
The CURE to Vulnerabilities in RPKI Validation

Donika Mirdita† ♮ Haya Schulmann‡ ♮ Niklas Vogel‡ ♮ Michael Waidner†§ ♮

† Technische Universität Darmstadt ‡ Goethe-Universität Frankfurt § Fraunhofer SIT ♮ ATHENE

Abstract—Over recent years, the Resource Public Key Infras-
tructure (RPKI) has seen increasing adoption, with now 37.8% of
the major networks filtering bogus BGP routes. Systems interact
with the RPKI over Relying Party (RP) implementations that
fetch RPKI objects and feed BGP routers with the validated
prefix-ownership data. Consequently, any vulnerabilities or flaws
within the RP software can substantially threaten the stability
and security of Internet routing.

We uncover severe flaws in all popular RP implementations,
making them susceptible to path traversal attacks, remotely
triggered crashes, and inherent inconsistencies, violating RPKI
standards. We report a total of 18 vulnerabilities that can
be exploited to downgrade RPKI validation in border routers
or, worse, enable poisoning of the validation process, resulting
in malicious prefixes being wrongfully validated and legitimate
RPKI-covered prefixes failing validation. Furthermore, our re-
search discloses inconsistencies in the validation process, with
two popular implementations leaving 8149 prefixes unprotected
from hijacks, 6405 of which belong to Amazon.

While these findings are significant in their own right, our
principal contribution lies in developing CURE, the first-of-its-
kind system to systematically detect bugs, vulnerabilities, and
RFC compliance issues in RP implementations via automated
test generation. The statefulness of RPKI, the lack of rigorous
RPKI specifications for recognizing bugs in the object suite,
the complexity and diversity of RP implementations, and the
inaccessibility of their critical functionalities render this a highly
challenging research task. CURE is a powerful RPKI publication
point emulator that enables easy and efficient fuzzing of complex
RP validation pipelines. It is designed with a set of novel tech-
niques, utilizing differential and stateful fuzzing. We generated
over 600 million test cases and tested all popular RPs on them.

Following our disclosure, the vendors already assigned CVEs
to the vulnerabilities we found. We are releasing our fuzzing
system along with the CURE tool to enable the vendors improve
the quality of RP implementations.

I. INTRODUCTION

The Border Gateway Protocol (BGP) is the defacto routing
protocol of the Internet. Border routers use BGP packets to
exchange information about the reachability of the prefixes
allocated to their Autonomous Systems (ASes). A router can
announce any prefix, including those it does not own. Routers
that accept such bogus announcements route their traffic to the
hijacking ASes instead of the target prefix [1]. Such redirects
can be exploited for blackholing and hijacking traffic [2], [3],
[4], [5], [6], [7], [8], [9].

To validate ownership over announced prefixes the IETF
standardized the Resource Public Key Infrastructure (RPKI).
ASes first authenticate prefixes in RPKI: create a cryptographic
key and bind their prefixes to AS numbers (ASNs) inside
Route Origin Authorizations (ROAs). To validate BGP an-
nouncements and filter bogus routes and hence block hijacks,
ASes enforce Route Origin Validation (ROV): compare re-
ceived BGP messages against all ROAs and drop origins with
unauthorized ASNs. RPKI also paves the way for prospective
path validation mechanisms [10], [11], [12].

The retrieval and processing of RPKI data is handled
by Relying Party (RP) implementations, which periodically
download and validate objects, like ROAs, from the RPKI and
compile a list of all valid ASN-IP pairs inside a Validated ROA
Payloads (VRPs) file. The border routers should retrieve the
VRPs file and use it to validate all received BGP announce-
ments. Border routers can only validate BGP announcements
if the RP functions correctly and periodically provides data to
the routers. If this continuous data stream stops, the validation
data expires. As a result, the routers cannot validate RPKI
and become vulnerable to BGP hijacks. Thus, availability and
consistency are a major concern in RPs design.

As of June 2023, 37.8% of the networks utilize RPs to
feed their BGP routers with RPKI data and validate BGP
announcement with ROV [13], [14], [15], [16], [17]. This
increasing adoption of RPKI necessitates a deeper look into
the correctness, stability, and consistency of RP software
implementations. Ensuring these requirements of RPs is not
trivial. The complexity of RPKI makes the creation of efficient,
secure, bug-free, and RFC-compliant software implementa-
tions a complex task. Indeed, previous work found that due
to missing limits on recursion depths, RP implementations
were vulnerable to stalling attacks [18], [19], [20], [21],
which was fixed by introducing thresholds to all the RP
implementations. However, except for occasional bug reports,
no systematic analysis of RPKI validation software has been
performed to date. Adding to the problem, the community
lacks a tool for generic, reliable, and continuous testing of
RP implementations. The developers of RP software thus rely
on manual testing and unit tests to ensure the correctness of
their implementations. However, the existing unit test cover-
age, which the RPs provide, is not comprehensive enough to
capture the RPs’ complexity and cover all aspects requiring
evaluation. Further, it is difficult for developers to compare
the consistency of their validation process across the different
RP implementations.

Our goal is to analyze the current RP implementations,
their resilience to errors, attacks and compliance with the
standards. However, fuzzing RPKI is hard. As we show in
this work, the statefulness of RPKI, the lack of rigorous spec-
ifications on a uniform processing logic for objects, and error

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.241093
www.ndss-symposium.org

recognition in the object suite, the complexity and diversity
of RP implementations, coupled with the inaccessibility of
their critical functionalities, renders this a highly challenging
research task.

To address the major challenges in fuzzing RPKI, we
develop a new fuzzing system we call CURE for discovering
vulnerabilities and bugs in arbitrary RP implementations. We
use black-box fuzzing [22] to fuzz RP implementations de-
veloped under different programming languages and models.
Our tests include performing stateful fuzzing by mutating the
objects we feed to the RPs [23]. We combine the black-
box fuzzing with manual code analysis and analysis of the
RPKI RFCs and find major flaws in the widely used RP
implementations. Detecting these issues is challenging not only
because of the complexity of RPKI, but also because of the
lack of rigorous definitions of a strict canonical behavior of
the RPKI validation and the caching, in the specifications of
the RPKI RFCs. We therefore also utilize differential fuzzing
[24] and use the inconsistency of the validated ROA payloads
in caches to find vulnerabilities and bugs. We show that the
inconsistencies, bugs, and vulnerabilities we find can lead to
crashes and attacks against RPKI, such as downgrading RPKI
validation or poisoning of RPKI trust anchors. In fact, an
inconsistent behavior of RPs leads to discrepancies in decisions
of different RP implementations regarding the validity of
announced routes, even under benign network conditions.

To support the automated fuzzing analysis, we develop a
test system that includes the local RPKI hierarchy with an
internal tree of Certificate Authorities and publication points
with repositories that we generate for each test case. We
optimize the performance of our system to enable 500K test
cases per minute and support 13000 objects per second, which
is faster than the fastest RP implementation Routinator, that
processes up to 4545 objects per second.

Our work shows that the maturity of RP implementations
has not yet reached a level of strong security and consistency
guarantees, despite the increased quality of RPKI objects and
the rising rate of ROV enforcement in routers. The available RP
implementations and tools lag behind the increasing utilization
of RPKI in production environments. We hope our research
will facilitate the improvement of the security and resilience
of RP implementations. We make our CURE tool public and
disclose the bugs we found to the RP developers.

Contributions. We make the following contributions:
▷ We develop the first automated system to analyze RP

implementations, discovering novel vulnerabilities, and RFC
violations. CURE presents a novel approach to testing complex
validation pipelines. Instead of fuzzing isolated functions at
a time, CURE executes the entire validation pipeline by
efficiently emulating a complete repository structure.
▷ Combining manual code analysis with CURE, we

perform the first comprehensive fuzzing of all popular RP
software implementations. We find a total of 18 previously
unknown critical vulnerabilities, including DoS and poisoning
of VRP cache with 7 additional RFC inconsistencies leading
to differing validation results in RP implementations. Concep-
tually, we show that the complexity of the validation pipeline,
the vagueness of RFCs, and the immaturity of implementations
lead to vulnerabilities and diverging validation results.
▷ Using CURE, we perform an analysis of global RPKI

data, finding inconsistent processing results across all RP
implementations. We show that the inconsistencies apply to

prefixes of large network operators and lead to discrepancies
in validation results.
▷ We make CURE open for public, to help improve RP

software quality and research into the area of RP security.
CURE provides developers with comprehensive and novel
functionality, lacking in available tools, like fuzzing the entire
validation pipeline, constructing arbitrary repository structures,
and manually testing arbitrary test cases against any RP.

Ethics and disclosure. Our research was conducted on
our isolated test environments. Thus, all crashes, bugs, and
vulnerabilities we found were not propagated to the Internet. In
our measurement we follow the ethical guidelines for network
measurements [25], [26]. We notified the affected vendors, and
five CVEs based on our work have already been registered:
CVE-2023-39914, CVE-2023-39915, CVE-2023-39916, CVE-
2022-3029, CVE-2022-3616.

Organization. Section II provides an overview of related
research and Section III overview of RPKI. Section IV dis-
cusses obstacles for fuzzing the RPKI. Section V introduces
CURE. Section VI describes the vulnerabilities and inconsis-
tencies we found in RPs. Section VII evaluates the impact of
the discovered vulnerabilities on the Internet and quantifies the
affected networks. We conclude in Section VIII.

II. RELATED WORK

Fuzzing is one of the most popular and efficient software
testing mechanisms available. It can be tailored to a specific
target and has systematically helped developers improve their
software and identify vulnerabilities [27]. Fuzzing is flexible
and accommodates a variety of targets: OS kernels [28],
protocols like TLS [29], and user applications [30]. Consid-
erable work has been done in the development of fuzzing
frameworks. PeachFuzzer [31] is a powerful framework that
enables mutation and generation-based fuzzing, ultimately
acquired by Gitlab in 2020. AFL, and its successor AFL++
[32], are some of the popular frameworks for application-
based fuzzing. Google created OSS [33], a comprehensive
software suite to fuzz open source codebases, which employs
a toolkit made of multiple fuzzing algorithms. These tools are
powerful in finding vulnerabilities, but they are limited in their
applicability; as fuzzing requires inputting the test objects into
the investigated binary, developers need to create a test harness
around functions they want to fuzz. This workflow requires
major manual work for each function and is traditionally
limited to a single test object per test run.

Fuzzing Internet protocols. Fuzzing has been used to
study core Internet protocols, such as DNS and BGP [34],
[35]. As we show in this work, fuzzing RPKI is fundamentally
different from previous work on fuzzing Internet protocols and
requires a novel viewpoint on testing complex applications.
First, RPKI involves the validation of cryptographic digital
signatures on tested objects. Automatically generating random,
yet validly signed, input objects with a fuzzer is challenging
since signatures depend on the object content and thus need
to be re-generated for every object created by the fuzzer.
Second, generating meaningful RPKI objects is hard due
to their complex structure and dependencies. Third, stateful
fuzzing is a hard problem in network fuzzing due to the
computational complexity involved [23], and RPKI is stateful
since RPs cache the validated objects. Fourth, fuzzing the
RPKI validation requires creating a custom PP that supports

2

the required properties for automatically testing the behavior
of RPs on different arbitrary input objects. The need for a
custom PP arises from the validation pipeline of the RPs, which
requires several validation steps to succeed, involving multiple
interdependent objects and signature validations before the
testing object is even parsed. The PP setup is unique for every
object, necessitating a flexible PP that can efficiently create
a valid repository around each test-object. Requiring multiple
additional objects tailored at every test case makes fuzzing
the RPKI more complex and computationally intensive than
fuzzing BGP/DNS packet processing. Therefore, in this work,
we detach from the idea of fuzzing as “testing a single object
per iteration”. Instead, we create a custom tool that efficiently
generates a complex setup for every test case consisting of
multiple RPKI objects. Despite the complex setup, our tool
can test thousands of objects per second. We next discuss
conceptional fuzzing approaches and explain our approach.

Fuzzing approaches. There are multiple possible fuzzing
strategies that could be applied to RP testing. White-box
fuzzing [36], [37] takes source code and software paths into
account, thereby allowing tailored inputs to maximize code
coverage, usually through symbolic execution and feedback
loops that the test case generator can use to find new unbeaten
paths. Black-box fuzzing [22] is the opposite of whitebox.
In black-box fuzzing, the fuzzer receives no feedback from
the target software, only being able to observe the results
of the process and adapt according to the output. Gray-box
fuzzing [38] lies somewhere between whitebox and blackbox.
The fuzzer is privy only to a subset of execution information,
but has more insights into target behavior than blackbox se-
tups. Grey-box fuzzers usually retrieve execution information
through language-specific compiler setups or additional tooling
and use gained information to run coverage-based fuzzing
[38], [39]. Coverage-based fuzzing optimizes test objects by
taking execution paths in the target binary into account. A
major drawback of coverage-based fuzzing is the potential
for path explosion, an inherent issue with large and complex
codebases. The complexity of the RPKI processing pipeline,
including a multitude of field and signature validations, thus
limits the applicability of coverage-based fuzzing In this work,
we utilize a blackbox fuzzing approach for testing RPs without
additional language-specific tooling. We designed our middle-
ware for RPKI fuzzing to simultaneously test any RP, open
source or proprietary, without requiring any adaption of binary
compilation or language-specific tooling. We also combine the
blackbox fuzzing with analysis of RFCs and code analysis
of RPKI implementations to understand and identify coding
errors, and trace them to core specification problems.

Mutation-based object generation. Fuzzing requires an
efficient generation of test objects to feed objects to the tested
binary. Mutation-based object generation is one of the most
common test generation processes for fuzzing. This approach
utilizes a corpus of valid objects manipulated through bit flips,
random cuts, deletions, or character insertions. The approach
generates diverse mutated files to test all potential parsing
and validation corner cases in the target code. This method is
particularly suitable for testing parsing modules of binaries as
it can create malformed entities similar to well-structured ob-
jects. Mutations can be generated through generic mix&match
and random mutations [40], [41] or genetic algorithms [42]
that take advantage of feedback loops in grey- or white-box
fuzzing. Mutation-generated test cases are useful in efficiently

Fig. 1: Overview RPKI.

creating a large test corpus to trigger different execution paths.
However, it does not take the correct structure of objects and
their encoding into account and is thus very limited in moving
past the parsing routines of the target.

Structure-aware fuzzing. Improving on this limitation,
structure-aware fuzzing, also referred to as grammar-based
fuzzing, is a test case generation mechanism that enables
the creation of objects that follow strict formatting and en-
coding requirements according to the target software speci-
fications [43], [44], [45]. The advantage of using structure-
aware fuzzing is its ability to move past the object parsing
stage by providing correctly encoded and formatted objects,
allowing testing of deeper parts of binary execution. We use
this approach to create manipulated but valid complex RPKI
objects to test for security issues in parts of the code beyond
object parsing. With structure-aware fuzzing, we can stress test
the internal processing logic of RPs, focusing on the validation
pipeline. This ensures our test cases do not get stuck at the first
few parsing checks but lead the way to cache inconsistencies.

Recognizing the advantages of random mutations and
structure-aware fuzzing, we dissect the RPKI software suite
using multiple approaches. We create an object generation tool
based on random mutations and feed it to the RPs over our
CURE tool to test the complex RPKI object parsing of the
RPs. Additionally, we move past the object parsing with a
second, structure-aware object generation approach capable of
producing well-formatted RPKI objects, with specific random
mutations within its fields. These well-formatted objects are
also fed to the RPs via CURE. Additionally, we employ code
analysis of the RP software and a manual analysis of the RFC
requirements for the validation process. For comprehensive
testing on the RPKI, we isolate requirements in the standards
to design test cases that target them.

III. BACKGROUND ON RPKI VALIDATION PROCESS

RPKI aims to provide authenticated information on prefix
ownership, which border routers can use to make secure
routing decisions in BGP. An overview on the RPKI ecosystem
is given in Figure 1. RPKI information is stored in repositories
(1) hosted on distributed hierarchically organized Publication
Points (PPs) [RFC6481]. Repositories are operated either in
hosted mode, e.g., by the Regional Internet Registries (RIRs),
or in delegated mode by the resource owner.

Repositories store cryptographically signed Route Origin
Authorizations that detail which AS is authorized to announce
a particular prefix over BGP. The RPKI also contains additional
files like certificates, Certificate Revocation Lists (CRLs),
Manifests (MFTs), Autonomous System Provider Authoriza-
tion (ASPA), BGPsec certificates, and GhostBuster Records
(GBR). Additional files contain additional information for

3

validation different aspects of BGP announcements, or they
ensure the integrity and authenticity of the RPKI infrastructure.
An interested reader is referred to Appendix D for an extended
explanation of the RPKI objects. All objects in RPKI, includ-
ing ROAs, are signed by the private key of the Certificate
Authority (CA) that manages the resources detailed in the
object. A CA usually corresponds to a single business entity
owning one or multiple ASes. CAs can be run by Regional
Internet Registries (RIRs), or by resource owning clients, e.g.,
the Local Internet Registries (LIRs).

Relying Party software. In RPKI, routers do not directly
interact with repositories. Instead, the download and validation
of objects is performed by RP implementations, as shown in
Figure 1 3 . Generally, each system that wants to utilize the
RPKI installs its own RP, which continuously retrieves and
validates objects from all RPKI repositories available on the
Internet by establishing a chain of trust and delegation stem-
ming from the root trust anchors, the five RIRs. The workflow
of RPs for downloading and validation consists of multiple
functions: recursive data fetching from PPs discovered over
URIs in CA certificates, validating RPKI objects, compiling
valid prefix-ASN pairs in a single VRPs file Figure 1 4 ,
and finally exposing this file for download to BGP routers
of the system. After the RP finishes one iteration, the VRPs
file is downloaded by border routers to perform Route Origin
Validation and filter invalid BGP routes, Figure 1 5 .

Publication Points traversal. Bootstrapping the validation
process of RPs is achieved over hardcoded Trust Anchor
Locators (TALs) files [RFC6490], included in each RP instal-
lation. In a default installation, each RP contains five TALs
containing HTTPS URIs to the root CA certificates of the five
global RIRs. These RIR certificates are the root of trust in the
RPKI and are inherently trusted. The RPs download and parse
the root certificates. Each certificate contains a mandatory
extension named Subject Information Access (SIA), which
lists the URI of the repository that contains the objects signed
by this certificate. The RPs follow the URI and download all
objects from the repository, then use the public key of the CA
certificate to validate them. After download and validation, all
objects are stored in a local cache, using the unique URI of
each object as its local file path. If the RP encounters new
CA certificates stored in the repository it downloaded, it again
checks each certificate’s SIA extension to enumerate additional
RPKI repositories’ locations. Unknown repositories are added
to a queue and iteratively downloaded and validated. With this
workflow, the RPs traverse all public RPKI repositories on the
Internet, downloading and validating all objects.

RPKI Repository Delta Protocol (RRDP). RPKI supports
two protocols for fetching objects from PPs from the URI
fetched from the SIA extension of a certificate, shown in
Figure 1 2 . RRDP is the primary protocol to retrieve RPKI
objects [RFC8182] and is the default protocol in all common
RP implementations. In case of failures in RRDP, RPs fall
back to the legacy rsync protocol, a simple file synchronization
protocol that identifies updates to files over their hash values.
In contrast to rsync, RRDP is more sophisticated, providing
additional logic for efficient incremental updates of local
RP caches. It is based on HTTPS and uses three additional
types of objects notification.xml, snapshot.xml, and delta.xml to
synchronize the content between the PP and the RP cache. The
entry to each PP is identified by the notification file, located

Fig. 2: RPKI objects download flowchart.

at the URI in the SIA extension of the CA certificate. The
notification file contains a serial number, allowing the RP to
quickly identify if the repository content changed since the
last validation run. It further contains URIs and hashes of a
file containing the entire repository content, the snapshot file,
and an arbitrary number of files containing incremental updates
from serial numbers, referred to as delta files. During the first
encounter of a PP, the RPs always download the snapshot file
to retrieve and store the entire repository content in their local
cache. In following validation runs, the RP can restrain from
downloading the entire repository and instead only download
the delta files spanning from the serial number of its local
cache to the current state of the PP, i.e. the current serial
number of the notification file. In case the processing of delta
files encounters an error, the RP falls back to downloading
the entire repository content from the snapshot. To ensure the
integrity, the snapshot and all delta files also contain the same
session id and the serial number as the notification file.

RPKI validation process. After downloading the snapshot
or applying all deltas, the RP follows a strict processing order
to validate retrieved objects, visualized in Figure 2. For each
repository, the CA certificate is validated before any content is
parsed. RPs start the validation process of CA certificates by
downloading the five RIR certificates. All child certificates of a
CA can be found in its RPKI repository, in the case of the root
CAs the root repositories. After validating all certificates found
in the root repositories of the RIRs with the trusted public
keys, the RPs traverse the tree, following the SIA extensions
of the now trusted child CA certificates to discover more
certificates in their respective repositories, which are validated
by their respective parent. By iterating down the CA tree, this
process establishes a trust chain from the five root nodes to
each CA certificate, following the issuing of resources. Every
time the CA certificate of a given repository is validated, the
RPs can use its public key to also validate all RPKI objects
in the repository of this CA. Looking at the validation of
repository content, we must distinguish between CRLs and all
other RPKI objects. CRL validation is straightforward; the RP
validates the signature on the CRL with the public key of its
CA certificate and confirms that the CRL formatting complies
with the requirements in [RFC5280]. For all other RPKI
objects, including ROAs, each file contains two signatures,
complicating validation. The object’s payload, like the ROA
content, is signed with a one-off key pair, i.e., a key only
used for a single signature. The generated one-off public key
is contained in the ROA file inside a X.509 certificate to allow
validation of the ROA content. This object-specific one-off
certificate, referred to as the End-Entity (EE) certificate, is
signed by the CA. Thus, the RP first validates the signature of

4

the content with the one-off public key in the EE-certificate,
then validates the signature on the EE-certificate with the CA
certificate. Additionally to the described signature validation,
RPKI also includes integrity validation over Manifest files
[RFC6486]. Each repository should contain a single Manifest
file that lists all the objects currently in use by the CA,
identified over their storage URIs and hashes. To validate the
integrity of a repository, the RP compares the manifest content
against all files downloaded from a PP, identifying missing
or extraneous files (e.g., due to attack or misconfigurations).
After ensuring integrity, the RP processes all files listed in the
manifest, validating their signatures and checking formatting.
Following processing, each file is stored in the local cache.
This processing is repeated for each discovered PP until all
discovered files finish processing and are added to the validated
cache. Finally, the RP compiles the content of all discovered
ROAs and outputs them into the VRPs file for the routers.
After outputting the VRPs, the RP goes idle until the next
validation run starts in a pre-defined interval.

IV. RESOLVING HURDLES TOWARDS FUZZING RPKI

Testing RPs is a hard and complex task. RPs do not run
in isolation, they integrate within an RPKI environment to
fetch and process cryptographic objects. Therefore feeding
each RP with files to test requires the creation of a cus-
tomized environment with trust anchors, certificates, and other
auxiliary objects. Further, RPs are stateful, caching validated
RPKI objects for consecutive validation runs inside a locally
validated cache. Stateful fuzzing was shown to be a hard
problem due to the computational complexity involved [23].
Also, the diverse landscape of programming languages of the
RP implementations further complicates the manual effort of
white- or greybox RP fuzzing. Each RP requires individual
effort and unique setups. In this section we explain why
existing fuzzing methods are not suitable for fuzzing RPKI
validation with RPs, clarifying what hurdles we resolved while
developing our CURE fuzzing tool.

Complexity of function decoupling. Currently available
RP software is characterized by tight coupling of components
and high code complexity. This makes fuzzing RPKI imple-
mentations hard. Traditional fuzzing requires isolating func-
tions of interest, extracting them from the code and adapting
their interface to accept manipulated inputs generated by the
fuzzer. When implementations are tightly coupled and partially
state dependent, it creates problems with the scalability and
comprehensiveness of the fuzzed functions. While it is possible
to fuzz specific routines, it is labor-intensive to build a testing
harness for all functions of interest in all RP implementations,
and create all objects required as input in the appropriate
format. The complex interaction between RPKI objects in
the validation pipeline makes comprehensive fuzzing of the
validation process extremely difficult with traditional fuzzers.

Manual code adaptation. Some components of the im-
plementations are not externally accessible, thus fuzzing them
requires adaptation of the source code or a full extraction of the
function including child functions, further increasing manual
effort. Fuzzing all steps in the validation process, including all
interactions with other RPKI objects, is thus immensely time-
consuming. Repeating the setup process for each RP and after
each major change of the constantly evolving RP software is
not scalable. Thus, whitebox and greybox fuzzing can only be

Feature Krill Fuzzing
Input Parameters Objects
Pipeline Strict Dynamic
Key Security Secure Not relevant
Max. Speed 10 obj/s 1000s obj/s
Formatting Checked Unchecked
RP Control No Yes

TABLE I: Krill RPKI PP vs. the requirements for fuzzing.

applied to small parts of the validation process, but they are
not suitable to test the entire validation pipeline.

Limitations of existing tools. RPKI publication point
software is built to be rigid and highly deterministic. The room
of human error is minimized by automating the publishing
pipeline away from the user and introducing additional checks
to ensure high reliability in published objects. While the
restrictive operation of common software implementations is
important to ensure the high quality of published RPKI objects,
it severely limits the flexibility given to the user; a flexibility
that is required for stress testing the RPs with malicious and
malformed objects. For default configurations, users neither
create nor interact with any RPKI objects. Instead, they provide
data to the PP, which then creates the corresponding objects.
For example, users do not provide a complete ROA object to
the publication point. Instead, a user inputs the data required
for the creation of the ROA, i.e., IP-prefixes and an ASN.
The publication point uses the data to create a ROA object
and generate all required auxiliary objects. The common
implementations of publication points are thus not well suited
as a starting point for the implementation of a fuzzing tool,
lacking the flexibility and speed to test arbitrary objects in a
short amount of time.

Resolving the limitations. To resolve these limitations
in existing fuzzers, we develop a language-agnostic, black-
box, continuous testing middleware for evaluation of RP im-
plementations. Our novel fuzzing implementation emulates a
highly flexible RPKI publication point, built on-top of existing
RPKI libraries. We remove features not required for fuzzing,
while introducing flexibility and efficiency improvements. Our
tool emulates all the core features of a PP while leaving
the object generation open and flexible for the user to test
RPs against fuzzed inputs. Further, our custom PP provides a
set of additional features and characteristics not provided by
traditional implementations, which we explain in Section V-B.
A key insight motivating our design is that we do not define our
implementation as a rigid pipeline aimed at publishing ROAs
and maintaining a valid repository. Instead, the tool should
”repository-fy” any RPKI object, i.e., it takes an arbitrary RPKI
object as input and builds a scaffold repository around this
object. The scaffolding does not follow a fixed pipeline but is
instead flexible, adapting dynamically to which type of RPKI
object is input into the tool. This functionality is not provided
by any existing publication point software.

Eliminating false positives. Each RP is treated as a black-
box by our fuzzer, and conclusions about internal problems
are derived based on the output of the tested RP. Applying the
generated fuzzing test cases to the entire validation process in-
stead of individual functions, enables us to be immune to false-
positive crashes. The RPs in our setup operate identically to
real-world deployments. Each input that crashes an RP directly
translates to a vulnerability as the fuzzing framework emulates
the normal operation of RPs. This is not true for other fuzzers.
They might find a crash in an extracted function, but this
crash might not lead to a real vulnerability, either because the

5

Structure Aware Mutation

Random Byte Mutation

Process

& Sign

Batch

processing

Create

Control CA

Create

Repository

Create

Auxiliary

Objects

Routinator

Fort

OctoRPKI

rpki-client

Analysis Report

Standalone Modus

Batch Modus

<object type>
<crash ID>
<base64 trigger>
<crash log>
<VRPs>

CURE

Fig. 3: CURE fuzzing framework.

malformed input is escaped before reaching the investigated
section in the code, or because the software containing the
fuzzed function implements proper error handling.

In summary, an environment for running a comprehensive
vulnerability analysis of the RPs needs to provide features not
supported by existing RPKI software and libraries; see Table
I. The available tools do not offer the features for realizing
a functional and fast modern fuzzer. Thus, we introduce our
solution for fuzzing the RP implementations.

V. DEVELOPING THE CURE

In this section, we present our framework for fuzzing-based
black-box vulnerability analysis of RP software. The core
component of our setup is the Comprehensively Usable RP
Evaluator (CURE) middleware we have built. It emulates a PP
repository while monitoring the blackbox execution of RPs and
performs differential analysis on RP output and states. CURE
feeds the RPs with test cases using randomized mutations and
structure-aware object generation. An overview of the fuzzing
framework is illustrated in Figure 3.

To create test cases, we use two approaches that gener-
ate a large corpus of malicious or malformed RPKI objects
for fuzzing. Object creation is efficient and fast, generating
thousands of objects per second. Feeding the generated RPKI
objects to the RPs is done over CURE. It interfaces with
the corpus generation, processes the generated objects and
inserts them into an RPKI repository, which is then exposed
to the RPs over one of the RPKI data exchange protocols.
The RPs are managed by the RP interaction module, which
handles execution of the RPs as well as crash detection. The
module additionally detects anomalies in the RP caches and
creates a human-readable report, detailing all the detected
inconsistencies and vulnerabilities.

We run our blackbox analysis against Routinator, FORT,
OctoRPKI and rpki-client as the four major RP implemen-
tations currently in use on the Internet according to our
measurements, see Figure 4. RIPE NCC Validator, whose
support and maintenance has been discontinued since 2021,
was excluded from our study.

A. Generating RPKI Objects

Detecting vulnerabilities and inconsistencies is based on
feeding manipulated objects to the RPs and probing how their
processing handles unexpected inputs. Generally, RPs digest
three data types and a total of nine different schemas. For
object generation, we identified the data types (XMLs, ASN.1
and vCard), and compiled the schema for each file type;
see Table II. Our object generation strategy accommodates

ASN.1 XML vCard
roa X
crl X
mft X
certificate X
aspa X
gbr X
snapshot X
delta X
notification X

TABLE II: Supported RPKI Objects and Data Structure.

all RPKI object schemas and types. RPKI objects and their
processing is characterized by strict formatting and encoding
requirements. We thus approach the object generation two-
ways. To target parsing and formatting errors, we utilize
random byte mutations as unexpected input, non-conforming
to file schemas. To reach deeper into the internal validation
logic, we implement structure-aware RPKI object generation.
We run our algorithms on all data formats, with our generation
process able to create millions of objects in a 24h period.

Random byte mutation. The first object generation strat-
egy we employ is random mutations. This approach does
not preserve the strict structure of objects and thus primar-
ily targets programming, parsing and schematic errors. Our
algorithm applies random byte mutations to a base corpus of
RPKI objects, inserting, deleting and changing the order of
bits inside the objects.

Structure aware generation. We use structure-aware mu-
tations to create schema-abiding and correctly encoded test
cases to ensure that parsing checks are successfully passed
and therefore test the internal logic of RP processing. To
mass generate our objects we use [46], a fuzzing framework
capable of providing structure-aware mutations on predefined
file formats.

Fig. 4: RP implementations popularity distribution, April 2023.

B. CURE Architecture

To address the limitations of available RPKI tools in their
applicability for fuzzing RP software, we introduce CURE
for RP testing. CURE provides the same core functionality
as a comprehensive RPKI PP, i.e., it handles keys, creates and
manages a tree of CAs, signs objects, generates files to interact
with the RPs and exposes these files over HTTPs. From the
perspective of the RPs, CURE looks and acts like a standard
PP. However, CURE has the flexibility to scaffold a complete
and valid repository around arbitrary RPKI objects. Further, it
can serve a fuzzing corpus. Speed is also a major concern in the
operation of CURE as it needs to maximize processed objects
and optimize the rate at which inputs can be tested. Our tool
also provides an interface to directly interact with RPs, starting
their validation and extracting validation results and crashes.
We developed this interaction to be language agnostic, i.e.,
supporting RPs written in any arbitrary programming language.
An overview of CURE is shown in Figure 5.

6

Fig. 5: Finite state machine of CURE.

The tool implements the entire pipeline to publish RPKI
objects of any type. Objects are read, signed and then em-
bedded in a valid RPKI repository. CURE then executes the
connected RPs, which download and process the repository.
After execution, CURE analyzes the RP output and logs any
problems found, including crashes and cache inconsistencies.

Our goal with CURE is to provide an easy to use tool
for the RPKI community to test and improve the resilience
of RP implementations. We therefore design it to be built
loosely coupled and easy to extend, allowing the community
to extend CURE for their unique requirements. This includes
extending the tool to cover new RP implementations and new
RPKI objects. In the following, the core components of CURE
are introduced, emphasizing the challenges and problems that
motivated our design.

C. Object Generation Interface

CURE serves as the middleware to distribute generated
manipulated objects to the RPs. It thus needs to interface with
the object generation algorithm. CURE supports two different
modes of operation.

Batch-mode allows parallel testing of a large corpus of
objects. It is optimized to run continuously, consuming objects
from a supplied folder and feeding them to the RPs in
batches of a configurable size. Interfacing with batch-mode
is straightforward, the user provides a folder URI containing
RPKI objects and supplies the object type and desired batch
size. CURE then feeds these objects to the RPs. Batch-mode
allows for continuous operation, i.e., it idles if no new objects
are present in the folder and continuous processing once new
objects are inserted. This allows CURE to run independent
of the test case generation process. While the generation con-
tinuously feeds new objects into the folder, CURE consumes
them and distributes them to RPs. Batch mode implements the
fuzzer capability of running indefinitely, testing new objects
and searching for vulnerabilities until the fuzzer is stopped.

Standalone-mode allows single-object testing over the
command line. CURE takes a single RPKI object as input and
creates a valid RPKI repository around it, including auxiliaries.
It then executes the validation of all connected RPs and
analyses their logs. Finally, it returns a report to the user,
containing error analytics. Standalone mode is targeted and
optimized for a single validation run of the RPs and does
not include multiprocessing capabilities, since the overhead
of spawning and interacting with created processes results in
a slowdown of execution speed in a single run.

D. Building a Repository

The complexity of the RPKI repository structure com-
plicates the distribution of the objects. The objects need to
be incorporated into a valid RPKI repository to ensure RPs
process the file. Further, most objects have inter-dependencies,
e.g., a manifest needs to link to its issuer inside a specific field

of the object, and must contain the names and hashes of all
other files in the repository. Thus, objects cannot be merely
inserted into a template repository and then distributed to the
RPs. Instead, CURE needs to read the object, dynamically
adapt fields and values inside the object, and then create the
required auxiliaries for the repository to distribute to the RPs.
To test a single ROA, CURE needs to create 8 auxiliary
RPKI objects, requiring generation of 5 signatures, 3 hashes
and adapting a multitude of fields inside created files. CURE
achieves this as follows:

1) Creating a Repository and Processing Objects

In a first step, CURE creates an RPKI repository, by
generating a root CA certificate, a TAL that points to the
certificate, a manifest file and a CRL. This step is uniform
and independent of the object type. Following initial repository
creation, the external test object is processed. The processing
heavily depends on the object type, as each object type has
individual fields that need to be handled.

Dependencies:
● For ROAs, ASPAs, and GBRs, the object content is self-

contained, no field inside the object itself has to be adapted.
The content does not contain any pointers to other objects
in the repository. Still, an End-Entity (EE)-certificate signed
by a CURE certificate authority needs to be appended to the
objects to publish them. For this, CURE uses the created root
certificate to generate a child CA that signs the respective
object and appends an EE-certificate to the content. Since the
EE-certificate contains values that are directly related to the
content of the object, like its digest and a signature, it cannot
be precomputed and has to be generated dynamically for each
individual test case.
● For certificates and CRLs, the processing requires more

effort as they contain dynamic fields that directly relate to
repository content. A certificate or CRL generated by an
object generation algorithm from a template does not have
correct values in externally dependent fields and is not validly
signed. Since the signature depends on the content, it cannot be
hardcoded, but has to be computed with the private key of the
CA that issues the object after the object has been modified.
Not changing the required fields and signature in the certificate
would result in RPs discarding the object before processing
its content due to failing signature validation. These objects
thus need to be internally adapted by CURE instead of simply
adding a EE-certificate as in the case of content objects.

Adapting fields inside objects that are generated to fuzz
the RPs is non-trivial. If CURE changes values inside the
object, it might overwrite fields purposefully changed to test
the reaction of the RPs. For example, the generation algorithm
might intentionally change values in the signature to probe the
reaction of the RPs to an invalid signature value. Overwriting
the signature would hinder the test case. However, if the
generated object manipulated other fields but not the signature,
the RPs will discard the objects if CURE does not correctly
sign the object. The same logic applies to a number of fields
in the certificate and CRL. In total, 8 fields are interdependent
on the repository configuration and need to be valid to ensure
the RPs parse all certificate fields. These fields include the
signature, parent key identifier, CRL location, issuer name,
issuer location, repository location, manifest location, and the
notification location. However, replacing any of these fields

7

might override an intentional change.
Replacement strategies: To solve this problem, CURE

allows for different replacement strategies, including optimistic
replacement, targeted replacement, parseable replacement, and
no replacement.
● Optimistic replacement replaces all fields that need to be

adapted. This configuration is generally not recommended as
it only allows to test fields which are not replaced, limiting
the capability of the tool.
● Targeted replacement replaces all fields that are flagged

to be replaced by object generation. This identification is built
into the generation algorithm. If a field should be replaced, the
generation algorithm inserts the field with a none value, allow-
ing CURE to only replace fields which are not manipulated.
Targeted replacement is the default mode for structure aware
object generation. This approach is not possible in random
mutations of the entire object, as in this case, mutations do not
target a specific field. Further, replacing fields is only possible
if the object can be parsed by CURE, which in many cases is
not possible with randomly mutated objects.
● Parseable replacement changes all fields that are

parseable by CURE, i.e., fields that are well formatted. The
idea of this strategy is that mutated fields are usually not well
formatted. Thus, if the field does not look correct, CURE
concludes that the field has likely been manipulated by the
object generation algorithm and leaves the field intact. This is
the default replacement strategy for randomly mutated objects.
● No replacement leaves all fields intact. This circumvents

the risk of overwriting a field that was manipulated. However,
the RPs will not process the object completely because the
signature of the object does not fit the CA of CURE.

2) Scaffolding the Repository

After the object has been adapted and signed, it has to be
inserted into the repository with the required auxiliary objects
to feed it to the RPs. This process depends on the object type.
Since we aim not only to find crashes but also to identify
inconsistencies, CURE always creates a complete repository,
including ROAs. By adding ROAs, CURE can identify if a
certain object was accepted by the RPs. For example, consider
a certificate where certain fields lead to some RPs discarding
the object. If the certificate does not link to any ROAs, CURE
cannot easily recognize which RP accepted the certificate.
However, if ROAs are added, CURE can compare the accepted
ROAs of each RP and find the inconsistency.

An additional challenge in adding the objects to a reposi-
tory are restrictions in the amount of certain objects per CA.
While it is possible to place all ROAs, GBRs or ASPAs in
a single CA, the RPKI demands only a single Manifest and
CRL file per CA. Thus, to test multiple Manifests or CRLs,
CURE needs to create a corresponding amount of new CAs,
each including the appropriate objects, i.e., a Manifest, CRL
and a ROA file to check for inconsistencies. The same logic
applies to CA certificates, as each certificate needs to map to
a single repository folder. For RRDP files, the effort increases
further as the RFC dictates only a single Notification and
Snapshot file per PP. Thus CURE emulates a setup with a
corresponding number of CAs, with each certificate pointing
to its own generated Notification file within a unique domain.
The same setup applies for Snapshots.

Since scaffolding requires a lot of computational effort,

CURE caches the majority of the required auxiliary objects
and adapts them to the inserted generated objects.

E. Interacting with the RPs

After creating an RPKI repository around manipulated
objects, CURE executes the RPs to stress test their validation.
For direct control over the execution time, the RPs are run in
single-validation mode, i.e., they are executed and terminate
after finishing one round of validation. This setup necessitates
a crash detection algorithm that does not rely on a simple
monitor that probes if the process is still active. To probe
for crashes, CURE uses two indicators. First, the exit code
of the RP process is checked after the RP process terminates.
A non-zero exit code indicates that the process did not finish
as expected, indicating a potential crash during execution.

Second, the distributor checks the output files of the RPs.
Because the RPs write the final output to disc only after
validation, a crash during execution will result in no output
of the RP. If no VRP file was created after the process exits, a
potential crash is logged. During the course of our experiments,
we did not find any false positives with our crash detection
logic. Once a crash is detected, CURE runs additional logic
to identify which exact object in the batch caused the crash.
It then generates a detailed crash report, describing object
content, RP logs and time of the crash. A similar process is also
applied to inconsistent validation results. If all RPs produce
VRP files, i.e., do not crash, CURE parses the files and checks
for inconsistencies in the accepted ROAs. If inconsistencies are
identified, a text report detailing the nature of the inconsistency,
affected RPs and trigger object is generated.

F. Improving Performance of the CURE

The execution time of CURE is of major concern for
fuzzing, as fast execution allows us to test more objects
per timeframe. To speed up the tool, we first identify speed
limitations in the publication pipeline of RPKI objects. We
then optimize the structure of CURE to significantly improve
its processing speed.

To understand the performance slowdown, we first measure
the execution speed of the most popular implementation of
an RPKI publication point, Krill. Krill allows for the bulk
creation of ROAs and is thus well suited to provide a baseline
execution time from which we will optimize CURE. To test
Krill’s execution time, we use the krillc roas update –delta
command for the bulk creation of 1000 ROAs. The execution
takes 122.7s, which corresponds to 122.7ms per ROA. Using
the ROA creation of Krill as the underlying implementation
for CURE would thus allow the fuzzer to test a maximum of
8.1 ROAs per second.

Unnecessary operations. We test the execution time of our
basic ROA creation implementation. In our implementation,
we removed the majority of checks that Krill uses to ensure
no faulty ROAs are added to the repository. These checks
limit both the speed and flexibility of the fuzzer in processing
malicious objects. With the removal of the checks, CURE
reaches a speed of 77.0 seconds for 1000 ROAs, i.e., 77ms
per ROA, allowing for 12.98 ROAs per second. This is still
insufficient for the operation of the fuzzer. To find slow
sections of the program, we use Linux perf.

Keys generation time. Analysis with perf identifies that

8

Taxonomy Coding Errors Cache Disparity RFC Non-Compliance
Path

Traversal

RTR
Buffer

Overflow

Decoding
ROA

IP Resources

Decoding
Malformed

ASN.1

PubPoint
DoS

[6482]
§3

[6487]
§5

[9286]
§5

[6487]
§4

[8182]
§3

[6482]
§4

[8897]
§4

Routinator ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗
Fort ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓
OctoRPKI ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
rpki-client ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
Artifacts
ROA ✗ - ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓
MFT ✗ - ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓
CER ✗ - ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓
CRL ✗ - ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓
Snapshot ✗ - - - ✓ - - - - ✓ ✗ ✗
TAL ✓ - - - - - - - - ✗ ✗ ✗
RTR PDU ✗ ✓ - - - - - - - ✗ ✗ ✗

TABLE III: Errors, inconsistencies and crashes we found in popular RP implementations.

the majority of processing time is spent on the creation of
RSA keys for the created ROAs. In the Rust implementation
of OpenSSL, used both by Krill and CURE, we measured
the average creation time of a single 2048-bit RSA key pair
to be about 70ms. In the normal operation of the RPKI, this
overhead is necessary, as each key needs to be unique to ensure
security, which is not relevant for CURE. It is thus possible
to reduce this overhead by pre-calculating and caching a batch
of unique RSA keys. In each batch execution of CURE, the
keys are loaded from the cache, removing the overhead of key
creation. With the caching of the keys, the execution is sped up
significantly; the creation of 1000 ROAs takes 2.25s, 2.25ms
per ROA. Thus operating the fuzzer with cached keys allows
for testing of 400 objects per second.

To find additional potential for optimization, we use perf
again to identify slow functions in the code. However, analysis
shows that 85% of execution time is spent on signature
generation. Since the RPs require a valid signature on each
object and the signature depends on the content of the object,
caching signatures is not possible and hence speed up of object
generation is not possible.

Parallel processing. The second approach to improve
CURE’s execution time is parallel processing. Since the cre-
ation and signing of each object is an atomic operation, paral-
lelization can provide additional speed-up. This parallelization
is achieved by spawning multiple processes that handle the
most computationally intensive tasks: parsing and signing
objects. The processes are spawned to run autonomously,
reading batches of objects, parsing and signing them, creating
scaffolding RPKI objects and serializing all created objects.
CURE continuously reads the serialized file, writes the objects
to the local repository and creates the required RRDP files to
distribute the repository content to RPs. To test the speed-up by
multiprocessing, CURE is executed with 5 signing processes.
This results in a processing time of <1ms per object, translating
to over 1000 objects per second.

Hardware optimization. The final optimization is the
hardware used to execute CURE. Since the design of CURE
utilizes multiprocessing, more computing cores allow for fur-
ther speed-ups of the execution. Improved single-core perfor-
mance also decreases the time required for object processing.
For the speed evaluation, CURE is executed with 20 processes
on a computing server, equipped with two XEON Platinum
8380 processors with a clock frequency of 2.3 GHz and
40 physical cores. This results in a speed of 13000 objects
per second. An overview of the different (logarithmic) speed
values is plotted in Figure 6. To evaluate if this speed is
sufficient for the fuzzer, we also investigate the processing
speed of the RPs. If CURE is able to reach a processing speed

Routinator Octorpki RPKI-Client Fort
0
2
4
6
8

10

Ti
m

e
(s

)

Single CA
10.000 CAs

Krill Stripped Caching 5 Proc. Server

101

103

Ob
je

ct
s p

er
 S

ec
 [L

og
]

Fig. 6: Execution time for 10000 objects of investigated
RPs (left) and processing capability of CURE in different
optimization stages (right).

that surpasses the validation speed of the RPs, we eliminate
idle RP time. The processing time of the RPs is tested with a
setup of 10.000 signed ROAs. Two cases are tested: all ROAs
signed by a single CA and every ROA signed by a separate CA.
The results are shown in Figure 6. The fastest execution time is
measured to 2.2 seconds for the single CA case in Routinator.
In its fastest configuration Routinator can thus process 4545
ROAs per second. This is significantly slower than the speed
at which CURE can create valid repositories.

In a multi-RP setup, the maximum speed of testing objects
is dictated by the slowest RP, which according to our mea-
surements is Fort. Since Fort cannot process more than 2500
objects per second, the maximum speed of the fuzzer cannot
surpass this amount, which corresponds to roughly nine million
objects per hour.

G. Limitations

CURE is not guided, i.e., it does not get feedback from the
RP binaries informing it which execution paths were triggered
by a specific object. This limitation directly results from the
language agnostic design; if a fuzzer should be usable with
every RP, it cannot rely on manual compilation of the RP bi-
naries to insert the required flags for coverage guided fuzzing.
The design of CURE is thus a tradeoff between usability
and execution efficiency. While conventional fuzzers are able
to use guided techniques to optimize for execution paths in
the investigated binary, their setup is very labor-intensive and
language specific. CURE lacks coverage detection capabilities,
but makes up for the limitation with a high execution speed
and low operational effort to setup.

VI. TAXONOMY OF ERRORS IN RPKI

Our experiments with CURE and subsequent code analysis
of the RP implementations reveal a variety of issues in the
internal logic, ranging from coding errors to inconsistency
with RFC standards, to subjective interpretation of vague RFC
directives. In total, we found 19 critical vulnerabilities in the
RPs, all leading to a crash of the RP, with one issue allowing

9

poisoning of the trust anchor cache. Further, we discovered
numerous problems leading to RPs reaching different valida-
tion results on the same RPKI repositories, thereby ultimately
supplying routers with inconsistent VRPs. The lack of unifor-
mity in the internal data processing of RPs can disable RPKI
protection for the prefixes covered by the corresponding ROAs,
therefore allowing BGP hijacks to take place despite victims
having issued ROAs via valid channels. Table III provides an
overview of the discovered vulnerabilities in the four most
popular RP implementations on the Internet. In the following,
we describe the core characteristics of the vulnerabilities we
discovered, how they can be exploited and the consequences
of their exploitation for global routing security.

A. Fuzzing Setup

To find problems in the RP implementations, we used
CURE to test RPs on all standardized RPKI objects. For each
object, we ran CURE for a total of 8 hours resulting in approx.
72 million test cases. We deemed this time as sufficient as we
never discovered vulnerabilities after more than 4 hours on
any object. This resulted in a total fuzzing time of 72h for
648 million total test cases.

B. Coding Errors in RPs

Our fuzzing campaign yielded a multitude of crashes. The
cause of all severe vulnerabilities that we found are coding
errors in the RP implementations. The majority of these errors
are caused by the lack of proper error handling for malformed
object fields. Further, we also find errors caused by a lack of
proper sanitization of user controlled input to store downloaded
objects, leading to a path traversal attack.

1) Path Traversal: RPKI Poisoning

Our analysis discovered a path traversal attack in the object
storage module of Routinator, caused by a lack of filtering for
malicious characters while processing URIs. The attack can
only be triggered when the parameter RRDP-keep-responses is
enabled, which directs Routinator to store downloaded RRDP
files to a directory. The exact storage location is deduced
from the URI of the RRDP object, controlled by the PP
itself. The URI parsing which determines the exact storage
location for RRDP objects does not conduct checks for path
traversals, making it vulnerable to a path traversal attack. The
vulnerability is only present in the URI parsing of HTTPS
addresses. The method that does rsync URI parsing specifically
checks for path traversal attacks and escapes the input. No such
check is present for HTTPS URIs. For an interested reader, the
referenced code parts are in Appendix, Listings 12, 13, and
14. Since rsync is only used by the RPs during failures with
RRDP as a backup, a vulnerability in RRDP is more severe
and immediately affects all Routinator instances.

Exploit. We evaluated the path traversal vulnerability with
an adversary that controls a PP in the RPKI tree. Controlling
a malicious PP is easy, e.g., if the adversary owns an AS it
can add a delegation to its PP from the corresponding RIR.
To exploit the vulnerability, the adversary needs to add a
malicious payload in their notification.xml file. As Routina-
tor utilizes object URIs as file paths and stores the objects
wherever the path specifies, the attacker can deliver malware

Fig. 7: RPKI Poisoning Attack via path traversal.

on Routinator’s host or sabotage RPKI itself. An example for
RPKI sabotage is shown in Figure 7. An attacker creates a
fake.TAL which points to non-RIR certified publication points.
Via the path traversal, the attacker delivers the malicious
payload to the TAL folder of the Routinator installation during
an RRDP fetch. Routinator then loads the attackers’ TAL in
the next validation run, follows the inherently trusted malicious
certificate and validates malicious ROAs. The attacker can
thus get arbitrary prefix-AS pair validated by Routinator and
thereby propagate fake ROAs. Since Routinator does not raise
any alarms when the TAL folder changes, this attack is
difficult to detect, allowing a malicious entity to circumvent
RPKI protection without detection. This attack is possible for
Routinator versions before 0.12.0. From this version onwards,
Routinator changed the TAL management, which mitigates the
attack scenario. However, the underlying vulnerability of path
traversal is still present even in newer releases, still allowing
the delivery of malware to the system.

2) Crashes: RPKI Downgrade Attacks

Our analysis of RPs discovered several DoS vulnerabilities
for 3 out of 4 main RP implementations: Routinator, Fort,
and OctoRPKI. These DoS vulnerabilities can be triggered in
different sections of the code and cause a total crash. Since
the RPs are required to contact all the RPKI PPs during a
refresh interval, an attacker with a valid PP can potentially
crash all vulnerable RP instances from a single point of attack.
In Table III Section “Coding Errors”, we list an overview of
the discovered crashes and the affected RPs. We observe that
Routinator and OctoRPKI can be DoS-ed by any external PP,
whereas Fort is vulnerable to memory allocation issues given
misconfigured packet sizes. We explain the bugs with code
snippets in Appendix A.

Routinator is a Rust implementation of an RP. It relies on
many same-vendor created libraries to perform most necessary
parsing, validation, and computation. Our analysis has discov-
ered that Routinator is prone to crashes that are triggered in the
RP source code as well as in the external same vendor libraries
that support Routinator and Krill functionalities. Specifically,
our analysis discovered that libraries, such as rpki-rs and
bcder, show major problems in their implementations due to
the use of assertions, lack of sanity and length checks, lack
of comprehensive error handling and deliberate disregard to
handle corner cases. These libraries are used by both Krill
and Routinator. We discovered in total 11 bugs for Routinator,
all of them triggered in different parts of the code by different
types of mutated RPKI objects. Table III shows an overview
of all discovered crashes, 2 of which can be found in rpki-rs,
8 in bcder and 2 in the routinator app source code.

OctoRPKI is implemented in Go. All its RPKI related
functionalities are self contained, so the bugs can be found in
the source code of the application itself. OctoRPKI, same as
Routinator, has implemented its own parsing and validation
libraries. The code is missing sanity and lengths checks,

10

Fig. 8: ROA and Manifest sizes and payload.

leading to crashes when malformed files are fed to the system.
Fort, unlike Routinator and OctoRPKI, is much harder to

compromise. However, we found a DoS vulnerability in their
RTR server, i.e. the server that interacts with connected BGP
routers to exchange validated RPKI information. An attacker
addressing the RTR server of Fort can crash the RP application
by sending a message larger than the expected Protocol Data
Unit (PDU) slot. The result is a memory corruption that leads
to a full application crash, disabling RPKI validation.

Exploitation. We find experimentally that as a result of
the crashes caused by the DoS vulnerabilities, the RPs are
no longer in a live session with the BGP border routers,
eventually leading to the routers flushing their RPKI cache
and not applying RPKI validation to newly received BGP
updates. The holdout period that the cache remains valid after
the RTR connection is dropped varies on a per router basis.
We measured the default flushing periods for Cisco [47] to
360 seconds, Juniper [48] to 3600 seconds and FRR [49] to
7200 seconds. Thus, if the RPs are not manually restarted
withing two hours of the DoS attack, the routers will not apply
RPKI validation to inbound BGP updates anymore, effectively
leading to a downgrade of RPKI validation. The DoS attacks
can be triggered by a malicious PP anywhere in the RPKI tree.
The size or location of the malicious PP is irrelevant as long
as the PP is reachable by the victim. As any entity owning IP
resources is eligible to host their own PP, this attack against
RPs is realistically exploitable even by a small-scale adversary.

C. Cache Disparity

We observe that feeding RPs with validly signed large ob-
jects can cause the snapshot parsing to fail. The parsing failure
is independent of the snapshot.xml size and is triggered if
single files are above some arbitrary threshold. The thresholds
in question can vary from 4 MBs for rpki-client, to 1.9 GB
for OctoRPKI, see Table IV. This error results in a “silent”
discarding of individual PP repositories. The RP itself does
not crash and continues to periodically fetch the RPKI data,
but any object inside the malfunctioning PP will be discarded
by the RP. This issue can cause discarding of valid objects
and thereby downgrade of protection both organically and
through an attacker. The attack angle can be leveraged against
repositories hosting multiple entities, such as RIR repositories.
An attacker can then inflate the count and size of its objects, for
example by adding a massive number of entries to a ROA or a
manifest, leading to big file sizes in the snapshot of the hosting

RP ROA / MFT CRL CERT ASPA GBR
Routinator 20MB 100MB 5MB 20MB 48MB
Octorpki 1.9GB 700MB 5MB 1.9GB 1.9GB
Fort 7MB 10MB 5MB 10MB 10MB
rpki-client 4MB 4MB 5MB 5MB 5MB

TABLE IV: Single file size to crash snapshot.xml parsing.

Fig. 9: #MFT to crash RPs. Fig. 10: Vulnerable RPs.

PP and therefore cause the discarding of the entire repository
by some or all RPs. This problem can also arise accidentally
when an institution creates large RPKI objects to cover their
resources. Further, with the growing number of utilized IPv6
IP address space, we expect that the number of RPKI resources
will grow, and correspondingly both ROAs and manifest files
will increase in size in the future.

Exploit. The attack exploiting this vulnerability is similar
to the one in Section VI-B2, essentially disabling RPKI vali-
dation for the affected prefixes. For large repositories hosting
many different entities, this attack can have a detrimental effect
on routing security, as the objects of all other parties in the
same PP will not be used to validate BGP updates anymore.

Impact now and in the future. We measure the payload
and file sizes in kilobytes for ROAs and manifests as shown
in Figure 8. The largest files in the RPKI cache are manifests,
with the largest manifest being 1.4 MB and listing 19,958
artifacts. The average boilerplate size of MFTs is 2078 bytes,
and entries have an average size of 70 bytes each. For a
manifest to reach at least 4 MB in size, the lowest file size
that would cause problems processing MFTs (see Table IV),
it would need to contain on average 59889 objects of 70 bytes
each. In Figure 9 we see an evaluation of the number of
entries per manifest necessary to discard the snapshot parsing
of each RP: rpki-client has the lowest threshold as it only needs
59,889 objects, next is Fort with 104,828 objects followed
by Routinator with 299,564. OctoRPKI is by far the most
resilient implementation needing an average of 29 million
entries to reach the discard size of 1.9 GB. Thus the most
vulnerable RPs, in order of low threshold, are: rpki-client, Fort
and Routinator. Table IV provides a detailed summary of all the
different thresholds for each RP implementation and file type
that can trigger this issue. Given the projected growth of RPKI
repositories as well as the addition and adoption of new record
types (ASPA, BGPSec Certificates etc.) we project that the size
of a manifest will organically grow 3-4x the existing size in the
short term to accommodate more objects. Manifests have to list
all RPKI objects contained in a valid CA repository, therefore
given the variety of objects and the fact that we are only at 44%
global RPKI deployment [50], it is expected that the repository
size of large providers will increase considerably. This error is
particularly substantial for RPKI providers, such as the RIRs,
which are at the forefront of expanding their databases with
new objects and new LIRs. It is thus vital that repositories
adapt size thresholds in the future to accommodate for the
natural growth of the RPKI ecosystem.

D. RFC Inconsistencies

Our analysis finds that, in many instances, RPs are also
RFC non-conforming. The non-conformity manifests either as
strictly defined validation and parsing checks which are not
respected, leading to security issues, or as undefined corner
cases which are handled differently by the RPs. We find that

11

these RP idiosyncratic behaviors lead to discarding of valid
ROAs. The lack of a systemic deterministic behavior affects
ROA propagation worldwide and leads to a silent downgrade
of RPKI protection for the affected regions of the Internet,
despite the corresponding prefixes having issued ROAs.

Objects processing. Manifest is one of the core files that
define the data parsing and processing for RPs. The standard
for manifest generation and processing defined in [RFC9286]
specifies in Section 6.6 Appendix B a mandatory presence of
a valid CRL for every manifest. This update was issued in
2019 to address security issues in the previous, now obsolete
[RFC6482]. According to our observations, OctoRPKI has not
updated its processing to the recent standard and still serves
the content of a manifest with an expired CRL. Since CRLs are
so important for a manifest’s processing, we investigated the
robustness and uniformity of CRL processing. According to
[RFC6487] there are several requirements for the CRL format
and processing; e.g., CRLs must contain two mandatory exten-
sions (CRL Number and Authority Key Identifier). OctoRPKI
and rpki-client ignore a missing extension. Furthermore, we
observe that missing non-optional CRL fields signature, sig-
natureAlgorithm or issuer do not stop the CRL from being
processed, and the manifest is accepted for OctoRPKI. Addi-
tionally, Routinator is the only implementation which requires
a much stricter formatting of the CRL number extension than
all other parties. We further evaluated the parsing of snapshots
and ROAs. OctoRPKI is the only RP that does not check
concurrency of the session id parameter in the notification and
snapshot files, thus parsing files with inconsistent IDs against
the requirements of [RFC8182]. This error exposes the affected
RPs to replay attacks.

ROA parsing. Parsing of ROAs is a vaguely specified part
of the RFC. The ROA-specific standard [RFC6482] and its suc-
cessor [RFC6488] have few specifics about how to treat ROAs
and corner cases. We discovered two main inconsistencies
resulting from undefined cases in the RFC. When non-critical
ROA schema fields such as MaxLength contain non-integer
content, all RPs except for OctoRPKI will drop that ROA.
Additionally, the format of ipAddrBlocks, the ROA field where
the prefix-AS pairs are stored, can be provided two ways as
depicted in Figure 15 in Appendix. Routinator has a very strict
parsing rule that no other RP supports. According to the strict
parsing, the ipAddrBlocks list can only contain two entries, for
IPv4 or IPv6. The general parsing method as implemented by
rpki-client, OctoRPKI and Fort allows for multiple entries with
the same IP family within the field. [RFC6482] references the
format to [RFC3779], which explicitly defines the field as a
sequence, not a set. This implicitly allows for multiple fields
of the same IP family. For a more detailed enumeration of the
RFC inconsistencies refer to Appendix C.

Routinator OctoRPKI Fort rpki-client
0.13.0-dev v1.5.10 1.5.3 8.2

TABLE V: Tested relying party versions.

VII. EXTENT OF VULNERABILITIES ON THE INTERNET

We evaluate the extent to which networks on the Internet
are affected by the vulnerabilities found in Section VI. The
evaluations in Section VI were conducted using the latest RP
versions, listed in Table V. For the analysis, we log all RP
instances querying publication points in April 2023 and extract
their version number from their agent header.

(a) Vulnerable ASes. (b) Path-Traversal & DoS.

Fig. 11: Ratio of ASes vulnerable to RPKI downgrade.

A. Impact of Attacks

Vulnerable RP deployments. In our evaluation, we found
18 critical vulnerabilities in the RP implementations. Figure 10
shows a breakdown of the ratio of RP instances deployed on
the Internet that are vulnerable to our attack vectors. The RPKI
poisoning attack on Routinator affects 79.4% of all Routinator
instances. The remaining 20.6% instances are vulnerable to
the path traversal but not to the poisoning attack. Malicious
PPs can still store custom payloads on the host’s drive. All
Routinator, OctoRPKI and Fort deployments are vulnerable
to the discovered DoS attacks (Table III). So far, we haven’t
found any vulnerabilities on the rpki-client.

Affected ASes. We approximate the ratio of RPKI-
protected networks that would lose RPKI protection in case
an adversary exploits the crashes in Table III. Figure 11
describes the ratio of ASes immediately vulnerable to our
attacks. According to Figure 11a only 12.4% of all ASes are
safe from path traversal and crashes of RPs. The remaining
87.6% of ASes can have their RPKI protection downgraded.
In Figure 11b we show that 45.7% of the vulnerable ASes
are affected both by RPKI poisoning and DoS attacks. The
remaining 41.9% are vulnerable only to DoS attacks. Overall,
RPKI protection of at least 354,869 prefixes can be disabled.

We also found validation inconsistencies, that led to valida-
tion discrepancies in different RPs. We found these inconsis-
tencies by comparing VRP entries generated by the different
RPs. We further ran all RPs against the real-world RPKI data
to find inconsistencies already manifesting on the Internet. We
confirmed the existence of VRP inconsistencies if the VRP
sets of all RPs are not identical.

B. Vulnerable Prefixes During Benign Network Conditions

Discrepancies in VRPs. Previous work [51] attributed
differences in real-world VRPs’ entries to errors in the com-
munication between the PPs and the RPs, but not to processing
inconsistencies. However, our investigation shows that this
interpretation is incorrect. To check for network failures, we
analyzed logs and communication between our RPs and the
repositories they queried, confirming their connection. We also
downloaded the VRP cache of every RP and analyzed the
contents with CURE. Additionally, to mitigate inconsistencies
due to network errors or repository states, we started the
execution of the RPs simultaneously on a well-connected
network. The validation of the RP outputs resulted in the
following number of VRP entries on 27th of June 2023:
Routinator: 441,770 VRPs | Fort: 435,002 VRPs
OctoRPKI: 434,074 VRPs | rpki-client: 441,777 VRPs

The different numbers of VRP entries indicate that pro-
cessing inconsistencies are prevalent in the RPKI ecosystem.

12

We pin-point the cause of inconsistencies by running all real-
world objects against the RPs using the standalone mode of
CURE. This allows us to find individual objects for which
RPs reach differing conclusions on their validity. However,
running real-world objects against the RPs with CURE intro-
duced an additional challenge. These objects are signed by
an external entity with an unknown private key, and contain
fields indicating specifics of their publication, like domain
name, parent authority, or storage location. Thus running these
objects without modification in the CURE setup would lead to
validation failures of all objects, not allowing any inferences
on discrepancies between RPs. To circumvent the problem,
we enabled CURE to dynamically adapt to the objects, e.g.
creating parent authorities with appropriate names or locations,
and signing objects with a CURE private key. With this
setup, we found that two inconsistencies that CURE discovered
during fuzzing are already affecting validation results of real-
world RPKI deployments. The first processing inconsistency
relates to the processing of prefix lengths. We observe that
OctoRPKI discards prefixes with a length larger than the
maximum allowed prefix length in BGP, /24 for IPv4 and /48
for IPv6. This leads to OctoRPI discarding 1744 prefixes of
current RPKI objects.

The second inconsistency found by CURE relates to the
issuer name in the EE-certificate of ROAs. Certificates that
contain issuer names which are not of the type CommonName
or SerialNumber are discarded by Fort. We observe that a
subset of objects published in the RPKI use an additional
optional issuer name, using the type OrganisationName. The
majority of these objects are issued by Amazon. Not accepting
the OrganisationName attribute leads to Fort discarding 6405
IP prefixes, opening them up to prefix hijacks in all systems
using Fort. The victims of this problem do not have any means
of noticing the missing prefixes without specifically testing
if these objects are accepted by Fort. This problem results
from the vagueness of the RFC, which leads to unprotected
resources. This is especially severe for a cloud provider like
Amazon since many systems might have outsourced services
into the cloud, thus increasing the scope of the hijack and
making the outcome extremely critical.

These differences are problematic, as objects, deemed valid
by one RP, are not accepted by another, expose the protected
prefixes to hijacks. The resource owner that issues the ROA
has no indication which RPs accept the published objects, and
it is thus likely that many resource owners are not aware that
their resources are not protected in networks with certain RPs.

Affected prefixes. We analyze the inconsistencies in the
VRP caches and discovered major companies among the
affected victims: Amazon (AS14618 & AS16509), Microsoft
(AS8075), IaaS provider DediPath (AS35913), cybersecurity
company Path Networks (AS396998) and global Internet
provider Hurricane (AS6939). These entities have several
prefixes unprotected by Fort and OctoRPKI i.e., 13% of all RPs
do not propagate many of their ROAs to routers. We observe
a total discrepancy of almost 6K prefixes not covered by
OctoRPKI/Fort but present in the Routinator/rpki-client VRP
cache. We discover 229 ASes do not have all their prefixes
covered in Fort, compared to full coverage in rpki-client and
Routinator. The number goes up to 526 ASes for OctoRPKI.
Despite offering the best VRP coverage on the Internet, we
find inconsistent coverage between Routinator and rpki-client
as well. Namely, Routinator provides coverage for all resources

of large providers like the Saudi Telecom Company and TDC
Holdings (formerly, Tele Denmark Communications) while
rpki-client does not accept major /12-14 IPv4 and /46-48 IPv6
prefixes from them.

VIII. CONCLUSIONS

RPKI is used as production grade software in already
37.8% of the networks to authenticate routes in BGP an-
nouncements. Vulnerabilities and bugs can be detrimental to
security and correctness of RPKI validation. However, fuzzing
RP software implementations is hard. RPs are complex and
require a multitude of auxiliary objects and cryptographic
computations, they support 9 different data types, each with
its own processing logic. In this work we explain how to
overcome the identified obstacles and develop a novel tool for
fuzzing RPs. Thanks to CURE, we discover vulnerabilities and
RFC inconsistencies in all popular RP implementations. We
identify 17 DoS-inducing crashes, 1 path traversal vulnerability
and at least 7 critical RFC inconsistencies. We show how these
flaws can be exploited for attacks and we find discrepancies
in RPKI validation even under common network conditions.

One of the main factors causing the flaws is that RPKI
standards provide a general overview of RP functionalities
but leave the corner cases and non-critical field interpretations
up to the developers. The standards typically need to offer
some flexibility of implementation to allow for competition
among products meeting the standard. On the other hand, this
freedom becomes a problem when non-critical corner cases
and permissive parsings can be exploited for attacks or create
inconsistent validation results in different RP implementa-
tions. It is therefore important to avoid standards that wind
up allowing implementations that defeat the purpose of the
standard. The parsing and validation inconsistencies create a
twofold problem: PP software does not have a strict schema to
guarantee every input is parsed correctly by every RP in use,
and conversely, some ROAs will not be correctly propagated
throughout the Internet due to different parsing preferences
by RPs, despite being legitimately issued. This is a silent
downgrade of RPKI for many legitimate ROA issuers who
believe to be protected across the entire Internet, when in fact
many providers discard their ROAs for no good reason. Our
work shows that the RPKI software has not matured for pro-
duction deployments. We hope that our work will inspire the
community to develop rigorous requirements on the canonical
behavior of RPKI validation. We make our fuzzing system
and the CURE tool public to enable developers to improve the
quality of their RPKI software. The code can be downloaded
at https://github.com/rp-cure/rp-cure.

ACKNOWLEDGEMENTS

We thank our students Baran Akcin and David Brei-
ding from the Cybersecurity-Seminar at Goethe-Universität
for discovering the FORT vulnerability. We are grateful to
Christian Rossow and Amir Herzberg for their comments on
our research. This work has been co-funded by the German
Federal Ministry of Education and Research and the Hessen
State Ministry for Higher Education, Research and Arts within
their joint support of the National Research Center for Applied
Cybersecurity ATHENE and by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) SFB 1119.

13

REFERENCES

[1] S. M. Bellovin, “Security problems in the tcp/ip protocol suite,” ACM
SIGCOMM Computer Communication Review, vol. 19, no. 2, pp. 32–
48, 1989.

[2] Arstechnica, “BGP event sends European mobile traffic through China
Telecom for 2 hours,”
https://arstechnica.com/informationtechnology/2019/06/bgp-mishap-
sends-europeanmobile-traffic-through-china-telecom/ -for-2-hours,
2019.

[3] H. Ballani, P. Francis, and X. Zhang, “A Study of Prefix Hijacking and
Interception in the Internet,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 37. ACM, 2007, pp. 265–276.

[4] S. Janardhan, “More details about the October 4 outage,”
https://engineering.fb.com/2021/10/05/networking-traffic/outage-
details/, 2021.

[5] R. NCC, “YouTube Hijacking: A RIPE NCC RIS case study,” 2008.
[6] Renesys, “The New Threat: Targeted Internet Traffic Misdirection,”

http://www.renesys.com/2013/11/mitm-internet-hijacking/, 2013.
[7] A. Toonk, “Hijack Event Today by Indosat,”

http://www.bgpmon.net/hijack-event-today-by-indosat/, 2014.
[8] A. Toonk, “Turkey Hijacking IP Addresses for Popular Global

DNSProviders,”
https://www.bgpmon.net/turkey-hijacking-ip-addresses-for-popular-/ -
global-dns-providers/, 2014.

[9] P.-A. Vervier, O. Thonnard, and M. Dacier, “Mind Your Blocks: On the
Stealthiness of Malicious BGP Hijacks,” in NDSS, 2015.

[10] M. Lepinski and K. Sriram, “Rfc 8205: Bgpsec protocol specification,”
2017.

[11] A. Azimov, E. Bogomazov, R. Bush, K. Patel, and J. Snijders,
“Verification of AS PATH Using the Resource Certificate Public
Key Infrastructure and Autonomous System Provider Authorization,”
November, 2020, https://datatracker.ietf.org/doc/html/draft-ietf-sidrops-
aspa-verification-06.

[12] C. Morris, A. Herzberg, B. Wang, and S. Secondo, “Bgp-isec: Improved
security of internet routing against post-rov attacks,” in NDSS, 2024.

[13] T. Hlavacek, H. Schulmann, N. Vogel, and M. Waidner, “Keep your
friends close, but your routeservers closer: Insights into RPKI validation
in the internet,” in 32nd USENIX Security Symposium, USENIX Security
2023, Anaheim, CA, USA, August 9-11, 2023, J. A. Calandrino and
C. Troncoso, Eds. USENIX Association, 2023, pp. 4841–4858.

[14] T. Hlavacek, P. Jeitner, D. Mirdita, H. Shulman, and M. Waidner,
“Behind the scenes of RPKI,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2022, Los
Angeles, CA, USA, November 7-11, 2022. ACM, 2022, pp. 1413–1426.

[15] H. Shulman, N. Vogel, and M. Waidner, “Poster: Insights into global
deployment of rpki validation,” in Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, 2022,
pp. 3467–3469.

[16] T. Chung and W. Li, “Rovista,” 2023. [Online]. Available: https:
//rovista.netsecurelab.org/

[17] APNIC, “Rov measurement,” 2023, accessed: 28.06.2023. [Online].
Available: https://stats.labs.apnic.net/rpki

[18] “Stalloris: RPKI Downgrade Attack,” in 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA: USENIX Association,
Aug. 2022. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/hlavacek

[19] T. Hlavacek, P. Jeitner, D. Mirdita, H. Schulmann, and M. Waidner,
“Beyond limits: How to disable validators in secure networks,” in Pro-
ceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM
2023, New York, NY, USA, 10-14 September 2023, H. Schulzrinne,
V. Misra, E. Kohler, and D. A. Maltz, Eds. ACM, 2023, pp. 950–
966.

[20] D. Mirdita, H. Shulman, and M. Waidner, “Poster: Rpki kill switch,” in
Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022, pp. 3423–3425.

[21] K. van Hove, J. van der Ham, and R. van Rijswijk-Deij, “Rpkiller:
Threat analysis from an RPKI relying party perspective,” CoRR, vol.
abs/2203.00993, 2022. [Online]. Available: https://doi.org/10.48550/
arXiv.2203.00993

[22] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the
art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218,
2018.

[23] J. Ba, M. Böhme, Z. Mirzamomen, and A. Roychoudhury, “Stateful
greybox fuzzing,” in 31st USENIX Security Symposium (USENIX Se-
curity 22), 2022, pp. 3255–3272.

[24] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[25] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast internet-
wide scanning and its security applications.” in Usenix Security, vol.
2013, 2013.

[26] C. Partridge and M. Allman, “Ethical considerations in network mea-
surement papers,” Communications of the ACM, vol. 59, no. 10, pp.
58–64, 2016.

[27] J. Krupp, I. Grishchenko, and C. Rossow, “Ampfuzz: Fuzzing for am-
plification ddos vulnerabilities,” in 31st USENIX Security Symposium,
USENIX Security 2022, Boston, MA, USA, August 10-12, 2022, K. R. B.
Butler and K. Thomas, Eds. USENIX Association, 2022, pp. 1043–
1060.

[28] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kafl: Hardware-assisted feedback fuzzing for os kernels.” in USENIX
Security Symposium, 2017, pp. 167–182.

[29] J. De Ruiter and E. Poll, “Protocol state fuzzing of {TLS} implemen-
tations,” in 24th {USENIX} Security Symposium ({USENIX} Security
15), 2015, pp. 193–206.

[30] R. Kande, A. Crump, G. Persyn, P. Jauernig, A. Sadeghi, A. Tyagi, and
J. Rajendran, “Thehuzz: Instruction fuzzing of processors using golden-
reference models for finding software-exploitable vulnerabilities,” in
31st USENIX Security Symposium, USENIX Security 2022, Boston,
MA, USA, August 10-12, 2022, K. R. B. Butler and K. Thomas, Eds.
USENIX Association, 2022, pp. 3219–3236.

[31] M. Eddington, “Peach fuzzing platform,” Peach Fuzzer, vol. 34, pp.
32–43, 2011.

[32] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association, Aug. 2020.

[33] K. Serebryany, “Oss-fuzz-google’s continuous fuzzing service for open
source software,” in USENIX Security symposium. USENIX Associa-
tion, 2017.

[34] S. K. R. Kakarla, R. Beckett, T. Millstein, and G. Varghese, “{SCALE}:
Automatically finding {RFC} compliance bugs in {DNS} name-
servers,” in 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), 2022, pp. 307–323.

[35] Z. Wang, Y. Zhang, and Q. Liu, “Rpfuzzer: A framework for discovering
router protocols vulnerabilities based on fuzzing.” KSII Transactions on
Internet & Information Systems, vol. 7, no. 8, 2013.

[36] P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated whitebox
fuzz testing.” in NDSS, vol. 8, 2008, pp. 151–166.

[37] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proceedings of the 29th ACM SIGPLAN conference on
programming language design and implementation, 2008, pp. 206–215.

[38] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp.
1032–1043.

[39] S. Yan, C. Wu, H. Li, W. Shao, and C. Jia, “Pathafl: Path-coverage
assisted fuzzing,” in Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security, 2020, pp. 598–609.

[40] Google, “american fuzzy lop,” 2023. [Online]. Available: https:
//github.com/google/AFL

[41] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov, “Using
frankencerts for automated adversarial testing of certificate validation
in ssl/tls implementations,” in 2014 IEEE Symposium on Security and
Privacy. IEEE, 2014, pp. 114–129.

[42] X. Zhou and B. Wu, “Web application vulnerability fuzzing based on
improved genetic algorithm,” in 2020 IEEE 4th Information Technology,
Networking, Electronic and Automation Control Conference (ITNEC),
vol. 1. IEEE, 2020, pp. 977–981.

14

https://arstechnica.com/informationtechnology/2019/06/bgp-mishap-sends-europeanmobile-traffic-through-china-telecom\ -for-2-hours
https://arstechnica.com/informationtechnology/2019/06/bgp-mishap-sends-europeanmobile-traffic-through-china-telecom\ -for-2-hours
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
http://www.renesys.com/2013/11/mitm-internet-hijacking/
http://www.bgpmon.net/hijack-event-today-by-indosat/
https://www.bgpmon.net/turkey-hijacking-ip-addresses-for-popular-\ -global-dns-providers/
https://www.bgpmon.net/turkey-hijacking-ip-addresses-for-popular-\ -global-dns-providers/
https://datatracker.ietf.org/doc/html/draft-ietf-sidrops-aspa-verification-06
https://datatracker.ietf.org/doc/html/draft-ietf-sidrops-aspa-verification-06
https://rovista.netsecurelab.org/
https://rovista.netsecurelab.org/
https://stats.labs.apnic.net/rpki
https://www.usenix.org/conference/usenixsecurity22/presentation/hlavacek
https://www.usenix.org/conference/usenixsecurity22/presentation/hlavacek
https://doi.org/10.48550/arXiv.2203.00993
https://doi.org/10.48550/arXiv.2203.00993
https://github.com/google/AFL
https://github.com/google/AFL

[43] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware
greybox fuzzing,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 2019, pp. 724–735.

[44] G. Torres, D. Pesavento, J. Shi, and L. Benmohamed, “Nfdfuzz: A state-
ful structure-aware fuzzer for named data networking,” in Proceedings
of the 7th ACM Conference on Information-Centric Networking, 2020,
pp. 169–171.

[45] H. Kim, Y. Jeong, W. Choi, D. H. Lee, and H. J. Jo, “Efficient ecu
analysis technology through structure-aware can fuzzing,” IEEE Access,
vol. 10, pp. 23 259–23 271, 2022.

[46] Google, “Atheris: A coverage-guided, native python fuzzer,” 2023.
[Online]. Available: https://github.com/google/atheris

[47] Cisco, “ Routing Configuration Guide for Cisco ASR 9000 Series
Routers, IOS XR Release 6.2.x ,”
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-
r6-2/routing/configuration/guide/b-routing-cg-asr9000-62x/b-routing-
cg-asr9000-62x chapter 010.html, 2023.

[48] J. Networks, “Junos OS: BGP User Guide,”
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/
ref/statement/session-edit-routing-options-validation.html, 2023.

[49] FRR, “FRRouting,”
https://docs.frrouting.org/en/latest/bgp.html#configuring-rpki-rtr-cache-
servers, 2023.

[50] N. R. Monitor, “NIST RPKI Monitor,”
https://rpki-monitor.antd.nist.gov/, 2023.

[51] P. H. Friedemann, N. Rodday, and G. D. Rodosek, “Assessing the rpki
validator ecosystem,” in 2022 Thirteenth International Conference on
Ubiquitous and Future Networks (ICUFN). IEEE, 2022, pp. 295–300.

APPENDIX A
DETAILED OVERVIEW OF DOS ERRORS

A. Routinator

1) MFT#1 is triggered through manifest processing
when content is truncated and the manifest oid is
not correctly encoded. Error is thrown in the external
library bcder.

i f &c o n t e n t . s l i c e () [. . l e n] ==
s e l f . 0 . a s r e f () {

c o n t e n t . s k i p a l l () ? ;
Ok (()) }

2) ROA#2 applies to ROA processing. It is triggered
by the decoding library bcder in source.rs:442. The
error raises an exception and causes a crash when the
given content length is set lower than the length of the
actual content. This error is triggered in engine.rs:792
of Routinator when the erroneous manifest is first
getting decoded.

i f l e t Some (c u r) = s e l f . l i m i t {
match l i m i t {

Some (l i m i t)=> a s s e r t ! (l i m i t <=c u r) ,
None => p a n i c ! (” r e l i m i t i n g t o

u n l i m i t e d ”) ,
}

}

3) ROA#3 is triggered by the rpki-rs library, namely
the file ipres.rs on line 1237. The piece of code
that triggered the crash was meant to create the
Prefix object for Routinator, however the prefix length
should not be larger than 128 bits and in case it is the
code panics due to an assertion error. This leads to a
crash in Routinator. The following is the function in
rpki-rs that leads to the crush.

pub fn new<A: I n t o<Addr>>(add r : A, l e n : u8)
−> S e l f { a s s e r t ! (l e n <= 128) ;
P r e f i x {

add r : add r . i n t o () . to min (l e n) ,
l e n

}
}

4) MFT#4 applies to manifest processing and is trig-
gered by the decoding library bcder in tag.rs:429.
This crash is caused by an uncaught error where
length of tag data does not match expectations.

d a t a [i] = s o u r c e . s l i c e () [i] ;

5) CER#5 This crash is thrown by the bcder library
when processing certificates due to an assertion
statement. The data malformation is a length non-
compliant certificate.

fn advance (&mut s e l f , l e n : u s i z e) {
i f l e t Some (l i m i t) = s e l f . l i m i t {
a s s e r t ! (

l e n <= l i m i t ,
” advanced p a s t end of l i m i t ”

) ;

6) CER#6 appears when malformed certificates are pro-
cessed. The error throws a panic due to abrupt end
of data.

fn advance (&mut s e l f , l e n : u s i z e) {
a s s e r t ! (

s e l f . l e n >= s e l f . pos + len ,
” advanced p a s t t h e end of d a t a ”

) ;
s e l f . pos += l e n ;}

7) CER#7 is triggered by another external decoding
library bcder/src/decode/source.rs for malformed cer-
tificates. The crash happens due to the failed decoding
of octet strings with a misplaces assertion.

fn advance (&mut s e l f , l e n : u s i z e) {
a s s e r t ! (l e n <= s e l f . c u r r e n t . l e n ()) ;
s e l f . pos = s e l f . pos + l e n . i n t o () ;
b y t e s : : Buf : : advance (&mut s e l f . c u r r e n t , l e n)
}

8) CER#8 is caused by a panic during certificate pro-
cessing when the Attribute Value of one of the
RDNSequence elements does not comply with the
expected type (here PrintableString).

p a n i c ! (” i l l e g a l o b j e c t i d e n t i f i e r
(l a s t o c t e t has b i t 8 s e t) ”) ;

9) MFT#9 is triggered by the rpki-rs library during
manifest parsing in file manifest.rs. The error is
thrown when the manifest contains an invalid char-
acter.

fn n e x t (&mut s e l f)−>Option<S e l f : : I tem>{
s e l f . 0 . d e c o d e p a r t i a l (| cons | {

Fi leAndHash : : t a k e o p t f r o m (cons)
}) . unwrap ()

}

15

https://github.com/google/atheris
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r6-2/routing/configuration/guide/b-routing-cg-asr9000-62x/b-routing-cg-asr9000-62x_chapter_010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r6-2/routing/configuration/guide/b-routing-cg-asr9000-62x/b-routing-cg-asr9000-62x_chapter_010.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r6-2/routing/configuration/guide/b-routing-cg-asr9000-62x/b-routing-cg-asr9000-62x_chapter_010.html
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/ref/statement/session-edit-routing-options-validation.html
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/ref/statement/session-edit-routing-options-validation.html
https://docs.frrouting.org/en/latest/bgp.html#configuring-rpki-rtr-cache-servers
https://docs.frrouting.org/en/latest/bgp.html#configuring-rpki-rtr-cache-servers
https://rpki-monitor.antd.nist.gov/

Relying Party ROA MFT CRL CERT Other

Routinator
2

{bcder/source.rs:442,
rpki-rs/ipres.rs:1237}

3
{bcder/oid.rs:115,

rpki-rs/manifest.rs:372,
bcder/tag.rs:429}

-

4
{bcder/source.rs:547-661,

bcder/octet.rs:598,
bcder/oid.rs:373}

2
{rrdp.rs:1974, rpki-rs/uri.rs:107}

Fort - - - - 1
{pdu.h:134 }

OctoRPKI - 3
{ber.go:146-152-194}

2
{pki.go:146-359} - 1

{octorpki.go:1318}
rpki-client - - - - -

TABLE VI: Software issues triggering crashes and path traversal in RP implementations.
crashID trigger:line

MFT #1 8MhhkLnKUyVS bcder/oid.rs:115
ROA #2 6mFeYdrlmPIh bcder/source.rs:442
ROA #3 ZxCVpV04nURw rpki-rs/ipres.rs:1237
MFT #4 27rOGfrl8PuH bcder/tag.rs:429
CER #5 fassdfaewwe bcder/source.rs:547
CER #6 fassdfaewwe 2 bcder/source.rs:661
CER #7 fassdfaewwe 3 bcder/octet.rs:598
CER #8 fassdfaewwe 4 bcder/oid.rs:373
MFT #9 XahhkLnKUyVS rpki-rs/manifest.rs:372

crashID trigger:line
MFT#1 fYjzQloFL7ej ber.go:146
MFT#2 fYjzQloFL7ej 2 ber.go:152
MFT#3 tR1izFWr3V8q ber.go:194
CRL#4 wmS41yM39Hau pki.go:359
CRL#5 wmS41yM39Hau 2 pki.go:146

B. OctoRPKI

1) MFT#1 is triggered during the decoding of a manifest
from BER to DER format and the length of a field is
shorter than expected by the format hence an ”index
out of range” panic.

i f t a g == 0x1F {
t a g = 0
f o r b e r [o f f s e t] >= 0x80 {

t a g = t a g *128 + b e r [o f f s e t] − 0x80
o f f s e t ++

}
t a g = t a g *128 + b e r [o f f s e t] − 0x80
o f f s e t ++

}

2) MFT#2 is similar in nature to MFT#1 except for
being triggered at another bytetraversing part of the
code. Misconfigured MFT content will trigger a va-
riety of bugs in the source code.

3) MFT#3 is another crash triggered applies during the
reading and decoding of a BER encoded manifest.
When the content is shorter than expected a runtime
index out of error is thrown panic: runtime error:
index out of range [199] with length 199.

4) CRL#4 is triggered when a faulty AuthorityKeyIden-
tifier is supplied in a CRL. The problematic line is
364 in pki.go. OctoRPKI will set the valid value to
false and it recognizes that the object is not valid
because the AKI is incorrect, but it still accesses
the parent.File value, which leads to a nil-pointer
expression thus crashing the client.

i f p k i f i l e . P a r e n t . P a r e n t . Pa th !=
r e s . P a r e n t . F i l e . Pa th {

r e t u r n f a l s e , n i l , n i l ,
fmt . E r r o r f (”CRL %s does n o t match
wi th t h e p a r e n t %s ” , p k i f i l e . Path ,
p k i f i l e . P a r e n t . P a r e n t . Pa th)

}

5) Crash#5 is triggered by the readObject function in
ber.go. The function assumes appropriate formatting

and the respecting of tagging bytes and has appropri-
ate size expectations, without any checks and catches
for noncomforming files. As a result malformations
can throw runtime errors and crash the entire appli-
cation.

APPENDIX B
PATH TRAVERSAL - VULNERABLE CODE

f u n c t i o n f r o m b h t t p s (b y t e s) −> R e s u l t {
c h e c k u r i a s c i i (& b y t e s) ? ;
scheme , s t a r t = f r o m p r e f i x (b y t e s) ? ;
i f ! scheme . i s h t t p s () {

r e t u r n E r r (E r r o r : : BadScheme)
}
. . . / / Re tu rn R e s u l t

}

Fig. 12: RRDP URI Parsing - Without Path Traversal check.

f u n c t i o n f rom b rsync (b y t e s) −> R e s u l t {
c h e c k u r i a s c i i (& b y t e s) ? ;
i f ! s t a r t s w i t h (& b y t e s , b ” r s y n c : / / ”) {

r e t u r n E r r (E r r o r : : BadScheme)
}
c h e c k p a t h (b y t e s) ? ;

. . . / / Check URI has a t l e a s t 3x ’ / ’

. . . / / Re tu rn R e s u l t
}

Fig. 13: Rsync URI Parsing - With Path Traversal check.

f u n c t i o n c h e c k p a t h (p a t h) −> R e s u l t {
l e t mut i t e m s = p a t h . s p l i t (’ / ’) ;
l oop {

. . . / / Check i f i t em e x i s t s
i f i t em . i s e m p t y () {

b r e a k
}
i f i t em == b ” . . ” | | i t em == b ” . ” {

r e t u r n E r r o r
}

}
i f i t e m s . n e x t () . i s some () {

r e t u r n E r r o r
}

}

Fig. 14: Function to check for path traversals.

16

APPENDIX C
RFC INCONSISTENCY DETAILED BREAKDOWN

RFC 9286 Section 4 suggests that users match the va-
lidity interval between manifest and CRL. However, lack of
matching does is not immediate ground for discarding the
content of the CA. The paragraph in question: Each manifest
encompasses a CRL, and the nextUpdate field of the manifest
SHOULD match that of the CRL’s nextUpdate field, as the
manifest will be reissued when a new CRL is published.
RPs behave different with regards to this optional suggestion
thus leading to processing discrepancies. In our experiment,
if we feed RPs with a valid manifest, a valid ROA and an
expired CRL, all parties will drop the manifest’s content except
for OctoRPKI which continues to serve the ROA despite an
expired CRL.

RFC 9286 Section 5.1.2 the RFC specifies the generation
format and validation musts for manifests. We observe in-
consistencies in paragraph 4. The following requirement ”The
validity interval of the EE certificate MUST exactly match the
thisUpdate and nextUpdate times specified in the manifest’s
eContent. (An RP MUST NOT consider misalignment of the
validity interval in and of itself to be an error.)” None of
the RPs check or care about the misalignment issue and such
instances are ignored.

According to RFC6487 Section 5 the CRL must fulfill
certain conditions to be acceptable, namely ”An RPKI CA
MUST include the two extensions, Authority Key Identifier
and CRL Number, in every CRL that it issues.” but according
to our experiment if the CRL Number extension is missing:
OctoRPKI and rpki-client continue to process the CRL thus
disregarding the RFC. Additionally, the RPs behave differently
according to the parsing of CRLs even when they are provided.
Namely when the signature field in the CRL schema is false or
missing, OctoRPKI continues to accept the file. The same issue
happens when the schema fields signatureAlgorithm or issuer
are missing from the CRL. Additionally the CRL number is
expected to have a specific format in Routinator. This is a
strict rule of formatting that only Routinator follows and is not
specifically defined in any RFC, therefore any non-compliant
CRL will be discarded. However, all other RPs parse the value
as is. The field in question is a non-critical extension but it
does lead to Routinator alone discarding entire CRLs when
non-compliant. Lastly, lack of CRL in the MFT is accepted
by OctoRPKI as a potential scenario and content is processed,
other RPs will deny that manifest.

RFC6482 Section 3 describes the components of the ROA
schema and specifically how the field ipAddrBlocks should
be configured. The RPKI RFC in itself is not very clear on
the appropriate formatting of this sequence ”The ipAddrBlocks
field encodes the set of IP address prefixes to which the AS
is authorized to originate routes. Note that the syntax here is
more restrictive than that used in the IP address delegation ex-
tension defined in RFC 3779...” Accordingly, if we look at the
core RFC3779 Section 2.2.3.1, the definition of ipAddrBlocks
is as follows The IPAddrBlocks type is a SEQUENCE OF
IPAddressFamily types.. Unlike SETs, Sequences do allow for
repetition of elements. The RFCs therefore are not strict in the
way ipAddrBlocks should organized i.e. if the field can contain
multiple sequence elements with the same addressFamily or
if it can only contain one element for each address family.
Routinator is very strict in this regard, it will not process

ROAs that have multiple entries of the same family within
the ipAddrBlocks, but all the other RPs will behave differently
and accept such ROAs. This behavior is not explicitly defined
in the RFC and Routinator being the most used RP is very
strict in this regard. This could cause ROA loss if some
publication point does not comply with this restrictive not
explicit approach.

Fig. 15: ROA ipAddrBlocks formatting.

RFC6482 has no explicit rules about invalid optional non-
critical ROA fields. We observed that when field MaxLength is
not a parseable integer, all RPs except for OctoRPKI will drop
the ROA. This incongruent behavior can lead to unequal ROA
distribution across the network and lack of clear guidelines
for future publication point software. We also observed RPs
processing ROAs differently according to the inheritance status
in the EE-certificate of the AS-ID value. Namely, all except
rpki-client accept specified inheritance for ROA AS-ID. The
RFCs have no specifications in this regard either.

RFC6487 Section 4 describes the profile and characteris-
tics certificates must display to be acceptable by RPs. Section
4.2 requires for 2 or more serial numbers of certificates to be
unique but according to our observations only Fort and rpki-
client adhere to this requirement by denying identical certifi-
cates. Routinator and OctoRPKI accept the identical certificate
hashes. Section 4.8.4 defines the extension key usage and
certificate resources as critical and must be present however
when these extensions are not sent to critical, again, only Fort
and rpki-client enforce the requirement by dropping certificates
and the other RPs accept them.
RFC8182 Section 3.4.3 defines mandatory processing steps
for Snapshot. According the the our tests when session id in
the notification.xml file does not match the session id in the
snapshot.xml, OctoRPKI is the only RP that does not drop the
snapshot file, even though the RFC demands rejection in case
of incompatibility. This error can make affected RPs vulnerable
to replay attacks. APPENDIX D

RPKI OBJECTS

Independent of the mode of operation, the design goal of
CURE is the ability to create a valid RPKI repository around
arbitrary objects. Understanding how this can be achieved
necessitates understanding the role and interaction of all object
types in the RPKI. Generally, objects in the RPKI serve two
different purposes, either containing a payload with informa-
tion for external use, or containing objects to serve the RPKI
infrastructure for internal processing in the RPs, ensuring
integrity and authenticity. Currently, three different objects
containing payload and six objects for internal processing are
standardized.

Route Origin Authorizations (ROAs) are the main pay-
load of the RPKI. Each ROA contains an AS number and a
set of IP resources, specified as prefixes or IP ranges. A ROA
attests that a given AS number is authorized to announce the
IP resources contained in the object over BGP.

AS Provider Authorizations (ASPAs) Autonomous Sys-
tem Provider Authorization (ASPA) objects bind a customer

17

AS number and the authorized provider AS number for its
announcements. The AS path verification with RPKI checks if
the routes received from customers or peers comply with the
ASPAs to prevent path manipulation attacks.

Ghostbuster Records (GBRs) contain information on con-
tacts responsible for a certain domain. GBRs are currently not
commonly used, as we could only observe 3 GBRs currently in
use. To distribute these payloads to the BGP routers of ASes,
a number of additional objects are standardized that ensure the
integrity and authenticity of the payloads.

X.509 Cryptographic Certificates are used to ensure
authenticity of objects in the RPKI. Each certificate contains
a private/public RSA key pair that is used to sign child
objects, namely either object payloads or other certificates
sub-allocating owned resources. The RPKI distinguishes two
types of X.509 certificates used. End-Entity (EE) certificates
are always used in combination with a single object. They
contain a one-time key that is used to sign the digest of the
object it authenticates, attesting its validity. EE-Certificates
are stored together with the authenticated object inside a
single file. While ee-certificates authenticate the validity of
individual objects, there do not provide a means to verify
the resources claimed in a given payload. Thus the RPKI
also utilizes Certificate Authorities (CAs) certificates. Each
CA certificate holds information on the resources owned by
a specific CA, i.e. owned AS numbers and IP address spaces.
A CA is only authorized to sign objects that claim ownership
over resources, i.e. IP and ASN ranges, that are stated in the
CA certificate. The valid ownership of the resources claimed
in the CA certificate is attested by the parent CA that assigned
the resources to the CA. This concept of parent ownership
leads to the tree-like structure of the RPKI, with each CA
sub-allocating parts of their resources to child CAs, who can
issue payload objects for their assigned resources or further
sub-allocate their resources to their children.

Manifests ensure the integrity of each RPKI repository.
Each manifest contains a list of all objects present in a given
repository in combination with the hash of the corresponding
file. This allows RPs to confirm that no object in the repository

has been added, deleted, or manipulated. The manifest is
cryptographically signed with an EE-Certificate and needs to
be re-issued every time any object in the repository changes.
Each RPKI repository should contain a single manifest file.

Certificate Revocation Lists (CRLs) detail which certifi-
cates of a specific CA have been revoked. This allows CAs to
remove objects even before their validity expired. The CRL is
checked by the RPs to conclude which certificates should be
discarded, even if their cryptographic validation is successful.
Additionally to a manifest, each RPKI repository also needs
to contain a single CRL.

The files inside the repository are distributed to the RPs
over one of the RPKI communication protocols, rsync or
RRDP. While rsync is a simple file synchronization protocol,
RRDP defines additional objects that are used to efficiently
distribute RPKI objects.

Notification.xml is the entry point to each repository and
is always located at a fixed hardcoded location, that is specified
in the CA certificate that uses the publication point. The role
of the notification file is to notify RPs of the location of the
repository content as well as the current repository state. The
header of the file contain a session id and a serial number,
detailing the current state of the repository. If any object in
the repository is changed, the serial number is incremented,
informing the RPs that new content should be fetched. The
notification file links to the content of the repository by
providing the links and digests of the snapshot and delta files.

Snapshot.xml contains the entire repository content. Each
entry in the file consists of the filename of the object and
its content, as a base64 encoded byte string. The Snapshot is
updated each time the repository changes.

Delta.xml files can be used to incrementally update the
repository from a previous state. They detail the changes
to the repository since the last serial number, i.e. which
objects have been added, deleted, and modified. RPs that
previously downloaded the snapshot can use the delta files
to incrementally update their local cache without downloading
the entire snapshot file. If delta processing fails, the RP resorts
back to the snapshot file.

18

	Introduction
	Related Work
	 Background on RPKI Validation Process
	 Resolving Hurdles Towards Fuzzing RPKI
	Developing the CURE
	Generating RPKI Objects
	CURE Architecture
	Object Generation Interface
	Building a Repository
	Creating a Repository and Processing Objects
	Scaffolding the Repository

	Interacting with the RPs
	Improving Performance of the CURE
	Limitations

	 Taxonomy of Errors in RPKI
	Fuzzing Setup
	Coding Errors in RPs
	Path Traversal: RPKI Poisoning
	Crashes: RPKI Downgrade Attacks

	Cache Disparity
	RFC Inconsistencies

	 Extent of Vulnerabilities on the Internet
	Impact of Attacks
	Vulnerable Prefixes During Benign Network Conditions

	 Conclusions
	References
	Appendix A: Detailed Overview of DoS Errors
	Routinator
	OctoRPKI

	Appendix B: Path Traversal - Vulnerable Code
	Appendix C: RFC Inconsistency Detailed Breakdown
	Appendix D: RPKI Objects

