
Facilitating Non-Intrusive In-Vivo Firmware
Testing with Stateless Instrumentation

Jiameng Shi
University of Georgia

jiameng@uga.edu

Wenqiang Li
Independent Researcher

wenqiang-li@outlook.com

Wenwen Wang
University of Georgia
wenwen@cs.uga.edu

Le Guan
University of Georgia

leguan@uga.edu

Abstract—Although numerous dynamic testing techniques
have been developed, they can hardly be directly applied to
firmware of deeply embedded (e.g., microcontroller-based) devices
due to the tremendously different runtime environment and
restricted resources on these devices. This work tackles these
challenges by leveraging the unique position of microcontroller
devices during firmware development. That is, firmware de-
velopers have to rely on a powerful engineering workstation
that connects to the target device to program and debug code.
Therefore, we develop a decoupled firmware testing framework
named IPEA, which shifts the overhead of resource-intensive
analysis tasks from the microcontroller to the workstation. Only
lightweight “needle probes” are left in the firmware to collect
internal execution information without processing it. We also
instantiated this framework with a sanitizer based on pointer
capability (IPEA-San) and a greybox fuzzer (IPEA-Fuzz). By
comparing IPEA-San with a port of AddressSanitizer for micro-
controllers, we show that IPEA-San reduces memory overhead
by 62.75% in real-world firmware with better detection accuracy.
Combining IPEA-Fuzz with IPEA-San, we found 7 zero-day bugs
in popular IoT libraries (3) and peripheral driver code (4).

I. INTRODUCTION

Microcontroller units (MCUs) are resource-constrained
System-on-Chip (SoCs) that have found wide applications in
Internet-of-Things (IoT), industrial control, smart manufactur-
ing, healthcare, etc. The secure operation of these systems
therefore heavily relies on the security of firmware running on
the MCU-based devices. In recent years, we have witnessed
a significant number of vulnerability exposures that target
MCU-based systems [45], [53], [46], [22], [36], [37], [71],
resulting in widespread real-world exploitation [30], [40], [48],
[84]. This highlights the critical need to develop effective
and efficient firmware testing tools. Unfortunately, other than
rudimentary debugging tools (e.g., halt-and-examine style de-
bugging), firmware developers rarely enjoy modern (dynamic)
software testing techniques (e.g., sanitizers).

The slow uptake of established dynamic analysis tech-
niques for firmware can be explained by the significant dispar-
ity in the development and testing environment. Specifically,
firmware developers write the source code on a development
workstation/PC, where the code is cross-compiled into binary-
format firmware. To transfer the firmware to the target hard-

ware (i.e., prototype board) and debug its execution, a debug
dongle that connects the board to the development PC is
used. Notably, firmware development and firmware execution
take place on different machines (development PC vs. MCU
prototype board). This poses a dilemma regarding where to
run firmware analysis. On the one hand, the target MCU,
with very restricted resources, may not have spare memory
and computation power to independently host a test. On the
other hand, the development PC, without the facility to access
the internal state of firmware execution from outside, cannot
gather insightful data to conduct effective analyses.

To approach this dilemma, this work presents a new
firmware testing framework named IPEA (short for in-vivo
probe, ex-vivo analysis). Instead of running a test entirely
on the development PC or the board, our key innovation
is to partition the workload of firmware testing into two
decoupled parts. A small part is kept on the MCU chip to
collect necessary run-time information with high fidelity (in-
vivo aspect). The remaining part, which conducts the actual
resource-hungry analysis is offloaded to the more capable
development PC (ex-vivo aspect). The communication between
the two—transmitting the collected information from the MCU
to the PC—is facilitated by the debug dongle, a must-have
component in the existing firmware development environment.

Since the two decoupled parts on the PC and MCU board
must jointly complete a test, an immediate challenge is to
minimize the frequency of interactions between them, as the
round-trip time is often not negligible. We address this problem
with a new notion named stateless instrumentation. With it,
the firmware is instrumented such that it never stores or
processes metadata related to the analysis. Rather, it only
places “needle probes” to collect and stream out important
events happened during execution. The ex-vivo analysis task
on PC then reconstructs the run-time metadata based on
the received information and performs the actual analysis.
Stateless instrumentation offers two benefits. First, when the
firmware is executing, only one-way communication is needed,
avoiding the interaction between the PC and MCU that may
block the normal execution. Second, since the MCU does
not need to store any metadata, the memory overhead can be
significantly reduced.

The IPEA framework features three user-friendly proper-
ties, with which we expect to ultimately promote the adop-
tion of advanced dynamic analysis techniques in the MCU
community. Non-intrusive: IPEA seamlessly integrates into
existing firmware development workflow and does not rely
on additional hardware. In-vivo: The essential run-time in-

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.23116
www.ndss-symposium.org

formation for firmware analysis is collected directly on the
target MCU, instead of from an external observer (e.g., [36],
[32], [91]). Lightweight: The testing incurs low overhead on
resource-constrained MCUs, especially in terms of memory
consumption.

While not all software testing techniques can take full
advantage of IPEA (e.g., when they cannot be easily decou-
pled), our research indicates that many bug-oriented testing
techniques such as fuzzing and various sanitizers can benefit
a lot from it. As such, we further design and implement
two plugin modules for IPEA to demonstrate its real-world
application: a fuzzer (IPEA-Fuzz) and an address sanitizer
(IPEA-San). IPEA-Fuzz implements a greybox fuzzer with
edge coverage as feedback, similar to AFL [88]. IPEA-San
is a pointer-based sanitizer that tracks the bounds and validity
of each pointer with intra-object overflow detection support.

Our prototype, including the framework and two analysis
plugin modules, have been extensively tested on Arm Cortex-
M series MCUs. It is worth pointing out that our approach is
not limited to a specific MCU architecture, as it does not rely
on any hardware features. To compare IPEA-San with state-of-
the-art solutions that run entirely on the test target, we ported
Google’s AddressSanitizer (or ASan) [70] for MCU, which is
memory-optimized to accommodate MCU-specific restrictions.
Even so, IPEA-San exhibits significant advantages over ASan.
IPEA-San incurs zero false negatives and false positives on
the Juliet Test Suite and consumes far less RAM in real-
world firmware (1.14x vs. 3.06x). Constrained by the RAM
capacity, two demonstration projects that come with the official
commercial off-the-shelf (COTS) development kits failed to
compile using ASan but succeeded using IPEA-San. When
running IPEA-San against the BEEBS benchmark [61], IPEA-
San reported two “silent” memory corruptions caused by bugs
that are not known before. Last but not least, combining IPEA-
Fuzz with IPEA-San, we found seven zero-day bugs, including
three in popular IoT libraries and four in peripheral driver code.

In summary, we made the following contributions.

• New framework – We propose IPEA, a decoupled frame-
work that enables non-intrusive, in-vivo and lightweight
firmware testing.

• New analysis techniques – We design and implement a
sanitizer and a fuzzer as plugins for the IPEA framework.

• New porting for MCUs – To comprehensively evaluate
IPEA-San, we adapt the Juliet Test Suite for MCUs. To
compare IPEA-San with the state of the art, we complete
a memory-optimized port of ASan for MCUs.

• Evaluation – We evaluate IPEA-San against the Juliet Test
Suite, the BEEBS benchmark, and 12 real-world firmware
samples. IPEA-San reduces RAM overhead by 62.75%
compared with ASan and incurs zero false negatives and
false positives in the Juliet Test Suite.

• New bugs – IPEA-San exposed two memory bugs in the
BEEBS benchmark. Combining IPEA-Fuzz with IPEA-San,
we found seven zero-day bugs in real MCU products.

All the code, benchmark suites, and firmware samples de-
veloped in this work have been open-sourced to encourage con-
tinued research on GitHub (https://github.com/MCUSec/IPEA)
and Zenodo [74].

II. BACKGROUND

A. Firmware Development

In a typical firmware development environment, developers
write source code on a development PC and cross-compile
it into the firmware. A hardware debug dongle acts as a
bridge between the two and enables firmware downloading and
debugging. It has the ultimate control over the target MCU,
including suspending/resuming firmware execution, placing
a breakpoint, examining the register/memory values, etc.
These control commands are generated by the debug daemon
(e.g., GDBSever) on the PC. The dongle then translates them
into low-level JTAG/SWD messages understandable by MCUs.

B. Microcontroller Firmware

Compared with traditional microprocessors found on PCs
and smartphones, MCUs consume less power, run at lower
frequencies (less than 500 MHz), and integrate on-chip SRAM
and flash memory which are typically several hundred KB.
The software on them, aka firmware, is tightly coupled with
the underlying hardware. Due to the restricted resources, MCU
devices commonly lack standard features on PCs (e.g., MMU).
Notably, MCU firmware runs in a single flat address space
where different components are mixed together, including the
kernel (if any), user tasks and memory-mapped peripherals.
This leads to a tremendously different runtime environment
(bare-metal vs. Linux/Windows-based), making existing dy-
namic software testing tools inapplicable to MCU firmware.
Specifically, dynamic analysis highly depends on the runtime
environment of the target software. Without radical redesign to
accommodate the changes, a tool oftentimes cannot be reused
to analyze MCU firmware. Even if an existing tool can, the
scarce resources on MCUs may make it too expensive.

C. Memory Bugs and Bug-Oriented Program Analysis

Memory Safety. To fully exploit the limited resources, MCU
firmware is mainly written in the C/C++ programming lan-
guages. Unfortunately, these languages are memory-unsafe,
which means attackers can potentially leverage implementation
bugs to access memory not allowed by the original semantics
(i.e., memory corruption). A spatial memory bug concerns
out-of-bounds (OOB) accesses and a temporal memory bug
concerns accessing a de-allocated object or an unintended
object via a dangling pointer (e.g., use-after-free or UAF).

Fuzzer and Sanitizer. Combining a sanitizer and a fuzzer has
been commonly used to reveal real-world memory bugs. A
fuzzer generates abnormal testcases for the software-under-test
in an attempt to trigger a memory safety violation. Although
some memory corruptions can be immediately caught by the
OS, others may not. Therefore, a sanitizer comes to the
rescue and makes memory corruptions more noticeable. There
are many types of memory errors that can be captured by
different sanitizers [80], [81], [38], [82], [70]. Among them,
address sanitizer is particularly powerful. The general idea is
to instrument the target software to enforce bounds (spatial
property) and/or validity (temporal property) checks at pointer
dereferences. Any violation will generate an immediate alert
instead of waiting for the OS to catch it. This role of sanitizer is
particularly important for fuzzing embedded system firmware

2

https://github.com/MCUSec/IPEA

since memory corruptions on these devices rarely lead to
observable crashes due to the lack of efficient hardware-based
memory isolation mechanisms [55].

Redzone-Based Sanitizer vs. Pointer-Based Sanitizer. Many
address sanitizers have been proposed [70], [79], [33], [72],
[56], [57], [58], [51], [90], [42], [20]. Two designs receive
wide adoption: redzone-based solutions such as ASan [70]
and pointer-based solutions such as CCured [58]. The former
places redzones around objects. A shadow memory is main-
tained to bookkeep the state of memory and an alert is raised
on accessing the redzone. To detect temporal memory bugs,
it quarantines freed objects in a buffer. An alert is raised on
accessing an object in the quarantine. The latter encodes the
capability of each pointer via metadata, including its bounds
and validity. Before each pointer dereference, the target address
is checked against the per-pointer metadata. While earlier
efforts use a fat pointer representation to replace a pointer
with a multi-word pointer/metadata [58], recent advances tend
to use disjoint metadata [56] or rely on hardware features [79]
to improve compatibility.

Memory Tagging. Memory tagging is a variant of pointer-
based sanitizer. It is based on the lock-and-key mechanism.
When an object is allocated, its memory and receiving pointer
are given the same tag. Then, all accesses to that memory must
be made by a pointer having the same tag. Memory tagging
simultaneously enforces the spatial and temporal properties be-
cause both OOB and UAF accesses lead to a mismatched tag.
Memory tagging can be efficiently implemented in hardware.
For example, Arm MTE (memory tagging extension) [17],
an extension to Arm’s Armv8.5-A architecture, reserves the
upper four bits of a pointer to store the tag and the hardware
transparently maintains tags for memory objects on 16-byte
granules. At run-time, the CPU checks if the tag of the pointer
and the tag associated with the target memory match on each
load and store. Note that MTE is only available on Arm’s A-
profile processors, not MCUs.

III. OVERVIEW

Problem. Many software testing tools are developed for the
emulated execution environment where the target code is
translated on a host machine (e.g., Memcheck [72]). By
dynamically instrumenting the translation, these solutions can
transparently collect rich execution information with excellent
scalability. As such, rehosting firmware on a PC seems to be
a promising solution for firmware analysis. However, unlike
traditional software, a prerequisite of firmware emulation is a
precise model of the underlying hardware because firmware
frequently interacts with diverse peripherals. Since peripheral
behaviors are hard to predict, emulation often lacks the re-
quired fidelity and even leads to false crashes [31], [85].

Involving real hardware in the loop avoids challenges in
emulating firmware. However, it comes with its own prob-
lems. First, running a test entirely on the target MCU device
is restricted by the short of on-chip resources. Take ASan
as an example. Due to the excessive use of redzones and
shadow memory, the memory overhead of ASan is 3.37x
on average [70]. One may argue that the testing overhead
can be largely tolerated since it does not carry over to real
products. However, we found that firmware—if bloated with

IPEA-San

Prototype BoardDevelopment PC

Debug
Dongle

Control Commands

Run-time Info

Downstream Upstream

Plugin
System

Packet
Parser

Debugger
Daemon

IPEA Core

IPEA-Fuzz

Fuzzer Events

San. Events

Firm
w

are w
ith

 Stateless
In

stru
m

en
tatio

nOther Events

Testcases

Fig. 1. IPEA overview.

instrumentation—frequently exceeds the capacity of the proto-
type board. The root cause is that firmware does not enjoy the
flexibility of being tested on more powerful or even virtualized
hardware as traditional software does. In fact, to maintain
compatibility and reduce costs, manufacturers prefer to use
a prototype board that has identical hardware specification as
the real product, which merely integrates enough resources for
implementing the designed application logic.

Second, if we run the test on the development PC, the inter-
nal run-time state of firmware remains opaque, impeding effec-
tive firmware analysis. Prior endeavors either observe coarse-
grained feedback of the execution (e.g., SweynTooth [36]
obverses device responses to find BLE non-compliance bugs),
or depend on special hardware to collect certain types of
feedback (e.g., µAFL [50] leverages the ETM debug feature
to collect execution trace). A general mechanism to collect
arbitrary internal run-time information is missing.

Design Goals. Recognizing the barriers to effective firmware
analysis, we design our system with the following goals. G1: It
should not limit its application to certain types of analyses by
relying on chip-specific features (as opposed to µAFL [50]).
G2: It should run the firmware on real devices to collect
high-fidelity information, instead of on emulators (as opposed
to Memcheck [72]). G3: The memory overhead should be
minimal so that the tool can be used on existing prototype
boards (as opposed to ASan [70]).

Methodology. The key innovation of our approach is to strate-
gically decouple the analysis workload and then selectively
distribute the two parts on both the MCU and the development
PC. The enabling technique is stateless instrumentation. With
it, the MCU only runs the lightweight part of the test to
collect high-fidelity execution information in-vivo, whereas the
resource-hungry part of the test is offloaded to a powerful
development PC. Since the development PC is a standard
component in any MCU development environment, our solu-
tion does not impose additional deployment costs. Using static
instrumentation via compiler techniques, our system meets G1
and G2. With stateless instrumentation, G3 is met.

System Overview. IPEA is a firmware testing framework. It
does not include any analysis components in itself. Rather, de-
velopers load an analysis plugin into the plugin system on the
PC and compile the target firmware using the analysis-specific
LLVM pass, as shown in Figure 1. Here, the plugins, running
on the PC, handle resource-hungry analyses offloaded from the
target MCU, and the firmware runs stateless instrumentation
that collects the analysis-specific execution information. The
IPEA core on the development PC and the debug dongle to-
gether govern the communication between the analysis plugins
and the target prototype board via three communication chan-
nels. The upstream execution information channel carries

3

the collected execution information from the board to the
debugger daemon. Through the packet parser, the information
is eventually routed to the intended plugins. During a test, other
than upstreaming data via this channel, there is no interaction
between the PC and MCU. This ensures that the firmware
execution can never block. The two downstream channels are
used by the IPEA core to prepare a test. In particular, the
control command channel coordinates firmware execution
and the testcase channel transfers testcases to the board.

We design two analysis plugins for the IPEA framework.
IPEA-Fuzz implements a greybox fuzzer with edge coverage
as feedback. IPEA-San is a pointer-based sanitizer. It virtually
extends the capability of MCUs by emulating an enhanced
version of Arm MTE hardware extension, in which the MCU
and the PC plugin jointly complete the sanitization. The reason
why we choose these two analyses is that combining a fuzzer
and a sanitizer has been proven effective in finding real-world
bugs. In what follows, we present the details of the IPEA
framework, IPEA-San and IPEA-Fuzz, respectively.

IV. THE IPEA FRAMEWORK

System Setup. IPEA is designed for firmware developers.
Therefore, we assume the availability of the source code
and a typical embedded system development environment. In
particular, a debug dongle and a debug daemon are present to
bridge the target MCU and the development PC via the JTAG
or Arm SWD interface. The dongle has ultimate control over
the target MCU, including suspending/resuming the execution,
placing a breakpoint, examining the register/memory values,
etc. These commands are generated by the debug daemon
(e.g., GDBSever) on the PC, which is then translated into low-
level JTAG/SWD messages via the dongle.

IPEA Core. The IPEA core runs on the PC and leverages the
debug dongle to prepare the testing environment for each test-
case to run on the MCU target. Its main tasks include 1) pro-
gramming instrumented firmware to the MCU flash; 2) starting
firmware execution; 3) examining the status of firmware exe-
cution as needed; 4) recovering the non-responsive hardware
as needed; 5) downloading testcases to the target; and 6)
receiving run-time data from the target. Among them, tasks
1-4 are standard functions already provided by most debug
dongles. Tasks 5 and 6 are IPEA-specific, for which multiple
communication interfaces can be used. For example, SEGGER
Real Time Transfer (RTT) [68] and semihosting [18] provide
chip-agnostic solutions, while chip-specific methods such as
UART and Ethernet are also possible. In this work, we choose
RTT as the underlying interface. This is because RTT is backed
by the market-leading SEGGER J-Link solution [66]. Using
it, our implementation can automatically support all MCUs
based on Arm, RISC-V and Renesas RX [68]. In essence,
RTT reserves a SEGGER RTT Control Block structure in the
target MCU’s memory to exchange data with the PC in the
background with help of the debug dongle.

The IPEA core also needs to route the received packets to
the intended analysis plugins. To facilitate this, we design a
compact encoding scheme based on tag-value. For each type
of run-time event to be collected, there is a unique header
containing the identification tag followed by the value. The
comprehensive list of supported events in this work can be

Firmware with Original
Instrumentation

Info Collecting
Instrumentation

Analysis
Instrumentation

Run-time Data

R/W

W

Firmware with Stateless
Instrumention

Info Collecting
Instrumentation

W

Offloaded Analysis
on PC

Analysis
Instrumentation

Run-time Data

R/W

Fig. 2. Stateless instrumentation.

TABLE I. RUN-TIME EVENTS FOR STATELESS INSTRUMENTATION

Event Opcode Description
OP NEW Create a new heap object
OP SUB Derive a new pointer to a sub-object from an existing object
OP FREE Deallocate a heap object
OP PROP Intra-procedure tag propagation
OP PROP CALL Inter-procedure tag propagation via parameters at callsite
OP PROP CALLEE Inter-procedure tag propagation via parameters at callee
OP PROP RET Inter-procedure tag propagation via return value at callee
OP PROP RET GET Inter-procedure tag propagation via return value after callsite
OP CHK Check invalid memory accesses
OP CALLEE Function call
OP RET Function return
OP IRQ Interrupt handler entry
OP BB Basic block random number

found in Table I. The firmware is instrumented such that
when an interesting event is captured, a function is inserted
to stream out the encoded packet via RTT. Correspondingly,
after receiving the packet, the packet parser checks the packet
header and routes it to the target analysis plugin.

Stateless Instrumentation. IPEA offloads the resource-hungry
firmware testing workload from the MCU to the develop-
ment PC, which has “unlimited” resources compared with
any MCU. To make this happen, we need to place some
lightweight “needle probes” into the firmware so that they can
collect necessary internal information, a notion we termed as
stateless instrumentation. Figure 2 conceptually illustrates the
idea. When we run firmware testing entirely on MCU, the
original instrumentation can be separated into two parts. The
information-collecting instrumentation collects the firmware
run-time data, which is stored in a dedicated memory region.
The analysis instrumentation performs the actual analysis using
the collected run-time data. All three components (two parts
of instrumentation plus the run-time data) reside in the address
space of the firmware, as shown on the left of the figure. If
the instrumentation can be refactored into stateless instrumen-
tation, only the information-collecting part needs to be kept in
the firmware and other parts can be offloaded, as shown on the
right of the figure. However, not all kinds of testing can be eas-
ily refactored into stateless instrumentation, especially when
the two parts of instrumentation are entangled with each other.
We informally define two characteristics that a testing should
have to benefit from stateless instrumentation. Condition i):
The information-collecting instrumentation only writes to the
run-time data. Condition ii): The analysis instrumentation and
the run-time data are self-contained. Besides fuzzing and
sanitization, we discuss how other security analyses can be
supported in the IPEA framework in §IX.

4

V. IPEA-San: A SANITIZER FOR MCU FIRMWARE

We first explain the choices we face in designing IPEA-
San and the rationale behind our final decision. Then we use
an intuitive example to demonstrate the basic idea, followed
by detailed descriptions of how we instrument the firmware
as well as how the PC plugin handles the data streamed
from firmware. Finally, we discuss how to support third-party
libraries in IPEA-San and optimization opportunities.

A. Design Choices

We found that both the redzone-based sanitizer and pointer-
based sanitizer (see §II-C) are compatible with stateless in-
strumentation. However, pointer-based solutions present four
distinct advantages over redzone-based solutions, compelling
us to opt for designing our system based on pointer capability.
First, the redzones and quarantine in redzone-based solutions
by nature have to reside in the address space of firmware.
Such overhead can hardly be offloaded. Second, redzone-based
solutions may incur false negatives when a non-linear OOB
access lands in a non-redzone location or the quarantine is
exhausted, which is avoided in pointer-based solutions. Third,
redzone-based solutions cannot support intra-object bounds
checking since shadow memory cannot distinguish a sub-object
from other fields. This can be solved in pointer-based solutions
by maintaining distinct metadata for each pointer. Finally,
besides bounds and validity, per-pointer metadata can be easily
extended to track other information. For example, when type
information is tracked, type safety can be checked (see §IX).

B. Basic Idea

IPEA-San is designed around memory tagging, a variant of
pointer-based solutions. It virtually extends the capability of
MCUs by emulating an enhanced Arm MTE hardware feature
with intra-object overflow detection support. Under the IPEA
framework, the MCU and the PC plugin jointly complete the
sanitization. Specifically, the MCU does not need to maintain
any metadata. Rather, it only collects and streams out infor-
mation about object creation/deallocation, pointer propagation
and pointer dereferences. The PC plugin can then emulate
MTE by reconstructing the run-time metadata based on the
received information and performing sanitization. It is worth
noting that since IPEA-San involved a powerful PC to emulate
MTE, it can overcome the limitations of the hardware-based
MTE. For example, by simulating an unlimited number of tags,
IPEA-San eliminates conflicts (thus false negatives) that may
occur in systems based on hardware MTE [79]. Using the
tag overlay technique (see §V-C1), IPEA-San also supports
intra-object overflow detection. Current MTE implementation
cannot support it since the hardware can only maintain one tag
for a particular byte. To demonstrate the basic idea of IPEA-
San, we use an intuitive example below, where the red dotted
lines indicate the dependency between the instrumentation
(highlighted in grey) and the source code.
1 p1 = malloc(size);
2 //collect bounds info for heap objects
3 send_to_PC(OP_NEW, p1, p1 + size, p1_id);
4 p2 = p1; //p2 is a local variable
5 //propagate to temporary pointers
6 send_to_PC(OP_PROP, p2_id, p1_id);
7 g_p = p2; //g_p is a global variable
8 //propagate to in-memory pointers
9 send_to_PC(OP_PROP, &g_p, p2_id);

10 ...
11 //check usage before dereferences
12 send_to_PC(OP_CHK, &(p2->a), sizeof(p2->a), p2_id);
13 value = p2->a;

Listing 1. The basic idea of IPEA-San.

This example only contains four statements, which allocate
a new object on the heap, propagate the pointer (p1) to
another local pointer (p2) and a global pointer (g_p), and
access the field a of the object by dereferencing p2. To
detect whether there is a buffer overflow, we insert four
instrumentation functions. When a new object is allocated,
line 3 sends out its bounds information along with the ID
of the temporary receiving pointer. Here, OP_NEW indicates
that this is a malloc operation. p1 and p1+size represent
the base and limit of the object respectively. To uniquely
identify a pointer, an ID p1_id is used. After receiving such
information, the sanitizer plugin on the PC assigns a unique tag
to both that memory range and the temporary pointer. Pointer
tags can propagate to another pointer, as instrumented at lines
6/9, meaning that the target pointers with ID p2_id and &g_p
will have the same tag. We elaborate on the difference between
temporary pointers and in-memory pointers in §V-C1. Finally,
before dereferencing the object, the target address range and
the ID of the dereferenced pointer are sent out, as shown at line
12. On PC, the tag of the target memory and the tag associated
with the pointer will be compared.

C. IPEA-San Instrumentation

To detect memory safety violations, information about four
kinds of events is essential: a) object creation, b) pointer
propagation, c) pointer dereference, and d) object deallocation.
For each of them, we first discuss how they are collected during
firmware execution. Then we explain how they are used to
reconstruct the metadata to facilitate sanitization on the PC.

1) Object Creation: Depending on the location of the
object, we use different instrumentation strategies.

Heap Objects. We insert a function send_to_PC(OP_NEW,
base, limit, id) after every allocation operation
(e.g., malloc). The meaning of parameters has been ex-
plained before, but the id parameter which uniquely iden-
tifies the receiving pointer needs further clarification. When
the address of allocated object is returned to an in-memory
pointer (i.e., pointers that must be stored to and retrieved from
memory), we use the address that stores this pointer as the id.
This is feasible because this address is unique in the address
space of firmware. However, when the address is returned to
a temporary pointer (i.e., pointers held in local variables that
can be promoted to registers), there is no address to use. To
address this problem, a compile-time static ID is assigned for
each of these receiving pointers (see the example in Listing 1).
This design works fine if there is no reentrant code; otherwise,
it cannot distinguish pointers from the same allocation site in
different contexts (e.g., recursive invocations). A straightfor-
ward solution is to maintain a call stack for each execution
thread on PC. To this end, in each function prologue, we also
insert a function send_to_PC(OP_CALLEE, func_id,
current_SP) where func_id uniquely identifies a func-
tion. Then, the sanitizer plugin can track the call stack for each

5

thread. Combining the calling context and the static pointer ID,
IPEA-San can uniquely identify temporary pointers.

Stack Objects. Stack objects are created by the alloca
LLVM IR instruction. Similar to heap objects, we can instru-
ment all the alloca IR instructions with an OP_NEW event
to collect the stack object information. Similar to temporary
pointers, stack objects are uniquely identified by a compile-
time static ID.

Global Objects. In contrast to heap/stack objects, global ob-
jects are located in the data or bss sections with a lifespan of
the entire firmware runtime. IPEA-San identifies every pointer
reference to global objects and correspondingly inserts an
instrumentation function send_to_PC(OP_PROP, p_id,
obj_id), where p_id is the ID of the receiving pointer and
obj_id is a unique ID for the global object. For a global
object, its location and size information is fixed. Therefore,
we associate such information with its ID and pre-share it
with the PC plugin beforehand.

Memory-Mapped Peripheral Objects. MCU vendors com-
monly integrate standard or custom-made peripherals, which
are memory-mapped into the system memory at fixed lo-
cations. To access peripheral functions, developers typically
define a data structure for each peripheral based on the register
map. Then, a peripheral object can be instantiated by assigning
a hardcoded address to a pointer of the corresponding data
structure, as shown in the example below.
1 #define __IOM volatile
2 ...
3 typedef struct{
4 // Offset: 0x000 (R/W) Interrupt Set Enable Register
5 __IOM uint32_t ISER[8U];
6 uint32_t RESERVED0[24U];
7 ...
8 // Offset: 0x300 (R/W) Interrupt Priority Register
9 __IOM uint8_t IP[240U];

10 uint32_t RESERVED5[644U];
11 } NVIC_Type;
12 NVIC_Type *NVIC = (NVIC_Type *)0xE000E100UL;

Listing 2. Memory-mapped object for the NVIC peripheral.

IPEA-San identifies memory-mapped peripheral objects by
detecting the assignments of constant non-memory addresses
to pointers of data structure. Also, the fields in the data
structure should have the volatile qualifier, a typical re-
quirement when defining peripheral registers. These objects
are treated as global objects and handled as mentioned before.

Intra-object Overflow Detection. If an object contains a sub-
object inside, a buffer overrun of the sub-object can corrupt
adjacent fields in the parent object, a problem known as intra-
object overflow [75]. The pointer to a sub-object is typically
derived by the address-of operator. For example, in the state-
ment q=&(p->a), p points to the parent object, a is the sub-
object, and q is the derived pointer to the sub-object. To detect
intra-object overflow, we need to associate a new tag for the
sub-object and the derived pointer q so that q can be narrowed
to stop the overflow. IPEA-San achieves this by inserting
a function send_to_PC(OP_SUB, q_id, p_id, p,
offsetof(obj_type,a), sizeof(p->a)) at sub-
object derivation sites. The five parameters represent the de-
rived pointer, the pointer to parent object, the base of the parent
object, the offset of the sub-object in the parent object, and

Object A Object B

Sub-object A.X

Subsub-object A.X.U

ptr1
TagValue

ptr2
ptr3
ptr4

Fig. 3. Tag overlay to support intra-object overflow detection.

the size of the sub-object, where the last three can be used to
calculate the bounds of the sub-object.

Metadata Maintenance. After an object creation event is
received, the sanitizer plugin uses a monotonic counter to
assign a tag to the range of the new object. This information
is stored in a region of shadow memory where a byte on the
MCU is mapped into four bytes on the PC. Therefore, our
mechanism supports 32-bit tags (in contrast to 4-bit tags in
MTE). We note that the memory size of an MCU is only
hundreds of KB. Therefore, the PC has abundant resources to
maintain the shadow memory.

The receiving pointer should be associated with the same
tag. We implement it with a hash table that maps each
pointer ID to its tag. Since the lifespan of a pointer differs,
IPEA-San maintains two kinds of tables, namely LocalID Tag
table and GlobalID Tag table for local and global pointers,
respectively. The former table is allocated and maintained for
each execution thread (e.g., a user task or interrupt handler)
while the latter table is global which is shared among all
execution threads. We collectively call both tables ID Tag
tables in this work.

On receiving an OP_SUB event, the sanitizer plugin first
calculates the bounds of the sub-object. Then, the shadow
memory is checked to make sure that this range has a tag
that matches a bigger range (which should correspond to the
parent pointer). If not, a memory bug is reported. Otherwise,
the plugin assigns a new overlay tag to the corresponding
shadow memory and the receiving pointer, a technique we
termed as tag overlay. In essence, a byte can have multiple tags
(e.g., for subsub-object) corresponding to different pointers
that can access it. As shown in Figure 3, object A has a
sub-object A.X which in turn has a subsub-object A.X.U.
Depending on how a pointer is created, it can be assigned
with different overlaid tags that distinguish the real bounds of
the pointer (e.g., ptr3 and ptr4). Note that a new tag is only
assigned once for each sub-object. Future derived pointers of
the same sub-object will reuse that tag.

2) Pointer Propagation: The value of a pointer can be
passed to another one by assignment/arithmetic operations
(intra-procedural flows) or function calls (inter-procedural
flows). In both cases, the destination pointer should inherit
the same tag as that of the source pointer.

Intra-procedural Flows. For each function, IPEA-San rec-
ognizes pointer propagation and inserts instrumentation as
needed. As exemplified by lines 6/9 of Listing 1, the function
send_to_PC(OP_PROP, id_dst, id_src) sends out
the IDs for both the source pointer and the destination pointer.

Inter-procedural Flows. Pointers can be used as function
arguments and return values. Therefore, inter-procedural prop-

6

agation should also be tracked. At each call site, IPEA-
San parses the arguments and inserts a function with vari-
able length argument: send_to_PC(OP_PROP_CALLER,
id1, ...), where all the pointer arguments are encoded
in order. Correspondingly, in the prologue of the callee,
send_to_PC(OP_PROP_CALLEE, id1, ...) is in-
serted, where all the receiving pointers are encoded in order.

If a function returns a pointer, IPEA-San sends
out the ID of the returned pointer at epilogue using
send_to_PC(OP_PROP_RET, id). Correspondingly, af-
ter the call site, send_to_PC(OP_PROP_RET_GET, id)
is inserted to inform the PC plugin of the receiving pointer.

Metadata Maintenance. The sanitizer plugin on PC simply
retrieves the tag associated with the source pointer by looking
up the ID Tag tables and assigns it to the destination pointer. A
new table entry is created for the destination pointer if needed.

3) Pointer Dereference: Pointer dereferences are consid-
ered to be the sinks of propagation. IPEA-San inserts a
function send_to_PC (OP_CHK, start, size, id)
before every pointer dereference. Pointer dereferences include
not only the normal load and store IR instructions but also
compiler intrinsics such as memcpy and memmove.

Metadata Maintenance. Upon receiving an OP_CHK event,
the PC plugin retrieves the tag associated with the pointer by
looking up ID Tag tables. Then, it checks whether there exists
a correct tag overlay for the memory range being accessed
by looking up the shadow memory. If not found, an alert of
possible memory error is triggered. Pointer dereferences do
not change the metadata.

4) Object Deallocation: At function epilogues, IPEA-San
inserts a function send_to_PC(OP_RET, func_id) to
inform the PC of function returns. Before each dealloca-
tion operation such as free, IPEA-San inserts a func-
tion send_to_PC(OP_FREE, id) where id indicates the
pointer for the freed object.

Metadata Maintenance. The OP_RET event informs the
sanitizer plugin of the deallocation of local objects. The plugin
then reclaims the corresponding entries in the LocalID Tag
table. The shadow memory for the affected local objects will
also be marked as invalid by a special tag 0xFFFFFFFF.

After receiving an OP_FREE event, the sanitizer plugin
first verifies that there exists a valid entry indexed by id
in ID Tag tables. If not, an invalid free is detected. If the
deallocation request is valid, the shadow memory of the
object’s range is marked invalid and the entry in the ID Tag
table is reclaimed. Note that there could exist other pointers
which point to the now freed object. Dereferencing them will
be detected by the tag matching mechanism described before
(aka dangling pointer) and deallocating them again will be
detected as an invalid free operation (aka double free).

5) Interrupt Support: IPEA-San is interrupt-aware. For the
execution contexts of user tasks and interrupt handlers, IPEA-
San maintains different LocalID Tag tables. To track context
switches, at each interrupt handler entry, an instrumentation
function send_to_PC(OP_IRQ, irq_num) is inserted
where irq_num indicates the target interrupt number. The

interrupt return is reported by the OP_RET event of the
corresponding interrupt handler.

Metadata Maintenance. A LocalID Tag table is maintained
for each execution context (i.e., a user task or interrupt
handler). When an execution thread ends, the corresponding
table is destroyed. For user tasks, the execution context is
identified by the entry address of the task. For interrupts, the
execution context is identified by the interrupt number.

D. Library Support

In addition to memcpy and memmove, string manipulation
(e.g., strcpy, strcat, sprintf, etc.) is another category
of memory access operations in libc. We provide wrappers
for these functions so that necessary instrumentation is added
before calling the actual implementations. Specifically, the
wrapper determines the length of the string manipulation to
be executed (by running strlen) and uses it to instrument
memory checks for both the source and destination buffers.

For third-party libraries, developers need to write wrappers
by themselves based on function semantics. If a function
involves pointer dereferences, the corresponding pointer and
the length of access should be identified. Then, an OP_CHK
event can be inserted in the wrapper. If a function involves new
object allocation, the resulting pointers should be identified,
and then an OP_NEW event can be inserted. For example, the
function pxGetNetworkBufferWithDescriptor() is
used in the FreeRTOS TCP/IP stack to allocate new network
buffers [6]. In the wrapper, we need to extract its size via the
parameter xRequestedSizeBytes and the pointer value
via the return value. Then an OP_NEW event can be inserted.

E. Optimizations

On top of the basic design, there are a few optimization
opportunities to further improve IPEA-San.

Event Consolidation. For easy presentation, the instrumen-
tation APIs summarized in Table I are organized based on
the event semantics. However, many of these events can be
consolidated into one to reduce the encoding overhead. For
example, an OP_PROP_CALLEE event occurs when the callee
function has pointer parameter(s). It can be combined with the
OP_CALLEE event at the function prologue. The same applies
to the OP_IRQ event, which occurs at the prologue of interrupt
handlers. Likewise, events OP_RET and OP_PROP_RET can
be consolidated at function epilogues.

Unnecessary Propagation. A substantial amount of instru-
mentation related to intra-procedural pointer propagation can
be optimized out. Take the code in Listing 1 as an example.
The tag of p1 propagates to p2, which is eventually derefer-
enced at line 13. We can safely remove the instrumentation at
line 6 and directly use p1_id to replace p2_id at line 12.
This will not cause any side effects since the lifespan of p2
is within the function. In contrast, we should never omit the
instrumentation at line 9 since a global pointer may be used
outside the current function. To remove unnecessary propaga-
tion, we first identify all the pointer dereferences. Then, an
intra-procedural backward slicing is conducted to locate the
source of the pointer, whose ID will be used in the OP_CHK
instrumentation. Along the path of pointer propagation, no

7

event about pointer propagation will be instrumented unless
the propagation target is a global pointer.

Unnecessary Initialization. Recall that in the basic design,
the event about stack object creation is streamed out like heap
objects. However, we found that this is unnecessary. In fact, the
locations of stack objects are well determined given the base
of the current stack frame. In particular, the DWARF-format
debug information found in ELF binaries clearly specifies
how to locate stack objects based on offsets. Since all the
information produced during compilation can be shared with
the PC, we can easily recover the locations of all stack objects
based on the debug information and the base of the current
stack frame. Note that the last parameter of the OP_CALLEE
event indicates the current stack pointer at function entries.

VI. IPEA-Fuzz: A FUZZER FOR MCU FIRMWARE

IPEA-Fuzz is based on AFL [88] which uses edge coverage
as feedback. We use stateless instrumentation to collect basic
block transitions and run everything else on the PC.

A. IPEA-Fuzz Instrumentation

The original AFL injects the following code at the begin-
ning of each basic block.

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location ˆ prev_location]++;
prev_location = cur_location >> 1;

Here, cur_location is a random number generated at
compile time to identify a basic block. The shared_mem[]
array is a bitmap of 64 KB which holds in each byte the
number of hits for a particular edge. In IPEA-Fuzz, we
simply insert a function send_to_PC(OP_BB, rand) at
the beginning of each basic block where rand is a compile-
time random number.

Metadata Maintenance. After receiving an OP_BB event, the
PC plugin follows the original AFL design to interface with
shared_mem[] which is now stored on PC. Specifically, it
uses the received random number to replace cur_location
and emulates the code above as is. In this way, the original
AFL is almost intact on the PC. The generated testcases are
provided to the IPEA core so that they can be transmitted to
the target MCU.

B. Interrupt Handling

An interrupt can kick in at any program point. This would
lead to an excessive number of new edges that do not actually
represent new firmware behaviors. To remove such noises, at
each interrupt entry, the PC plugin creates a new context to
calculate edge coverage. Specifically, on OP_IRQ, it saves
the previous prev_location and uses a constant 0 as
the new prev_location. When the interrupt returns, the
saved prev_location is restored and the edge coverage
calculation can be resumed from the old execution context.

TABLE II. QUALITATIVE EVALUATION OF IPEA-San IN FAULT
OBSERVATION.

Memory Errors IPEA-San ASan

Stack-based Buffer Overflow ! !

Heap-based Buffer Overflow ! !

Global-based Buffer Overflow ! !

Use-after-free ! !

Double Free ! !

Null Pointer Dereference ! !

Peripheral-based Buffer Overflow ! ✗

Intra-object Overflow ! ✗

VII. IMPLEMENTATION

We have implemented a prototype of IPEA, IPEA-
San and IPEA-Fuzz for Arm Cortex-M series MCUs. It
supports any development board that is compatible with
the SEGGER J-Link debug probe, the market-leading MCU
debug solution [66]. Some development boards even have free
on-board J-Link integration [67]. Seven different development
boards—NXP FRDM-K64F (K64F, 1MB flash/256KB
SRAM), FRDM-K66F (K66F, 2MB flash/256KB SRAM),
LPCXpresso55S69 (LPC55S69, 640KB flash/320KB SRAM),
STM32-NueloF411R (STM32F4, 512KB flash/128KB
SRAM), STM32H7B3I-DK (STM32H7, 1MB flash/1MB
SRAM), Raspberry Pi Pico (RP2040, 2MB flash/264KB
SRAM) and nRF52-DK (nRF52, 192KB flash/24KB
SRAM)—have been tested and evaluated.

Our firmware instrumentation module is based on LLVM
13.0.0. The collected data is encoded with a simple tag-value
scheme where the tag takes one byte. All the optimizations
mentioned in §V-E has been incorporated. We also developed
a Python script based on pyelftools [11] to extract the
static information from the compiled firmware. The IPEA core
is developed using the SDK provided by SEGGER [69]. The
IPEA-San plugin is written in C++ and the IPEA-Fuzz plugin
is mainly inherited from AFL. The PC we used runs a Ubuntu
OS and is equipped with an Intel Core i7-8750H CPU and
16 GB memory. In total, we contributed 4,555 lines of C/C++
code and 1,659 lines of Python code.

VIII. EVALUATION

The main goal of our evaluation is to measure the benefit
of offloading the analysis to PC. Since there is no fuzzer that
can run entirely on the MCU, our case study is focused on
IPEA-San. In addition, we are interested in the bug-finding
capability of IPEA-Fuzz. Specifically, our evaluation aims to
answer the following research questions. RQ1: What kind
of memory errors can be captured by IPEA-San? RQ2: Can
IPEA-San reduce resource consumption on MCUs? RQ3: Can
the combination of IPEA-San and IPEA-Fuzz find bugs?

A. Sanitizer Capability

Before evaluating the benefit of the IPEA framework
(§VIII-B), we first set up the comparison targets and measure
the capability of IPEA-San in detecting memory corruption,
including the type of errors it covers and the accuracy.

8

1) Comparison Targets: Finding an on-device sanitizer that
runs out-of-box on MCUs is challenging due to the hard-
ware/runtime differences. ASan, the state-of-the-art sanitizer
officially supports user-space programs for PCs/Android and
the Linux kernel (namely KASan [83]). Although there is an
open-source port of ASan for MCUs [29], it is incomplete,
merely implementing a wrapper for the heap manager to
detect invalid heap accesses and a very basic memory access
check mechanism. We improved it with support for stack
and global objects and a more robust memory access check
mechanism. Concretely, 11 callback functions were developed
that hook on critical events including memory accesses and
global objects initialization. Whenever possible, we kept the
default configurations mentioned in the original paper [70].
However, some compromises and optimizations have to be
made to accommodate MCU hardware. First, the original
ASan dedicates 1/8 of memory to its shadow memory. This
would map to 512 MB if the entire address space is covered,
which is unacceptable. We made a compromise by limiting
the protected address space to SRAM so that shadow memory
is only needed for SRAM, similar to FuZZan [42]. For flash
memory and MMIO regions, IPEA-San explicitly permits all
accesses. For anything else, access is denied. This design saves
memory but sacrifices fine-grained sanitization. For example,
overflow to MMIO peripherals cannot be detected. However,
this compromise is almost unavoidable since the peripheral
region is typically too large to use shadow memory. Second,
MCUs do not support virtual memory to map shadow memory
to a non-existing page. We instead put shadow memory at the
end of the SRAM region and explicitly deny accesses to it.
Third, in the wrapper for the heap manager, the quarantine
is implemented as a FIFO queue which can hold up to eight
heap1 objects, in contrast to a fixed buffer in the original ASan.

Besides the memory-optimized ASan we ported, µSBS [63]
is a sanitizer specifically designed for MCU firmware. It mim-
ics ASan but is implemented via binary rewriting. However,
it only detects overflows to heap objects, leaving stack and
global objects unprotected. The main challenge lies in the
difficulty of inferring the size and location of stack and global
objects from binary. On the contrary, heap objects can be
easily tracked by hooks to the allocator. Moreover, due to the
avoidable run-time mapping table checkup, higher overhead
is observed. Therefore, ASan’s result is the upper limit that
µSBS can theoretically achieve and we excluded µSBS from
our evaluation.

2) Qualitative Evaluation: To qualitatively evaluate the
types of memory corruption IPEA-San can detect, we made a
toy firmware containing eight kinds of memory errors1: stack-
based buffer overflow, heap-based buffer overflow, global-
based buffer overflow, use-after-free, double free, null pointer
dereference, peripheral-based buffer overflow, and intra-object
overflow. Each time, an individual vulnerability was triggered
based on a byte of the testcase.

Results. We instrumented the target firmware with ASan and
IPEA-San. Then, multiple payloads with appropriate lengths
were fed to the two firmware images to trigger a bug each
time. Table II shows the results. Both solutions can detect all

1https://github.com/MCUSec/IPEA/blob/main/fw samples/frdmk64f-
sdk v2.11.0/boards/frdmk64f/demo apps/hello world/hello world.c

TABLE III. SELECTED TESTCASES IN JULIET. # TESTS INDICATES
THE NUMBER OF SELECTED TESTCASES IN EACH CWE CATEGORY.

CWE Index Description # Tests

CWE121 Stack-based Buffer Overflow 2,432
CWE122 Heap-based Buffer Overflow 1,594
CWE124 Buffer Underwrite 682
CWE126 Buffer Overread 524
CWE127 Buffer Underread 682
CWE415 Double Free 190
CWE416 User After Free 118
CWE476 NULL Pointer Dereference 234
CWE761 Invalid Heap Pointer Free 152

the traditional memory safety issues. However, only IPEA-San
can detect peripheral-based buffer overflow and intra-object
overflow.

3) Quantitative Evaluation: After knowing the general
property of IPEA-San, we are interested in its correctness.
More specifically, what are the rates of false positives (FP)
and false negatives (FN)? In a related work (PACMem [51]),
two benchmark suites were used to quantitatively evaluate
the proposed sanitizer. They are the Juliet Test Suite [59]
and Magma [39]. Unsurprisingly, both are geared towards
Linux/Windows environments. We have attempted to port both
for MCU but failed in porting Magma. The reason is that
Magma contains many complex programs (e.g., OpenSSL) that
cannot be accommodated on any MCU chip. In contrast, Juliet
consists of many small programs exhibiting over 100 classes
of errors. Therefore, we chose Juliet as the benchmark in our
quantitative evaluation.

Juliet for MCUs. The Juliet Test Suite [59] provides a
collection of testcases in C/C++ under 118 different CWEs.
Each testcase contains both BAD and GOOD code. The
BAD code contains the intended bug while the GOOD code
is bug-free. Therefore, a testcase is always compiled into
two programs (BAD+GOOD). The bug can be triggered
in the BAD program without any input or by an input
that satisfies a specific trigger condition. Since our focus
is on memory safety issues, only relevant testcases were
selected. We also excluded testcases written in C++ since we
have not yet implemented wrapper functions for C++ STL
containers. We leave C++ support (mostly engineering effort)
as one of our future work. Similar to PACMem, we removed
CWE476_NULL_Pointer_Dereference__null_check
_after_deref_* from the benchmark. These tests perform
null pointer checks after the pointer dereference, but without
triggering any memory error. The selected tests are listed
in Table III.

To accommodate these testcases for MCU, we made cus-
tomization in three aspects. To the best of our investigation,
this is the first benchmark for testing sanitizers on MCUs.
1) I/O Replacement: Juliet supports multiple input channels
to trigger errors. However, these channels themselves do not
exhibit any vulnerability. Since an MCU runtime may not
provide all of these channels, we simply replaced them with
a unified interface that accepts inputs from RTT without
impacting the trigger conditions of bugs. 2) Feedback: We
inserted a BKPT instruction with status code 0x01 into the
_exit() function to inform analysis plugins on PC of the
correct execution of the test. We also inserted a BKPT in-

9

https://github.com/MCUSec/IPEA/blob/main/fw_samples/frdmk64f-sdk_v2.11.0/boards/frdmk64f/demo_apps/hello_world/hello_world.c
https://github.com/MCUSec/IPEA/blob/main/fw_samples/frdmk64f-sdk_v2.11.0/boards/frdmk64f/demo_apps/hello_world/hello_world.c

TABLE IV. QUANTITATIVE EVALUATION WITH JULIET.

CWE
Index

IPEA-San ASan # Tests w/o.
ALLOCA

ASan

FN (%) FP (%) FN (%) FP (%) FN (%) FP (%)

CWE121 0 0 1,220 (50.16%) 0 1,240 120 (9.63%) 0
CWE122 0 0 42 (2.26%) 0 1,594 42 (2.26%) 0
CWE124 0 0 170 (24.92%) 0 512 0 0
CWE126 0 0 179 (34.16%) 0 422 78 (18.32%) 0
CWE127 0 0 170 (24.92%) 0 512 0 0
CWE415 0 0 0 0 190 0 0
CWE416 0 0 0 0 118 0 0
CWE476 0 0 0 0 234 0 0
CWE761 0 0 0 0 152 0 0
Total 0 %0 1,781 (26.95%) %0 4,974 240 (4.83%) %0

struction with status code 0x02 into the HardFault handler
to halt the execution when an unexpected error occurs. It
catches corruptions not detected by sanitizers on a best-efforts
basis. 3) Uncertainty Elimination: Some testcases rely on some
randomnesses (e.g., an input of random number or uninitialized
bytes on the stack) to trigger bugs. We manually analyzed these
BAD programs and crafted inputs or modified the source code
to reliably trigger the bugs.

Results. Having reliable inputs to trigger memory-related bugs
in the BAD programs, a FN occurs when the sanitizer fails to
report a memory corruption during the execution of a BAD
program whereas a FP occurs when the sanitizer wrongly
reports a non-existing memory corruption during the execution
of a GOOD program. We used this metric to evaluate both
IPEA-San and ASan. As summarized in Table IV, IPEA-San
did not incur any FPs or FNs, and ASan incurred some FNs
but not FPs. Although our result is promising, we note that
in theory IPEA-San may also suffer from both FPs and FNs
due to the unsound static analysis. The Juliet Test Suite—with
enough sophistication and also used in related work to evaluate
sanitizer capability [51]—just cannot trigger the deficiency of
IPEA-San. We discuss more details about IPEA-San limitations
in §IX. Below, we explain the root causes for FNs in ASan.

The FN rate of ASan (26.95%) is surprisingly higher than
the one reported in the original paper [70]. After investigation,
it turned out that many testcases in CWE121/124/126/127
use the alloca library function [1] (not confusing with
the LLVM IR alloca instruction), which is not handled
in KASan because the Linux kernel never depends on it.
As a result, corruptions in these tests were not detected.
For a fair comparison, we filtered out these tests and ran
ASan against the remaining ones in a separate experiment.
As shown on the right of Table IV, the FN rate of ASan
drops into a normal range (4.83%). For the 240 FNs,
72 cases (e.g., CWE121*__char_type_overrun*)
are due to intra-object overflow and 168 cases
(e.g., CWE121/126_fgets/fscanf/rand*) are due
to the well-known flaw of ASan in handling OOB accesses.
In particular, it cannot detect non-linear OOB accesses that
land in non-redzone locations. In these cases, the firmware
uses inputs from users or random sources as indexes to access
arrays. When the sanitizer failed, we also tried to enable the
HardFault as a fall-back mechanism to capture unobserved
system errors. This further brings the FN rate of ASan down
to 3.38%.

4) Need for Better Sanitization: IPEA-San incurs less FNs
than ASan mainly because it can reliably capture non-linear
OOB accesses and intra-object buffer overflow. This section re-

views previously reported CVEs in deeply embedded systems
and measures the weight of these cases, aiming to estimate
how IPEA-San can outperform ASan in revealing real bugs.
We retrieved CVE reports related to deeply embedded system
by searching for keywords of popular RTOSs (e.g., FreeRTOS,
Contiki-NG) and chip vendors (e.g., NXP), resulting in a
total of 37 CVEs. Note that we do not aim to collect a
comprehensive list but rather try to make it representative
by including diverse OS and chip vendors. For each CVE,
we manually examined and classified it into either 1) a non-
linear memory corruption, 2) a linear memory corruption, or
3) others (UAF, double free, integer error, etc.). We do not
further distinguish CVE types in the “others” category since
both IPEA-San and ASan perform similarly. Additionally, if a
CVE also involves intra-object buffer overflow, we took a note.
As shown in Table X, out of 37 CVEs, the numbers of linear
and non-linear memory corruption are 11 and 13 respectively,
and there is 1 intra-object buffer overflow. This ratio of linear
to non-linear memory corruption is in line with a technique
report released by Microsoft [52], which states that non-linear
memory corruption has surpassed linear memory corruption.
This indicates that IPEA-San should perform better in 37.84%
(14/37) of the collected CVEs. We emphasize that it does not
mean ASan can never find these bugs. For non-linear memory
corruption, it just depends on whether the target address lands
in a redzone or a non-redzone. However, ASan can never
find CVE-2021-42553, which is an intra-object buffer overflow
bug.

B. Overhead of IPEA-San

We used 12 MCU applications and a popular benchmark
for embedded platforms called BEEBS [61] to evaluate the
memory and run-time performance overhead of IPEA-San. The
12 MCU applications were collected from multiple sources
including demos from chip SDKs [60], [77], open-source
projects [7], [9], [12] and related work [28], [73], presenting
a variety of application scenarios with different complexities.

• PinLock simulates a smart lock by accepting user PIN via
UART and verifying its SHA-256 hash value.

• CNC is based on the GRBL-Advanced project [7] that
implements a CNC (computer numerical control) milling
machine. It accepts g-code commands from a workstation
that runs Candle 2 [65] to control the stepping motors.

• nRF52-Keyboard allows nRF52 series MCUs to power
Bluetooth keyboards.

• ClockAndWeather invokes open APIs [15], [13] to re-
trieve the time and weather forecast for up six cities via
WiFi.

• AudioPlayer plays an audio file stored in the SD card.
• WeighScale is a weigh scale application that collects and

transfers users’ healthy data to the PC via the USB port.
• HttpServer implements an HTTP server on top of lwIP

TCP/IP stack [34].
• U-Disk turns an MCU into a USB disk which can be

enumerated by PC.
• MQTT-Echo integrates the AWS MQTT library and imple-

ments an MQTT client to publish and echo messages on a
specific topic.

• App-Scheduling, App-Timers and App-IRQs
are three template applications for quickly prototyping

10

TABLE V. NORMALIZED FLASH/RAM OVERHEAD ON SELECTED BEEBS PROGRAMS AND REAL-WORLD FIRMWARE (THE HIGHER, THE WORSE).

Firmware Baseline IPEA-San ASan

Flash
(Bytes)

Stack
(Bytes)

Heap
(Bytes)

Global
(Bytes)

Total RAM
(Bytes)

Flash
(x)

Stack
(x)

Heap
(x)

Global
(x)

RTT†

(Bytes)
Total RAM

(x)
Flash

(x)
Stack

(x)
Heap
(x)

Global
(x)

Shadow‡

(Bytes)
Total RAM

(x)

aha-compress 4,356 112 - 184 296 1.81 1.14 - 1.00 1,076 4.69 1.94 3.00 - 1.63 2,085 9.19
ctl-stack 4,796 120 816 204 1,140 2.12 1.13 1.00 1.00 1,076 1.96 1.91 2.80 3.13 3.92 2,148 5.12
ctl-string 8,076 104 232 212 548 1.90 1.00 1.00 1.00 1,076 2.97 1.62 2.00 3.03 5.83 2,202 7.94
frac 7,456 240 - 268 508 1.46 1.03 - 1.00 1,076 3.14 1.52 1.60 - 1.64 2,103 5.76
huffbench 4,960 7,824 1,001 188 9,013 2.08 1.01 1.00 1.00 1,076 1.13 2.00 1.13 4.60 2.17 2,099 1.77
sglib-hashtable 6,408 224 800 664 1,688 2.12 1.00 1.00 1.00 1,076 1.64 1.63 2.07 2.14 1.39 2,163 3.12

Geo. Mean - - - - - 1.90 - - - - 2.32 1.76 - - - - 4.78

PinLock 20,956 416 - 760 1,176 1.67 1.06 - 1.00 1,076 1.94 3.88 1.81 - 72.33 8,919 54.97
CNC 74,800 344 - 12,708 13,052 1.44 1.17 - 1.00 1,076 1.09 1.37 1.51 - 2.00 3,684 2.27
nRF52-Keyboard 52,428 478 - 6,224 6,702 2.34 1.05 - 1.09 1,076 1.25 1.70 2.17 - 1.80 1,540 2.05
ClockAndWeather 286,184 732 5,456 179,164 185,360 1.21 2.03 1.00 1.00 1,076 1.01 1.30 1.57 1.01 1.84 45,390 2.06
AudioPlayer 101,832 872 - 13,992 14,864 1.56 1.11 - 1.07 1,076 1.14 1.39 2.26 - 4.01 7,272 4.40
WeighScale 24,052 768 - 21,060 21,828 2.79 1.66 - 1.02 1,076 1.01 2.07 2.32 - 2.86 7,754 3.19
HttpServer∗ 71,932 840 - 65,408 66,248 2.67 1.05 - 1.01 1,076 1.03 - - - - - -
U-Disk∗ 33,356 188 12,168 44,632 56,988 2.75 1.96 1.00 1.00 1,076 1.02 - - - - - -
MQTT-Echo∗ 63,976 632 10,436 59,020 70,088 2.56 1.40 1.00 1.00 1,076 1.02 - - - - - -
App-Scheduling 355,108 124 - 7,764 7,888 1.10 1.22 - 1.00 1,076 1.13 1.09 1.42 - 1.32 1,250 1.48
App-Timers 346,816 112 - 7,696 7,808 1.11 1.21 - 1.00 1,076 1.14 1.08 1.42 - 1.32 1,250 1.48
App-IRQs 356,588 108 - 7,800 7,908 1.12 1.17 - 1.00 1,076 1.14 1.07 1.41 - 1.29 1,250 1.45

Geo. Mean - - - - - 1.74 - - - - 1.14 1.52 - - - - 3.06

†: RTT buffer plus other metadata. ‡: Shadow memory plus other metadata. *: Failed to compile using ASan.

projects based on FreeRTOS for the popular Raspberry Pi
RP2040 MCUs.

TABLE VI. TESTED REAL-WORLD APPLICATIONS

Application Target MCU OS Source

PinLock K64F Bare-metal [28]
CNC STM32F4 Bare-metal [7]
nRF52-Keyboard nRF52 Bare-metal [9]
ClockAndWeather STM32H7 FreeRTOS [76]
AudioPlayer K66F Bare-metal NXP SDK [60]
WeighScale K66F Bare-metal NXP SDK [60]
HttpServer K66F Bare-metal NXP SDK [60]
U-Disk K64F FreeRTOS NXP SDK [60]
MQTT-Echo K64F FreeRTOS NXP SDK [60]
App-Scheduling RP2040 FreeRTOS [12]
App-Timers RP2040 FreeRTOS [12]
App-IRQs RP2040 FreeRTOS [12]

The names of these applications along with their target
MCU, OS type, and source are shown in Table VI. Our
comparison targets include ASan and a baseline build without
any instrumentation. All the samples were compiled under the
-Os optimization level which is the de facto option adopted in
embedded systems. For IPEA-San, we used a RTT buffer of 1
KB. This was chosen empirically to strike a balance between
performance and memory consumption. For ASan, we used
the same default configuration as mentioned in §VIII-A. In Ta-
ble V, we list the results of 12 applications and 6 randomly
selected BEEBS programs. Besides collecting performance
data, an immediate observation after running BEEBS with
IPEA-San is that we found two “silent” memory corruptions
in qsort and select. Later investigation shows that these
programs wrongly initialize an index, leading to OOB array
accesses.

1) Flash Overhead: Flash is commonly used by MCU
devices to store code and initialized global data. The code
stays in the flash throughout the execution, while the initialized
global data is copied to the SRAM during bootstrapping. As
shown in Table V, the flash consumption of IPEA-San is on
a par with ASan. On the one hand, IPEA-San consumes less
flash for initialized global data since there is no need to insert
redzones around global objects. On the other hand, it adds
more code to track the run-time information (e.g., pointer

TABLE VII. MAXIMUM FLASH/SRAM CONSUMPTION OF K64F SDK
DEMOS IN EACH APPLICATION CATEGORY.

Category Flash Usage (%) SRAM Usage (%)

fmstr 5.21 11.22
aws 21.96 76.33
azure 28.44 98.66
bootloader 3.49 3.52
emWin 12.69 22.51
littlevgl 18.90 32.26
lwip-https 22.15 80.45
mmcau 2.54 5.32
sdcard 3.23 21.20
se hostlib 36.94 99.61
secure-subsystem 1.02 21.14
usb-device 2.68 22.43
usb-host 2.99 22.70

creation/propagation) while ASan only adds code to check
pointer dereferences. We also found that the code increment is
mainly introduced by pointer dereferences, which is in line
with existing studies [90]. Although 1.74x overhead seems
high, MCU chips typically have abundant flash memory to
tolerate it. First, flash is less expensive than SRAM [14] and
therefore its capacity is much larger on typically MCU chips.
We dumped the configuration information of the first 500
MCU chips returned from the DigiKey website2. The average
flash and SRAM sizes are 374KB and 94KB respectively.
Second, firmware does not consume a high amount of flash.
For example, we compiled all the demo programs shipped with
the K64F SDK [60] and calculated the maximum flash/SRAM
consumption in each application category. As shown in Ta-
ble VII, the maximum flash usage is only 36.94% whereas
many samples use more than 50.00% of total SRAM.

2) SRAM Overhead: SRAM is used by MCUs to store
global data (initialized and uninitialized), stack and heap.
While the size of global data can be determined statically
(.data segment plus .bss segment), the stack/heap usage
has to be measured dynamically at run-time.

The total SRAM consumption includes the stack/heap/-
global usage as well as the respective metadata. For IPEA-San

2https://www.digikey.com/en/products/filter/embedded/microcontrollers/685

11

https://www.digikey.com/en/products/filter/embedded/microcontrollers/685

and ASan, the metadata mainly comes from the 1-KB RTT
buffer and the 8-to-1 shadow memory, respectively. As shown
in Table V, benefiting from offloading analysis tasks to the PC,
IPEA-San significantly reduces the SRAM overhead compared
with ASan. For all the samples, there is no SRAM overhead
on heap and global data. For stack, the maximum overhead
is 2.79x in WeighScale. The increased stack consumption
is mainly used for storing and passing arguments of the
instrumented calls. In contrast, the SRAM overhead of ASan
is much higher due to the inserted redzones and proportional
overhead on shadow memory. By choosing smaller redzones,
the SRAM overhead of ASan might be reduced. However, this
will inevitably increase the FN rate. Our choice of redzone
size follows the default setting in the original paper [70]. We
also observed an anomaly in PinLock where the overhead on
global data reaches 72.33x. It turned out that this program uses
the mbedtls library to calculate SHA-256, which defines an
excessive number of global objects.

Regarding the total SRAM overhead, IPEA-San incurs
about 2.32x overhead compared with ASan at 4.78x for the
BEEBS benchmark. This margin further increases for real-
world applications (1.14x vs. 3.06x). This is because the
baseline SRAM consumption in BEEBS programs is insignif-
icant compared with the constant RTT overhead in IPEA-San.
However, as the baseline increases in real-world applications,
the real SRAM overhead becomes dominating. As a result of
ASan’s demanding SRAM requirement, we failed to compile
U-Disk, MQTT-Echo and HttpServer with ASan after
allocating the minimally needed SRAM. Note that these three
programs are part of the official SDK shipped with the COTS
MCU boards.

3) Performance Overhead: In Appendix §A-B, we show
the run-time performance overhead. IPEA-San incurs slightly
higher overhead (86% vs. 67% slowdown in the BEEBS
benchmark and 14% vs. 4% slowdown in real-world appli-
cations). Again, this is because IPEA-San adds more code
to track the run-time information than ASan does. Also,
transmitting the collected events via RTT takes time. For real-
world programs that have more I/O operations, the overhead of
IPEA-San is only 14%. Interestingly, we observed that ASan
for MCUs incurs less performance overhead compared with
ASan for traditional software. Specifically, the original ASan
paper reported 73% slowdown [70] while an independent study
reported 107% slowdown [90]. Other than the optimization
we made to ASan for MCUs (see VIII-A1), we attribute this
partially to the fact that MCU firmware is not subject to the
heavy memory management overhead in traditional ASan [42].

C. Fuzzing Evaluation

This section first presents the results of using IPEA-Fuzz
plus IPEA-San to find memory-related bugs in MCU firmware.
Then, we provide experimental evidence of the indispensability
of real hardware for testing complex driver code.

1) Bug Finding Capability: We selected two groups of
fuzzing targets. The IoT library group includes a JPEG de-
coder [8], a PNG decoder [10], an XML parser [55] and
the toy example we introduced earlier. The first two are
popular projects specifically optimized for Arduino devices.
The XML parser is based on the Expat project [5]. We reused

TABLE VIII. BREAK-DOWN OF INDIVIDUAL TESTCASE EXECUTIONS

Firmware Reset (ms) FuzzStart (ms) Exec (ms) Analysis (ms) Total (ms)

Toy - 1.00 2.00 1.00 4.00
Expat XML - 1.00 56.00 1.00 58.00
JPEGDEC - 1.00 102.00 1.00 104.00
PNGdec - 1.00 97.00 1.00 99.00

UART 70.00 1.00 121.00 1.00 193.00
WiFi 70.00 1.00 3,831.00 3.12 3,905.00
USB Host (K64F/K66F) 70.00 1.00 2,682.00 1.00 2,755.00
USB Host (STM32H7) 71.00 1.00 2,182.00 2.00 2,356.00
emUSB-Host (LPC55S69) 70.00 1.00 1,912.00 1.00 1,984.00
microSD 70.00 1.00 2,682.00 1.00 2,754.00

the sample provided in a related work [55] which injected
six artificial memory bugs into Expat. The peripheral driver
group targets driver code for four peripherals—UART, USB,
WiFi and microSD. The driver code for UART and WiFi
are part of PinLock and ClockAndWeather, respectively.
For USB, we tested three distinct instances using different
boards. They are the USB stack shipped with NXP SDK [60]
running on K64F/K66F, the USB stack shipped with STM32
SDK [77] running on STM32H7, and the proprietary emUSB
stack [4] provided by SEGGER running on LPC55S69. It
is worth noting that samples in the IoT library group are
largely hardware independent and therefore can be tested
more efficiently by emulating the compiled binary (e.g., using
Fuzzware [64]). When developers can devote time to porting
them from the source code, they can even be tested natively
on a PC. On the other hand, it is extremely difficult if not
impossible to rehost samples in the peripheral driver group,
making real hardware essential for testing peripheral driver
(see §VIII-C2).

Two fuzzing modes were used in our evaluation. In normal
mode, we reset the board for each testcase execution. In
persistent mode, a single long-lived execution is reused to
try out multiple testcases without resetting the hardware every
time. The normal mode is necessary for fuzzing peripheral
drivers because we must ensure a clean hardware state for
each run. The persistent mode on the other hand can be
beneficial for fuzzing samples in the IoT library group since the
hardware state is unlikely to be faulty after running a testcase.
By testing the toy example, we found that persistent mode
can substantially improve fuzzing speed. Specifically, using
the same hardware, persistence-mode fuzzing reached 276.43
executions/second while the normal mode only reached 12.95
executions/second.

To explain this, we measured a time break-down of each
testcase execution, as shown in Table VIII. For each sample,
we selected a “normal” testcase that drived execution along
a typical execution path and measured the time spent on
each stage. Reset refers to the time for resting the hardware.
FuzzStart indicates the time for the IPEA core to prepare and
transmit a testcase to the target device. Exec is the execution
time on the target device. Analysis is the time for the IPEA
plugins to analyze the received data on PC. As shown in the
table, most of the time is spent on hardware reset and testcase
execution. While the reset time is almost constant (70 ms),
the execution time heavily depends on the target firmware.
For IoT libraries that run fast, the benefit of removing the
reset overhead can be significant, as shown in the toy example.
Here, the toy firmware only took 2 ms for execution. Therefore,
276.43 executions/second can be viewed as the upper limit that
our prototype can reach. In contrast, it took much longer to

12

TABLE IX. FUZZING RESULTS

Firmware Target MCU Time (s) # Execution Exec/sec Paths Crashes/Hangs

Toy K64F 7,200 1,990,296 276.43 9 8/0
Expat XML STM32H7 86,400 1,539,648 17.82 1,098 5/0
JPEGDEC STM32H7 83,752 805,308 9.61 903 17/4
PNGdec STM32H7 84,011 848,512 10.10 1,001 22/10

UART K64F 86,471 537,849 6.22 22 0/0
WiFi STM32H7 151,212 32,218 0.21 153 1/5
USB Host K64F 327,910 127,884 0.39 99 22/47
USB Host STM32H7 347,774 141,277 0.45 96 0/57
emUSB-Host LPC55S69 122,452 87,619 0.88 106 3/23
microSD K64F 86,457 30,240 0.35 77 0/6

complete a test for peripheral driver. This is because driver
code needs to deal with hardware activities which often involve
delays. For example, we observed that the USB driver spent
1.5∼2 seconds to perform enumeration, while the WiFi driver
spent 4∼5 seconds to connect to the Access Point. In these
cases, the reset overhead can be largely amortized.

In Table IX, we show the results of fuzzing IoT libraries in
persistent mode and driver code in normal mode. Most samples
were fuzzed for 24 hours. However, to make meaningful
results, some samples received more time depending on the
fuzzing speed. IPEA-Fuzz found all eight bugs in the toy
firmware and five out of six bugs in Expat XML parser. The
missing one is a format string vulnerability [55] which is
not checked in IPEA-San. For JPEGDEC, we found three
new global buffer overflow bugs. For PNGdec, IPEA-Fuzz
reported one known CVE [3]. In addition, IPEA-Fuzz not only
reproduced two CVEs reported in µAFL [50] but also found
one new UAF bug in the NXP USB driver (NXP-USB). It
is worth noting that this sample has been extensively tested
in µAFL. Moreover, we found a new buffer overflow bug
in the WiFi driver shipped with the STM32 SDK (STM32-
WiFi), a new Denial-of-Service (DoS) bug in the STM32
USB stack (STM32-USB), and a buffer overflow bug in
SEGGER emUSB-Host (SEGGER-USB). All the bugs have
been reported to and confirmed by the respective maintainers.
Patches for JPEGDEC have been merged to the main repos-
itory. NXP-USB and SEGGER-USB have been fixed by the
maintainers and the patched code will be released with the next
distributions. We are working with ST to fix the two remaining
bugs. The bug details for them are provided in Appendix §A-C.

2) Indispensability of Real Hardware for Testing Driver
Code: Low-level driver code frequently interacts with periph-
erals whose behavior is hard to model, leading to challenges
in emulation-based firmware testing. Although existing work
has made substantial progress [32], [23], [91], [64], [44],
none of them can handle complex peripherals. We demonstrate
this by testing four samples in the peripheral driver group
(WiFi, NXP USB, STM32 USB, emUSB) using a state-of-
the-art emulation-based solution named Fuzzware [64]. Dur-
ing fuzzing, we monitored the execution trace to check if
Fuzzware can properly initialize USB/WiFi. Unfortunately,
this never happened during the two-day testing. Sometimes
Fuzzware gave up emulation because it can never consume
the testcase within a predefined number of basic block ex-
ecution. The STM32 USB sample was even stuck during
booting. It turned out that Fuzzware failed to generate authentic
MMIO responses for the RCC peripheral in the function
SystemClock_Config(). This explains why existing so-
lutions sometimes need manual removal of hard-to-emulate

logic in the source code3. In contrast, IPEA enables streamlined
firmware testing with high fidelity, thanks to the involvement
of real hardware.

IX. DISCUSSION

IPEA-San Limitations. Although our evaluation shows
promising results, IPEA-San has limitations in handling several
corner cases due to the unsoundness of static analysis, resulting
in both FNs and FPs. First, although we use typecast in-
structions (ptrtoint, inttoptr, bitcast) to extensively
find and infer all pointers, some pointers—defined as integers
inside a data structure—cannot be easily recovered. Our static
analysis may miss implicit pointer propagation that comes
with such in-structure integer-cast pointers, leading to FNs.
Second, in some network protocol parsers, a zero-length array
(e.g., payload[0]) may be placed at the end of a structure
that is really a header for a variable-length object [2]. The
empty array only serves as a placeholder for future payload
to receive. Such “struct hack” can lead to FPs since our
intra-object overflow detection can only tag the original data
structure where the payload is considered empty.

Extension for Other Analysis Techniques. As a framework,
IPEA is not limited to the analysis we prototyped in this work.
By streaming out more information, other analysis plugins
can be supported. For example, by including type information
in the per-pointer metadata, our current IPEA-San prototype
can be extended to detect type confusion errors in C++ code,
similar to existing type sanitizers [38], [26], [41]. Specifically,
the OP_NEW event will carry a type ID of the object. On
receiving it, the PC plugin can associate a run-time type data
structure to the pointer, which encodes all permissible casts
for that pointer. When typecasting occurs, a new event will be
streamed out and run-time type checking can be performed.
In addition, many other sanitizers (e.g., MemorySanitizer to
detect uninitialized reads [80]) can be supported by streaming
out the respective run-time information.

X. RELATED WORK

Dynamic Firmware Analysis. Analyzing MCU firmware
faces many unique challenges, drawing research efforts from
different angles. On-device methods conduct analysis directly
on the target hardware. For example, µAFL [50] fuzzes periph-
eral driver code with the help of a debug dongle and utilizes
the Arm ETM debug feature to collect the instruction trace
as fuzzer feedback. A similar idea adopting the SWO debug
feature is proposed by Beckmann et al. [21]. However, these
solutions are platform-specific and only support fuzzing. Over-
the-air fuzzing has been explored to find bugs in Bluetooth
controllers [36], [35]. However, they only collect coarse-
grained execution information by observing I/O and require
domain knowledge to define faulty conditions. In contrast,
IPEA targets general firmware testing problems.

Although on-device analysis provides high fidelity, it is
not scalable. To address this issue, rehosting-based approaches
either emulate the firmware binary on a PC [32], [23], [91],
[64] or port the application from source code [49]. Rehosting

3https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/main/03-
fuzzing-new-targets/contiki-ng/building/patches/cc2538 read.patch

13

https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/main/03-fuzzing-new-targets/contiki-ng/building/patches/cc2538_read.patch
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/main/03-fuzzing-new-targets/contiki-ng/building/patches/cc2538_read.patch

can be more efficient in firmware testing, provided that the
underlying hardware is accurately modeled. Unfortunately, this
is not the case since it is very challenging to model the
behavior of complex peripherals, as indicated in literature [31],
[85] and our experiments (§VIII-C2). With the compromise of
not covering low-level code, HALucinator [24] side-steps the
driver emulation problem by simulating hardware abstraction
layers (HALs) on the host. This approach only covers the upper
application logic and does not work for firmware that does not
use HALs. In contrast, IPEA-San is a full-stack solution.

In the middle ground, hardware-in-the-loop rehosting redi-
rects I/O interactions to the physical hardware [87], [54],
[47], [25]. Frankenstein [62] directly uses dumped firmware
images from real devices to re-establish emulator states. These
solutions leverage real hardware to improve emulation fidelity.
IPEA leverages real hardware to collect analysis-specific in-
formation directly from the target.

Remote Attestation. Collaboratively running an analysis on
MCU and PC has been explored in C-FLAT [16] and OAT [78].
These systems enable remote attestation of control-flow paths
for IoT devices. This is achieved by using TrustZone to
sign the hash of the abstract execution path and send the
result to a remote verifier. Technically, IPEA also streams
internal execution information to a PC. However, IPEA is
geared towards general firmware testing during development
and thus incurs less restriction compared to C-FLAT and
OAT. Concretely, a remote attestation system must consider
the transmission overhead, limiting its current application to
control-flow integrity (CFI) where only the signed hash of
the execution path needs to be transmitted. To enable remote
attestation of memory safety, finding an efficient strategy to
encode the collected information is a challenge, which can be
interesting for future research.

Sanitizers. Sanitizers are commonly used in software testing.
Besides addressability bugs, they are also used to detect
concurrency bugs [81], undefined behavior [82], uninitialized
reads [80], type confusion [38], etc. Regarding addressability-
oriented sanitizers, there are two popular designs. Redzone-
based approaches [70], [63], [86] place redzones as invalid
memory around objects. Then, shadow memory is used to
track the status of each byte and an alert is raised when
an invalid byte in redzone is accessed. Pointer-based ap-
proaches [56], [57], [58], [19], [27], [43] encode pointer capa-
bilities (i.e., which object it can access) into the pointers. The
capability is either encoded as a fat pointer representation [58]
or in disjoint metadata [56], [57].

The memory overhead introduced by ASan transforms to
significant performance slowdown during sanitizer setup/tear-
down [42]. Therefore, recent work tries to reduce metadata
with optimized data structure [42], [20] or by leveraging
hardware features [79], [51], [89]. ASan for MCUs ported
in this work actually incorporates the idea of FuZZan [42]
to reduce the address space of the target firmware. IPEA-San
further eliminates metadata in firmware with decoupled design.
Using static analysis, existing work also reduces performance
overhead by removing unnecessary checks [90]. It is orthogo-
nal to IPEA-San and can be integrated.

XI. CONCLUSIONS

We present the design and implementation of the IPEA
firmware analysis framework and two analysis plugins for it.
They seamlessly integrate into existing firmware development
environments, allowing developers to run advanced firmware
testing while developing firmware. By offloading analysis
to the development PCs, the proposed analysis techniques
significantly reduce memory overhead compared with solutions
that run entirely on MCUs. Using our prototype to test real-
world firmware samples, we found seven zero-day bugs.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their extensive feedback on earlier drafts of this paper. This
work was supported by the US National Science Foundation
under grant CNS-2238264, Cisco Research, and a grant from
the University of Georgia Research Foundation, Inc. Opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of any funding agencies.

REFERENCES

[1] “alloca(3) — Linux manual page,” https://man7.org/linux/man-pages/
man3/alloca.3.html, (Retrieved: 04/12/2023).

[2] “Arrays of Length Zero,” https://gcc.gnu.org/onlinedocs/gcc/Zero-
Length.html, (Retrieved: 04/12/2023).

[3] “CVE-2022-35011,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2022-35011, (Retrieved: 04/12/2023).

[4] “emUSB-Host — USB peripherals with embedded devices,”
https://www.segger.com/products/connectivity/emusb-host/, (Retrieved:
04/12/2023).

[5] “Expat XML parser,” https://libexpat.github.io, (Retrieved: 04/12/2023).
[6] “FreeRTOS-Plus-TCP documentation: pxGetNetworkBufferWith-

Descriptor(),” https://www.freertos.org/FreeRTOS-Plus/FreeRTOS
Plus TCP/API/pxGetNetworkBufferWithDescriptor.html, (Retrieved:
04/12/2023).

[7] “Grbl-Advanced CNC milling,” https://github.com/Schildkroet/GRBL-
Advanced, (Retrieved: 04/12/2023).

[8] “JPEGDEC,” https://github.com/bitbank2/JPEGDEC, (Retrieved:
04/12/2023).

[9] “nrf52-keyboard,” https://github.com/Lotlab/nrf52-keyboard,
(Retrieved: 04/12/2023).

[10] “PNGdec,” https://github.com/bitbank2/PNGdec, (Retrieved:
04/12/2023).

[11] “pyelftools,” https://github.com/eliben/pyelftools, (Retrieved:
04/12/2023).

[12] “RP2040-FreeRTOS,” https://github.com/smittytone/RP2040-
FreeRTOS, (Retrieved: 04/12/2023).

[13] “Weather API,” https://openweathermap.org/api, (Retrieved:
04/12/2023).

[14] “what is the difference between Flash memory and SRAM,”
https://forum.43oh.com/topic/7661-what-is-the-difference-between-
flash-memory-and-sram/, (Retrieved: 04/12/2023).

[15] “WorldTimeAPI,” https://worldtimeapi.org/, (Retrieved: 04/12/2023).
[16] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,

A.-R. Sadeghi, and G. Tsudik, “C-flat: control-flow attestation for
embedded systems software,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp. 743–
754.

[17] Arm Holdings, “Armv8.5-A Memory Tagging Extension,”
https://developer.arm.com/-/media/Arm%20Developer%20Community/
PDF/Arm Memory Tagging Extension Whitepaper.pdf, (Retrieved:
04/12/2023).

14

https://man7.org/linux/man-pages/man3/alloca.3.html
https://man7.org/linux/man-pages/man3/alloca.3.html
https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-35011
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-35011
https://www.segger.com/products/connectivity/emusb-host/
https://libexpat.github.io
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/API/pxGetNetworkBufferWithDescriptor.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/API/pxGetNetworkBufferWithDescriptor.html
https://github.com/Schildkroet/GRBL-Advanced
https://github.com/Schildkroet/GRBL-Advanced
https://github.com/bitbank2/JPEGDEC
https://github.com/Lotlab/nrf52-keyboard
https://github.com/bitbank2/PNGdec
https://github.com/eliben/pyelftools
https://github.com/smittytone/RP2040-FreeRTOS
https://github.com/smittytone/RP2040-FreeRTOS
https://openweathermap.org/api
https://forum.43oh.com/topic/7661-what-is-the-difference-between-flash-memory-and-sram/
https://forum.43oh.com/topic/7661-what-is-the-difference-between-flash-memory-and-sram/
https://worldtimeapi.org/
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf

[18] ——, “What is semihosting?” https://developer.arm.com/
documentation/dui0375/g/What-is-Semihosting-/What-is-semihosting-,
(Retrieved: 04/12/2023).

[19] T. M. Austin, S. E. Breach, and G. S. Sohi, “Efficient detection
of all pointer and array access errors,” in Proceedings of the ACM
SIGPLAN 1994 conference on Programming Language Design and
Implementation, 1994, pp. 290–301.

[20] J. Ba, G. J. Duck, and A. Roychoudhury, “Efficient greybox fuzzing to
detect memory errors,” in 37th IEEE/ACM International Conference on
Automated Software Engineering, 2022, pp. 1–12.

[21] M. Beckmann and J. Steffan, “Coverage-guided fuzzing of embedded
systems leveraging hardware tracing,” in Computer Security. ESORICS
2022 International Workshops. Cham: Springer International Publish-
ing, 2023, pp. 362–378.

[22] G. Beniamini, “Over The Air: Exploiting Broadcom’s Wi-Fi Stack,”
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-
broadcoms-wi-fi 4.html, (Retrieved: 04/12/2023).

[23] C. Cao, L. Guan, J. Ming, and P. Liu, “Device-agnostic firmware
execution is possible: A concolic execution approach for peripheral
emulation,” in Proceedings of the 36th Annual Computer Security
Applications Conference, ser. ACSAC ’20, 2020.

[24] Clements, Abraham and Gustafson, Eric and Scharnowski, Tobias and
Grosen, Paul and Fritz, David and Kruegel, Christopher and Vigna, Gio-
vanni and Bagchi, Saurabh and Payer, Mathias, “Halucinator: Firmware
re-hosting through abstraction layer emulation,” 2020.

[25] N. Corteggiani and A. Francillon, “Hardsnap: Leveraging hardware
snapshotting for embedded systems security testing,” in 2020 50th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 2020, pp. 294–305.

[26] G. J. Duck and R. H. Yap, “Effectivesan: type and memory error
detection using dynamically typed c/c++,” in Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2018, pp. 181–195.

[27] G. J. Duck, R. H. Yap, and L. Cavallaro, “Stack bounds protection with
low fat pointers,” in NDSS, 2017.

[28] Embedded Security, “PinLock,” https://github.com/embedded-
sec/ACES/tree/master/test apps/pinlock, (Retrieved: 04/12/2023).

[29] Erich Styger, “Finding Memory Bugs with Google Address Sanitizer
(ASAN) on Microcontrollers,” https://mcuoneclipse.com/2021/05/
31/finding-memory-bugs-with-google-address-sanitizer-asan-on-
microcontrollers/, (Retrieved: 04/12/2023).

[30] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet Dossier,” White
paper, Symantec Corp., Security Response, vol. 5, no. 6, p. 29, 2011.

[31] A. Fasano, T. Ballo, M. Muench, T. Leek, A. Bulekov, B. Dolan-Gavitt,
M. Egele, A. Francillon, L. Lu, N. Gregory et al., “Sok: Enabling
security analyses of embedded systems via rehosting,” 2021.

[32] B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and Hardware-
independent Firmware Testing via Automatic Peripheral Interface
Modeling,” in 29th USENIX Security Symposium (USENIX Security 20).
Boston, MA: USENIX Association, Aug. 2020. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/feng

[33] A. Fioraldi, D. C. D’Elia, and L. Querzoni, “Fuzzing binaries for
memory safety errors with QASan,” in 2020 IEEE Secure Development
Conference (SecDev), 2020, pp. 23–30.

[34] Free Software Foundation, Inc., “lwIP A Lightweight TCP/IP stack,”
https://savannah.nongnu.org/projects/lwip/, (Retrieved: 04/12/2023).

[35] M. E. Garbelini, V. Bedi, S. Chattopadhyay, S. Sun, and E. Kurniawan,
“Braktooth: Causing havoc on bluetooth link manager via directed
fuzzing,” in 31st USENIX Security Symposium (USENIX Security 22).
Boston, MA: USENIX Association, Aug. 2022.

[36] M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sumei, and E. Kurni-
awan, “Sweyntooth: Unleashing mayhem over bluetooth low energy,”
in 2020 USENIX Annual Technical Conference (USENIX ATC 20).
USENIX Association, Jul. 2020, pp. 911–925.

[37] F. Gritti, F. Pagani, I. Grishchenko, L. Dresel, N. Redini, C. Kruegel,
and G. Vigna, “Heapster: Analyzing the security of dynamic allocators
for monolithic firmware images,” in 2022 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 2022, pp. 1559–1559.

[38] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and
E. van der Kouwe, “Typesan: Practical type confusion detection,”

in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 517–528. [Online].
Available: https://doi.org/10.1145/2976749.2978405

[39] A. Hazimeh, A. Herrera, and M. Payer, “Magma: A ground-truth
fuzzing benchmark,” Proc. ACM Meas. Anal. Comput. Syst., vol. 4,
no. 3, Dec. 2020. [Online]. Available: https://doi.org/10.1145/3428334

[40] J. Homan, S. McBride, and R. Caldwell, “IRONGATE ICS Malware:
Nothing to See Here...Masking Malicious Activity on SCADA Sys-
tems,” https://www.fireeye.com/blog/threat-research/2016/06/irongate
ics malware.html, (Retrieved: 04/12/2023).

[41] Y. Jeon, P. Biswas, S. Carr, B. Lee, and M. Payer, “Hextype: Efficient
detection of type confusion errors for c++,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 2373–2387.

[42] Y. Jeon, W. Han, N. Burow, and M. Payer, “Fuzzan: Efficient sanitizer
metadata design for fuzzing.” in USENIX Annual Technical Conference,
2020, pp. 249–263.

[43] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of c.” in USENIX Annual Technical
Conference, General Track, 2002, pp. 275–288.

[44] E. Johnson, M. Bland, Y. Zhu, J. Mason, S. Checkoway, S. Savage,
and K. Levchenko, “Jetset: Targeted firmware rehosting for embedded
systems,” in 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, Aug. 2021. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/johnson

[45] O. Karliner, “FreeRTOS TCP/IP Stack Vulnerabilities – The De-
tails,” https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-
details/, (Retrieved: 04/12/2023).

[46] M. Kol and S. Oberman, “19 Zero-Day Vulnerabilities Amplified by
the Supply Chain,” JSOF, White Paper, (Retrieved: 04/12/2023).

[47] K. Koscher, T. Kohno, and D. Molnar, “SURROGATES: Enabling
near-real-time dynamic analyses of embedded systems,” in 9th USENIX
Workshop on Offensive Technologies (WOOT 15). Washington, D.C.:
USENIX Association, Aug. 2015. [Online]. Available: https://www.
usenix.org/conference/woot15/workshop-program/presentation/koscher

[48] R. M. Lee, M. J. Assante, and T. Conway, “Analysis of the cyber
attack on the ukrainian power grid,” Electricity Information Sharing
and Analysis Center (E-ISAC), vol. 388, 2016.

[49] W. Li, L. Guan, J. Lin, J. Shi, and F. Li, “From library portability to
para-rehosting: Natively executing open-source microcontroller oss on
commodity hardware,” in 28th Network and Distributed System Security
Symposium, ser. NDSS ’21. The Internet Society, 2021.

[50] W. Li, J. Shi, , F. Li, J. Lin, W. Wang, and L. Guan, “µAFL: Non-
intrusive feedback-driven fuzzing for microcontroller firmware,” in 2022
IEEE/ACM 44rd International Conference on Software Engineering
(ICSE). IEEE, 2022.

[51] Y. Li, W. Tan, Z. Lv, S. Yang, M. Payer, Y. Liu, and C. Zhang,
“Pacmem: Enforcing spatial and temporal memory safety via arm
pointer authentication,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, 2022, pp.
1901–1915.

[52] M. Matt, “Trends and challenges in the vulnerability mitigation land-
scape,” in 13th USENIX Workshop on Offensive Technologies (WOOT
19). USENIX Association, 2019.

[53] MSRC Team, “BadAlloc – Memory allocation vulnerabilities could
affect wide range of IoT and OT devices in industrial, medical, and
enterprise networks,” https://msrc-blog.microsoft.com/2021/04/29/
badalloc-memory-allocation-vulnerabilities-could-affect-wide-range-
of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/,
(Retrieved: 04/12/2023).

[54] M. Muench, A. Francillon, and D. Balzarotti, “Avatar2: A multi-target
orchestration platform,” in Workshop on Binary Analysis Research,
2018.

[55] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What You Corrupt Is Not What You Crash: Challenges in Fuzzing
Embedded Devices,” in 2018 Network and Distributed System Security
Symposium (NDSS’18), 2018.

[56] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
Highly compatible and complete spatial memory safety for c,” in

15

https://developer.arm.com/documentation/dui0375/g/What-is-Semihosting-/What-is-semihosting-
https://developer.arm.com/documentation/dui0375/g/What-is-Semihosting-/What-is-semihosting-
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://github.com/embedded-sec/ACES/tree/master/test_apps/pinlock
https://github.com/embedded-sec/ACES/tree/master/test_apps/pinlock
https://mcuoneclipse.com/2021/05/31/finding-memory-bugs-with-google-address-sanitizer-asan-on-microcontrollers/
https://mcuoneclipse.com/2021/05/31/finding-memory-bugs-with-google-address-sanitizer-asan-on-microcontrollers/
https://mcuoneclipse.com/2021/05/31/finding-memory-bugs-with-google-address-sanitizer-asan-on-microcontrollers/
https://www.usenix.org/conference/usenixsecurity20/presentation/feng
https://savannah.nongnu.org/projects/lwip/
https://doi.org/10.1145/2976749.2978405
https://doi.org/10.1145/3428334
https://www.fireeye.com/blog/threat-research/2016/06/irongate_ics_malware.html
https://www.fireeye.com/blog/threat-research/2016/06/irongate_ics_malware.html
https://www.usenix.org/conference/usenixsecurity21/presentation/johnson
https://www.usenix.org/conference/usenixsecurity21/presentation/johnson
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-details/
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-details/
https://www.usenix.org/conference/woot15/workshop-program/presentation/koscher
https://www.usenix.org/conference/woot15/workshop-program/presentation/koscher
https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabilities-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/
https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabilities-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/
https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabilities-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/

Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009, pp. 245–258.

[57] ——, “Cets: compiler enforced temporal safety for c,” in Proceedings
of the 2010 International Symposium on Memory Management, 2010,
pp. 31–40.

[58] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“Ccured: Type-safe retrofitting of legacy software,” ACM Trans.
Program. Lang. Syst., vol. 27, no. 3, p. 477–526, May 2005. [Online].
Available: https://doi.org/10.1145/1065887.1065892

[59] NSA Center for Assured Software, “Juliet C/C++ 1.3,” https://samate.
nist.gov/SARD/test-suites/112, (Retrieved: 04/12/2023).

[60] NXP, “MCUXpresso SDK Builder,” https://mcuxpresso.nxp.com/en/
welcome, (Retrieved: 04/12/2023).

[61] J. Pallister, S. Hollis, and J. Bennett, “Beebs: Open benchmarks
for energy measurements on embedded platforms,” arXiv preprint
arXiv:1308.5174, 2013.

[62] J. Ruge, J. Classen, F. Gringoli, and M. Hollick, “Frankenstein: Ad-
vanced wireless fuzzing to exploit new bluetooth escalation targets,” in
29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 19–36.

[63] M. Salehi, D. Hughes, and B. Crispo, “µSBS: Static binary sanitization
of bare-metal embedded devices for fault observability,” in 23rd Inter-
national Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2020), 2020, pp. 381–395.

[64] T. Scharnowski, N. Bars, M. Schloegel, E. Gustafson, M. Muench,
G. Vigna, C. Kruegel, T. Holz, and A. Abbasi, “Fuzzware: Using
precise MMIO modeling for effective firmware fuzzing,” in 31st
USENIX Security Symposium (USENIX Security 22). Boston, MA:
USENIX Association, 2022. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity22/presentation/scharnowski

[65] Schildkroet, “Candle 2,” https://github.com/Schildkroet/Candle2, (Re-
trieved: 04/12/2023).

[66] SEGGER, “J-Link Debug Probes,” https://www.segger.com/products/
debug-probes/j-link/, (Retrieved: 04/12/2023).

[67] ——, “J-Link OB - The On-Board Debug Probe,” https://www.
segger.com/products/debug-probes/j-link/models/j-link-ob, (Retrieved:
04/12/2023).

[68] ——, “J-Link RTT – Real Time Transfer,” https://www.segger.com/
products/debug-probes/j-link/technology/about-real-time-transfer/,
(Retrieved: 04/12/2023).

[69] ——, “J-Link SDK – Integrate J-Link Support into Applications,”
https://www.segger.com/products/debug-probes/j-link/technology/j-
link-sdk/, (Retrieved: 04/12/2023).

[70] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A Fast Address Sanity Checker,” in Proceedings of the 2012
USENIX Conference on Annual Technical Conference (ATC’12), 2012.

[71] B. Seri, G. Vishnepolsky, and D. Zusman, “Critical vulnerabilities to
remotely compromise VxWorks, the most popular RTOS,” https://www.
armis.com/research/urgent11/, (Retrieved: 04/12/2023).

[72] J. Seward and N. Nethercote, “Using valgrind to detect
undefined value errors with Bit-Precision,” in 2005 USENIX
Annual Technical Conference (USENIX ATC 05). Anaheim,
CA: USENIX Association, Apr. 2005. [Online]. Avail-
able: https://www.usenix.org/conference/2005-usenix-annual-technical-
conference/using-valgrind-detect-undefined-value-errors-bit

[73] M. Shen, J. C. Davis, and A. Machiry, “Towards automated identifi-
cation of layering violations in embedded applications (wip),” in Pro-
ceedings of the 24th ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, and Tools for Embedded Systems, 2023, pp.
143–147.

[74] J. Shi, W. Li, W. Wang, and G. Le, “IPEA,” Aug. 2023. [Online].
Available: https://doi.org/10.5281/zenodo.8296807

[75] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “Sok: Sanitizing for security,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 1275–1295.

[76] STMicroelectronics, “ClockAndWeather,” https://github.
com/STMicroelectronics/STM32CubeH7/tree/v1.11.0/Projects/
STM32H7B3I-DK/Demonstrations/ClockAndWeather, (Retrieved:
04/12/2023).

[77] STMicroelectronics, “STM32Cube initialization code generator,”
https://www.st.com/en/development-tools/stm32cubemx.html,
(Retrieved: 04/12/2023).

[78] Z. Sun, B. Feng, L. Lu, and S. Jha, “Oat: Attesting operation integrity of
embedded devices,” in 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020, pp. 1433–1449.

[79] The Clang Team, “Hardware-assisted AddressSani-
tizer Design Documentation,” https://clang.llvm.org/docs/
HardwareAssistedAddressSanitizerDesign.html, (Retrieved:
04/12/2023).

[80] ——, “MemorySanitizer,” https://clang.llvm.org/docs/MemorySanitizer.
html, (Retrieved: 04/12/2023).

[81] ——, “ThreadSanitizer,” https://clang.llvm.org/docs/ThreadSanitizer.
html, (Retrieved: 04/12/2023).

[82] ——, “UndefinedBehaviorSanitizer,” https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html, (Retrieved: 04/12/2023).

[83] The kernel development community, “The Kernel Address
Sanitizer (KASAN),” https://www.kernel.org/doc/html/latest/dev-
tools/kasan.html, (Retrieved: 04/12/2023).

[84] Vedere Labs, “OT:ICEFALL: 56 Vulnerabilities Caused by Insecure-
by-Design Practices in OT,” https://www.forescout.com/blog/ot-icefall-
56-vulnerabilities-caused-by-insecure-by-design-practices-in-ot/, (Re-
trieved: 04/12/2023).

[85] C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A.
Clements, “Challenges in firmware re-hosting, emulation, and analysis,”
ACM Computing Surveys (CSUR), vol. 54, no. 1, pp. 1–36, 2021.

[86] S. H. Yong and S. Horwitz, “Protecting c programs from attacks
via invalid pointer dereferences,” in Proceedings of the 9th European
software engineering conference held jointly with 11th ACM SIGSOFT
international symposium on Foundations of software engineering, 2003,
pp. 307–316.

[87] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “AVATAR: A
framework to support dynamic security analysis of embedded systems’
firmwares,” in NDSS 2014, Network and Distributed System Secu-
rity Symposium, 23-26 February 2014, San Diego, USA, San Diego,
UNITED STATES, 02 2014.

[88] Zalewski, Michal, “American Fuzzy Lop,” http://lcamtuf.coredump.cx/
afl/, (Retrieved: 04/12/2023).

[89] T. Zhang, D. Lee, and C. Jung, “Bogo: Buy spatial memory safety,
get temporal memory safety (almost) free,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 631–644.

[90] Y. Zhang, C. Pang, G. Portokalidis, N. Triandopoulos, and J. Xu,
“Debloating address sanitizer,” in 31st USENIX Security Symposium
(USENIX Security 22). Boston, MA: USENIX Association,
Aug. 2022. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/zhang-yuchen

[91] W. Zhou, L. Guan, P. Liu, and Y. Zhang, “Automatic firmware emula-
tion through invalidity-guided knowledge inference,” in 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association,
2021.

APPENDIX A
SUPPLEMENTARY APPENDIX

A. CVE Study

We list the classification of 37 CVEs in Table X.

B. Run-time Overhead

We list the run-time overhead of IPEA-San and ASan
in Table XI. The upper part shows the results for BEEBS and
the lower part shows the results for real-world applications

16

https://doi.org/10.1145/1065887.1065892
https://samate.nist.gov/SARD/test-suites/112
https://samate.nist.gov/SARD/test-suites/112
https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://www.usenix.org/conference/usenixsecurity22/presentation/scharnowski
https://www.usenix.org/conference/usenixsecurity22/presentation/scharnowski
https://github.com/Schildkroet/Candle2
https://www.segger.com/products/debug-probes/j-link/
https://www.segger.com/products/debug-probes/j-link/
https://www.segger.com/products/debug-probes/j-link/models/j-link-ob
https://www.segger.com/products/debug-probes/j-link/models/j-link-ob
https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-transfer/
https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-transfer/
https://www.segger.com/products/debug-probes/j-link/technology/j-link-sdk/
https://www.segger.com/products/debug-probes/j-link/technology/j-link-sdk/
https://www.armis.com/research/urgent11/
https://www.armis.com/research/urgent11/
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/using-valgrind-detect-undefined-value-errors-bit
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/using-valgrind-detect-undefined-value-errors-bit
https://doi.org/10.5281/zenodo.8296807
https://github.com/STMicroelectronics/STM32CubeH7/tree/v1.11.0/Projects/STM32H7B3I-DK/Demonstrations/ClockAndWeather
https://github.com/STMicroelectronics/STM32CubeH7/tree/v1.11.0/Projects/STM32H7B3I-DK/Demonstrations/ClockAndWeather
https://github.com/STMicroelectronics/STM32CubeH7/tree/v1.11.0/Projects/STM32H7B3I-DK/Demonstrations/ClockAndWeather
https://www.st.com/en/development-tools/stm32cubemx.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.forescout.com/blog/ot-icefall-56-vulnerabilities-caused-by-insecure-by-design-practices-in-ot/
https://www.forescout.com/blog/ot-icefall-56-vulnerabilities-caused-by-insecure-by-design-practices-in-ot/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-yuchen
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-yuchen

TABLE X. CVE CLASSIFICATION (NMC: NON-LINEAR MEMORY
CORRUPTION, LMC: LINEAR MEMORY CORRUPTION, O: OTHERS, IO:

INTRA-OBJECT BUFFER OVERFLOW).

Library CVE Type

FreeRTOS+TCP TCP/IP

CVE-2018-16522 O
CVE-2018-16525 LMC
CVE-2018-16526 NMC
CVE-2018-16528 O
CVE-2018-16523 O
CVE-2018-16524 NMC
CVE-2018-16527 NMC
CVE-2018-16599 NMC
CVE-2018-16600 NMC
CVE-2018-16601 LMC
CVE-2018-16602 NMC
CVE-2018-16603 NMC
CVE-2018-16598 O

Contiki-NG

CVE-2020-12140 LMC
CVE-2020-12141 NMC
CVE-2023-23609 LMC
CVE-2023-31129 O
CVE-2022-41873 NMC
CVE-2022-41972 O
CVE-2019-9183 LMC
CVE-2023-28116 LMC

Zephyr

CVE-2021-3319 O
CVE-2021-3320 O
CVE-2021-3321 LMC
CVE-2021-3322 O
CVE-2021-3323 LMC
CVE-2021-3330 LMC
CVE-2020-10064 LMC
CVE-2021-3329 O
CVE-2022-3806 O
CVE-2023-0359 O

NXP SDK CVE-2021-38258 NMC
CVE-2021-38260 NMC

STM32 SDK

CVE-2021-34259 NMC
CVE-2021-34260 NMC
CVE-2021-34262 O
CVE-2021-42553 LMC & IO

TABLE XI. Normalized run-time overhead (the higher, the worse).

Firmware Baseline
(ms)

IPEA-San
(x)

ASan
(x)

aha-compress 959 1.58 1.19
aha-mont64 942 1.55 1.03
bs 807 1.67 1.13
bubblesort 1,171 4.69 4.72
cnt 876 1.55 1.24
compress 890 1.67 1.27
cover 858 1.59 1.02
crc 841 1.64 1.18
crc32 1,258 1.30 1.25
ctl-stack 1,041 2.13 2.09
ctl-string 974 1.83 1.55
ctl-vector 1,123 1.84 1.80

Continued on next page

– continued from previous page

Firmware Baseline
(ms)

IPEA-San
(x)

ASan
(x)

cubic 3,869 1.14 1.04
dijkstra 6,950 3.26 5.92
dtoa 1,119 1.75 1.18
duff 792 1.71 1.29
edn 1,168 3.28 4.97
expint 820 1.69 1.01
fac 846 1.56 1.01
fasta 2,506 1.00 4.92
fdct 881 1.64 1.13
fibcall 836 1.58 1.00
fir 2,319 8.49 6.31
frac 1,652 1.33 1.02
huffbench 3,281 4.36 8.15
insertsort 831 1.66 1.00
janne complex 830 1.61 1.08
jfdctint 845 1.67 1.20
lcdnum 816 1.65 1.14
ludcmp 835 1.73 1.32
matmult-float 1,046 1.79 1.93
matmult-int 1,742 2.94 5.07
minver 847 1.67 1.24
nbody 18,433 1.19 1.32
ndes 1,495 1.89 3.01
nettle-aes 1,507 2.60 3.23
nettle-arcfour 901 2.25 2.25
nettle-cast128 1,044 1.74 1.39
nettle-des 965 1.76 1.42
nettle-md5 876 1.56 1.10
nettle-sha256 961 1.74 1.26
newlib-exp 854 1.54 1.06
newlib-log 829 1.63 1.10
newlib-mod 810 1.62 1.08
newlib-sqrt 829 1.64 1.10
ns 934 1.67 1.30
nsichneu 996 1.54 1.20
prime 936 1.50 1.17
qrduino 7,259 3.63 7.01
qsort 833 1.68 1.12
qurt 930 1.55 1.01
recursion 862 1.58 1.12
rijndael 8,569 3.68 6.18
select 826 1.63 1.10
sglib-arraybinsearch 886 1.73 1.37
sglib-arrayheapsort 927 2.20 2.39
sglib-arrayquicksort 907 1.88 1.81
sglib-dllist 1,085 3.94 3.39
sglib-hashtable 1,274 2.26 2.14
sglib-listinsertsort 1,184 2.97 4.08
sglib-listsort 996 3.40 2.89
sglib-queue 955 2.29 2.45

Continued on next page

17

– continued from previous page

Firmware Baseline
(ms)

IPEA-San
(x)

ASan
(x)

sglib-rbtree 1,763 3.08 4.20
slre 1,469 1.61 1.50
sqrt 6,784 1.07 1.36
st 3,247 1.12 1.13
statemate 899 1.61 1.25
stb perlin 2,077 1.41 1.83
stringsearch1 897 1.90 1.70
strstr 860 1.53 1.11
tarai 836 1.60 1.08
template 838 1.56 1.01
ud 867 1.68 1.25
whetstone 13,266 1.06 1.11

Min - 1.00 1.00
Max - 8.49 8.15
Geo. Mean - 1.86 1.67

PinLock 12 1.00 1.08
CNC 10,532 1.02 1.07
nRF52-Keyboard 3,702 1.02 1.05
ClockAndWeather 46,082 1.22 1.12
AudioPlayer 7,262 1.03 1.03
WeighScale 1,423 1.59 1.00
HttpServer 1,651 1.63 -
U-Disk 247 1.08 -
MQTT-Echo 3,672 1.32 -
App-Scheduling 1,320 1.01 1.01
App-Timers 4,189 1.02 1.01
App-IRQs 5,612 1.01 1.00

Min - 1.00 1.00
Max - 1.63 1.12
Geo. Mean - 1.14 1.04

C. Bug Details

STM32-WiFi. The WiFi driver interacts with the WiFi module
through AT commands via SPI interface. Assuming there
is a malicious Access Point nearby, it can send crafted
messages over the air, thereby influencing the AT command
parser. The buffer overflow occurs in the function named
SPI_WIFI_ResetModule() where the bounds checking
against the array Prompt is missing, allowing attackers to
corrupt the stack. We list the vulnerable code in Listing 3.
1 int8_t SPI_WIFI_ResetModule(void){
2 uint32_t tickstart = HAL_GetTick();
3 uint8_t Prompt[6];
4 uint8_t count = 0;
5 ...
6 while(WIFI_IS_CMDDATA_READY()){
7 Status = HAL_SPI_Receive(&hspi, &Prompt[count], 1, 0

xFFFF);
8 count += 2; // bug: count is not checked in line 7
9 if(((HAL_GetTick()-tickstart) > 0xFFFF) || (Status!=

HAL_OK)){
10 WIFI_DISABLE_NSS();
11 return -1;
12 }
13 }
14 ...
15 }

Listing 3. The buffer overflow bug in STM32 WiFi driver.

NXP-USB (CVE-2023-38749). The USB host driver, running
on the MCU, needs to parse the descriptors provided by
the USB device (e.g., a USB disk). If the USB device is

malicious, it can send arbitrary descriptors, causing mem-
ory errors when the USB host parses them. In this bug,
the function USB_HostProcessCallback processes the
retrieved descriptor. It first extracts the descriptor length
to configureDesc->wTotalLength. Then, the old
descriptor deviceInstance->configurationDesc is
freed at line 13. If everything is correct, a buffer for the
new descriptor will be allocated (line 20). However, since
configureDesc->wTotalLength can be controlled by
the attacker, the function can return on error conditions at
either line 16 or 18. Later, a dangling pointer to the already-
freed descriptor is dereferenced at line 27, causing a UAF
error.
1 static usb_status_t USB_HostProcessCallback(...) {
2 ...
3 usb_descriptor_configuration_t *configureDesc;
4 ...
5 usb_host_device_enumeration_status_t state;
6 ...
7 switch (state) {
8 case kStatus_DEV_GetCfg9:
9 ...

10 deviceInstance->configurationLen =
USB_SHORT_FROM_LITTLE_ENDIAN_ADDRESS(configureDesc->
wTotalLength);

11 if (deviceInstance->configurationDesc != NULL) {
12 ...
13 OSA_MemoryFree(deviceInstance->configurationDesc);
14 deviceInstance->configurationDesc = NULL;
15 }
16 if (deviceInstance->configurationLen < 9U)
17 return kStatus_USB_Error;
18 if (deviceInstance->configurationLen > MAX_LENGTH)
19 return kStatus_USB_Error;
20 ... // allocate a new descriptor
21 }
22 }
23 static usb_status_t USB_HostNotifyDevice(...)
24 {
25 ...
26 //bug: bInterfaceClass is a dangling pointer
27 if (((usb_descriptor_interface_t *)deviceInstance->

configuration.interfaceList[interfaceIndex].
interfaceDesc)->bInterfaceClass ==
USB_HOST_HUB_CLASS_CODE)

28 ...
29 ...
30 }

Listing 4. The UAF bug in NXP USB driver (code slightly changed for easy
presentation).

STM32-USB. This is a Denial-of-Service (DoS) bug triggered
by malformed descriptor input. The non-responding state can
only be recovered by manually resetting the MCU. This bug
can be discovered without using IPEA-San. When parsing
the descriptor, the function USBH_GetNextDesc moves the
pointer ptr forward to the next descriptor. If the bLength
field of current descriptor is 0, ptr will never move forward,
leading to a dead loop in its caller.
1 USBH_DescHeader_t *USBH_GetNextDesc(uint8_t *pbuf,

uint16_t *ptr)
2 {
3 USBH_DescHeader_t *pnext;
4 *ptr += ((USBH_DescHeader_t *)(void *)pbuf)->bLength;
5 pnext = ...;
6 return (pnext);
7 }

Listing 5. The DoS bug in STM32 USB driver.

SEGGER-USB. SEGGER emUSB is a proprietary IoT library.
The bug detail is not disclosed due to the NDA protocol with
SEGGER.

18

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: The AEC-approved artifact can be found
at https://doi.org/10.5281/zenodo.8296807. We also maintain
the project on GitHub. For the updated versions, please refer
to https://github.com/MCUSec/IPEA.

2) Hardware dependencies:

• Debugger
◦ SEGGER J-Link (Pro/Edu/Edu Mini/Onboard)

• Development board
◦ NXP FRDM-K64F

3) Software dependencies:

• Ubuntu 22.04 LTS x86 64
• J-Link Software and Documentation pack
• J-Link Runtime Library
• Arm GNU Toolchain
• LLVM 13
• Python 3.x
• Other libraries: pyelftools, libjsoncpp, spdlog, etc.

4) Benchmarks:

• Juliet C/C++ Testsuite
• BEEBS

B. Artifact Installation & Configuration

This section details the high-level installation and config-
uration steps to prepare the IPEA framework.

Install the J-Link Software and Documentation pack

• Download the J-Link Software and Documentation pack
from the link: https://www.segger.com/downloads/jlink/
JLink Linux V758e x86 64.deb (accept the terms of use
when prompted)

• Install in the command line:
$ sudo dpkg -i /path/to/JLink_Linux_V758e_x86
_64.deb

Install the J-Link Runtime Library

• Download the J-Link Runtime Library from the link:
https://www.segger.com/downloads/jlink/JLink Linux
V758e x86 64.tgz (accept the terms of use when
prompted)

• Extract libjlinkarm.so.7.58.5 from the package and copy
it to /usr/lib directory:
$ sudo cp /path/to/libjlinkarm.so.7.58.5 /usr/lib
$ sudo ldconfig
$ sudo ln -s /usr/lib/libjlinkarm.so.7 \

/usr/lib/libjlinkarm.so

Install the Arm GNU toolchain

• Download the latest version of the Arm GNU toolchain
package from https://developer.arm.com/downloads/-
/gnu-rm and unpack it.

• Add the toolchain path:
export ARMGCC_DIR=/path/to/arm-toolchain
export PATH=${ARMGCC_DIR}/bin:$PATH

Install LLVM-13 and other dependencies

• LLVM-13 and other libraries:
$ sudo apt install llvm-13-dev clang-13 \

cmake libjsoncpp-dev libconfig-dev libelf-dev
$ sudo ln -s /usr/bin/clang-13 /usr/bin/clang
$ sudo ln -s /usr/bin/clang++-13 /usr/bin/clang++

• Python dependencies: pyelftools and cmsis-svd:
$ pip install pyelftools cmsis-svd

• Install spdlog:
$ git clone https://github.com/gabime/spdlog.git
$ mkdir -p spdlog/build
$ cd spdlog/build && cmake ..
$ make && sudo make install

Build IPEA framework

• Clone the latest source code from https://github.com/
MCUSec/IPEA to your working directory

• Set the IPEA_HOME environment variable to your work-
ing directory:
export IPEA_HOME=/path/to/IPEA_Source_Code

• Build the IPEA framework:
$ cd ${IPEA_HOME}
$./build.sh

• Add the following paths to the PATH environment vari-
able:
export PATH=${IPEA_HOME}/build/AFL:

${IPEA_HOME}/build/unittest:
${IPEA_HOME}/scripts:$PATH

C. Major Claims

The following major claims are made:

• (C1): Besides the traditional memory safety bugs which
can be also detected by ASan, IPEA-San can detect
intra-object buffer overflow and peripheral-based buffer
overflow. This is proven by experiment (E1), for which
the results are illustrated in Table II.

• (C2): IPEA-San has lower FP and FN rates than ASan.
This is proven by experiment (E2), for which the results
are illustrated in Table IV.

• (C3): IPEA-San has lower flash and SRAM overhead but
incurs slightly higher overhead in performance than ASan.
This is proven by experiment (E3), for which the results
are illustrated in Table V and Table XI.

• (C4): The combination of IPEA-Fuzz and IPEA-San is
able to find memory bugs in MCU firmware. This is
proven by experiment (E4), for which the results are
illustrated in Table IX.

D. Evaluation

1) Experiment (E1): [2 human-minutes + 10 compute-
minutes]: This experiment is to prove that IPEA-San is able
to detect all eight kinds of memory bugs listed in Table II.
By fuzzing the Toy firmware with IPEA-Fuzz, eight unique
crashes should be found.

[Preparation]

• Connect SEGGER J-Link to the JTAG/SWD port of
FRDM-K64F development board

[Execution]

• Build the Toy firmware then run IPEA-Fuzz with the
following commands:
$ cd ${IPEA_HOME}/fw_samples/Toy

19

https://doi.org/10.5281/zenodo.8296807
https://github.com/MCUSec/IPEA
https://www.segger.com/downloads/jlink/JLink_Linux_V758e_x86_64.deb
https://www.segger.com/downloads/jlink/JLink_Linux_V758e_x86_64.deb
https://www.segger.com/downloads/jlink/JLink_Linux_V758e_x86_64.tgz
https://www.segger.com/downloads/jlink/JLink_Linux_V758e_x86_64.tgz
https://developer.arm.com/downloads/-/gnu-rm
https://developer.arm.com/downloads/-/gnu-rm
https://github.com/MCUSec/IPEA
https://github.com/MCUSec/IPEA

$ make ipea
$ run_afl.py -b ./toy -i ./fuzz_input -t 1000

• Press Ctrl+C to stop the fuzzing.

[Results]

• The fuzzing result can be found from the output directory
(default is output).

• Use ipea-unittest tool to test a testcase:
$ cat output/crashes/<use_case_name> | \

run_unittest.py -b toy -t 1000

• The execution results will be saved in tracelog 0.txt. If a
crash is detected, the call stack information will be saved
in a file callstack.txt.

2) Experiment (E2): [10 human-minutes + 2 compute-
hours]: This experiment is to evaluate the correctness of IPEA-
San in detecting memory safety bugs in the Juliet C/C++
Testsuite (Juliet).

[Preparation]

• Connect SEGGER J-Link to the JTAG/SWD port of
FRDM-K64F development board.

[Execution]

• Run Juliet with IPEA-San:
$ cd ${IPEA_HOME}/projects/MCU_Juliet_Testsuite
$ run_juliet.py -p . -c mk64f.conf

• Run Juliet with ASan:
$ run_juliet.py -p . -c mk64f.conf --use-asan

[Results]

• The results (i.e., numbers of FPs and FNs in each
CWE) will be saved in two files report ipea.json and
report asan.json for IPEA-San and ASan, respectively.

3) Experiment (E3): [5 human-minutes + 30 compute-
hours]: This experiment is to evaluate the performance over-
head of IPEA-San on the BEEBS benchmark.

[Preparation]

• Connect SEGGER J-Link to the JTAG/SWD port of
FRDM-K64F development board.

[Execution]

• Run the baseline BEEBS without any instrumentation:
$ cd ${IPEA_HOME}/projects/BEEBS
$ run_beebs.py -p . -c mk64f.conf

• Run BEEBS with IPEA-San:
$ run_beebs.py -p . -c mk64f.conf -s ipea

• Run BEEBS with ASan:
$ run_beebs.py -p . -c mk64f.conf -s asan

[Results]

• The results (time consumption of each program) will
be saved in three files report none.json, report ipea.json
and report asan.json for baseline, IPEA-San and ASan,
respectively.

• Performance overhead of each sanitizer can be obtained
by comparing the corresponding time consumption with
the baseline.

4) Experiment (E4): [5 human-minutes + 24 compute-
hours]: This experiment is to evaluate the capability of finding
bugs in real-world MCU firmware when combining IPEA-San
with IPEA-Fuzz.

[Preparation]

• Connect SEGGER J-Link to the JTAG/SWD port of
FRDM-K64F development board.

• Plug a USB drive to the J22 connector via a micro USB
OTG cable.

[Execution]

• Run IPEA-Fuzz through run afl.py:
$ cd ${IPEA_HOME}/fw_samples/USB-Host
$ make ipea
$ run_afl.py -b usb_host -i ./fuzz_input -t 3000

[Results]

• A use-after-free bug would be found within a couple of
hours.

• The fuzzing results can be found from the output direc-
tory. Test the crashing testcases through run unittest.py
as described in E1.

20

	Introduction
	Background
	Firmware Development
	Microcontroller Firmware
	Memory Bugs and Bug-Oriented Program Analysis

	Overview
	The IPEA Framework
	IPEA-San: A Sanitizer for MCU Firmware
	Design Choices
	Basic Idea
	IPEA-San Instrumentation
	Object Creation
	Pointer Propagation
	Pointer Dereference
	Object Deallocation
	Interrupt Support

	Library Support
	Optimizations

	IPEA-Fuzz: A Fuzzer for MCU Firmware
	IPEA-Fuzz Instrumentation
	Interrupt Handling

	Implementation
	Evaluation
	Sanitizer Capability
	Comparison Targets
	Qualitative Evaluation
	Quantitative Evaluation
	Need for Better Sanitization

	Overhead of IPEA-San
	Flash Overhead
	SRAM Overhead
	Performance Overhead

	Fuzzing Evaluation
	Bug Finding Capability
	Indispensability of Real Hardware for Testing Driver Code

	Discussion
	Related Work
	Conclusions
	References
	Appendix A: Supplementary Appendix
	CVE Study
	Run-time Overhead
	Bug Details

	Appendix B: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)
	Experiment (E4)

