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it to support course objectives, and individuals are taking ad-
vantage of its language translation capabilities. Unfortunately,
advanced technologies like ChatGPT often face instances of
misuse. Students are using it to generate assignments and
coding projects [8], [12], scholars rely on it for producing
academic papers [20], and malicious actors exploit it to spread
fake news on social media platforms [24], [13]. Furthermore,
ChatGPT has the potential to create seemingly realistic stories
that can deceive unsuspecting readers [6], [48]. Therefore, the
development of an effective detection algorithm capable of
distinguishing AI-generated text, particularly from ChatGPT,
from human-generated text has become a significant focus for
researchers.

When detecting AI-generated text using machine learning,
two common approaches are black-box and white-box detec-
tion. Black-box detection involves accessing language models
through APIs, posing challenges in identifying synthetic texts
effectively [53]. It includes tasks like data collection, feature
extraction, and constructing specialized classifiers, often using
simpler ones like binary logistic regression [50]. In contrast,
white-box detection has unrestricted access to language mod-
els, providing greater control over behavior and traceable
results [53]. Zero-shot detection is an example of white-
box detection, using pre-trained generative models like GPT-
2 or Grover, along with fine-tuned language models for the
detection task [36], [50], [59].

The development of text detectors has attracted substantial
attention in recent research, with considerable efforts devoted
to developing detectors capable of distinguishing text gener-
ated by AI bots [12], [20], [21], [22], [28], [30], [31], [36],
[43], [50], [59], [60]. Moreover, certain assertions have been
made concerning the discriminative ability of AI-text detec-
tors in distinguishing ChatGPT-generated text from human-
generated text [41], [4], [8], [14], [17], [18], [19], [23], [37],
[39], [55], [56].

Our paper’s primary focus revolves around the development
of detectors to effectively distinguish between text generated
by ChatGPT and humans. In our pursuit of this goal, we
conducted a comprehensive evaluation of existing schemes
and tools dedicated to the detection of ChatGPT-generated
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Abstract—The potential misuse of ChatGPT and other Large 
Language Models (LLMs) has raised concerns regarding the 
dissemination of false information, plagiarism, academic dis-
honesty, and fraudulent activities. Consequently, distinguishing 
between AI-generated and human-generated content has emerged 
as an intriguing research topic. However, current text detection 
methods lack precision and are often restricted to specific tasks 
or domains, making them inadequate for identifying content 
generated by ChatGPT.
In this paper, we propose an effective ChatGPT detector named 
DEMASQ, which accurately identifies C hatGPT-generated con-
tent. Our method addresses two critical factors: (i) the distinct 
biases in text composition observed in human- and machine-
generated content and (ii) the alterations made by humans to 
evade previous detection methods. DEMASQ is an energy-based 
detection model that incorporates novel aspects, such as (i) 
optimization inspired by the Doppler effect to capture the in-
terdependence between input text embeddings and output labels, 
and (ii) the use of explainable AI techniques to generate diverse 
perturbations. To evaluate our detector, we create a benchmark 
dataset comprising a mixture of prompts from both ChatGPT 
and humans, encompassing domains such as medical, open Q&A, 
finance, w iki, a nd R eddit. O ur e valuation d emonstrates that 
DEMASQ achieves high accuracy in identifying content generated 
by ChatGPT.

I. INTRODUCTION

The release of ChatGPT, an AI chatbot developed by Ope-
nAI, has generated significant i nterest a nd e xtensive discus-
sions within the Natural Language Processing (NLP) commu-
nity and various other domains. ChatGPT, which was launched
in November 2022, harnesses the capabilities of OpenAI’s
language models from the GPT-3.5 and GPT-4 series. By
employing supervised and reinforcement learning techniques
based on Human Feedback [10], [32], ChatGPT generates
sophisticated responses to diverse queries across various NLP
fields, a s h ighlighted i n r ecent s tudies [ 7], [ 16], [ 38], [52],
[58].

The media’s promotion of ChatGPT has generated various
responses. News and media companies are employing it to en-
hance content creation, educators and academics are utilizing
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content. Our evaluation of the existing ChatGPT detectors has
revealed that, in the best-case scenario, these methods achieved
an accuracy rate of 47%, as elaborated in Table I.
Our goals and contributions. We address the limitations of
existing ChatGPT detectors and present our novel approach,
inspired by the intricate nature of human communication. Hu-
man interactions exhibit diverse patterns and inherent biases,
influenced by personal backgrounds, environmental factors,
and the unique individuals involved. In contrast, machines in-
teract based on predefined rules, maintaining consistent energy
and frequency regardless of the human query. To account for
this inherent bias, we leverage the Doppler effect to model
the communication dynamics between humans and machines.
This novel approach allows us to quantify the responsiveness
of both humans and machines to questions posed by humans,
thus providing a unique perspective on bias detection.

We extend the Doppler effect’s application to text, hy-
pothesizing that thoughts translated into text follow a sim-
ilar physical process as phonetic energy waves in human
communication. And by adopting drumhead vibrations, we
model waves and source frequency. Since the energy level is
directly linked to its higher or lower frequency, we leverage
this relationship and choose to develop and train an Energy-
Based Model (EBM). In EBMs, energy serves as a key metric
for understanding the connection between the model’s input
and output, with lower energy configurations representing the
most optimal relationship between these variables. This model
facilitates the discrimination between responses generated by
humans and ChatGPT through analyzing their respective en-
ergy levels, effectively capturing the biases introduced by both
entities.

We stress that, no existing ChatGPT detector has explored
these aspects, giving our novel design, named DEMASQ,
a significant performance advantage as it achieves an high
accuracy of 97% on a representative benchmark dataset that
contains diverse prompts from both ChatGPT and humans,
spanning different domains which we detail in Section V-B.

Moreover, we address ChatGPT’s rephrasing techniques by
incorporating the explainable AI concept of Integrated Gra-
dients (IG) [51] to perturb the input string’s embedding. This
perturbation allows us to extract crucial features, compute their
energies, and identify a natural threshold between ChatGPT
and human-like responses during the string’s evolution. This
integration of energy-based modeling, IG perturbation, and
optimization enhances our detector’s ability to differentiate
between human and ChatGPT-generated responses while ac-
counting for biases and rephrasing techniques.

In summary, our contributions in this paper include:
• The design and implementation of DEMASQ, a novel

ChatGPT detector for accurate discrimination between
ChatGPT and human-generated text.

• A unique approach that incorporates the effect of bias
introduced during human interactions and rephrasing
techniques that modify ChatGPT-generated responses to
evade detection. We utilize frequency and energy model-
ing, and explainable AI (cf. Section IV).

• The creation of a comprehensive benchmark dataset
comprising over 100,000 samples and spanning various
domains, such as wiki, reddit, openqa, finance, medical,
arxiv, and political, and the rigorous evaluation of our
approach’s robustness across diverse contexts (cf. Sec-
tion VI). We evaluated the existing ChatGPT detectors
on this benchmark, revealing that these methods achieve
an accuracy rate of 47% in the best-case scenario (Table
I). In contrast, DEMASQ achieves an accuracy of 96.5%
on the above mentioned combined benchmark dataset,
significantly outperforming the existing detectors.

• A new research direction that sheds light on the current
state of detection techniques and aims to stimulate further
exploration in this critical field.

While DEMASQ demonstrates a significant superiority over
the existing ChatGPT detectors, we acknowledge that there are
still several challenges to be tackled. Firstly, we expect that
DEMASQ, given its generic design, will exhibit comparable
performance when subjected to prompts generated by other
generative language models. Hence, we are currently inves-
tigating this aspect as part of our ongoing research efforts.
Secondly, although we have demonstrated the superior perfor-
mance of DEMASQ when compared to recent work on hybrid
texts (as discussed in Section VI-D), we are actively refining
our methodology to bolster its effectiveness in distinguishing
content generated by ChatGPT, especially when confronted
with rephrased or adversarial prompts.

II. BACKGROUND

In this section, we present a concise overview of the
essential background knowledge encompassing all the related
concepts necessary to comprehend the design of our proposed
detection method. By providing this contextual information,
we aim to equip readers with the foundational understanding
required to grasp the intricacies and rationale behind our
innovative detection approach.

A. Large Language Models (LLMs)

Large Language Models (LLMs) are advanced AI systems
designed to understand and generate human-like text. They
undergo extensive training on diverse datasets from various
sources like books, articles, and websites. This training en-
ables LLMs to produce coherent and contextually relevant
responses. Examples of notable LLMs include GPT-3, GPT-2,
Transformer-XL, BERT, and ChatGPT. These models repre-
sent just a fraction of the diverse range of LLMs developed
by different organizations and researchers, each with its own
strengths and areas of specialization.

B. Doppler Effect

The Doppler effect occurs when the relative motion between
a wave source and an observer exists. It manifests as a change
in the source frequency as perceived by the observer. When a
wave source moves toward an observer, there is an apparent
increase in frequency, while the frequency decreases when
the source moves away from the observer. This relationship
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Fig. 1: Doppler effect.

between the observed frequency, denoted as Ef , and the
emitted frequency, denoted as Ef0 , can be described by the
following equation:

Ef =

(
cv ± vr
cv ± vs

)
Ef0 (1)

In the above equation, cv represents the propagation speed
of waves in the medium. The term vr denotes the receiver’s
speed relative to the medium. If the receiver moves towards
the source, vr is added to cv; however, if the receiver moves
away from the source, vr is subtracted. Similarly, vs represents
the speed of the source relative to the medium. If the source
moves away from the receiver, vs is added to cv , and vs is
subtracted if the source is moving towards the receiver.

In this work, we conceptualize humans (humans generating
the response) or ChatGPT (ChatGPT generating the response)
as sources and consider another human as the observer, as
shown in Figure 1. The medium represents the space which
variates or vibrates with the strength of the human factor in
the input text embedding. Alternatively, the medium represents
a space in which ChatGPT tries to imitate content similar to
human-generated content. More detailed explanation is given
in Section IV-B.

C. Energy-based model

Statistical modeling and machine learning primarily aim to
represent relationships between variables. By capturing these
relationships, models can provide answers regarding the values
of unknown variables based on the known variables. Energy-
Based Models (EBMs) [33] assign ”scalar values” to represent
the compatibility between different variable configurations.
These ”scalar values” are called ”energies” computed using
an energy function defined to represent the compatibility
between different variable configurations. Instead of focusing
on classifying −→x values to corresponding y values (as done
in ML), the goal of EBMs is to determine whether a specific
pair of (−→x , y) is a good match or not. In other words, the
objective is to find a compatible y that fits well with a given
−→x . It can be framed as the task of discovering a y for which
a certain function F (−→x , y) has a low value, as the lower

energy configurations describe the best relationship between
these variables.

We establish an energy function F : X × Y → R that
quantifies the degree of dependency between pairs (−→x , y).
When constructing and training an energy-based model using
a training set S, the process entails developing and refining
four essential components:
• The architecture: The architecture of the EBM refers to the

internal arrangement and design of the parameterized energy
function F (w,−→x , y) (with parameters w). It encompasses
the specific structure and organization of the components
within the energy function that are determined by the chosen
model’s parameters.

• The inference algorithm: The method for finding a value
of y that minimizes F (w,−→x , y) for any given −→x is given
by the following equation:

y
′
= argmin

y
F (w, x, y)

• The loss function: L(w,F ) quantifies the quality or perfor-
mance of an energy function by evaluating its compatibility
with the training set.

• The learning algorithm: The approach to discover a w that
minimizes the loss functional across the family of energy
functions F , considering the given training set.
In this work, EBM is defined to model the dependencies

between the input text embedding (V (−→x )) and the output label
of the text. Label 1 for humans generating the text is assigned
high energy, and label 0 for ChatGPT-generated responses is
given low energy. The instantiation of all these components is
detailed in Section IV-B.

D. Explainable AI

Explainable AI (XAI), also known as interpretable AI or
transparent AI, refers to the development and application of
artificial intelligence (AI) systems that can effectively explain
their reasoning and decision-making processes in a human-
understandable manner. This has resulted in several novel
model explanation techniques and toolkits [45], [35], [49], [3],
[26], [1], [11], [5]. One class of XAI is the attributions method
in which each feature contribution to the model function is
computed. Mathematically, it is defined as: given an input data
point −→x ∈ Rn and a classification model Fc, an explanation
method denoted as H is employed to provide an influence or
attribution vector. This vector elucidates the model’s decision-
making process by revealing the contributions of each feature.
The ith element of this vector, denoted as Hi(

−→x ), represents
the impact of the ith feature on the predicted label y for the
given data point −→x .

We utilize a specific attribution method, called Integrated
Gradients (IG) [51], which is derived by accumulating gradi-
ents computed at all points along a linear path from a chosen
baseline −→x ′

(often set as −→x ′
=
−→
0 ) to the actual input −→x

[51]. Essentially, integrated gradients involve integrating the
gradients along a straight-line path from the baseline −→x ′

to
the input −→x . The integrated gradient for a specific feature i
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Fig. 2: The impact of different modes of the zeroth Bessel function
(J0(α0n)) on the frequency with which the drumhead vibrates. For
example, we have illustrated how the wave travels (shape of the wave)
in a drum with a fixed m = 0, and n = 1, n = 2, n = 3.

with an input −→x and baseline −→x ′
is denoted as HIGRAD(−→x )i,

computed as shown in Equation 2.

HIGRAD(−→x )i = (xi−x
′

i)∗
∫ 1

α=0

∂Fc(
−→x ′

+ α(−→x −−→x ′
))

∂xi
dα

(2)
In this work, we utilize IG to account for ChatGPT’s rephras-
ing techniques that a human can request to evade detection
from different ChatGPT detectors present in the literature.
Specifically, we employ IG to compute different perturbations
of the input text embedding (V (−→x )) to extract crucial fea-
tures. Then, we compute the energies of the perturbations by
systematically removing these features, generating additional
samples with corresponding labels, and re-optimizing the loss
function. Integrating this in our proposed scheme efficiently
improves our detection of ChatGPT-generated responses.

E. Drumhead vibrations

The behavior of an idealized drumhead can be understood
by examining the vibrations of a two-dimensional elastic
membrane under tension [47] [27]. This membrane, which
can be modeled as a circular surface with uniform thickness
connected to a rigid frame, exhibits fascinating properties. The
membrane can store vibrational energy at specific resonant
frequencies through the resonance phenomenon. The surface
of the membrane moves in distinct patterns characterized by
standing waves, referred to as normal modes. The lowest
frequency normal mode is called the fundamental mode, and
the membrane possesses an infinite number of these normal
modes. Specifically, there are two modes (that can have diverse
values) of vibration in the membrane: angular mode (m) and
circular mode (n). The membrane can vibrate in countless
ways, with each mode determined by the initial shape of
the membrane and the transverse velocity at each point on
the surface. The membrane’s vibrations can be described
mathematically by solving the two-dimensional wave equation,
subject to Dirichlet boundary conditions that represent the
constraints imposed by the frame [54]. This equation captures
the intricate dynamics of the membrane and its interactions

with the surrounding medium. The solution of this equation
for asymmetric case (m = 0, n), is given by:

DH(r, t) =

∞∑
n=1

J0(λnr)∗(A cos(cdλnt)+B sin(cdλnt)) (3)

DH(r, t) represents the height of the drum head at a specific
radial coordinate r, measured relative to the ”still” drum head
shape at time t. Here, we have an open disk with a radius of a,
where the value of DH is zero on the boundary. c2d determines
the wave speed in the membrane. In Equation 3 we use the
root:

√
c2d = cd. The coefficients A and B are determined by

the initial conditions.
J0(λnr) is the zeroth Bessel function with angular mode

m = 0, and circular mode n, and it represents the strength
of the frequency computed at different modes for each (0, n)
value. The specific values of λnr = αn are referred to as the
zeros of the Bessel function J0 [9] and are used to determine
the shape of the drum that determines the frequency with
which it vibrates, as shown in Figure 2.

In this work, we utilize drumhead vibration to compute
the source frequency (human or ChatGPT) (Ef0 ) for the
computation of observed frequency by an observer (human)
in the Doppler effect. We compute the zeros of the Bessel
function J0(α0n) (using the Python SciPy library [15]), which
in turn is used to compute the source frequency. Frequency at
mode m = 0, n can be computed as α0n × cd/a, denoted as
FJ0

. Since, we are unaware of the values of cd and a, we
compute Ef0 =

FJ0
(0,n)

FJ0
(0,1) to normalize the computation of Ef0

with fundamental frequency at J0(0, 1). Thus, we only need
to measure n to compute the source frequency (detailed in
Section IV). Also, we specifically concentrate on the circular
mode of vibration. This choice is based on our assumption
that the ”Doppler waves” related to both human-generated and
ChatGPT-generated content propagate in a linear fashion, or
to put it differently, we assume that the source’s waveform
moves along the line of the observer’s sight.

III. THREAT MODEL

We investigate a situation where the detector or an observer
(a human) functions as a black box and relies exclusively on
the observed samples. However, the detector has no privileged
knowledge about the underlying ChatGPT Large Language
Model (LLM) responsible for generating these samples, in-
cluding details such as its weights, structures, and gradients.
This assumption accurately reflects the current situation, as
OpenAI has not made the LLM utilized in the GPT-3.5 family
publicly accessible, thereby limiting insider information. By
considering this realistic scenario, we aim to explore the
challenges and potential strategies of detectors against attacks
in the absence of in-depth knowledge about the LLM.

We make the following assumptions regarding the attacker:
Firstly, we assume that the attacker is a human who ac-
tively aims to avoid detection. Secondly, the attacker has
knowledge of the deployed detector. However, the attacker
has no information about our deployed detector’s specific
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Fig. 3: High level idea of our proposed approach.

structural design, such as using EBM, doppler effect, and XAI.
Additionally, we consider the attacker possibly rephrasing
the given input string by utilizing ChatGPT multiple times
to evade detection. The adversary may also employ other
rephrasing techniques to alter the content and make it harder
for the detector to identify. These assumptions acknowledge an
attacker’s potential strategies to bypass our detection system,
prompting us to address the challenges associated with such
deceptive practices.

IV. SYSTEM DESIGN

In this section, we provide a comprehensive account of
the primary constituents comprising our suggested ChatGPT
detector. Initially, we present a broad overview of the concept,
followed by a detailed description of its fundamental elements.

A. High-level Idea

Figure 3 represents the high-level architecture of our pro-
posed ChatGPT detector DEMASQ.

As mentioned in the introduction, the main idea of our
approach is to leverage the bias introduced by the human or
ChatGPT in their responses to queries. Alternatively, one can
perceive this as the fact that every individual interacts with
others in a unique manner [25], [57] and brings biases, such
as emotions, personal history with that specific person, and
environmental factors, before engaging in communication. Our
approach consists of three components: i) an adapted Doppler
effect, ii) an energy-based model to capture the dynamics
of human and ChatGPT behavior, and iii) an Integrated
Gradient (IG) method to capture hybrid texts that contain
both human- and ChatGPT-generate texts. We determine the
different dynamics in human and machine behavior by first
building an Energy-Based Model (EBM) in which we quantify
the energy using the Doppler effect. We assume that in the
Doppler-effect context, waves represent texts. During human
communication, the recipient receives the phonetic energy con-
tained in waveforms. Furthermore, the Doppler effect involves
source waves radiating outward in concentric circles towards
the observer. As a way to model source frequencies, we
incorporate drumhead vibrations. This decision is motivated
by the fact that diametric waves propagate in concentric circles
towards a fixed outer boundary.

The optimization of the EBM training process is enhanced
by incorporating the calculated wave frequencies into its cost
function. This energy metric is employed to define the connec-
tion between the input text embedding and its corresponding
output label (either 0 or 1). Hence, our approach completely
differs from existing works that only propose a simple binary
classifier ([34, 47]) trained on the input text.

To leverage the Doppler effect, we have made certain
assumptions in our approach. Firstly, we consider the source
of the text to be either a human or ChatGPT. If the source
is a human, we assume that it is in motion with a velocity
equal to the variance observed in responses generated by
humans. Conversely, if the source is ChatGPT, we assume it is
stationary. Additionally, we assume that the observer is another
human and is moving with a constant velocity. Thus, we aim to
determine how a human observer perceives a response gener-
ated by either a human or ChatGPT. To calculate the frequency
of the source, we utilize the drumhead vibrations computed
using Bessel functions J0(αn), as described in Section II.
The reason for using drumhead vibrations is as follows: the
Doppler effect involves source waves progressing toward the
observer in concentric circles, and also, in the modeling of the
vibrations (of waves) in drumhead, circular waves propagate
in concentric circles toward the fixed outer boundary [54].
Hence, the utilization of drumhead vibrations to calculate
the source frequency is grounded in the understanding that
waves, such as sound waves, propagate in concentric paths
[2]. There are two distinct modes of vibration associated
with drumhead vibrations: circular (n) and angular (m). In
this study, we specifically concentrate on the circular mode
of vibration. This choice is based on our assumption that
the ”Doppler waves” related to both human-generated and
ChatGPT-generated content propagate in a linear fashion, or
to put it differently, we assume that the source’s waveform
moves along the line of the observer’s sight.

Firstly, we compute the unique values in an embedding
of the text (V (−→x )), and then employ the Bessel function
(J0(αn)) to determine a specific source frequency (Ef0 ), which
is then further utilized to compute Ef . This is based on the
idea that each human response vibrates at a distinct frequency.
Furthermore, we employ explainable artificial intelligence
(XAI) techniques, specifically Integrated Gradients (IG), to
generate various perturbations of the input embedding. This is
done to observe the behavior and outputs of different perturbed
inputs from the perspective of an observer. We are motivated
to understand how different perturbations of a particular input
influence the perceived nature of the response. For instance,
when a human rephrases a sentence using ChatGPT, the output
should indicate that the response is generated by ChatGPT.
However, if a human rephrases the same text multiple times,
the output should indicate that the response is generated by a
human. Thus, we aim to incorporate and integrate these effects
into our methodology. To achieve this, we compute the energy
associated with each perturbed text embedding and average it.
Then, we integrate this averaged energy with Binary Cross
Entropy (BCE) loss of the model function to have an effective
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total loss. Through optimization of this loss function, we are
able to compute distinct energies for human-generated text and
ChatGPT-generated text.

Furthermore, there are discernible distinctions between the
energy of text embeddings and their associated labels across
different classes (0 and 1) in the training process. Thus, it
establishes a threshold between these classes that helps us
determine whether the given input string is ChatGPT-generated
or human-produced. Since, in DEMASQ, we have considered
the count of perturbed embeddings (utilizing IG) that align
with the original label, this count also indicates the shift from
human-like responses to more ChatGPT-like responses the text
evolves during rephrasing.

B. DEMASQ Components Design and Implementation
Below, we present in detail the main components of our

proposed ChatGPT detector DEMASQ.

Energy-based model. We develop an energy-based model
that quantifies a function known as ”energy” to establish the
relationship between (V (−→x ), y), where V (−→x ) refers to the
input text embedding, and y refers to the output label (0 or 1).
We assign a label of 0 to the ChatGPT-generated content
and a label of 1 to the human-generated response. In our
design, we employ the Sentence Transformers library along
with the ”msmarco-distilbert-base-tas-b” model to extract the
embeddings of the input text. Subsequently, we construct a
binary classification model with an energy function comprising
the Binary Cross-Entropy loss (BCE) and a regularization
energy term, the computation of which involves employing
the Doppler effect, as explained below.

To implement the model, we employ a neural network
architecture consisting of six fully connected layers with
Rectified Linear Unit (ReLU) activations. The sizes of the
layers are set to 512, 256, 128, 64, 32, and 1, respectively.
Additionally, we utilize the Adam optimizer with a learning
rate of 0.0001 to train the model over a period of 12 epochs.
Subsequently, we define the energy function to determine
the relationship between (V (−→x ), y) using the principles of
the Doppler effect. We define the loss of EBM consisting
the BCE loss and the energy loss Ef (explained in the next
section), mentioned below:

loss = BCE + Ef (y)−min(Ef (0), Ef (1)) (4)

where Ef is the energy computed for true label, Ef (0) is the
energy computed for label 0 and Ef (1) is the energy computed
for label 1. The motivation behind incorporating the energy
term is to incentivize the model to avoid making predictions
that significantly diverge from the desired characteristics.
Specifically, this means encouraging the model to assign labels
1 to instances with high-energy values and label 0 to instances
with low-energy values.
Adapted Doppler Effect. As defined in Section II, Doppler
effect is observed whenever the source of waves is moving
with respect to an observer and is given by Equation 1.

Based on established principles, it is widely recognized that
an object’s energy can be linked to its vibrating frequency.
Thus, we utilize the frequency of the observer, which is com-
puted using the aforementioned formula, as the energy value
for our energy-based model. To obtain the respective variables
in Equation 1, we perform the following computations:

vr = 0.8

vs = y × abs(var(V (−→x )))

cv = var(V (−→x ))× FJ0(0, 1)

The reasoning for determining the above values for the veloc-
ities of the source (vs) and receiver (vr) is as follows: con-
sidering that higher (lower) frequency corresponds to greater
(lesser) energy and velocity, we establish that the frequency,
energy, and velocity are directly proportional to each other.
Frequency also indicates the rate of change of a specific value
within a given timeframe. Therefore, to compute the source’s
velocity, we consider the variation of the input string embed-
ding multiplied by its label. Thus, if the source corresponds
to a human-generated response, represented by a label of 1,
the source velocity (vs) is computed as 1×abs(var(V (−→x ))).
However, for the ChatGPT-generated response, the computed
source velocity (vs) is zero (0 × abs(var(V (−→x )))). Since
we have perceived the receiver (observer) as human, we
assume that it is moving with a constant velocity and assign
0.8 (close to label 1 assigned to human-generated content).
Generally, in the Doppler effect, the speed of the medium,
denoted as cv , is constant (either the speed of sound or the
speed of light). Hence, in this paper, we integrate a constant
of fundamental frequency FJ0

(0, 1) by multiplying it with
the variance of V (−→x ). As detailed in Section II, the zeroes
of J0(0, n) determine the shape of the drum that vibrates
with a specific frequency; thus, FJ0(0, 1) adds a constant
of fundamental frequency (fixed size, as shown in Figure
2) with which the medium vibrates and only variates with
the strength of the human factor in V (−→x ) (computed using
var(V (−→x ))). Alternatively, the medium represents a space
in which ChatGPT tries to imitate content similar to human-
generated content.

The following steps are executed to determine the source
frequency Ef0 : as the source moves closer to or farther
away from the observer, the frequencies are represented by
concentric circles, as depicted in Figure 1. Our motivation is
to determine the frequency associated with each embedding,
V (−→x ). We achieve it by calculating the vibrating circular
mode (n) used in the Bessel function. We assume each value
in V (−→x ) as the radius of a concentric circle, as shown in
Figure 4, but given that V (−→x ) can contain duplicate values,
our initial step involves computing the count of only distinct
values in V (−→x ). The reason being we do not want to consider
multiple circles with the same radius.

To simplify the computations and align the unique value’s
of V (−→x ) with Euclidean plane’s origin ((0, 0)), the following
steps are undertaken: if the highest or lowest value in V (−→x ) is
less than 0, that value is added to each value in V (−→x ). This
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Algorithm 1 Source Frequency Computation
(SourceFrequency), Ef0

1: Input: V (−→x ) having length s
2: Output: Source Frequency
3: Compute minV (−→x ) = min(V (−→x )) and maxV (−→x ) =
max(V (−→x ))

4: if minV (−→x ) < 0 then
5: for i = 1 to n do
6: V (−→x )[i] = V (−→x )[i] +minV (−→x )

7: else
8: for i = 1 to n do
9: V (−→x )[i] = V (−→x )[i]−maxV (−→x )

10: uV (−→x ) = unique values in V (−→x )
11: source frequency = computezeroes(0,len(uV (−→x )))
12: return source frequency, Ef0 .

adjustment ensures that the center of the circles is located
at (0, 0). Alternatively, if the lowest positive value is greater
than or equal to 0, it is appended to each value in V (−→x )
to achieve the same result. Consequently, the centers of the
circles (representing frequencies) are shifted to the origin.
However, this shift does not affect our methodology because
we only require the unique values of the adjusted embedding
to compute the source frequency using the Bessel function, as
explained below in the description of Algorithm 1.

Algorithm 1 and Algorithm 2 encompass all these
steps, enabling the computation and retrieval of the source
frequency, whether it pertains to a human or ChatGPT.
Algorithm 1 computes the source frequency of V (−→x ), which
is assumed to have length s. On line 3, it computes the
minimum and maximum values of the sequence, denoted as
minV (−→x ) and maxV (−→x ), respectively. Next, on lines 4, 5,
and 6, it checks if the minimum value, minV (−→x ), is less
than 0. If it is, it implies that the sequence contains negative
values. In this case, the algorithm shifts the entire sequence
by adding minV (−→x ) to each element, ensuring that the
minimum value becomes 0. Else, on line 8 and line 9, if the
minimum value is greater than or equal to 0, the algorithm
assumes there are no negative values in the sequence. In
this case, it shifts the sequence by subtracting maxV (−→x )

from each element, making the maximum value become 0.
Then, on line 10, it calculates the count of the unique values
in the updated sequence, denoted as uV (−→x ). These unique
values represent the distinct concentric circles present in
the sequence, as shown in Figure 4. On line 11, it calls a
function, computezeroes, passing 0 and the length of
uV (−→x ). The reason we pass 0, which is the angular node (m)
in Bessel functions, is because we assume that the source
(human-generated or ChatGPT-generated content) is moving
linearly towards the observer, as explained in Section II-E.
Finally, the computed source frequency (Ef0 ) is returned as
the output of the algorithm.

Drumhead vibrations. In Algorithm 2, we compute the

Algorithm 2 Compute Drumhead Frequency
(computezeroes)

1: Input: Number of diametric nodes (0), Number of
circular nodes (cn)

2: Output: Drumhead Frequency
3: Set dmax = m = 0 ▷ Number of diametric nodes to

calculate
4: Set cmax = n = cn ▷ Number of circular nodes to

calculate
5: Compute drumhead fundamental frequency: FJ0

(0, 1)

6: Drumhead frequency ← FJ0
(m,n)

FJ0
(0,1)

7: return Drumhead frequency

n = 𝒌 = number of unique 
values in [𝒗𝟏, 𝒗𝟐, … , 𝒗𝒌]

𝐕 = [𝒗𝟏, 𝒗𝟐, … , 𝒗𝒌]

𝒌

Fig. 4: The computation of the circular mode (n) to determine the
frequency with which the drumhead vibrates. We compute the count
of unique values (k) (unique concentric circles), as we have assumed
each unique value in V (−→x ) as the radius of a concentric circle.

drumhead frequency using the Drumhead vibrations for a spe-
cific mode that are computed utilizing the Bessel functions, as
given in Section II. Specifically, we use (FJ0

(0, n)/FJ0
(0, 1))

to compute the relative frequency for different zeroes of
J0(0, n) with respect to fundamental mode J0(0, 1) frequency.
First, we set the number of diametric nodes, i.e., m equal to
zero, and the number of circular nodes, i.e., n equal to the
number of unique values in V (−→x ) and pass it to the Bessel
function to compute the frequency at that particular mode
of the Bessel function. Algorithm 2 proceeds as follows: the
inputs to the algorithm are the number of diametric nodes and
the number of circular nodes. On lines 3 and 4, we set the
input parameters. The number of diametric nodes denoted as
dmax, is set to zero, and the number of circular nodes, denoted
as cmax (n), is set to the value of the input parameter cn, which
is determined as explained before. In line 5, we compute the
drumhead’s fundamental frequency. This frequency is obtained
by evaluating the Bessel function J0(0, 1). Finally, on line 6,
the drumhead frequency is calculated by dividing the value of
FJ0

(m,n) by the value of FJ0
(0, 1). The algorithm returns

the computed drumhead frequency as the output.
In summary, the algorithm takes the number of diametric

and circular nodes as input, computes the drumhead
fundamental frequency, and then calculates the drumhead
frequency based on the obtained fundamental frequency. The
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resulting drumhead frequency is returned as the output of the
algorithm.

Computing Perturbations of the embedding text. Our
second objective, as stated in Section I and Section II, is
to accurately determine whether the given text is produced
by ChatGPT, even when it undergoes multiple human ma-
nipulations to avoid detection. To achieve this, we employ
the XAI IG method to perturb the input text embedding,
as shown in Section II. We set the baseline V (−→x ′

) =
−→
0

because [51] shows inaccurate gradient attribution maps for
other baselines. Initially, we identify the top 20 most relevant
features, which are the features that contribute the most to
the output label of the input text embedding. In other words,
we identify the features that make the given content ChatGPT
or human. Subsequently, we systematically set each relevant
feature to zero, one at a time, to obtain the perturbed input.
This approach allows us to generate a perturbed input text
embedding that leverages the most significant features from
the original text embedding. Finally, we calculate the energies
(or frequencies) for each perturbed sample using Algorithm
1 and 2, average them, and utilize the aggregated energy to
optimize the loss function.

C. Detecting ChatGPT-generated content

Algorithm 3 aims to train and test an Energy-Based Model
(EBM) to distinguish between ChatGPT-generated content
and human-generated content. Below, we explain in detail
it’s inner working. It takes as input a sequence, denoted as
V (−→x ), with length s, and its corresponding true label, y,
which indicates whether the content is ChatGPT-generated
or human-generated. It also receives the number of epochs,
T , for training the model. The output of the algorithm is
the model’s prediction, which can be either 0 or 1. A pre-
diction of 0 represents ChatGPT-generated content, while a
prediction of 1 indicates human-generated content. On line
3, it enters a loop that iterates from epoch = 1 to T for
training the model. Inside this training loop, we compute the
observer’s frequency, Ef (line 8), by applying the Doppler
effect. This computation involves considering the speed of
the medium, c (line 4), which is calculated based on the
variance of the input sequence, V (−→x ). Additionally, the speed
of the source, vs (line 5), is determined by multiplying the
true label, y, with the absolute value of the variance of
V (−→x ). The speed of the receiver, vr (line 6), is set to a
fixed value of 0.8. The source frequency, Ef0 (line 7), is
obtained by using the function SourceFrequency(V (−→x ))
on the input embedding V (−→x ). The observer’s frequency,
Ef (line 8), is computed as

(
c+vr
c−vs

)
Ef0 . This calculation

considers the effects of the speeds of the medium, source,
and receiver, as well as the source frequency. For training
the EBM, on line 9, we set the loss function. The loss is
defined as a combination of two terms: binary cross-entropy
(BCE) loss and Ef (y) − min(Ef (0), Ef (1)) (Section IV-B
Energy-based model). This choice of loss function aims to
optimize the model’s performance in differentiating between

Algorithm 3 DEMASQ main working.
1: Input: −→x with length s, true label y, training epochs T
2: Output: Model output: 0 or 1. ”0” for ChatGPT-generated content

and ”1” for human-generated content
3: for epoch = 1 to T do
4: Speed of the medium, c = var(−→x )× FJ0

(0, 1)
5: Speed of the source, vs = y × abs(var(−→x ))
6: Speed of the receiver, vr = 0.8
7: Source frequency, Ef0 = SourceFrequency(−→x )
8: Observer frequency, Ef =

(
c+vr
c−vs

)
Ef0 ▷ Computing

Observer’s frequency (Ef ) using Doppler effect.
9: Set EBM loss function: loss = BCE + Ef (y)−min(Ef0 , Ef1)

▷ Training EBM Model.
10: Set Optimizer = Adam(lr: 0.0001)
11: Negative energies for ChatGPT-generated content and positive for

human-generated content ▷ Testing EBM Model.
12: Return the energy of the test query.

ChatGPT-generated and human-generated content. The Adam
optimizer [29] is selected for training the model. It is a popular
optimization algorithm widely used in machine learning. The
loop continues for the specified number of epochs, during
which the model is trained by adjusting its parameters to
minimize the defined loss function.

The algorithm assigns negative energies for ChatGPT-
generated content and positive energies for human-generated
content. This step involves calculating and assigning energies
based on the generated content. Finally on line 12, the algo-
rithm returns the energy of the test query, which represents the
model’s prediction of whether the given content is generated
by ChatGPT or a human.

In summary, the algorithm iteratively trains an EBM model
using the Doppler effect-based observer’s frequency and a
combination of BCE loss and the observer’s frequency as the
training objective. The trained model is then utilized to predict
whether a given content is ChatGPT-generated or human-
generated based on the assigned energies.

V. EXPERIMENTAL SETUP

A. Setup

Our experiments are conducted using the PyTorch [44]
framework on a server equipped with 4 NVIDIA RTX 8000
(each with 48GB memory), an AMD EPYC 7742, and 1024
GB of main memory. To evaluate the efficacy of our detector,
we utilize a benchmark dataset (Section V-B) containing
prompts from both ChatGPT and humans, covering a wide
range of domains such as Medical, Wikipedia, Open Q&A,
Reddit, Finance, arXiv, and Political (cf. Section I). In the
subsequent section, we detail the configurations of the different
datasets and the accuracy and precision metrics utilized to
evaluate the performance of our approach, DEMASQ.

B. Benchmark Dataset

Our benchmark dataset is created using a variety of datasets
spanning multiple domains, as mentioned above. To generate
the samples from ChatGPT, we made use of the queries
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gathered by Guo et al. [23] that also presented the corre-
sponding human answer, then through the use of OpenAI’s
API2 we queried the latest version of GPT-3.5 at this time
(gpt-3.5-turbo) requesting 3 different answers for each input
question. Due to the limitation of the available data and the
reported unstable behavior of ChatGPT [40], we assumed that
the API would properly perform only with English prompts,
therefore only querying for answer in this language. The
dataset comprises a total of 134,178 unique samples, with
59,214 responses generated by humans and 74,964 responses
generated by the ChatGPT model. These samples cover 25,290
distinct questions from various domains, including medicine,
open-domain, finance, politics, and rephrased ArXiv’s abstract
to cover the hybrid text case. Moreover, we expanded the
dataset by incorporating responses from popular social net-
working platforms (such as Reddit and Wikipedia Q&A),
offering a diverse range of user-generated perspectives.To
ensure that the answers generated were diverse and not simply
reworded versions of the same response, we employed the
msmarco-distilbert-base-tas-b3 sentence transformer to asses
that those responses had a low grade of sentence similarity.
Lastly, we observed that the human samples provided by
Guo et al. [23] contained artifacts and symbols, probably
due to flaws in the scraping algorithm used to obtain the
text. Similarly, in the response of ChaGPT there were also
artifacts and symbols, probably intended to implement format-
ting or symbols to its response (such as table tags or bullet
points). Therefore, we employed the sentence transformer
all-MiniLM-L6-v24 to check and remove the artifacts from
those samples.

C. Evaluation Metrics

In order to assess and compare the effectiveness of our
approach, we employed the following metrics:

• True Positive Rate (TPR): This metric represents the
tool’s sensitivity in detecting text that ChatGPT generates.
True Positive (TP ) is the total number of correctly
identified samples, while we consider False Negative
(FN ) the number of samples not classified as generated
text or incorrectly identified as human text. Therefore,
TPR = TP

TP+FN .
• True Negative Rate (TNR): This metric indicates the

tool’s specificity in detecting human-generated texts. True
Negatives (TN ) is the total number of correctly identi-
fied samples, while False Positives (FP ) is the number
of samples incorrectly classified as being produced by
ChatGPT. Therefore, TNR = TN

TN+FP .

VI. EXPERIMENTAL EVALUATIONS

Next, we empirically illustrate the effectiveness of
DEMASQ against the curated dataset and compare its efficacy
against various baseline detection mechanisms. Further, we

2https://openai.com/blog/introducing-chatgpt-and-whisper-apis
3https://huggingface.co/sentence-transformers/

msmarco-distilbert-base-tas-b
4https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

outline how energy computation varies for the human and
the ChatGPT-generated responses. Finally, we demonstrate
the robustness of DEMASQ against the rephrasing techniques
and transferability of DEMASQ to other domains, i.e., fields
different from the ones that our model is trained on.

A. Baseline Approaches

In our evaluation, we assessed various tools and algorithms
that have been proposed so far to determine their effectiveness
in detecting ChatGPT-generated content, as summarized in
Table I. This table provides an overview of these tools’
detection capabilities, specifically in terms of true positive
rate (TPR) and true negative rate (TNR), when applied to
ChatGPT-generated text. We considered several attributes of
the tools mentioned in the literature for detecting ChatGPT-
generated content, including the year of release, availability
(public or private), and price (free or paid). Our analysis
revealed that none of the evaluated approaches consistently
achieved high detection rates for ChatGPT-generated text.
The most effective online tool we examined demonstrated
a success rate of less than 50%, as depicted in Table I.
Notably, the maximum accuracy achieved by the detector
was around 47%. In addition, recently the authors of [34]
propose a ChatGPT-detector, CheckGPT, tailored specifically
for academic abstracts of research papers, achieving in this
domain an accuracy of 98% to 99%. Nevertheless, their
detector’s performance significantly declined, as we evaluated
it against our benchmark dataset. Thus, it demonstrates the
limited effectiveness of their approach, with accuracy ranging
from 2.1% to 13.3%, as further detailed in Section VI-D.

We believe that our dataset serves as a reliable benchmark
to evaluate their approach since it contains 134,178 diverse
and balanced samples, it effectively measures the similarity be-
tween human and ChatGPT responses, and leverages responses
from various domains and social networks. As a result, we
regard all the examined detectors as baselines for our study.
In contrast, our proposed approach, DEMASQ, substantially
surpasses existing detection methods, achieving an accuracy
ranging from 74.5% to 96%.

B. Discipline-Specific detection

This section illustrates our detection approach against dif-
ferent sub-discipline datasets that constitute our benchmark
dataset. Sub-disciplines dataset includes samples from differ-
ent domains such as Medical, Wikipedia, Open Q&A, Reddit,
Finance, arXiv, and Political. For each of these sub-datasets,
we individually train our EBM (described in Section IV) and
analyze the energy spread for the human-generated responses
and ChatGPT-generated responses. Table II details our training
and inference results. Since we train various EBM models for
individual datasets, we generate unique detectors for diverse
fields using the same foundational EBM. Thus, our work
provides a generic detector that can be deployed in any field
to detect whether the text is ChatGPT or human-generated.

Table II provides an overview of the performance of dif-
ferent sub-datasets in the conducted experiments. For each
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TABLE I: Summary of analyzed papers. TPR represents the detection capability of ChatGPT-generated text, while TNR reflects the detection
capability of Human-generated text.

Approach
Published

in
Publicly
Available

Free/Paid TPR (%) TNR (%)

Bleumink et al. [8] 2023 ✓ Paid 13.4 95.4
ZeroGPT [60] 2023 ✓ Paid 45.7 92.2
OpenAI Classifier [39] 2023 ✓ Free 31.9 91.8
GPTZero [43] 2023 ✓ Paid 27.3 93.5
Hugging Face [18] 2023 ✓ Free 10.7 62.9
Guo et al. [23] 2023 ✓ Free 47.3 98.0
Perplexity (PPL) [22] 2023 ✓ Free 44.4 98.3
Writefull GPT [55] 2023 ✓ Paid 21.6 99.3
Copyleaks [14] 2023 ✓ Paid 22.9 92.1
Cotton et al. [12] 2023 × - - -
Khalil et al. [28] 2023 × - - -
Mitrovic et al. [37] 2023 × - - -
Content at Scale [4] 2022 ✓ Paid 38.4 79.8
Orignality.ai [41] 2022 × Paid 7.6 95.0
Writer AI Detector [56] 2022 ✓ Paid 6.9 94.5
Draft and Goal [17] 2022 ✓ Free 23.7 91.1
Gao et al. [20] 2022 × - - -
Liu et al. [34] (Detector 1 - Task1) 2023 ✓ Free 2.1 98.8
Liu et al. [34] (Detector 2 - Task2) 2023 ✓ Free 13.3 99.4
Liu et al. [34] (Detector 3 - Task3) 2023 ✓ Free 6.6 98.7

specific dataset, we mention the number of samples in it, the
True Positive Rate (TPR), and the True Negative Rate (TNR).
Next, we examine the findings of these specific datasets to
illustrate the insights obtained. The Medical dataset comprises
4,992 records, achieving a TPR of 96.8% and a TNR of
96.4%. It indicates that the model trained on the Medical
dataset exhibits an efficacy of 96.8% in correctly identifying
ChatGPT-generated responses and 96.4% in correctly iden-
tifying human-generated responses. Similarly, the Financial
dataset, consisting of 15,732 records, demonstrates a TPR of
93.6% and a TNR of 93.7%. With 3,368 records, the Wiki
dataset achieves a TPR of 84.2% and a TNR of 83.2%. The
Open Q&A dataset, encompassing 4,748 records, shows a
TPR of 74.5% and a TNR of 73.0%. Among the examined
datasets, the Reddit dataset stands out with 99,054 records
and perfect scores of 100% for both TPR and TNR. This
analysis implies that the model trained on the Reddit dataset
accurately identifies ChatGPT-generated and human-generated
content. Furthermore, the Political dataset, consisting of 3,620
records, demonstrates a TPR of 92% and a TNR of 91.5%.
The arXiv dataset, comprising 2,664 records, shows a TPR
of 90% and a TNR of 89.5%. Finally, the Combined dataset,
consisting of 134,178 records, achieves a TPR of 97% and a
TNR of 96.5%. Overall, each dataset exhibits varying levels
of accuracy, as reflected in their respective TPR and TNR
values. These results shed light on the models’ performance on
different datasets, allowing for a comparative analysis of their
ability to accurately identify ChatGPT-generated and human-
generated responses.

Further, as detailed in Table III, we trained and tested
our model using the academic abstract datasets provided by
Liu et al. [34] named Task1, Task2, and Task3. In their
research [34], the authors developed CheckGPT, a detector for
LLM-generated content, specifically designed to determine if
academic abstracts in computer science (CS), physics (PHX),
and humanitarian and social sciences (HSS) were authored
by ChatGPT or not. Liu et al. [34] broke down the analysis
of CheckGPT into three tasks: 1) Full abstracts written by
GPT model, 2) Abstracts partially completed by GPT model,
and 3) Abstracts polished by GPT model. For Task1, the
researchers presented ChatGPT with a title and asked it to
generate a corresponding abstract. For Task2, they supplied
ChatGPT with the first half of an abstract and requested
ChatGPT to complete the it. For Task3, the researchers gave
ChatGPT a complete abstract to rephrase. We use the CS-
TASK datasets that the authors made available and evaluated
DEMASQ against all these tasks. Our DEMASQ EBM was
retrained on Task1, Task2, and Task3 datasets, demonstrating
accuracies of 96.4% for Task1, 88.7% for Task2, and 82.5%
for Task3.

C. Energy distribution of human-written response and
ChatGPT-generated content

We explore the differences in energy computation between
human-generated responses and responses generated by Chat-
GPT. We visually represent the energy distribution for each
dataset and highlight the significant variations in energy values
between human and ChatGPT-generated answers. By examin-
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Fig. 5: Different energy levels for different datasets. (a), (c), (e), (g), (i), (k), (m), and (o) represent the energy histogram plots for the
Medical, Reddit, Political, Open Q&A, Wiki, Finance, ArXiv, and the combined dataset. (b), (d), (f), (h), (j), (l), (n), and (p) represent the
confusion matrix for the same.

TABLE II: Statistical results of sub-datasets in the experiments.

Dataset Records TPR (%) TNR(%)
Medical 4,992 96.6 96.4
Financial 15,732 94.6 92.7

Wiki 3,368 78.5 85.8
Open Q&A 4,748 73.9 75.4

Reddit 99,054 100.0 100.0
Political 3,620 95.2 87.7

arXiv 2,664 87.1 91.7
Combined 134,178 97.0 96.5

TABLE III: Statistical results of the DEMASQ in other domains.

Dataset Records TPR (%) TNR(%)
Task1 100000 94.7 97.9
Task2 100000 88.7 88.4
Task3 100000 84.3 81.0

ing the energy plots for each dataset, as depicted in Figure 5,
we can clearly observe distinct disparities in energy levels be-
tween human-generated text and ChatGPT-generated content.
These plots specifically represent the perturbed energies of in-
dividual samples within the test set of each dataset. Figures 5a,
5c, 5e, 5g, 5i, 5k, 5m, and 5o illustrate the energy distribution

for human-generated content and ChatGPT-generated content,
showcasing two distinct levels. The lower values, which are
highly negative, correspond to label 0 (ChatGPT-generated
content), while the larger values belong to label 1 (human-
generated content). Therefore, by analyzing the energy values,
it becomes relatively easy to differentiate between human-
generated and ChatGPT-generated content. Figures 5b, 5d, 5f,
5h, 5j, 5l, 5n, and 5p represents the energy distribution of
human- and ChatGPT-generated content in relation to the EBM
prediction. It is important to highlight that misclassifications
were observed for certain samples across different datasets,
which introduces the possibility of reverse perturbed energies
for both label options (0 or 1). Consequently, confusion
matrices for both label 0 and label 1, with distinct true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN), are depicted in Figures 5b, 5f, 5h, 5j, 5l,
5n, and 5p. However, for the reddit dataset, the EBM achieved
a testing accuracy of 100%, as evidenced by Figure 5c, where
both true positive rate (TPR) and true negative rate (TNR) are
equal to 100%.
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TABLE IV: Rephrasing statistical results for CheckGPT.

Dataset #Records TPR (%) TNR (%)
Task1 100,000 82.7 99.7
Task2 100,000 56.3 96.1
Task3 100,000 3.8 99.0

D. Rephrasing detection

In the following, we evaluate the effectiveness of our ap-
proach, DEMASQ, by comparing it to the rephrasing of content
generated by ChatGPT. As mentioned earlier, our benchmark
dataset has been carefully curated to encompass various do-
mains, and DEMASQ demonstrates remarkable performance
on it. However, to evaluate the effectiveness of DEMASQ in
a domain that differs from those covered in our dataset, we
utilize the Task1, Task2, and Task3 datasets referenced in the
research conducted by Liu et al. [34]. We observe that in
these datasets the ChatGPT prompts predominantly begin with
phrases like ”In this work,” ”In this paper,” or ”This paper,”
which would highly introduce bias into the training of naive
classifier. Therefore, we will discuss that the detector proposed
by Liu et al. does not accurately function as demonstrated in
their research, as we will showcase in the upcoming analysis.
Consequently, in this study, we rephrase the samples of Task1,
Task2, and Task3 that contains these specific wordings and
evaluate the EBM model trained on these updated datasets,
respectively, as shown in Section VI-B.

The effectiveness of CheckGPT [34] was examined by
testing it against the rephrased datasets of Task1, Task2, and
Task3, and the results are summarized in Table IV. The accu-
racy of CheckGPT decreased progressively as we evaluated it
on the rephrased datasets. Specifically, for rephrased Task1,
CheckGPT achieved an accuracy of 82.72%, for rephrased
Task2, it obtained an accuracy of 56.35%, and for rephrased
Task3, it achieved an accuracy of 3.76%. These results indicate
that CheckGPT does not deliver the expected performance
when tasked with detecting the rephrased versions of academic
abstracts. This discrepancy arises because CheckGPT was
originally designed to identify academic abstracts in their orig-
inal form, thus, introducing bias for the CheckGPT detection.
It is worth noting that the authors in [34] developed distinct
detectors for different tasks, training each task on sepa-
rate models. In contrast, our approach involved testing the
rephrased Task1, Task2, and Task3 against the EBM model
trained on our combined benchmark dataset, to understand and
measure how DEMASQ behaves when presented with never
seen before samples. The accuracy achieved for rephrased
Task1 was 76.9%, for rephrased Task2 it was 68.7%, and for
rephrased Task3 it was 58.3%, as shown in Table V. However,
when we trained separate EBMs for each original task and
tested them on the rephrased versions, the true positive rates
(TPR) obtained were 93% for rephrased Task1, 83.4% for
rephrased Task2, and 75.4% for rephrased Task3, as shown in
Table VI. Thus, in comparison to CheckGPT’s experimental
evaluation results of 82.72% for rephrased Task1, 56.35% for
rephrased Task2, and 3.76% for rephrased Task3 (Table IV),

TABLE V: Statistical results for DEMASQ in other domains.

Dataset # Records TNR (%) TPR (%)
Task1 100,000 76.9 76.6
Task2 100,000 68.7 68.4
Task3 100,000 58.3 58.9

TABLE VI: Rephrasing statistical results for DEMASQ

Dataset #Records TPR (%) TNR (%)
Task1 100,000 93.0 94.1
Task2 100,000 83.4 84.5
Task3 100,000 74.9 75.1

our proposed approach, DEMASQ, outperforms CheckGPT by
a significant margin.

Therefore, when we compare DEMASQ and CheckGPT [34]
under the same realistic settings, DEMASQ outperforms other
detectors for the case of hybrid text, even if notably the
accuracy is not as high as in our benchmark dataset.

VII. RELATED WORKS

In general, automated machine learning techniques for iden-
tifying synthetic texts can be categorized into three primary
groups: i) Basic classifiers [23], [50], ii) Zero-shot detection
approaches [31], [36], [59], and iii) Detection methods based
on fine-tuning [37].
Basic classifiers. The first category, simple classifiers, includes
various detection techniques. For instance, OpenAI’s logistic
regression model [50] was trained on TF-IDF, unigram, and
bigram features and specifically analyzed text generated by
GPT-2. Through exploration of different generation strategies
and model parameters, it was discovered that these classi-
fiers can achieve accuracy levels of up to 97%. However,
detecting shorter outputs proves more challenging for these
models compared to longer ones. Another simple classifier
proposed by Guo et al. [23] analyzed linguistic and stylistic
characteristics of responses from ChatGPT and human experts.
Unfortunately, these detection models were ineffective in iden-
tifying ChatGPT-generated text due to the imbalanced nature
of the dataset they were trained on, failing to capture all of
ChatGPT’s text generation styles [42]. In a separate study,
Kushnareva et al. [31] trained a logistic regression model
using Topological Data Analysis (TDA) to extract interpretable
topological features, such as the number of connected compo-
nents, edges, and cycles in the graph, for recognizing artificial
text. However, this approach is unlikely to be effective for
ChatGPT as it was not specifically tested on that particular
model, but instead was conducted on datasets from WebText
& GPT-2, Amazon Reviews & GPT-2, RealNews & GROVER
(FakeNews) [59]. Furthermore, prior work [42] tested the
authors [31] designed model and got an accuracy of 25.1%.
Zero-shot detection. Zero-shot detection techniques also in-
cludes a variety of approaches for identifying AI-generated
text. For instance, Mitchell et al. [36] introduced a method
that leverages the log probabilities of the generative model to
detect AI-generated text. However, this approach is primarily
tailored to GPT-2 prompts and our evaluation indicates that it
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does not generalize well to GPT-3 models. In another study,
the authors in [59] utilized a transformer similar to the one
employed in GPT-2 to create a tool called Grover. Grover
is capable of generating text such as fake news and is also
able to detect its own generated text. The study demonstrated
the effectiveness of Grover in verifying self-generated fake
news. Nevertheless, it remains uncertain how well Grover
would perform on text generated by other GPT models.
Additionally, OpenAI [50] developed a GPT-2 detector using
a 1.5 billion parameter model that can accurately identify the
top 40 generated outputs with an accuracy ranging from 83%
to 85%. However, when fine-tuned on the Amazon reviews
dataset, the accuracy dropped to 76%.
Fine-tuned detection. In the case of fine-tuning based de-
tection mechanism, Mitrović et al. [37] conducted a study
exploring the training of a machine learning model that
distinguishes ChatGPT-generated two-line restaurant reviews
generated from real human-written reviews. They employed
a framework based on DistilBERT, which is a lightweight
model based on BERT. In another investigation, Solaiman
et al. [50] performed experiments to fine-tune pre-trained
language models for the detection of AI-generated texts. They
utilized RoBERTaBASE and RoBERTaLARGE as the basis
for their classifiers. However, it is important to note that
this approach failed to detect text generated by ChatGPT, as
illustrated in [46]. As a result, all the aforementioned detection
methods are either exclusively applicable to prompts generated
by the GPT-2 model or tailored for specific tasks.
Other methods. Alternative methods exist outside the three
main categories of detection approaches that deserve atten-
tion. These methods involve testing ChatGPT-generated text
against plagiarism tools, developing Deep Neural Network-
based detection tools, employing sampling-based approaches,
and utilizing various online detection tools. Existing tools such
as RoBERTa, Grover, and GPT-2 have been used to assess
the originality of educational content compared to ChatGPT-
generated text. For instance, a study evaluated the effectiveness
of popular plagiarism-detection tools, iThenticate and Turnitin,
in identifying plagiarism in 50 essays generated by ChatGPT
[28]. Another study by Gao et al. [20] aimed to compare
ChatGPT-generated academic paper abstracts using a GPT-2
Output Detector RoBERTa, a plagiarism checker, and human
review. The authors collected ten research abstracts from
five high-impact medical journals and then used ChatGPT to
output research abstracts based on their titles and journals.
In a different study, Liu et al.[34] developed a tool called
CheckGPT, which is a content detector for LLMs aimed at
determining whether academic abstracts in the fields of com-
puter science (CS), physics, humanities ,and social sciences
(HSS) were generated by ChatGPT. The authors achieved a
detection accuracy ranging from 98% to 99% for identifying
ChatGPT-generated academic abstracts. Yet, as discussed in
Section VI, when their CS Task1, Task2, and Task3 datasets
underwent paraphrasing to eliminate potential biases stemming
from phrases like ”In this work,” ”In this paper,” or ”This
paper,” CheckGPT showed reduced true positive rates (TPR).

Nonetheless, prior research [42] has revealed the short-
comings of the discussed detection methods in accurately
identifying text generated by ChatGPT. Additionally, in the
same study, the authors evaluated multiple online tools [41],
[4], [14], [18], [22], [39], [43], [55], [60], but the most
effective tool for detecting generated text was found to have
a success rate of less than 50%.

In contrast, we propose a detection tool that significantly
distinguishes itself from previous methodologies by incorpo-
rating the characteristics of human speech and the thought
process involved in communication with both humans and ma-
chines. Consequently, our approach outperforms other existing
methods in detecting ChatGPT-generated text.

VIII. CONCLUSION

We propose the design and implementation of a novel
detection tool named DEMASQ, which accurately determines
the source of a given text by effectively differentiating between
responses generated by the ChatGPT and those generated by
humans. Unlike existing detection methods that focus solely
on prompts generated by specific GPT models or serve specific
purposes within certain fields (often yielding low accuracy),
our approach is versatile and can successfully distinguish any
text produced by other AI tools, especially ChatGPT, from
human-generated text. By leveraging the intricate dynamics of
human-to-human and human-to-machine communication, we
incorporate the Doppler effect technique into our detection
mechanism to account for inherent biases. Additionally, we
address ChatGPT’s rephrasing techniques by employing the
explainable AI Integrated Gradients (IG) method. By integrat-
ing all these components, we construct an energy-based model
that significantly enhances the detector’s ability to accurately
differentiate between responses generated by humans and
ChatGPT. DEMASQ significantly outperforms the existing
ChatGPT detectors. Our approach goes beyond the limitations
of existing methods, offering a more comprehensive and
effective solution for source identification in the ever-evolving
landscape of AI-generated text. Our extensive evaluations of
DEMASQ on the proposed benchmark dataset demonstrate
that DEMASQ significantly outperforms the existing ChatGPT
detectors. Our approach goes beyond the limitations of existing
methods, offering a more comprehensive and effective solution
for source identification in the ever-evolving landscape of AI-
generated text.
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APPENDIX

A. Large Language Models (LLMs)

Large Language Models represent sophisticated artificial in-
telligence systems specifically developed to comprehend and
generate text that closely resembles human language. These
models undergo extensive training on vast datasets, incorpo-
rating diverse sources such as books, articles, websites, and
more. This training equips LLMs with the ability to generate
coherent and contextually appropriate responses. Some notable
examples of LLMs include: GPT-3 (Generative Pre-trained
Transformer 3), GPT-2 (Generative Pre-trained Transformer
2), Transformer-XL, BERT (Bidirectional Encoder Represen-
tations from Transformers), and ChatGPT. The aforementioned
models are merely a few examples of LLMs, as there exist
numerous other variations and models crafted by different
organizations and researchers. Each of these models possesses
unique strengths and specializes in specific areas, contributing
to the diverse landscape of LLM development.

B. Drumhead vibrations

When the head of a drum is struck, it changes shape and
compresses the air inside the shell. This compressed air then
exerts pressure on the bottom head, causing it to change
shape. These shape changes are transmitted to the drum shell,
resulting in reflections and a repeated cycle that generates
vibrations. The top and bottom head vibrations propagate
into the surrounding air, becoming audible. As the vibrations
of the drum heads gradually dampen, the sound diminishes.
The behavior of an idealized drumhead can be understood
by examining the vibrations of a two-dimensional elastic
membrane under tension [47] [27]. This membrane, which

can be modeled as a circular surface with uniform thickness
connected to a rigid frame, exhibits fascinating properties. The
membrane can store vibrational energy at specific resonant
frequencies through the resonance phenomenon. The surface
of the membrane moves in distinct patterns characterized by
standing waves, referred to as normal modes. The lowest
frequency normal mode is called the fundamental mode, and
the membrane possesses an infinite number of these normal
modes.
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