
MirageFlow: A New Bandwidth Inflation Attack on Tor

Christoph Sendner∗, Jasper Stang∗, Alexandra Dmitrienko∗, Raveen Wijewickrama†, and Murtuza Jadliwala†
∗University of Würzburg, Germany

†University of Texas at San Antonio, USA

Abstract—The Tor network is the most prominent system for
providing anonymous communication to web users, with a daily
user base of 2 million users. However, since its inception, it has
been constantly targeted by various traffic fingerprinting and
correlation attacks aiming at deanonymizing its users. A critical
requirement for these attacks is to attract as much user traffic to
adversarial relays as possible, which is typically accomplished by
means of bandwidth inflation attacks. This paper proposes a new
inflation attack vector in Tor, referred to as MirageFlow, which
enables inflation of measured bandwidth. The underlying attack
technique exploits resource sharing among Tor relay nodes and
employs a cluster of attacker-controlled relays with coordinated
resource allocation within the cluster to deceive bandwidth
measurers into believing that each relay node in the cluster
possesses ample resources. We propose two attack variants, C-
MirageFlow and D-MirageFlow, and test both versions in a
private Tor test network. Our evaluation demonstrates that an
attacker can inflate the measured bandwidth by a factor close to
n using C-MirageFlow and nearly half n∗N using D-MirageFlow,
where n is the size of the cluster hosted on one server and N is the
number of servers. Furthermore, our theoretical analysis reveals
that gaining control over half of the Tor network’s traffic can be
achieved by employing just 10 dedicated servers with a cluster
size of 109 relays running the MirageFlow attack, each with a
bandwidth of 100MB/s. The problem is further exacerbated by
the fact that Tor not only allows resource sharing but, according
to recent reports, even promotes it.

I. INTRODUCTION

In an era where Internet-based service providers, adver-
tisers, and government agencies are increasingly focused on
tracking web users and monitoring their activities, privacy-
enhancing technologies have emerged as a powerful defense
against malicious web-based user tracking. Among these
technologies, anonymous communication networks, such as
Tor [21] (short for The Onion Router), have demonstrated their
effectiveness and are rapidly gaining popularity. Tor relies on
more than 7000 volunteer-run servers, called onion routers or
relays, to route encrypted web traffic for nearly two million
users daily through anonymity-preserving circuits comprised
of anywhere between 3 to 8 (normally, 3) of these relays.

Due to its open-source nature, transparent development
process, and appeal to privacy-concerned web users, Tor has
attracted considerable attention in the research community.
Researchers have extensively investigated various attacks, in-
cluding deanonymization attempts, aiming to gain insights into
the network traffic flowing through Tor. Some of the significant
attack vectors on Tor include website fingerprinting [37], [42],
[50], [57], [63], [70], routing [69], [66], [65], end-to-end
correlation [49], [51], [54], congestion [40], [41], [46], and
side channel [43], [53] attacks. These attacks pose a realistic

threat to Tor users’ security and privacy, as there have been
multiple reports of their usage in the wild by state-sponsored
entities [62], [7], [27]. However, one common requirement for
all these attacks is that the attacker needs to attract as much
user traffic as possible to its servers or relays, all while using
as few resources as possible. How an attacker can effectively
accomplish this pre-requisite is our main focus in this paper.

As an integral part of its regular operation, the Tor network
maintains a list of active relays in the form of a consensus file
containing useful self-reported and measured state information
about the relays in the network, including the estimated
bandwidth available at each relay. Tor clients employ a path
selection algorithm which utilizes the most recent consensus
file as input. This algorithm forms communication circuits
composed of relays through which user data is transmitted. To
determine the available bandwidth at the relays, Tor employs
its bandwidth-scanning techniques that involve the establish-
ment of a two-hop measurement circuit through the relay
and performing data transfer (downloading/uploading) to a
web server along this path. By utilizing this approach, Tor
can measure the bandwidth at the relays and incorporate this
information into the consensus file.

The issue is that measurement circuits created and used
during bandwidth measurements are built using only two
relays, while traffic needs to pass through at least three relays
to ensure anonymity [29]. This makes the traffic generated by
bandwidth measurers easily distinguishable from the regular
user traffic. Once such measurement circuits are detected,
attackers can stop serving user traffic and utilize their entire
available bandwidth to forward only measurement traffic,
thereby inflating their available bandwidth during measure-
ment. It has been shown in the literature that by employing
such a strategy, attackers were able to increase their measured
bandwidth and probability of being selected for forwarding
users’ traffic up to 177× [67], [47]. Another straightforward
strategy for an inflation attack involves malicious relays mis-
reporting their available bandwidth in their descriptors [35].
These relays attempt to increase their share of users’ traffic
by providing false and exaggerated reports, regardless of their
actual bandwidth capabilities.

Our study of Tor’s bandwidth measurement mechanisms
unveils another critical weakness. Currently, nothing prevents
relay operators from deploying them on shared resources, such
as physical machines or network links. For instance, several
attacker-controlled relay nodes can be hosted using virtual ma-
chines executed on a single physical host, or, even if residing
on separate physical machines, they can share a network link.
We find out that this fact can be leveraged by attackers to even
further inflate their measured bandwidth by devoting the entire
resources of a physical host (with co-resident relays) and/or of
the network link to the currently detected measurement traffic
while dropping all the user traffic targeting not just one, but
all attacker-controlled relay nodes, thus overall increasing the
impact of previously known inflation attacks (with the factor of

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.241133
www.ndss-symposium.org

up to 177× [67], [47]) by an additional factor equal to the count
of attacker-controlled relays in the cluster. The effectiveness
of our attack diminishes when bandwidth scanners simultane-
ously measure two or more malicious relays within the cluster.
However, the impact of such co-measurements remains limited
due to the small number of bandwidth scanners responsible for
measuring the entire Tor network. Consequently, the likelihood
of such co-measurements occurring is low. Yet, it is interesting
to explore how the number of bandwidth scanners influences
the inflation factor of the proposed attack.

Contributions. Building upon the insights gained from the
above-mentioned observations, this paper provides the follow-
ing contributions:

• Novel inflation attack strategy: We introduce and inves-
tigate MirageFlow, a novel inflation attack strategy for the
Tor network. The core idea is to leverage resource sharing
within a cluster of attacker-controlled relays, allowing for
the dynamic allocation of networking and computational
resources of the entire cluster to a relay currently being
measured. Our inflation strategy can be combined with other
known strategies (e.g., false and exaggerated bandwidth self-
reporting [35], or dropping user traffic during bandwidth
measurements [67], [47]), thus providing an additional in-
flation factor and further reducing resources required for
attracting a sufficiently large amount of user traffic.

• Two MirageFlow attack variations: We propose two
attack variants: (i) C-MirageFlow, and (ii) D-MirageFlow.
In C-MirageFlow, an attacker deploys Co-resident relays
on a single physical host and dynamically assigns the
entire host’s computational and networking resources to the
measured relay. In D-MirageFlow, attacker-controlled relays
share the network link with a Dedicated server, to which
all the measurement traffic, once detected, is diverted. As
a result, each malicious relay (measured by the bandwidth
scanner) can claim the total bandwidth available on the
shared network link.

• Attack Evaluation: We evaluated both attack variations
through tests conducted in a small private Tor test network1

based on Chutney [4], and are able to empirically demon-
strate an inflation factor very close to n and n ∗ N for C-
MirageFlow and D-MirageFlow, respectively. To study the
effect of diminishing inflation due to co-measurements likely
to happen in larger networks, we studied the probability
of such co-measurements based on data collected from the
real Tor network (bandwidth files) and performed theoretical
modeling. Our analysis reveals that the inflation factor grows
almost linearly to n with up to 15 relays. However, the
attack’s potential diminishes to at least 76% of the linear
growth as the number of relays in a cluster increases.

• Studying the resilience of existing bandwidth scanning
alternatives: We investigate the resilience of other band-
width measurement techniques proposed in the literature
against MirageFlow and other inflation attack techniques
and identify pitfalls and promising directions. For instance,
we show (experimentally) that the state-of-the-art Machine
Learning (ML)-based method [73] can effectively (with F1
score 99%) and quickly (in less than 0.5 ms) distinguish
user and measurement traffic even in a 3-hop measure-

1Attack tests on real Tor network were disapproved by the Tor research
safety board

ment circuit by analyzing just headers and metrics such as
inter-arrival time of transmitted packets. This proves that
increasing the number of relays in a measurement circuit
isn’t a viable measurement alternative. From our analysis, it
follows that only methods that eliminate measurement traffic
altogether but rather leverage user traffic for bandwidth
estimations, such as [64], have the potential to provide an
inflation-resilient bandwidth measurement solution. Yet, ex-
isting solutions of this kind have limitations (e.g., vulnerable
to Sybil attacks) that need to be addressed in future work.
We also devise less intrusive mitigation strategies, such as
co-residency and measurement anomaly detection, that can
be used with currently deployed bandwidth measurement
methods.

• Analysis of Tor: In order to investigate the potential usage
of MirageFlow in the Tor network by real attackers, we
analyzed the Tor network. Our analysis revealed specific
characteristics displayed by certain Tor relays that could
potentially serve as indicators of an ongoing MirageFlow
attack. For instance, we discovered that some relay families
offer similar bandwidth and share the same uptime, while
others leverage alternate port numbers, which might imply
the co-resident execution of Tor relay clusters. While we
lack the means to definitively confirm the malicious nature
of those relays or relay families, we propose a strategy that
bandwidth scanning services could employ to validate our
hypothesis.

In summary, the paper contributes a novel inflation attack
strategy, evaluates its effectiveness, explores the resilience
of existing bandwidth scanning techniques, and provides an
analysis of the Tor network to identify potential indicators of
ongoing attacks. Overall, our work strongly advocates for the
pursuit of additional research focused on the development of
inflation-resilient bandwidth measurement techniques.

Outline. The remaining part of the paper is organized
as follows. Section II provides a concise overview of back-
ground information on Tor. In Section III, we define our
adversary model and introduce underlying attack techniques.
The evaluation results of our attack are presented in Section IV,
accompanied by additional insights gained on Tor in Section V.
Section VI discusses the resilience of our attack in relation
to existing solutions and explores potential countermeasures.
Furthermore, Section VIII delves into related works focusing
on Tor inflation attacks. Finally, we conclude our findings in
Section IX.

II. BACKGROUND

In this section, we introduce the technical background
related to Tor and its bandwidth measurement protocols.

Tor Relays and Circuits. Tor users, also known as clients,
select three or more relays randomly from the Tor network
to establish a communication circuit. The initial hop of this
circuit, also known as the guard relay, serves as the entry
point for client connections and typically remains in use for
2-3 months before being rotated. To be considered a guard
relay, it meets specific criteria, including stability, sufficient
uptime (typically 8-68 days [19]), and a minimum bandwidth
of 2 Mbps. The concluding relay in this anonymity-preserving
communication circuit is known as the exit relay. It represents
the last hop, responsible for transmitting the client’s traffic to
its desired destination on the Internet, beyond the Tor network.

2

Consequently, the IP address visible to service providers is
that of the exit relay, ensuring the client’s IP address remains
concealed. The relays between the guard and the exit relays,
known as middle relays, serve as intermediate hops within
the circuit. They simply forward the traffic in both directions,
enabling communication between a Tor client and its intended
destination on the Internet. Tor relays are run by a global
community of volunteers known as relay operators. One such
operator can provide multiple relays grouped into families,
while Tor’s path selection algorithm prevents multiple relays
from the same family from being included in a circuit. Notably,
the family status is self-reported by assigning identical ”My-
Family” attributes of the relays. The Tor network also allows
for the hosting of two Tor relays using the same public IP
address [13].

Directory and Bandwidth Authorities. When establishing
connections, Tor clients select relays for a circuit from a list
supplied by specialized entities known as Directory Authorities
(DAs). These DAs maintain an up-to-date roster of active
relays, including their flag status (guard, middle, or exit) and
bandwidth information. The DAs update this list every hour,
and the consensus among the DAs is cryptographically signed
and made available for clients.

A subset of these DAs, typically six in number, also serve
as Bandwidth Authorities (BAs). These BAs are tasked with the
additional responsibility of conducting active measurements
to estimate the available bandwidth of Tor relays. It is worth
noting that these six BAs are responsible for measuring more
than 7000 relays (with each BA typically running 4-5 parallel
measurement threads). The BAs have a limited timeframe
of approximately 60 minutes to complete the measurement
round and to include results in the subsequent consensus file
[23]. Furthermore, there are occasions where BAs may be
temporarily out of service for several hours or even up to a few
months due to various reasons such as updates, deployment
issues, or ongoing attacks. Consequently, many measurements
may be incomplete or missing during these periods.

Bandwidth Measurements in Tor. The initial bandwidth
scanning mechanism used by BAs was the TorFlow scanner in
2011 [58], [31]. However, it has been gradually replaced by
the Simple Bandwidth Scanner (SBWS) [16] mechanism since
2018 [3]. Our focus in this work primarily revolves around
SBWS as it has completely replaced TorFlow by now [3].

Both TorFlow and SBWS methods employ bandwidth
measurement by downloading large files multiple times from a
web server through two-hop circuits. It is important to note that
circuits with two relays do not provide anonymity [29], hence,
the measurement traffic can be trivially distinguished from user
traffic. In SBWS, the first relay in the circuit is the target relay
being measured, while the second relay is a randomly selected
exit relay that is at least twice as fast as the target relay [39].
The web-server provides a 1GB file over HTTPS for the SBWS
scanner to download. The SBWS scanner randomly selects a
byte range between 0 and 1GB, typically in 16MiB increments,
such as 0-16MiB or 16MiB-32MiB, and so on. If the download
completes in less than 5 seconds, the range is expanded, and
if it takes more than 10 seconds, the range is reduced. Once
an appropriate range is determined, five files of appropriate
size, meaning they can be downloaded within the time range
of 5-10 seconds, are downloaded and the number of bytes and

the time taken for each file download is recorded [8]. As such,
it follows that one measurement takes at least 25 seconds.

It is noteworthy that the bandwidth files generated by both
SBWS and TorFlow methods contain only a single timestamp
per measurement, indicating the end of the measurement
process. However, they do not include the starting timestamp or
the duration of the measurement. This omission is significant
because it prevents the deterministic reproduction of the mea-
surement timeline from the bandwidth files. This information
would be valuable, for instance, when identifying co-measured
relays (as discussed in Section IV-E). Once valid measurements
are obtained, both SBWS and TorFlow incorporate them into
the bandwidth file, which is subsequently forwarded to the
DAs for aggregation.

Building Consensus. Bandwidth measurement files, also
called BA’s votes, are processed by DAs to aggregate the
results and compute the bandwidth weights in accordance with
the Tor directory protocol [25]. In essence, the consensus
weight for each relay is calculated based on its self-reported
bandwidth and the bandwidth measured by BAs using band-
width scanners. It is important to note that SBWS computes
bandwidth weights relative to all Tor relays. The resulting
consensus file is signed by all the DAs and then distributed
to Tor clients.

Despite the presence of BAs that assist in cross-verifying
self-reported relay bandwidth values by conducting actual
measurements, an attacker can still effectively execute inflation
attacks through a selective denial-of-service (DoS) strategy. In
this scenario, a malicious relay only responds to measurement
traffic while dropping all other user traffic [48]. These attacks
are feasible due to the publicly available identity information
of the BAs, such as their IPv4 and IPv6 addresses [24].
Consequently, the detection of measurement traffic originating
from the BAs becomes straightforward upon the arrival of the
first packet.

III. MIRAGEFLOW ATTACKS

In this section, we start by introducing the adversary model
and discussing the capabilities of the attacker. Following that,
we present two variants of MirageFlow, namely the co-resident
relay attack (C-MirageFlow) and the dedicated server attack
(D-MirageFlow).

A. Adversary Model & Capabilities
We consider an adversary who controls multiple instances

of Tor relays, either as physical machines, virtual machines, or
processes/dockers in the same machine. The adversary controls
a machine with multiple public IP addresses. For the D-
MirageFlow variation, the adversary additionally controls the
network router or gateway between the Internet and the servers
running the relays.

Furthermore, we assume that the attacker is able to dis-
tinguish measurement and user traffic in real time. Currently,
this can be trivially accomplished in Tor, as SBWS scanners
utilize 2-hop circuits for the measurements (Section II). In
Section VI-A we also show, that Machine Learning techniques
can effectively distinguish user and measurement traffic in 3-
hop circuits.

We further assume that the adversary possesses the capabil-
ity to promptly forward each type of traffic to a preferred Tor

3

relay instance, with minimal delay. Specifically, the adversary
directs measurement traffic to a high-resource, high-bandwidth
relay, while diverting other traffic to a low-resource relay or
dropping it altogether with the goal of achieving bandwidth
inflation.

B. High-level idea and attack variations
In this study, we present and explore MirageFlow, a novel

tactic for carrying out inflation attacks on the Tor network.
Our main concept revolves around utilizing resource sharing
among a group of relays under the control of the attacker.
This enables the cluster to dynamically allocate networking
and computational resources to a relay whose bandwidth is
currently being assessed. By combining our inflation strategy
with other established techniques, such as false and exag-
gerated bandwidth self-reporting or selectively dropping user
traffic during bandwidth measurements, we can amplify the
inflation effect and minimize the resources needed to attract a
substantial volume of user traffic.

We introduce two versions of MirageFlow, namely C-
MirageFlow and D-MirageFlow. C-MirageFlow capitalizes on
the utilization of shared bandwidth and computational re-
sources from a single server among all the relays hosted on it.
In contrast, D-MirageFlow takes this concept to the next level
by expanding the distribution of resources across a network
that operates behind a router.

C. C-MirageFlow - MirageFlow with Co-Residing Relays
Design. As shown in Fig. 1, the attacker operates several co-
residing Tor relays as a cluster within a machine (i.e., server)
in the C-MirageFlow attack. Each co-resident relay can be
operated as an additional CPU process, a Docker container, or
a Virtual Machine (VM) inside the physical machine, up to two
of them using a unique public IP address. Every relay must
define a unique combination of IP address and port number
in its configuration. One advantage of deploying co-resident
relays as separate processes is allowing an attacker to simply
alter the Tor relay configuration to different port numbers and
IP addresses for each relay, minimizing the configuration and
computational overhead. Once the measurement traffic directed
towards one of the co-residing relays is detected by the Traffic
Classifier, the regular user’s traffic is dropped, thus giving the
entire bandwidth and computational resources on the physical
machine to the bandwidth scanner, leading to an inflation of
the measured bandwidth. We note that the bandwidth inflation
strategy based on dropping the user traffic was previously
proposed and evaluated in [67], [47]. Previous works, however,
focused on individual relays and did not consider scenarios
with clusters of co-resident relays. Hence, beyond known
attack techniques, our attacker can further inflate the bandwidth
by dedicating resources of the entire cluster, not just of the
single relay server, to the measured relay. This implies that
the inflation factor can be further amplified by the number of
co-resident relays.

While it can potentially happen that two co-residing relays
are co-measured at the same time, we show in our analysis
presented later in Section IV-E that this does not happen very
often. With only six BAs responsible for measuring about
7000 relays, and despite the fact that each BA runs 4-5
parallel measurement threads, the probability of such a co-
measurement is insignificant, with up to 30 co-residing relays
in one cluster.

Clients

Bandwidth
Authority

Tor Traffic

Tor Relay 1
(A Measured Relay)

Tor Relay 2

Tor Relay 3

Tor Relay 4

Tor Relay n

C-MirageFlow Co-resident Server

Measurement Traffic

Client Traffic

Traffic
Classifier

Fig. 1: C-MirageFlow: MirageFlow with Co-Resident Relays.

Attack Instantiation. An attacker can instantiate the Traffic
Classifier (see Fig. 1) either as an IP filtering system or
a machine learning technique. However, information about
the BAs, including their current IPv4 and IPv6 addresses,
is available publicly at Tor Metrics platform [24]. To detect
two-hop measurement traffic originating from BAs, we utilize
a filter based on BA IP addresses obtained from the same
platform. This filter, implemented using Netfilters [20], allows
us to distinguish such measurement traffic right from the time
of arrival of its very first packet and drop user traffic during
measurement.

We have various choices available for executing the relay
deployment, including the usage of processes, containers, or
virtual machines. Given the increased computational require-
ments associated with containers and virtual machines, we
opt to utilize processes for launching our attack. For each
relay, we create separate configurations and start a Tor process
based on the corresponding configuration file. To ensure proper
functioning, each Tor relay configuration requires a distinct
combination of IP address and port number when employing
processes. In contrast, an attacker could leverage Docker
containers to eliminate the necessity of specifying these details
in the configuration files and instead adopt a more dynamic
approach utilizing the Docker ecosystem.

D. D-MirageFlow - MirageFlow with Dedicated Server
Design. In the D-MirageFlow scenario, the attacker has control
over a network segment and utilizes a physical router or
switch to filter and manipulate traffic (see Fig. 2). This is
different from the C-MirageFlow attack, where traffic filtering
and routing functionality is co-resident with the Tor relays
(i.e., happens inside the same physical machine). As shown
in Fig. 2, the attacker allocates a high-resource dedicated server
to handle measurement traffic, while low-resource servers
(virtual machines or cost-effective physical machines) are used
to host a Tor Relay Cluster and to handle regular user traffic.
Each Tor Relay Cluster can accommodate its own cluster of
co-resident relays, similar to the C-MirageFlow attack.

When the attacker-controlled router or switch detects mea-
surement traffic, it forwards the traffic to the dedicated server.
This allows all the attacker-controlled relays to falsely claim
the total available bandwidth allocated to the dedicated server,
similar to the behavior in C-MirageFlow. Meanwhile, the
relay clusters could continue serving client Tor traffic, e.g.,
for the purpose of intercepting it and conducting further de-

4

anonymization attacks without much impact on the measure-
ment traffic.

Bandwidth
Authority

Tor Traffic

Router

Tor Dedicated Relay
Server

Tor Relay Cluster 1

Tor Relay Cluster 2

1 MB/s

Measurement Traffic

Client Traffic

Relay 1

Relay n

Relay 1

Relay n

Tor Relay Cluster 3
Relay 1

Relay n

Tor Relay Cluster N
Relay 1

Relay n

Clients

Fig. 2: D-MirageFlow: MirageFlow with Dedicated Master
Server

Attack Instantiation. The attack scenario of D-MirageFlow
can be instantiated using physical servers and routers. How-
ever, the cost of such a setup would be substantial due to the
need for a router with multiple public IPv4 addresses. Hence,
such a setup is generally more suitable for state-sponsored
attackers or other powerful adversaries. For cost-efficiency
reasons, we instantiated a virtualized version, where the router
was deployed using a VM. Each relay cluster VM is connected
to the virtualized router using OpenVPN connections. As such,
we also refer to this attack instantiation as ”tunneled” version.
In contrast to the instantiation of C-MirageFlow, the relays
in D-MirageFlow are running in Docker containers. We chose
containers since the orchestration of many relays is easier using
descriptive definitions via Platform as a Service (PaaS) tools.

IV. EVALUATION

In this section, we will begin by outlining the ethical
considerations we adhered to during our evaluation. Next,
we will present the evaluation environment for our attacks.
Following that, we will present the evaluation results for
both C-MirageFlow and D-MirageFlow. These results will
demonstrate the impact and success of the attacks in terms
of inflating the measured bandwidth of the attacker-controlled
relays. In addition, we will provide a theoretical analysis of the
diminishing impact on the inflation factor that can occur when
two or more Bandwidth Authorities (BAs) simultaneously
measure the bandwidth of the same attacker-controlled relay.
Finally, we determine the required amount of attack resources
to gain control over a specific part of the Tor Network.

A. Ethical Considerations
We initiated the process of responsible disclosure with the

Tor team by submitting a bug report via Tor’s bug bounty
program on HackerOne [22]. Additionally, we contacted the
Tor Safety Board [14] to request permission to conduct our
experiments on the live Tor network. Unfortunately, our request
was declined due to concerns about potential disruptions to
user traffic and the quality of service provided by the Tor
network. As a result, we were recommended to perform our
experiments with special Tor experimentation tools (i.e., a
private Tor network), which we precisely did, as described
in Sections III-C and III-D. Our objective was to ensure
the ethical conduct of our research while contributing to

the enhancement of the Tor network’s security and privacy
capabilities.

Furthermore, in the experiments detailed in Section VI-A,
we gathered both self-generated measurement traffic and client
traffic from the real Tor network. It is important to empha-
size that when generating measurement traffic, we strictly
adhered to the guidelines provided by the Tor Safety Board.
Specifically, we scheduled the measurements at different time
intervals and utilized various guard and exit relays to prevent
any potential denial-of-service (DoS) issues. Regarding the
collection of user data, we meticulously designed our process
to fully comply with the European General Data Protection
Regulation (GDPR) requirements [12]. We particularly focused
on the principle of data minimization (Article 5c) and the
regulations for collecting data for scientific purposes (Article
89). As a result, the user traffic we collect is limited to the
relay node positioned in the middle, which means the captured
packets contain information about the guard and exit relays
but do not reveal any details about the users or the specific
services they accessed. Additionally, we exclusively capture
packet headers such as TCP/IP headers, including TCP high-
precision timestamps, while disregarding payloads that carry
(encrypted) data.

B. Evaluation Environment
Our experimental setup includes a host machine running

Debian Bullseye with 32/64 Cores/Threads, 126 GB of RAM,
and 3.2 TB NVMe disk space. We instantiate our evaluation
environment on this host by running our own private Tor test
network. This environment is used for both attack evaluations.
First, we create the Tor configuration files for a private Tor
test network using Chutney [4], which allows us to create
the Tor configuration files based on our input. Chutney can
run a private Tor test network as processes. However, this
won’t be sufficient for us to instantiate the scenario where
(only) co-resident Tor relays share computational resources.
Hence, we use Chutney only for bootstrapping the Tor test
network configuration. Our Tor test network comprises three
DAs, five exit relays, and two clients (see Fig. 3). Additionally,
the evaluation environment contains a BA, a web server, and a
connection to the internet. Furthermore, we have the flexibility
to dynamically add relays to the private Tor test network even
after the evaluation environment has been established.

DA/Guard/Middle Relay Destination
Web Server

Bandwidth
Authority

Tor Clients

Destination
Client Traffic

Private Tor Test Network

Guard/Middle/Exit Relay

Unlimited

Unlimited

25 MBps

200 MBps
200 MBps

50 MBps

25 MBps

200 MBps

50 MBps

50 MBps

50 MBps

50 MBps

Fig. 3: Evaluation environment instantiated on the host.

After the bootstrap via Chutney, these configuration files
are used to create a virtualized environment using a hypervi-
sor. Here, we use Vagrant [28] as an orchestration tool and
VirtualBox [55] as the targeted hypervisor. Both (Vagrant and
VirtualBox) allow us to: (1) Emulate resources of a server
with VMs (not directly possible using Chutney). (2) Create
a network environment with bandwidth limitations. A VM is

5

a virtualized physical platform that can run a single relay, a
dedicated server, or a cluster of co-residing relays. The DAs,
exit relays, and client relays, previously defined, all operate
within their respective VMs. Each VM has two vCPUs and 4
GB RAM if not otherwise declared.

Since we conduct our MirageFlow attacks in a virtual
setting with a Tor test network, the inflation factor must be
computed the same way as in the real Tor network. As a result,
we deploy an SBWS instance for bandwidth measurement and
report the mean bandwidth published by SBWS. Thus, we have
a separate VM for the BA (using SBWS) and another VM
serving as the destination web server for measuring purposes.
To control the network bandwidth for the VMs, we make use
of VirtualBox’s bandwidth limitation mechanism. Specifically,
we set the bandwidth limit to 200 MBps for the DAs, 50 MBps
for the relay VMs, 25 MBps for the clients, and leave the BA
and the web server with unlimited bandwidth.

Once the VMs are instantiated, we utilize Ansible [1]
playbooks to orchestrate the installation of the Tor package
[13] and include the configuration files. Furthermore, the
SBWS service is configured to use our target web server as
a measurement destination. This enables us to measure each
relay’s bandwidth in our evaluation environment. Next, we
run a VM for each relay (i.e., DAs, BA, clients, exit relays)
with a unique IP address and a unique set of ports. The most
important configuration is the port number, as this value will
be advertised for incoming Tor connections. The corresponding
ports are then opened in the firewall to allow incoming packets.
Finally, we start each relay as a separate CPU process.

After setting up the private Tor test network’s benign en-
tities, we include malicious entities such as relays performing
the MirageFlow attacks and a single malicious relay dropping
user traffic. We also set identical “MyFamily” values for
malicious relays of our MirageFlow attacks by adding the
identity fingerprints of each relay so that the clients avoid using
more than one of them in the same circuit (i.e., avoid using
middle and guard relays in the same circuit), thereby avoiding
an overload on our server due to ‘short circuits’.

To introduce traffic in our network, the clients request the
download of random files. To establish a baseline, we measure
the provided bandwidth of our test networking using the SBWS
service without an ongoing MirageFlow attack (e.g., only a
single malicious relay dropping user traffic is deployed, but
no clusters). The baseline measurement indicated a bandwidth
of approximately 25 MBps. This value served as the starting
point for our subsequent evaluations and comparisons.

C. Evaluation of C-MirageFlow
In our implementation of C-MirageFlow, we deployed five

malicious relays in a single VM to assess their effectiveness
within our evaluation environment. Each of these relays was
executed as a separate process for ease of deployment. It’s
important to note that the choice of five relays was determined
by the computational limits assigned to the VMs used in our
setup, and this number can be adjusted accordingly. Addition-
ally, we conducted tests using a deployment strategy in which
co-resident relays were introduced to the network at staggered
intervals, ranging from a few hours to a few days. This
approach was implemented to minimize the likelihood of co-
resident relays being simultaneously measured in the actual Tor

network. The attack is launched once all deployed relays are
connected to our Tor test network. We activated our IP-based
traffic detection mechanism (as outlined in Section III-A) to
distinguish measurement traffic from the BA and drop user
traffic during measurement.

We observed that with the addition of any new relay, the
average of the measurement reported by SBWS after at least
three measurements slightly changes, as depicted in Fig. 4. For
example, the average measurements of the ‘blue’ relay (Relay
1) steadily increase. We have noticed that the measurements
obtained from new relays surpass the established baseline.
Upon investigation, we discovered that the baseline measure-
ments incorporate some ’unlucky’ measurements. A similar
observation can be made regarding the measurements of C-
MirageFlow. Slight changes are caused by the encryption/de-
cryption and the overhead introduced by packet dropping that
occurs until user connections are closed. Further, exit relays
involved in the measurement circuit may also be used by other
circuits in our Tor test network, which can potentially reduce
the impact of the attack, e.g., measured bandwidth. As seen
from Fig. 4, C-MirageFlow attack strategy allows an attacker
to boost an inflation attack by a factor above n linearly due to
variance in the measurements.

1 2 3 4 5
n, Number of Relays

0

20

40

60

80

100

120

140

160

Su
m

 o
f M

ea
su

re
m

en
ts

 in
 M

B/
s

24.77 27.63 28.88 30.22 30.97

35.61 35.35 34.27 33.97

36.75 36.71 35.34

32.36 33.33

34.65
Relay 1
Relay 2
Relay 3
Relay 4
Relay 5

Fig. 4: C-MirageFlow - Measurements for 5 co-resident relays

D. Evaluation of D-MirageFlow
For D-MirageFlow, we instantiate three relay clusters as

VMs (with a bandwidth limit of 25 MBps), each hosting and
carrying a cluster of six Tor relays as Docker containers in the
same physical platform as the virtual router (also a VM with
200 MBps bandwidth limit). Further, we add a dedicated relay
server with 6 vCPUs, 12 GB RAM, and apply a bandwidth
limit of 50 MBps. The rest of the evaluation environment is
the same as in our experiments for C-MirageFlow.

We generate continuous user traffic to each of the six relays
deployed in the three relay cluster VMs. We simulated the
behavior of the BAs by running an instance of SBWS to
measure the bandwidth of the relays. As a result of SBWS
measurements, each relay claimed more than a fifth (10 MBps)
of the virtual server’s bandwidth, which is reduced from 50
MBps due to the VPN, routing, and Tor’s overhead. As shown
in Fig. 5, the attacker claimed over 65 MBps for all six relays
in Cluster 1. Just by adding two additional clusters to the VPN
router, an attacker can achieve an impressive 204.43 MBps with
16 relays in three clusters.

The results demonstrate that the D-MirageFlow attack
variation exhibits a linear relationship with the number of
relays n in each cluster, which are distributed across N relay

6

cluster servers. As a result, the attacker has the ability to
amplify the inflation by a factor of nearly half n ∗ N by
combining our attack with any other inflation attack. This
means that the attack’s impact can be significantly increased
by scaling up the number of attacker-controlled relays inside
a cluster and increasing the number of attack servers (i.e.,
clusters).

Comparison of C-MirageFlow and D-MirageFlow. When
comparing C-MirageFlow and D-MirageFlow attack versions,
it is evident that the routing and VPN overhead significantly
affect the available bandwidth in D-MirageFlow. Nonetheless,
the practical expenses associated with deploying numerous
servers on the real Tor network are higher when employing C-
MirageFlow. Conversely, D-MirageFlow offers a more cost-
effective alternative, enabling the attacker to acquire a small
server and multiple IPs.

1 2 3
N, Number of Servers

0

25

50

75

100

125

150

175

200

Su
m

 o
f M

ea
su

re
m

en
ts

 in
 M

B/
s

10.72
10.98
11.13
11.16
11.35
11.98

11.25
11.27
11.34
11.57
11.50
11.53
11.32
11.43
11.45
11.44
11.74
12.50

11.43
11.61
11.54
11.47
11.33
11.15
11.82
11.60
11.61
11.60
11.25
11.18
10.57
10.63
11.34
11.38
11.49
11.43Cluster 1

Cluster 2
Cluster 3

Fig. 5: D-MirageFlow - Measurements for 3 clusters with 6
relays each.

E. Exploring the Inflation Factor
The presence of multiple relays in an attacker’s co-resident

cluster increases the likelihood of simultaneous measurements,
also known as ”coincidence,” occurring on multiple relays.
This coincidence phenomenon reduces the ability of these co-
resident relays to falsely claim the total available bandwidth on
the co-resident server, resulting in a decrease in the inflation
factor. This effect didn’t manifest in experiments we conducted
in Section IV-C and Section IV-D due to the small sizes of
attacker-controlled clusters.

The coincidence rate refers to the probability of measure-
ments occurring simultaneously on more than one co-residing
relay within the cluster. It quantifies the frequency at which
multiple relays in the cluster experience measurement events at
the same time, which impacts the effectiveness of the inflation
attack. By calculating the coincidence rate, an attacker can
make informed decisions regarding the number of co-resident
relays to deploy in order to maximize their expected bandwidth
inflation gain or inflation factor.

We conducted an analysis of the coincidence rate in the real
Tor network by examining the published bandwidth files that
contain measurement information from the Bandwidth Author-
ities (BAs). The objective of this analysis was to determine the
number of relays from a selected group that were co-measured,
meaning they were measured simultaneously.

A challenge in this analysis is that the bandwidth files
provided by the BAs only include a single timestamp, which

indicates the end of a measurement. However, to calculate
co-measurements, it is crucial to have information about the
duration of the measurement, which can only be determined
by knowing the start timestamp as well. To address this gap
in knowledge, we employed a method of creating speculative
realities or simulations. In these simulations, we randomly
assigned start timestamps while adhering to known constraints
such as the minimum duration of the measurement. We then
analyzed the results from multiple simulations and calculated
the average values of measurement durations. This approach
allowed us to estimate the coincidence rate by simulating
different measurement scenarios and obtaining insights into
the likelihood of relays being measured simultaneously. By
conducting this analysis, we gained valuable information about
the coincidence rate in the Tor network and its impact on the
effectiveness of co-resident relay attacks.

Measurement Duration. To analyze the duration of mea-
surements in the collected bandwidth files, we conducted the
following steps: First, we obtained the bandwidth files from
all Bandwidth Authorities (BAs) for the months of May, June,
and July in 2022 from CollecTor [5]. This dataset consisted
of 10,440 files from 2,208 measurement rounds, providing
a comprehensive view of the measurements conducted dur-
ing that period. Due to the downtime of the ”moria1” BA
since April 2022 and intermittent downtime of other BAs,
we observed a limited number of bandwidth files per hour
during data collection. On average, we had only four or five
bandwidth files available per hour. Second, we extracted the
fingerprints of the measured relays for each hour using the
Stem library. The fingerprint uniquely identifies a relay in
the Tor network and allows us to track its measurements
over time. Third, since the bandwidth files only provide the
ending timestamp of a measurement, we needed to infer the
duration of the measurements. We relied on the information
provided in the SBWS documentation, which states that a
single measurement takes at least 5 seconds but no more than
10 seconds. Based on observations, where measurements from
the same BA were found to be less than 25 seconds apart,
we have accounted for BAs employing multiple processes
or threads for measurement. To gain further insights into
measurement duration, we randomly assigned each measure-
ment a thread identifier, ranging from 0 to n, based on the
ordering of the measurements by their ending timestamp. We
calculated the duration of each measurement by subtracting
the ending timestamp of the (i− 1)-th measurement from the
i-th measurement. In cases where an existing identifier did not
satisfy the 25-second constraint (the minimum measurement
duration), we incrementally created a new identifier (n + 1).
Since there are numerous possible combinations of thread
identifier arrangements, we repeated the random assignment
process for 120 iterations.

In the majority of iterations (88.37%), the measurements
were assigned four unique threads, fulfilling the 25-second
constraint. In 99.49% of the random assignment iterations, the
BAs utilized between one and six threads for their measure-
ments. We considered measurements that were less than 50
seconds apart in these timelines to be executed sequentially
without failed measurements in between. This assumption is
based on the observation that the duration of a measurement
can be calculated by subtracting the end timestamp of the
previous measurement (i − 1) from the end timestamp of

7

the current measurement (i). If there are failed measurements
in between, the resulting duration would exceed 50 seconds,
indicating that the two measurements were not executed se-
quentially. For those measurements meeting the sequential
execution criteria, we calculated a median measurement dura-
tion of 39 seconds. This calculation provides an estimation of
the typical duration for measurements conducted by the BAs,
considering the constraints and observations described above.

Coincidence Rate. For our experiment, we focused on a
specific group of relays within the Tor network. After ana-
lyzing various families of relays, we decided to work with
the ”Artikel10” family [2], which consists of 120 relays with
a combined total bandwidth of 2069.17 MBps. This family
showed indications of co-residing relays, such as multiple pairs
of relays sharing the same IP address. Additionally, within
the family, there were several sets of relays that exhibited the
same up-time and advertised similar bandwidth values. These
observations suggested that these relays might be deployed on
the same physical machine, exhibiting behavior similar to our
C-MirageFlow attack.

To determine the coincidence rate, we utilized the insights
gained earlier regarding measurement duration. We assigned
each measurement a start timestamp that occurred 39 seconds
before the measurement’s end timestamp. By doing this, we
simulated the duration of the measurements. To investigate the
coincidence rate, we selected a random subset of N relays
from the “Artikel10” family and filtered the bandwidth files to
include only the relays present in our chosen set. We then
examined the measurements within the filtered dataset and
identified those with overlapping ranges. An overlapping range
indicates that another measurement started prior to the current
one and was still ongoing, or that a measurement started during
the current measurement.

We proceeded to count the occurrence of specific events,
namely, the number of simultaneously measured relays out of
the N relays in our set. We varied the value of n from 1 to N
to analyze the incidence of simultaneous measurements across
different numbers of relays.

In Figure 6, we illustrate an example of how the counting
of measurement events is performed. The timeline represents
the measurement periods for a group of five relays, where
three different events occur. In the first event (Event 1), Relay
4 (blue) is measured separately without any overlap with other
relays. The second event (Event 2) shows an overlap between
the measurements of Relay 1 (red) and Relay 3 (green). This
overlap results in two out of the five relays being counted as co-
measured since their measurement periods coincide. Similarly,
the third event (Event 3) exhibits an overlap among three out
of the five relays, namely Relay 1, Relay 3, and Relay 5.

Although short periods of overlap, even less than one
second, may cause a minor delay in measurement results, we
counted all the simultaneous measurements regardless of the
overlap duration. To calculate the probability of each event,
we compute the ratio of its occurrence to the total number of
measurements within the three-month time period. This allows
us to determine the likelihood of each event happening relative
to the overall measurements conducted during that period.

Measurement Distribution. In Fig. 7a, we present the dis-
tribution of measurements among the selected relay set. We

10:15:30 10:15:50 10:16:10 10:16:30 10:16:50 10:17:10 10:17:30 10:17:50
Time

bastet-2

longclaw-1

maatuska-1

Ba
nd

wi
dt

h
Sc

an
ne

r

Ev
en

t
1

Ev
en

t
2

Ev
en

t
3

Relay 4
Relay 5
Relay 1
Relay 3
Relay 2

Fig. 6: An example of measurement events.

observed that the occurrence of three or more relays being
co-measured is rare when the number of relays ranges from
1 to 30. However, as the number of relays increases, the
probability of two relays being co-measured also increases.
The probability reaches its peak at 27.91% when there are
120 relays in the set. Nonetheless, the majority of relays
are still measured individually, accounting for 59.17% of the
measurements. This allows them to claim the full bandwidth
of the dedicated server.

To recall, we defined the cluster size as the number of
relays per dedicated server. For a cluster size of 45 relays, the
probability of three relays from the set being co-measured is
only 0.014%. Even with 120 relays, the probability remains
very low at 0.15%. These low probabilities indicate that the
occurrence of three or more relays being co-measured is a rare
event.

In our study, we also investigate the impact of the number
of relays in the set and the duration of the simulation on
the distribution of co-measurements. We focus our temporal
analysis on the event of two relays being co-measured, as
this event is more likely to occur compared to three or four
relays being co-measured, as shown in Fig. 7a. By varying
the number of relays in the set and the duration of the
simulation, we can observe how the probability of two relays
being co-measured changes over time. This analysis provides
insights into the likelihood of such coincidences occurring and
helps us understand the influence of different factors on co-
measurements.

The results depicted in Fig. 7b illustrate the outcomes for
different time periods and sets of varying sizes. One notewor-
thy observation is that longer simulation periods tend to yield
more occurrences of simultaneous measurements. For instance,
in the case of a set containing 120 relays, the probability
of two relays being co-measured is 12 times higher over a
span of three months compared to just one week. This finding
suggests that, from an attacker’s perspective, considering the
simulation results within a three-month timeframe would be
more appropriate as it represents the worst-case scenario. It is
important to note that results may differ in the context of an
even more extended attack period.

Inflation Factor. The theoretical analysis of the inflation factor
for our attack, considering the worst-case scenario of a three-
month period, provides insights into the attack’s potential
based on real measurement data. However, it is important to
note that the actual inflation factor may be affected by factors
such as packet overhead and network latency.

In our analysis, we take into account that relays mea-
sured by a single BA can claim the full bandwidth of the

8

0 20 40 60 80 100 120
Number of Relays

0

20

40

60

80

100
M

ea
su

re
m

en
t D

ist
rib

ut
io

n
%

Measured 1 times
Measured 2 times
Measured 3 times
Measured 4 times
Measured 5 times

(a)

0 20 40 60 80 100 120
Number of Relays

0

5

10

15

20

25

M
ea

su
re

m
en

t D
ist

rib
ut

io
n

% 1 week
2 weeks
1 month
2 months
3 months

(b)

0 20 40 60 80 100 120
Number of Relays

0

20

40

60

80

In
fla

tio
n

Fa
ct

or

(c)

Fig. 7: Measurement distribution (a) for a simulation with a 3-month time window, (b) for two relays being measured at the
same time for different time windows and cluster sizes. (c) Theoretical inflation factor per relay for no. of relays.

dedicated server, while relays co-measured by two or more
BAs must evenly share the available bandwidth. We calculate
the expected inflation factor for different numbers of relays,
assuming a contribution factor of one for a single relay and a
contribution factor of 0.5 for relays co-measured by two BAs.

As illustrated in Fig. 7c, the inflation factor gradually
decreases as the number of relays increases. For small cluster
sizes, the attack demonstrates nearly linear inflation rates. For
example, with a cluster of 10 relays, the inflation factor reaches
9.91. This value nearly doubles to 19.16 when using 20 relays,
and employing 30 relays results in a nearly tripled inflation
factor of 28.03. These findings highlight the potential for
significant bandwidth inflation with a relatively small cluster
of co-resident relays.

However, as the number of relays in the set increases, the
inflation factor no longer exhibits a linear relationship. For ex-
ample, with 120 relays, the inflation factor is 92.52, indicating
that approximately 28 relays are not actively contributing to
the attack due to the higher rate of co-measurements in larger
cluster sizes.

To summarize, in sets with a small number of relays,
individual relays are more likely to be measured independently,
allowing them to claim the full bandwidth of the dedicated
server. Only a few cases show three or more relays from
the set being co-measured simultaneously. Theoretical analysis
demonstrates that the attack’s capacity shows almost linear
growth when employing a small number of relays. However,
as the number of relays in the set increases, the attack’s
effectiveness diminishes, leading to a decrease in the inflation
factor.

F. Estimation of Required Attack Resources
We used a curve fitting algorithm to create a curve that

matches the inflation factor data (cf. Eq. (1) in Appendix).
This curve allows for estimating the inflation factor for a given
cluster size.

It is generally not desirable to target 100% of network
traffic as this would suggest that no one else is operating in the
network. As an example, we calculated how many resources
an adversary needs to control half of the Tor network traffic.
On average, the Tor Network had an advertised bandwidth of
around 678 GBit/s in the year 2022 [5]. Thus, we derive that,
to control half of the traffic, an adversary needs to advertise an
additional 678 GBit/s to the network, which can be achieved
with 1090 relays (cluster size of 109) and ten dedicated servers,
each providing 100MB/s. This example illustrates that even

with a comparatively small effort, it is possible to control a
significant percentage of traffic in the network.

We provide the equation for determining the necessary
resources to control a given percentage of traffic in Ap-
pendix C. The cost of increasing control over the network
by small percentages rises steeply as the target percentage
increases. For instance, for 75% of the traffic, one would
need to advertise 2,034 GBit/s, versus 678 GBit/s needed for
50% of the traffic - a non-linear relationship between attacker-
controlled bandwidth and the percentage of the network under
attacker control. Therefore, the benefit of controlling more than
half of the network may be reduced.

V. ADDITIONAL INSIGHTS ON TOR

In this section, we provide some noteworthy insights we
gained while performing certain analyses on the Tor network.

Existence of Relay Families. During our preliminary investi-
gation of relays in the Tor network, we came across another
interesting observation − co-resident relays, i.e., multiple re-
lays deployed and operating within the same physical or virtual
machine. The main identifiable attributes of such co-resident
relays that we observed were the sharing of the same public
IP address, the same uptime, and similar measurement results
by multiple relays. Taking these identifiers into consideration,
we closely examined relays located in Germany and were able
to identify several families with potentially co-residing relays
(see Table I). The largest family we observed consisted of
178 relays controlled by the same operator, while the most
powerful (in terms of offered bandwidth) family observed,
offered nearly 2600 Mbps. It is also important to highlight
that these identifiable attributes were also found in families
with a number of relays as low as 3. Another important thing
to note here is that it is possible for relays in such families (of
co-resident relays) to claim the entire available bandwidth if
each of them is measured separately. Evidence of the presence
of families of co-resident relays controlled by the same entity
in the Tor network, coupled with the fact that it is possible for
relays in such families to claim the entire available bandwidth
when measured by a BA, is a bit concerning as it could expose
the Tor network to a potentially new form of inflation attack,
as proposed by us in this work. A recent discussion in the Tor
community suggests a proposal to change the two relays per
IP limitation for relay operators either by a special request (by
relay operator) or a general increase of 32 relays per IP address
[26]. The main reasoning behind this increase is to make Tor
more scalable in modern CPUs with a high number of cores

9

and if successful, this will further enhance our MirageFlow
attacks.

Port Usage by Tor Relays. Before performing our analysis
on the real Tor network, we also investigated the ports that
could be used for our relays and observed that the relays use
more than 581 different ports (see Fig. 11). Further, this could
also potentially be a sign of co-residing relays operated by the
same entities on Tor. Tor operators are free to set the port as
per their convenience based on their firewall and routing policy
[10]. Therefore, deploying MirageFlow co-residing relays with
a different set of ports will not be considered suspicious.

Stealthy Family Operation by Tor Operators. MirageFlow
attacks do not require an attacker to hide the family status.
However, future countermeasures might make this necessary –
for instance, one could reasonably consider family members
as primary suspects to be tested for co-residency (cf. Sec-
tion VII-C). Winter et al. [72] developed a tool Sybilhunter
[18], that can identify Sybils – relays that are operated by
the same entity but failed to correctly report it by assigning
identical ”MyFamily” status. The tool leverages a Nearest
Neighbor Search (NNS) approach to identify relays that ex-
hibit similarity when compared to a reference relay and, in
particular, utilizes a metric known as the Levenshtein distance
[9], which measures dissimilarity between two strings. It is
applied to a variety of criteria, such as uptime, fingerprints,
or attributes such as IP addresses, nicknames, and contact
information. We conducted an experiment to assess if Sybil-
hunter’s detection can be easily evaded: (1) We downloaded
the consensus and server descriptor files of the actual Tor
network from Collector [5] for the entire month of May 2023.
(2) Using our own developed script, we added five Sybil
relays to the entire month’s consensus and server descriptor
files. We configured each Sybil with a different nickname,
contact information, IP address, Tor version, and bandwidth
information. (3) We attempted to identify our injected Sybil
relays using Sybilhunter, but we were unsuccessful. (4) Finally,
to test if the injected Sybils are valid and used in circuits,
we simulated Tor with Shadow [15] based on the injected
consensus files and server descriptors. Our experiment shows
that an attacker can meticulously configure the parameters of
a Sybil relay to avoid detection by Sybilhunter.

VI. RESILIENCE OF ALTERNATE BANDWIDTH
MEASUREMENT SOLUTIONS

In this section, we discuss the resilience of alternative
bandwidth measurement solutions against MirageFlow attacks.

A. 3-Hop Measurement Circuits
Greubel et al. [33] already pointed out that 2-hop mea-

surement circuits in Tor can be easily detected using BA’s IP
addresses. As a countermeasure, the authors proposed to utilize
3-hop circuits during measurements and place the measured
relay in the middle position (see Fig. 10), in between randomly
chosen guard and exit relays, thus obscuring the source and
destination of the traffic. One needs to note, however, that such
a solution puts an additional burden on the Tor network since
more relays will be involved in carrying measurement traffic.

However, given the rise of effective AI methods, it is
questionable if such an approach can withstand modern ad-
versaries and if the increased load on the network is justified.

To this end, we evaluate the resilience of the 3-hop method by
(i) collecting the dataset for training in a 3-hop circuit setting,
and by (ii) building an ML model based on a traffic classifica-
tion method that utilizes a Self-Attention Convolutional Neural
Network (SA-CNN) proposed by Guorui et al. [73].

Data Collection. In order to train a supervised model such
as SA-CNN, we collect Tor network data and label it as: (i)
client traffic data, and (ii) measurement traffic data.

Collecting Measurement Traffic. To collect measurement traf-
fic, we first deployed our own measurement relay node within
the Tor network and ensured that it reached phase four of its
life cycle, i.e., the steady-state guard relay (reached after 68+
days) [19]. Then, by means of the Python-based Tor controller
library Stem [17], we instantiated our own BA service which
was modified to build 3-hop circuits for measurements. The
measurement relay was placed in the middle position, while
the guard and exit relays were randomly chosen among can-
didates that (supposedly) offered higher bandwidth than the
measurement relay (to eliminate bottlenecks). Additionally, the
measurement relay was also used for traffic collection. We
then used the 3-hop circuit to download four files with the
sizes 16, 20, 50, and 100 MB from three different servers,
mimicking a measurement service of SBWS (as described in
Section II). Meanwhile, we captured traffic arriving at and
leaving the measurement relay using tcpdump and filtered out
any other Tor traffic. Doing this was straightforward as the time
of measurements, as well as the IP addresses of the guard and
exit relays built into our measurement circuits were known and
under our control. By using this strategy, we captured roughly
3.4 GB of measurement traffic.

Collecting Client Traffic. Client traffic was similarly collected
on the measurement node of the 3-hop circuit. Client-generated
traffic was separated from the self-generated measurement data
by filtering out packets arriving from guard relays and ad-
dressed to the exit relays. We also had to filter out measurement
traffic produced by the legitimate Tor measurement service,
which was done using the (known) IP addresses of the BAs.
Our measured relay was able to capture 118 GB of client data
in this setting.

Traffic classification using Machine Learning. Next, we
describe details of the ML model we employ for traffic clas-
sification, specifically the Self-Attention Convolutional Neural
Network (SA-CNN) proposed by Guorui et al. [73], including
(a) traffic pre-processing, (b) feature engineering, (c) model
training, and (d) model evaluation.

Traffic Pre-processing. To clean up the captured measurement
and client data, we removed all packets used for establishing
TCP connections, for example, SYN and SYN-ACK, as they
are not relevant to measurement traffic classification. We then
matched each packet in the captured data to their correspond-
ing network flow based on the source and the destination IP
addresses (i.e., grouped packets belonging to the same source
and destination combination), with each flow not exceeding
1,000 packets (as per specifications in the SA-CNN model
[73]). In total, we obtained 747 self-generated measurement
flows with 390,276 packets. Using only 20% of client data,
we obtained 1,591,820 client traffic (non-measurement) flows
with 12,776,330 packets in total. Note that we only used a
fraction of the obtained non-measurement data during training

10

to prevent class imbalance in the dataset.

Following guidelines proposed in SmarTor [33], we also
masked the source and destination IP addresses of the IP
header in the packets to simulate a real 3-hop scenario where
the guard and exit relays in the circuit are chosen at random,
and thus the aforementioned information is not known. In
addition, we also masked the checksum, identification, offset
fields, source, and destination ports of the TCP header, the
sequence number, and the ACK flag since, according to Guorui
et al. [73], these confuse the Self Attention CNN model and
could result in the model not generalizing well.

Feature Engineering. As our captured TCP data also contains
high-precision timestamps, to prevent the machine learning
model from classifying the data based on timestamps, we
calculated the inter-arrival time of subsequent packets and used
that value for analysis. This enables our model to classify
traffic data based on statistical features of the network flow.
Further, as Akbari et al. [32] pointed out that traffic classifica-
tion models trained using encrypted TLS payload data also fail
to generalize, we omit encrypted payloads from our captured
packet dataset to prevent our classification model from learning
TLS cipher information.

Final Dataset. We trained our traffic classification model using
the labeled dataset comprising of Tor measurement and client
traffic data flows, as outlined above. The entire dataset was
split into train, validation, and test sets with 70%, 20%, and
10% of total measurement flows in each set, respectively.
The measurement to client traffic packet ratio in the train-
ing, validation, and test sets was 52.1%, 57.8%, and 60.8%,
respectively. We included only a fraction of the captured client
traffic data in the training dataset, to keep the classes balanced.

Model Building and Training. We select the Self-Attention
Convolutional Neural Network (SA-CNN) proposed by Guorui
et al. [73] for traffic classification. Their work is especially
suitable for traffic classification needed for inflation attacks
since it allows packet-level input and can produce output
classification results as packets arrive without needing to
observe large portions of traffic flows. Such online (or real-
time) classification is a crucial requirement for inflation attacks
such as MirageFlow due to the need for on-the-fly traffic re-
routing to forward measurement and client traffic to a pre-
determined destination. While no major changes and parameter
optimizations were required to adapt the SA-CNN model for
our problem, the input dimension of the model was changed
to a single packet with a total length of 44 Bytes (comprising
of 20 Bytes of IP header, 20 Bytes of TCP header, and 4 Bytes
to store the inter-arrival time calculation).

Although we were able to achieve high accuracy for both
the measurement and client traffic classes when using only
2.6% of the obtained client traffic in the training dataset,
we noticed increased false positives (i.e., client traffic in-
correctly classified as measurement traffic) when the model
was evaluated on the whole dataset. Thus, to mitigate such
false positives and improve accuracy, we employ a cascaded
model where multiple classification outputs from the SA-CNN
model are combined and classified using a Support Vector
Machine (SVM), as shown in Figure 8. Specifically, we use a
sliding window (with 80% overlap) to select windows of size
five (packets) from a traffic flow, and each individual packet

(in the window) is then input into the SA-CNN model. The
binary classification outputs generated by the SA-CNN model
for the five packets are then combined and passed on to the
SVM as input. For every five packet-based window, the SVM
outputs a final binary classification deciding between either
a measurement or client traffic class. To generate a labeled
dataset for the SVM model, we first obtained outputs for only
client traffic input data, followed by only measurement traffic
from the SA-CNN model. We used 20% of this new dataset
to train the SVM model and 80% for testing.

Evaluation. We analyze the performance of our above-trained
classifier for detecting measurement traffic in 3-hop circuits
using the standard performance metrics of precision, recall, and
F1-Score. To recall, precision (or ratio of correct predictions)
indicates how often our classifier is correct when it predicts
measurement or client traffic packets. Recall (or sensitivity) is
the proportion of measurement and client traffic packets that
were correctly identified. The F1-score is calculated as the
harmonic mean between the precision and recall (used as a
reliable indicator for model performance, as it also accounts
for class imbalance [59]).

SA-CNN SVM

Client
Traffic

Measurement
Traffic

Packet 1

Packet 2

Packet 5

.

.

.

Traffic
Flow

5 Packet Sliding
Window

Fig. 8: Cascaded Model.

We evaluated our proposed cascaded model approach, and
as seen in Fig. 9, we were able to successfully mitigate the im-
pact of false positives and achieve F1-Scores of above 99% for
both classes (compared to the 67% F-Score for measurement
class in Plain SA-CNN model). Although our cascaded model
approach for traffic classification can only be applied once at
least five packets in a traffic flow are captured, this introduces
only a slight delay and is acceptable as measurement flows
typically consist of thousands of packets.

We measured the inference time of our SA-CNN model
on an Nvidia A16 (4x 16GB memory) graphics card [11] for
different batch sizes (5, 128, 512, 2048, 4098, 8196). The mean
inference times per packet were 0.34633 ms (σ = 0.2583),
0.03849 ms (σ = 0.3169), 0.03704 ms (σ = 1.018), 0.03704
ms (σ = 4.342), 0.03642 ms (σ = 20.024), and 0.03628 ms
(σ = 28.220) for each batch size, respectively. The inference
time for the SVM model was 0.1158 ms (σ = 0.06) for
a single input (consisting of 5 classification outputs from
SA-CNN). Thus, the total inference time for the cascaded
model does not exceed 0.5 ms. Given this, we can argue that
the inference time (of our models) is low enough to detect
measurement traffic in a timely fashion. Also, we only need
to classify the first five packets of a traffic flow to detect the
measurement; all subsequent packets of the same flow can be
re-routed using the IP address (of the first five packets).

In summary, our findings demonstrate that modern machine
learning techniques can accurately and promptly differentiate

11

Precision Recall F1-Score
0.0

0.2

0.4

0.6

0.8

1.0

Plain SA-CNN
Precision Recall F1-Score

Cascaded Model

Measurement
Client

Fig. 9: Performance comparison for Plain SA-CNN and Cas-
caded Models.

between measurement and non-measurement packets within
the 3-hop measurement circuit setup. As a result, it becomes
evident that this approach cannot serve as an effective mitiga-
tion measure.

B. FlashFlow
Traudt et al. [68] demonstrated through experiments that

the true capacity of Tor network is underestimated by around
50% due to imperfections in the currently deployed bandwidth
measurement mechanism in Tor. As a better alternative, they
proposed a new method called FlashFlow, which forces relays
to demonstrate their near-maximum capacity. In particular,
measurements in FlashFlow are performed by teams of mea-
surers, each coordinated by their own authority, referred to
as BWAuth, who orchestrates the measurement process and
aggregates the results. The target relay is simultaneously
measured by a team of measurers over specially constructed
measurement circuits, which are created and handled differ-
ently from the circuits utilized by regular client traffic. In
particular, measurers and target relays are connected through
single-hop connections established with the help of BWAuths
and their public keys. Remarkably, each relay will only ac-
cept connections from a given BWAuth and its team once
per measurement period, which implies that requests for the
measurement circuit establishment can be denied for legitimate
reasons. It is evident that identifying measurement traffic and
dropping non-measurement data flows in FlashFlow is even
more straightforward than in currently deployed SWBS or
TorFlow. Indeed, since the measurement and non-measurement
circuits are handled differently by design, they can be trivially
distinguished. Consequently, the client traffic can be dropped
as required by C-MirageFlow, or the measurement traffic
can be redirected to a powerful dedicated server as in D-
MirageFlow. Further, FlashFlow allows an attacker to either
accept or refuse being measured by specific BWAuths based
on their preference. As a result, an attacker with several relays
is able to schedule the measurements in such a way that
all relays will be measured at different times. This avoids
co-measurements, and further increases the inflation factor,
strengthening our proposed attack.

C. Other Solutions
Next, we outline some other alternate measurement solu-

tions in the literature for Tor and discuss them in relation to
our proposed MirageFlow attacks. Although these solutions do
not directly impact the efficacy of our proposed attacks, they
are still vulnerable to inflation attacks such as MirageFlow,
either due to their own issues as highlighted below, or their

dependency on existing bandwidth measurement mechanisms
such as TorFlow.

EigenSpeed. Snader and Borisov [64] proposed a peer-to-
peer (P2P) bandwidth evaluation technique for Tor in which
each relay observes and stores bandwidth attained while
communicating with other relays in a vector. The vector is
then forwarded to an authority that uses Principal Component
Analysis (PCA) to produce consensus bandwidths for all Tor
relays. Although EigenSpeed is not vulnerable to MirageFlow
due to the absence of specialized measurement traffic, it has
been shown that EigenSpeed is vulnerable to Sybil attacks,
which also leads to inflation attacks [52].

PeerFlow. This technique builds on the same P2P principle
as EigenSpeed and uses two measurement techniques where
each relay records the amount of traffic sent and received
to/from other relays while also reporting their own available
bandwidth. These measurements then get forwarded to the
DAs who compute a consensus weight based on these reported
values and by employing a set of trusted relays to verify them
[47]. PeerFlow continues to use TorFlow during bootstrapping
of new Tor relays and thus attacks on TorFlow will still have
a considerable impact here making PeerFlow still vulnerable
to MirageFlow [52].

MLEFlow. This technique employs a maximum likelihood
estimation (MLE) approach to estimate the real capacity of
a relay by using a series of measurements and consensus
weights published by the BAs [39]. The authors of MLEFlow
were able to achieve estimation errors below 5% in contrast
to TorFlow and SBWS which have estimation errors over 20%.
However, similar to the above techniques, their technique also
relies on BA-based measurements, thus making it vulnerable
to measurement traffic detection and inflation attacks such as
MirageFlow.

VII. COUNTERMEASURES

We now briefly outline measures that could be potentially
used to mitigate MirageFlow’s bandwidth inflation strategies
against Tor and discuss the challenges surrounding them.

A. Detecting Measurement Anomalies
As demonstrated by us in Section IV-E, when two or more

(adversarial) relays residing on the same machine are mea-
sured simultaneously, a noticeable drop in the instantaneous
bandwidth measurement (related to those relays) is observed,
which is recorded and archived in the bandwidth files by the
measuring BAs. Given that Tor archives all the bandwidth
files generated since 2017, such trends indicating sudden drops
in measured bandwidths of relays during co- or simultaneous
measurements are easily detectable (by network BAs/DAs) by
simply looking at the historical data inside the bandwidth files
and can be used to flag suspicious relays. As mentioned in
Section IV-E, bandwidth files only contain end timestamps of
the measurements, making it difficult to accurately recreate
the timeline of relay co-measurements. In order to overcome
this, BAs can record the start of measurement timestamp
information for their individual probes and can collaborate
with other BAs to successfully recreate the co-measurement
timelines from the bandwidth files to identify suspicious relays
that may be involved in such bandwidth inflation attacks. BAs

12

can then actively and collaboratively probe such suspicious
relays by measuring them simultaneously in order to con-
firm bandwidth measurement anomalies and detect cases of
bandwidth inflation. Moreover, as each BA is able to run at
least four measurement threads in parallel, even individual BAs
(without collaboration with other BAs) can perform such active
probing to detect cheating or malicious relays.

B. Obscuring Measurement Traffic
Another mitigation strategy that could be employed by the

BAs is to obfuscate measurement traffic, say by concealing or
randomizing the origin and/or destination information (of the
measurement flows), with the goal of making the detection of
such traffic non-trivial and difficult. Such an approach seems
plausible as the detection of measurement traffic is typically
the first step in most bandwidth inflation attacks, including
MirageFlow. To this end, one option is to randomize the
network (IP) address of the measurement file download server.
However, file downloads (during bandwidth measurement)
from these servers could produce uniquely identifiable traffic
flows, which in turn could be used to detect measurement
traffic (by the relays). For instance, in current Tor measurement
mechanisms (e.g., in TorFlow and SBWS), the download
throughput is swiftly increased at the start of the measurement
until it reaches a constant state to measure the maximum
possible throughput of the relay, followed by rapidly reducing
it towards the end of the measurement. As demonstrated by
us in VI-A, traffic classification is still possible even under
masked IP addresses. We were able to identify measurement
traffic from non-measurement traffic with only 5 packets (and
only using their headers) from a network flow with over 0.99
precision and recall. Similar works in literature have also
shown that traffic flow patterns can be used to achieve traffic
classification using machine/deep learning mechanisms with
accuracies over 95% [34], [61]. These research efforts show
that obfuscation or randomization of download file server IP
addresses, although intuitive, may not always be an effective
mitigation strategy against bandwidth inflation attacks.

C. Co-residency Detection
An increase in traffic could lead to the relays being

overloaded and such relay overloads are self-reported in Tor
Metrics platform [5]. From an attack mitigation point of view,
it is easy to see that such relay overload indicators can be
employed to detect potential co-resident relays and neutralize
bandwidth inflation attacks, including the proposed ones by
us. However, since the overload status is self-reported, one
possible workaround to override this default overload reporting
behavior is to employ a modified (non-standard) Tor client
code which conceals the overload-related information from
being reported. Nonetheless, this form of detection is only
possible as long as attackers are unaware of this detection
method. In addition to the above, usage of the same public IP
addresses and port numbers and exhibiting similar uptime and
measurement results could also be indicative of co-residency.
Another possible indicator of co-residency could be relays
running the same version of Tor, assuming the attacker installs
these relays together or around the same time period (Tor
currently has 44 different version releases in operation) [6].
One can adopt tools like Sybilhunter [18], which already track
these parameters for Sybil detection, to check for signs of co-
residency.

When signs of co-residency are identified, the BAs can co-
measure the suspects and verify if any measurement anomalies,
as described in Section VII-A, could be observed. Third parties
(i.e., non-BAs) can perform similar tests, conducted on their
own, to test for measurement anomalies. However, measure-
ments by third parties will increase the load on the system
due to additional measurement traffic and are discouraged by
Tor [14].

D. Eliminating Explicit Measurement Traffic
As discussed earlier, the presence of measurement traffic

inherently makes the Tor network vulnerable to bandwidth
inflation attacks due to the high possibility of measurement
traffic detection. As a result, perhaps one of the most promising
countermeasures is to eliminate the use of explicit measure-
ment traffic to accomplish bandwidth measurement. To this
end, one approach would be to use the existing Tor relay nodes
themselves to measure their peers’ bandwidth in a distributed
fashion by using regular Tor client traffic. It must be noted that
such a technique has already been proposed by some of the
existing TorFlow/SBWS alternatives proposed in the literature,
such as EigenSpeed [64] and PeerFlow [47] (as discussed
earlier in Section VI-C), which employ a distributed (or peer-
to-peer) network of measurements nodes. Although these solu-
tions are currently incompatible with Tor and have their own
shortcomings, as discussed in Section VIII and Section VI,
we believe that improved versions of these solutions could
be effective in hindering a wide range of bandwidth inflation
attacks including MirageFlow.

VIII. RELATED WORKS

Bandwidth inflation in Tor was initially exploited back in
2006 by Overlier et al. [56]. At the time, relays reported their
own bandwidth measurements to DAs, and the authors reported
inflated measurements to increase the weight of malicious
relays in an attempt to achieve more efficient attacks against
Tor hidden services. In 2007, Bauer et al. [35] exploited the
same design flaw to propose a traffic analysis attack that affects
client anonymity and showed that a low-resource adversarial
entity could falsely report inflated bandwidths allowing them
to acquire both entry and exit relays of the same client with
an increased probability.

Consequently, bandwidth authorities and scanning proto-
cols (TorFlow) were introduced in Tor in 2011. TorFlow
was gradually replaced by SBWS starting 2018. However,
in 2013 Biryukov et al. [36] showed that an inflation attack
is still feasible by detecting bandwidth measurement traffic
and prioritizing the entire available bandwidth to such traffic
while throttling bandwidth for all other traffic. They were
able to achieve more than tenfold (10x) bandwidth inflation
using this strategy. Johnson et al. [48] also confirmed this
attack in a simulated environment and were able to achieve
an 177× inflation compared to the actual bandwidth where
the alteration achieved for the consensus weight increased
from 7% to 11%. They further showed that the bandwidth
utilized by the adversarial relay dropped from 22.5 MBps to
a mere 0.2 MBps which also validates that an attacker does
not require heavy resources to perform such an attack. They
further exposed a vulnerability in EigenSpeed which allows
an attacker to kick out honest relays by adding a very large
number of malicious relays (or Sybils). They used the same

13

malicious relays (or Sybil nodes) to report false bandwidths
for honest relays and obtained a 28× bandwidth inflation.

More recently, Mitseva et al. [52] conducted a practical
analysis of PeerFlow [47]. They observed that since PeerFlow
uses TorFlow measurements in their initial phase when new
relays join the Tor network, it is vulnerable to inflation attacks
up to 9× times compared to the specified security boundary
of 4.6× in PeerFlow. Mitseva et al. also identified a design
flaw in PeerFlow due to its variable measurement period times,
leading to malicious new relays compelling to be measured
using TorFlow by avoiding connections to other relays.

All of these studies share similarities with our work, as
they also delve into various strategies for bandwidth inflation,
aiming to maximize user traffic routed through malicious
relays while minimizing resource usage. Consequently, these
strategies facilitate a wide range of privacy attacks in Tor,
including website fingerprinting [30], [60], [45], [38], flow
correlation [44], [74], [71], [54], and routing attacks [35],
[65]. However, our approach distinguishes itself from previous
methods by introducing a novel inflation attack technique. By
combining this technique with existing approaches, attackers
can achieve even more significant bandwidth inflation.

IX. CONCLUSION

In this work, we presented a novel inflation attack on Tor
which adversarial relays could use to inflate their bandwidth.
We evaluated two attack variants, a co-residing relay attack
(C-MirageFlow) which achieved an inflation gain of nearly n,
and a dedicated server attack (D-MirageFlow) which achieved
an inflation multiplier by nearly half n ∗ N , where n is the
size of the relay cluster and N the number of servers. Next,
we explored the coincidence rate, which will help an attacker
to optimally choose the number of co-resident relays to max-
imize their inflation factor. We found that the inflation factor
increases almost linearly for cluster sizes up to 120 relays. In
our theoretical examination, we demonstrate that by utilizing
only 10 specialized servers employing the MirageFlow attack,
each having a bandwidth of 100MB/s, it is possible to gain
command over 50% of the Tor network’s traffic. We also
provided further insights on Tor relating to relay families and
port usage distribution. Finally, we also demonstrated how
MirageFlow is resilient against other alternative measurement
techniques, followed by potential countermeasures against the
proposed bandwidth inflation attacks.

ACKNOWLEDGMENT

Murtuza Jadliwala was partially funded by the US NSF
award number 1943351.

REFERENCES

[1] Ansible Github Repository. https://github.com/ansible/ansible.
[2] Artikel10 Tor family. https://metrics.torproject.org/rs.html#search/

contact:Artikel10%20.
[3] Bandwidth authorities timeline. https://gitlab.torproject.org/

tpo/network-health/bandwidth-authorities/-/wikis/bandwidth%
20authorities%20timeline.

[4] Chutney. https://github.com/torproject/chutney.
[5] CollecTor, the data-collecting service in the Tor network. https:

//metrics.torproject.org/collector.html.

[6] Core Tor Releases. https://gitlab.torproject.org/tpo/core/team/-/wikis/
NetworkTeam/CoreTorReleases.

[7] Did the FBI Pay a University to Attack Tor Users? https://
blog.torproject.org/did-fbi-pay-university-attack-tor-users.

[8] How SBWS Works. https://tpo.pages.torproject.net/network-health/
sbws/how works.html.

[9] Levensthein Distance. https://medium.com/@ethannam/understanding-
thelevenshtein-distance-equation-for-beginners-c4285a5604f0.

[10] Most Frequently Asked Questions - My firewall only allows a few
outgoing ports . https://support.torproject.org.

[11] NVIDIA A16 GPU. https://www.nvidia.com/en-us/data-center/
products/a16-gpu.

[12] Regulation (EU) 2016/679 of the European Parliament and of the
Council. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=
CELEX:32016R0679&from=EN.

[13] Relay Operations. https://community.torproject.org/relay/setup.

[14] Research Safety Board. https://research.torproject.org/safetyboard/.

[15] Shadow. https://shadow.github.io/.

[16] Simple Bandwidth Scanner - SBWS. https://tpo.pages.torproject.net/
network-health/sbws/man sbws.html.

[17] Stem Docs. https://support.torproject.org/it/relay-operators/relay-
bridge-overloaded.

[18] Sybilhunter tool. https://github.com/NullHypothesis/sybilhunter.

[19] The lifecycle of a new relay. https://blog.torproject.org/lifecycle-of-a-
new-relay/.

[20] The netfilter.org project. https://www.netfilter.org/.

[21] The Tor Project, Inc. https://www.torproject.org.

[22] Tor Bugbounty HackerOne. https://hackerone.com/torproject.

[23] Tor Consensus. https://metrics.torproject.org/glossary.html#consensus.

[24] Tor Directory Authorities. https://metrics.torproject.org/rs.html#search/
flag:Authority.

[25] Tor directory protocol, version 3. https://github.com/torproject/torspec/
blob/main/dir-spec.txt.

[26] Tor Project’s Wiki Page. https://gitlab.torproject.org/tpo/core/tor/-/
issues/40744.

[27] Tor security advisory: ”relay early” traffic confirmation attack.
https://blog.torproject.org/tor-security-advisory-relay-early-traffic-
confirmation-attack.

[28] Vagrant. https://www.vagrantup.com/.

[29] What is a Tor Relay? https://www.eff.org/de/pages/what-tor-relay.

[30] Kota Abe and Shigeki Goto. Fingerprinting attack on Tor anonymity
using deep learning. Proceedings of the Asia-Pacific Advanced Network,
42:15–20, 2016.

[31] AdrienLE. Bandwidth Scanner specification. https://github.com/
AdrienLE/torflow/blob/master/NetworkScanners/BwAuthority/
README.spec.txt.

[32] Iman Akbari, Mohammad A Salahuddin, Leni Ven, Noura Limam,
Raouf Boutaba, Bertrand Mathieu, Stephanie Moteau, and Stephane
Tuffin. Traffic classification in an increasingly encrypted web. Com-
munications of the ACM, 65(10):75–83, 2022.

[33] Greubel Andre, Dmitrienko Alexandra, and Kounev Samuel. SmarTor:
smarter tor with smart contracts: Improving resilience of topology
distribution in the tor network. In Proceedings of the 34th Annual
Computer Security Applications Conference, pages 677–691, 2018.

[34] Erik Areström and Niklas Carlsson. Early online classification of
encrypted traffic streams using multi-fractal features. In IEEE INFO-
COM 2019-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pages 84–89. IEEE, 2019.

[35] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and
Douglas Sicker. Low-resource routing attacks against Tor. In Proceed-
ings of the 2007 ACM workshop on Privacy in electronic society, pages
11–20, 2007.

[36] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling
for Tor Hidden Services: Detection, Measurement, Deanonymization.
In 2013 IEEE Symposium on Security and Privacy, pages 80–94, 2013.

14

https://github.com/ansible/ansible
https://metrics.torproject.org/rs.html#search/contact:Artikel10%20
https://metrics.torproject.org/rs.html#search/contact:Artikel10%20
https://gitlab.torproject.org/tpo/network-health/bandwidth-authorities/-/wikis/bandwidth%20authorities%20timeline
https://gitlab.torproject.org/tpo/network-health/bandwidth-authorities/-/wikis/bandwidth%20authorities%20timeline
https://gitlab.torproject.org/tpo/network-health/bandwidth-authorities/-/wikis/bandwidth%20authorities%20timeline
https://github.com/torproject/chutney
https://metrics.torproject.org/collector.html
https://metrics.torproject.org/collector.html
https://gitlab.torproject.org/tpo/core/team/-/wikis/NetworkTeam/CoreTorReleases
https://gitlab.torproject.org/tpo/core/team/-/wikis/NetworkTeam/CoreTorReleases
https://blog.torproject.org/did-fbi-pay-university-attack-tor-users
https://blog.torproject.org/did-fbi-pay-university-attack-tor-users
https://tpo.pages.torproject.net/network-health/sbws/how_works.html
https://tpo.pages.torproject.net/network-health/sbws/how_works.html
https://medium.com/@ethannam/understanding-thelevenshtein-distance-equation-for-beginners-c4285a5604f0
https://medium.com/@ethannam/understanding-thelevenshtein-distance-equation-for-beginners-c4285a5604f0
https://support.torproject.org
https://www.nvidia.com/en-us/data-center/products/a16-gpu
https://www.nvidia.com/en-us/data-center/products/a16-gpu
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://community.torproject.org/relay/setup
https://research.torproject.org/safetyboard/
https://shadow.github.io/
https://tpo.pages.torproject.net/network-health/sbws/man_sbws.html
https://tpo.pages.torproject.net/network-health/sbws/man_sbws.html
https://support.torproject.org/it/relay-operators/relay-bridge-overloaded
https://support.torproject.org/it/relay-operators/relay-bridge-overloaded
https://github.com/NullHypothesis/sybilhunter
https://blog.torproject.org/lifecycle-of-a-new-relay/
https://blog.torproject.org/lifecycle-of-a-new-relay/
https://www.netfilter.org/
https://www.torproject.org
https://hackerone.com/torproject
https://metrics.torproject.org/glossary.html#consensus
https://metrics.torproject.org/rs.html#search/flag:Authority
https://metrics.torproject.org/rs.html#search/flag:Authority
https://github.com/torproject/torspec/blob/main/dir-spec.txt
https://github.com/torproject/torspec/blob/main/dir-spec.txt
https://gitlab.torproject.org/tpo/core/tor/-/issues/40744
https://gitlab.torproject.org/tpo/core/tor/-/issues/40744
https://blog.torproject.org/tor-security-advisory-relay-early-traffic-confirmation-attack
https://blog.torproject.org/tor-security-advisory-relay-early-traffic-confirmation-attack
https://www.vagrantup.com/
https://www.eff.org/de/pages/what-tor-relay
https://github.com/AdrienLE/torflow/blob/master/NetworkScanners/BwAuthority/README.spec.txt
https://github.com/AdrienLE/torflow/blob/master/NetworkScanners/BwAuthority/README.spec.txt
https://github.com/AdrienLE/torflow/blob/master/NetworkScanners/BwAuthority/README.spec.txt

[37] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching
from a distance: Website fingerprinting attacks and defenses. In
Proceedings of the 2012 ACM conference on Computer and commu-
nications security, pages 605–616, 2012.

[38] Giovanni Cherubin, Rob Jansen, and Carmela Troncoso. Online Website
Fingerprinting: Evaluating Website Fingerprinting Attacks on Tor in the
Real World. In 31st USENIX Security Symposium (USENIX Security
22), pages 753–770, 2022.

[39] Hussein Darir, Hussein Sibai, Chin-Yu Cheng, Nikita Borisov, Geir
Dullerud, and Sayan Mitra. MLEFlow: Learning from History to
Improve Load Balancing in Tor. Proceedings on Privacy Enhancing
Technologies, 2022(1):75–104, 2022.

[40] Nathan S Evans, Roger Dingledine, and Christian Grothoff. A Practical
Congestion Attack on Tor Using Long Paths. In USENIX Security
Symposium, pages 33–50, 2009.

[41] John Geddes, Rob Jansen, and Nicholas Hopper. How low can you
go: Balancing performance with anonymity in tor. In International
Symposium on Privacy Enhancing Technologies Symposium, pages 164–
184. Springer, 2013.

[42] Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable
website fingerprinting technique. In 25th USENIX Security Sympo-
sium (USENIX Security 16), pages 1187–1203, 2016.

[43] Nicholas Hopper, Eugene Y Vasserman, and Eric Chan-Tin. How
much anonymity does network latency leak? ACM Transactions on
Information and System Security (TISSEC), 13(2):1–28, 2010.

[44] Amir Houmansadr, Negar Kiyavash, and Nikita Borisov. RAINBOW:
A Robust And Invisible Non-Blind Watermark for Network Flows. In
NDSS, volume 47, pages 406–422. Citeseer, 2009.

[45] Rob Jansen, Marc Juarez, Rafa Galvez, Tariq Elahi, and Claudia Diaz.
Inside Job: Applying Traffic Analysis to Measure Tor from Within. In
NDSS, 2018.

[46] Rob Jansen, Florian Tschorsch, Aaron Johnson, and Björn Scheuer-
mann. The sniper attack: Anonymously deanonymizing and disabling
the Tor network. Technical report, Office of Naval Research Arlington
VA, 2014.

[47] Aaron Johnson, Rob Jansen, Nicholas Hopper, Aaron Segal, and
Paul Syverson. PeerFlow: Secure Load Balancing in Tor. PoPETs,
2017(2):74–94, 2017.

[48] Aaron Johnson, Rob Jansen, Nicholas Hopper, Aaron Segal, and Paul
Syverson. PeerFlow: Secure Load Balancing in Tor. Proceedings on
Privacy Enhancing Technologies, 2017(2):74–94, April 2017.

[49] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul
Syverson. Users get routed: Traffic correlation on tor by realistic
adversaries. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 337–348, 2013.

[50] Shuai Li, Huajun Guo, and Nicholas Hopper. Measuring information
leakage in website fingerprinting attacks and defenses. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 1977–1992, 2018.

[51] Zhen Ling, Junzhou Luo, Wei Yu, Xinwen Fu, Weijia Jia, and Wei Zhao.
Protocol-level attacks against Tor. Computer Networks, 57(4):869–886,
2013.

[52] Asya Mitseva, Thomas Engel, and Andriy Panchenko. Analyzing
PeerFlow – A Bandwidth Estimation System for Untrustworthy En-
vironments. 2020.

[53] Prateek Mittal, Ahmed Khurshid, Joshua Juen, Matthew Caesar, and
Nikita Borisov. Stealthy traffic analysis of low-latency anonymous
communication using throughput fingerprinting. In Proceedings of
the 18th ACM conference on Computer and Communications Security,
pages 215–226, 2011.

[54] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. Deepcorr:
Strong flow correlation attacks on tor using deep learning. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1962–1976, 2018.

[55] Oracale. VirtualBox. https://www.virtualbox.org/.
[56] Lasse Overlier and Paul Syverson. Locating hidden servers. In 2006

IEEE Symposium on Security and Privacy (S&P’06), pages 15–pp.
IEEE, 2006.

[57] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, An-

dreas Zinnen, Martin Henze, and Klaus Wehrle. Website Fingerprinting
at Internet Scale. In NDSS, 2016.

[58] Mike Perry. TorFlow: Tor network analysis. Proc. 2nd HotPETs, pages
1–14, 2009.

[59] David M. W. Powers. Evaluation: from precision, recall and f-measure
to roc, informedness, markedness and correlation. 2020.

[60] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem,
and Wouter Joosen. Automated website fingerprinting through deep
learning. arXiv preprint arXiv:1708.06376, 2017.

[61] Ola Salman, Imad H Elhajj, Ali Chehab, and Ayman Kayssi. A
multi-level internet traffic classifier using deep learning. In 2018 9th
International Conference on the Network of the Future (NOF), pages
68–75. IEEE, 2018.

[62] Bruce Schneier. Attacking Tor: How the NSA targets users’ on-
line anonymity. https://www.theguardian.com/world/2013/oct/04/tor-
attacks-nsa-users-online-anonymity.

[63] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. Deep
fingerprinting: Undermining website fingerprinting defenses with deep
learning. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1928–1943, 2018.

[64] Robin Snader and Nikita Borisov. Eigenspeed: secure peer-to-peer
bandwidth evaluation. In IPTPS, page 9, 2009.

[65] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer
Rexford, Mung Chiang, and Prateek Mittal. RAPTOR : Routing
attacks on privacy in tor. In 24th USENIX Security Symposium
(USENIX Security 15), pages 271–286, 2015.

[66] Henry Tan, Micah Sherr, and Wenchao Zhou. Data-plane defenses
against routing attacks on tor. Proc. Priv. Enhancing Technol.,
2016(4):276–293, 2016.

[67] Fabrice Thill. Hidden Service Tracking Detection and Bandwidth
Cheating in Tor Anonymity Network. PhD thesis, PhD thesis. Master
thesis. University of Luxembourg. 2014., 2014.

[68] Matthew Traudt, Rob Jansen, and Aaron Johnson. Flashflow: A secure
speed test for tor. In 2021 IEEE 41st International Conference on
Distributed Computing Systems (ICDCS), pages 381–391. IEEE, 2021.

[69] Ryan Wails, Yixin Sun, Aaron Johnson, Mung Chiang, and Prateek
Mittal. Tempest: Temporal dynamics in anonymity systems. arXiv
preprint arXiv:1801.01932, 2018.

[70] Tao Wang and Ian Goldberg. Improved website fingerprinting on tor.
In Proceedings of the 12th ACM workshop on Workshop on privacy in
the electronic society, pages 201–212, 2013.

[71] Xinyuan Wang, Shiping Chen, and Sushil Jajodia. Network flow wa-
termarking attack on low-latency anonymous communication systems.
In 2007 IEEE Symposium on Security and Privacy (SP’07), pages 116–
130. IEEE, 2007.

[72] Philipp Winter, Roya Ensafi, Karsten Loesing, and Nick Feamster.
Identifying and characterizing sybils in the tor network. In 25th USENIX
Security Symposium (USENIX Security 16), pages 1169–1185, Austin,
TX, August 2016. USENIX Association.

[73] Guorui Xie, Qing Li, and Yong Jiang. Self-attentive deep learning
method for online traffic classification and its interpretability. Computer
Networks, 196:108267, 2021.

[74] Wei Yu, Xinwen Fu, Steve Graham, Dong Xuan, and Wei Zhao. DSSS-
based flow marking technique for invisible traceback. In 2007 IEEE
Symposium on Security and Privacy (SP’07), pages 18–32. IEEE, 2007.

APPENDIX A
OBSERVED RELAY FAMILIES

The relay families (located in Germany) we identified
during preliminary investigations with potentially co-residing
relays are shown in Table I.

APPENDIX B
2-HOP VS. 3-HOP MEASUREMENT CIRCUITS

The difference between a 2-hop and a 3-hop measurement
circuit can be seen in Fig. 10 as previously described in
Section VI-A.

15

https://www.virtualbox.org/
https://www.theguardian.com/world/2013/oct/04/tor-attacks-nsa-users-online-anonymity
https://www.theguardian.com/world/2013/oct/04/tor-attacks-nsa-users-online-anonymity

TABLE I: A List of Observed Relay Families.

Family No. of Relays Bandwidth (Mbps)

8029928877A15A504D92996C65BFD4F0BDF4E702 88 2596.32
2DF03D7B158DAE2EAF76078775451F1769506451 85 2003.7

5B83DC983406651A0B4F6AE1940793CDD6A6F92E 56 1784.92
526AD50C9DE6AF533DEBE8F9BBDF149BC1F5AB6E 178 1278.92
A4E47F08B8D56428DF76B17EDD6738BCBC3F5EFB 55 1092.18

135F2A8B32F583845F2B0E133EFD84C25026761B 32 1077.46
1050FC79C5F1103B185300EF72DDF5B4EDC683C9 94 936.37

Bandwidth
Authority

Tor Project File
Server

Measured
Relay

Measured
Relay

Guard Relay Exit Relay

Exit Relay

2-hop Circuit

3-hop Circuit

Fig. 10: 2-hop vs. 3-hop measurement circuits

APPENDIX C
ATTACK RESOURCE ESTIMATION EQUATIONS

As mentioned in Section IV-F, the curve fitting algorithm
to construct a matching curve from the inflation factor of the
attack is defined in Eq. (1). The fitted function (mean squared
error is 0.0318 and coefficient of determination is 0.99995)
returns the inflation factor for a cluster size, x.

The equation to calculate the required amount of dedicated
servers in the D-MirageFlow attack, given a cluster size and
how much traffic should be controlled is shown by the equation
Eq. (2). The parameter x refers to the cluster size, b is
a constant that defines the total traffic in the Tor network,
p defines the desired percentage of controlled traffic and d
defines the bandwidth of the dedicated servers. To calculate the
perfect cluster size, one can create a linear program (LP) that
minimizes both the cluster size and the amount of dedicated
servers (i.e., minimize x+ s(x, b, p, d)).

i(x) = 0.75895138 · (1.44995314 · x)0.96837148 (1)
−(0.03714758 · x)2 − 0.07672455

Di = N ∈ [1, 120]

s(x, b, p, d) =
⌈ −b

p
100−1 · p

100

d · i(x)

⌉
(2)

Ds = N4, x ∈ [1, 120], p ∈ [1, 99]

APPENDIX D
DISTRIBUTION OF PORTS BY TOR RELAYS

The analysis done on the real Tor network shows 581 dif-
ferent port numbers being used by relays, suggesting possible
co-resident relays (Fig. 11).

39%

33.6%

2.76%2.74%2.64%

9001
443
8443
9000
9100
80
8080
9443
9002
993
5443
9090
444
9003
8000
143

Fig. 11: Distribution of different ports used by Tor relays.

16

	Introduction
	Background
	MirageFlow Attacks
	Adversary Model & Capabilities
	High-level idea and attack variations
	C-MirageFlow - MirageFlow with Co-Residing Relays
	D-MirageFlow - MirageFlow with Dedicated Server

	Evaluation
	Ethical Considerations
	Evaluation Environment
	Evaluation of C-MirageFlow
	Evaluation of D-MirageFlow
	Exploring the Inflation Factor
	Estimation of Required Attack Resources

	Additional Insights on Tor
	Resilience of Alternate Bandwidth Measurement Solutions
	3-Hop Measurement Circuits
	FlashFlow
	Other Solutions

	Countermeasures
	Detecting Measurement Anomalies
	Obscuring Measurement Traffic
	Co-residency Detection
	Eliminating Explicit Measurement Traffic

	Related Works
	Conclusion
	References
	Appendix A: Observed Relay Families
	Appendix B: 2-hop vs. 3-hop Measurement Circuits
	Appendix C: Attack Resource Estimation Equations
	Appendix D: Distribution of Ports by Tor Relays

