
in the number of cycles, i.e., E2.

[Preparation] Follow the instructions in the gem5 folder’s
README file.

[Execution] Follow the instructions in the README file.
This will run the 10 SPEC CPU 2017 Integer benchmarks
on the unmodified gem5, BliMe-gem5 and BliMe-gem5 Opti-
mized. Two tmux sessions will be spawned per benchmark:
one (with _run_ in its name) to run the gem5 simula-
tion and one (with _telnet_) to telnet into the gem5
simulation and run the benchmark. Once the benchmark is
complete, the gem5 simulation will exit. This can be checked
by attaching to the _run_ tmux session using tmux a -t
<name-of-tmux-session>.

Note: Benchmarks can rarely crash prematurely. We have
experienced this on both modified and unmodified gem5.
Rerunning the benchmark should fix the issue. Please refer
to the README-single file for information on how to rerun a
single benchmark.

[Results] Once all the gem5 simulation have exited, the
results will be in the m5out/stats.txt files in each
benchmark directory. Follow the instructions at the end of the
README file to extract the IPC numbers.

3) Experiment (E3): [30 human-minutes + 18 compute-
hours]: This synthesizes BliMe-BOOM-1 and -8 using FireSim
on AWS. The synthesis will produce power and resource usage
reports that support claim C3. It will also produce a timing
report that shows no reduction in maximum clock frequency,
supporting our argument in Section B-D2.

[Preparation] Follow the instructions in the firesim
folder’s README file to set up the AWS EC2 instance.

[Execution] Follow the instructions in the README file.
This will clone our modified FireSim repository and run
the scripts to build the FPGA bitstream. NB: Building the
bitstream will use several hundred US Dollars’ worth of
computation. Following the README’s additional instructions
to run the full SPEC 2017 benchmark will cost approximately
US$5000.

[Results] The power, timing and resource usage reports
will be available in firesim/deploy/results-build/
<timestamp-config>/<design>/build/reports/.
Power & resource usage results can be found
in <timestamp>.SH_CL_final_power.rpt
under “Total On-Chip Power” & “On-Chip Com-
ponents”. Clock frequency results can be found in
<timestamp>.SH_CL_final_timing_summary.rpt
under “WNS(ns)”.

E. Known Issues

• Attempting to recursively clone submodules for the
FireSim experiments can result in an error about
unreachable submodules. Please do not attempt to
handle submodules directly. The build scripts used in
the README instructions will fetch the submodules
correctly.
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