
Private Aggregate Queries to
Untrusted Databases

Syed Mahbub Hafiz§†

University of California, Davis
Indiana University, Bloomington

shafiz@{ucdavis.edu, indiana.edu}

Chitrabhanu Gupta†, Warren Wnuck, Brijesh Vora, and Chen-Nee Chuah
Department of Electrical and Computer Engineering

University of California, Davis, CA, USA
{cbgupta, wrwnuck, bhvora, chuah}@ucdavis.edu

Abstract—An essential part of ensuring privacy for internet
service users is to protect what data they access so that the database
host cannot infer sensitive information (e.g., political affiliation,
sexual orientation, etc.) from the query pattern to exploit it or
share it with third parties. Often, database users submit aggregate
queries (e.g., SUM, MEAN, etc.) with searching and filtering
constraints to extract statistically meaningful information from
a database by seeking the privacy of its query’s sensitive values
and database interactions. Private information retrieval (PIR), a
privacy-preserving cryptographic tool, solves a simplified version
of this problem by hiding the database item that a client accesses.
Most PIR protocols require the client to know the exact row
index of the intended database item, which cannot support the
complicated aggregation-based statistical query in a similar setting.
Some works in the PIR space contain keyword searching and
SQL-like queries, but most need multiple interactions between
the PIR client and PIR servers. Some schemes support searching
SQL-like expressive queries in a single round but fail to enable
aggregate queries. These schemes are the main focus of this
paper. To bridge the gap, we have built a general-purpose novel
information-theoretic PIR (IT-PIR) framework that permits a
user to fetch the aggregated result, hiding all sensitive sections
of the complex query from the hosting PIR server in a single
round of interaction. In other words, the server will not know
which records contribute to the aggregation. We then evaluate the
feasibility of our protocol for both benchmarking and real-world
application settings. For instance, in a complex aggregate query
to the Twitter microblogging database of 1 million tweets, our
protocol takes 0.014 seconds for a PIR server to generate the
result when the user is interested in one of ∼3𝑘 user handles.
In contrast, for a much-simplified task, not an aggregate but a
positional query, Goldberg’s regular IT-PIR (Oakland 2007) takes
1.13 seconds. For all possible user handles, 300𝑘 , it takes equal
time compared to the regular IT-PIR. This example shows that
complicated aggregate queries through our framework do not
incur additional overhead if not less, compared to the conventional
query.

Keywords—Private aggregate queries, Private information re-
trieval, Privacy-enhancing technology, Cryptography

§ This author worked on the theoretical and practical aspects of this project
when he was affiliated with IU Bloomington and UC Davis, respectively.
†Co-first author.

I. INTRODUCTION

With the progressive digitization of information, concerns
about how applications and software services keep one’s infor-
mation private keep increasing. Companies utilize their users’
information for their gain, while employees within companies
are capable of obtaining data for malicious activities [1], [2].
As the breach of users’ privacy in digital space becomes more
rampant, the need for privacy-enhancing technologies becomes
more pressing. We specifically address the situation where a
user wishes to retrieve information from an untrusted database
without revealing to the database what specific information they
wish to obtain. Private information retrieval (PIR) [3]–[6] is a
cryptographic technique that solves this problem. However,
while numerous privacy-enhancing technologies, including
various PIR protocols, have been conceived over the past two
decades to address this problem, the vast majority of them
are not viable for facilitating a comprehensive set of statistical
queries that might be required for performing data analytics
on sensitive databases. A primary reason for this is that most
protocols cannot support commonly used aggregate queries with
a provable privacy guarantee. We develop a novel framework
for information-theoretic private information retrieval protocols
– that utilizes the concept of introducing sparse matrix-like
auxiliary data structures similar to Hafiz-Henry’s Querying
for Queries work [7] to support various aggregate queries
frequently used in data analytics workflows. Unlike the vast
majority of existing protocols, our scheme does not require
physical positional information to fetch aggregated results from
a database, and it just requires contextual information about
the data to fetch the required blocks of data.

There are various practical applications of a protocol that
can allow users to privately fetch data from untrusted databases
and perform statistical queries on the same for data analysis.
Some sample events for private information retrieval with
aggregate queries include the following:

Event 1: Social Networking Platforms: Social network
platform databases are often used for various kinds of data
analyses and thus often respond to various aggregate queries.
However, untrusted social media platform databases can po-
tentially learn substantial information about a user querying
the database. A typical example of this would be identifying
a user’s political affiliation or interests by observing their
queries. A user might be interested in the total number of
positive reactions to social media posts made by a politician
in interest, in which case they would send a SQL query to
the database of the form: SELECT SUM(number_of_likes)

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.241211
www.ndss-symposium.org

FROM user_posts WHERE user_id =‘Joe Biden.’

A user might also be curious about the social media
presence of various politicians and construct a histogram
of the number of social media posts made by politicians
from a specific party. The equivalent SQL query would be:
SELECT COUNT(*) FROM user_posts WHERE party =
‘Democratic’ GROUP BY user_id. Privatizing these queries
would prevent social media databases from identifying personal
information about users through their search interests.

Event 2: Booking Flights: When browsing flight options for
travel, users of a travel website or app are often likely to query
for round-trip ticket prices. Additionally, some travel itineraries
might also require multi-city flights with layovers, in which
case the prices of all connecting flights are aggregated. These
would require a query such as SELECT SUM(price) FROM
flights WHERE flight_id in (‘1003’, ‘2319’) A private version
of this sum query would prevent the database owner from
gaining information about the user’s travel plans and increasing
flight prices on successive searches, and would also protect the
user from targeted advertising.

Event 3: Stock Market Data: Databases containing infor-
mation about stocks and the fluctuations of their values might
be queried by several users interested in stock market trends.
Users might be curious about the maximum daily fluctuation
of a stock’s value or mean fluctuation of a stock’s value
across a fixed period. The queries would be of the form:
SELECT MAX(daily_value_change), stock_id FROM stocks
WHERE month = ‘June’ GROUP BY stock_id, or SELECT
AVG(daily_value_change) FROM stocks WHERE month =
‘June.’

The database owner that can track user queries would be
able to observe a spike in interest toward a specific stock if
many users execute the above queries over a short period and
could misuse that information. Thus, such databases should
ideally have PIR systems implemented.

The applications of our protocol discussed thus far all have
the common assumption that the database is hosted within the
infrastructure of the organization that owns the database. The
discussions all focus on the various ways in which the entities
that own the databases can potentially exploit the knowledge of
the details of user queries. However, due to the volume of data
organizations possess, it is common practice to outsource the
databases in cloud infrastructures that are provided by third-
party organizations. In such scenarios, even if the database
owner does not intend to observe (and essentially abuse) user
queries, the cloud service provider hosting the database might
turn out to be malicious and be interested in learning the details
of queries made to the databases. They could potentially monitor
user queries and compile adequate information about users for
targeted advertising or sell the compiled information to other
organizations without the consent of the users. Our protocol
could be implemented on the cloud infrastructure providers’
servers to prevent misuse of user information and breach of
privacy.

A large number of the existing protocols for querying
databases are not capable of performing keyword-based ex-
pressive queries. Even for the ones that do, they do not support
aggregate queries. Furthermore, existing protocols capable of
performing private aggregate queries are either limited by their

complexity, such as in terms of the number of times a database
is accessed for a single query, or the variety of aggregations they
can support [8]–[12]. Thus, while performing data analytics,
if a user wishes to not reveal any information about their
queries, they face many levels of challenges, where only a few
existing protocols can be successfully implemented to support
keyword-based queries that are intuitive parallels of commonly
used SQL queries. A data analyst may desire to have access
to a full spectrum of tools and statistics required to develop
data analytics pipelines without revealing any information to
the database owner. Our key contributions are summarized as
follows:

1) We propose a framework that enables users to submit
aggregate statistical queries on untrusted databases pri-
vately with a provable security guarantee, i.e., with PIR
guarantees.

2) To build the novel framework, we introduce a new kind of
standard aggregate vector, unlike the basis vector known
in the PIR literature. We propose the standard aggregate
vectors that contain multiple ones instead of a single one
to allow component-wise aggregation.

3) The door of various possibilities is opened when we
construct and batch auxiliary indexes of standard aggregate
queries-based matrices utilizing querying for queries and
polynomial batch coding techniques, respectively. This
empowers the conflux of aggregation with searching,
sorting, ranking, and various expressive queries.

4) Having parallelizable computations, the GPU implemen-
tation of extra computations demonstrates remarkable
benchmarking results.

5) Additionally, we demonstrate through compelling case
studies the practicality of implementing our protocol
in real-world applications. We demonstrate that we can
perform an aggregate query on a database with a million
records and around 3,000 search terms in just 0.014
seconds. We have an implementation that can be scaled
to enable aggregate queries to a database with 16 million
records and by 65 thousand search terms, while the PIR
server can serve up to 4 thousand PIR clients per second.

6) Our artifact has been thoroughly evaluated and acquired
‘available,’ ‘functional,’ and ‘reproduced’ badges. It is
under an open-source license and available at https://doi.
org/10.5281/zenodo.10225325 [13] and https://github.com/
smhafiz/private_queries_it_pir/tree/v1.0.0.

II. THREAT MODEL

We assume a threat model where the data provider is not
trusted, which implies that the data provider can observe all
queries run on their database by any user, the computations
taking place on the server, and which database rows are scanned
and which are left untouched. This applies to all the servers
involved in the protocol which host the database. The users
are any individual with access to the database for querying
and fetching data from it. Under this assumption, we require
the database provider not to be able to learn any contextual
information about the queries that a user wishes to run on the
database. Our protocol aims to mitigate passive activities such
as eavesdropping. The user needs to know minimal information
about the database, the number of rows in the permutation
matrix data structures discussed in more detail in the later
sections, and a keyword for the query is sufficient for privately
retrieving the information from the database that the user

2

https://doi.org/10.5281/zenodo.10225325
https://doi.org/10.5281/zenodo.10225325
https://github.com/smhafiz/private_queries_it_pir/tree/v1.0.0
https://github.com/smhafiz/private_queries_it_pir/tree/v1.0.0

desires. Another assumption for our threat model is that only a
certain threshold (t) number of PIR servers may collude, with
information about the user’s query becoming revealed upon
collusion of several servers greater than the specified threshold,
t . However, it is possible to tune this threshold as desired
during the implementation of the protocol. Note that all further
mentions of a database being untrusted would conform with the
definition of untrusted provided at the beginning of this section.
Additional details about expanding our model to a v -Byzantine
robust model can be found in Section VI-C.

Fig. 1: Schematic diagram of the proposed indexes of aggregate
queries-powered IT-PIR protocol: In order to demonstrate how
our key protocol works, we highlight the example of a query
to a hypothetical flight records database for finding the sum
of ticket prices of connecting flights. To serve this query, the
query vector is first created by the client and then Shamir’s
Secret Sharing algorithm is used to generate a secret share
vector for each of the servers. Each secret share vector is sent
to a server, where they are multiplied with the relevant index
of aggregate queries matrix, where each row corresponds to a
different flight id. The resultant vector is then multiplied with
the copy of the flight records database matrix on that server
and the product is returned to the client. Each of these server
responses are then used to reconstruct the aggregated response
using the Lagrange polynomial interpolation.

III. BACKGROUND

Privacy-enhancing technologies (PETs) [14]–[16] allow
people to control the distribution and usage of information about
them. PETs typically utilize cryptographic techniques with
specific security properties that lead to their privacy guarantees.
These cryptographic primitives’ security properties stem from
fundamental conjectures of information theory or computation
complexity. PETs utilizing computational complexity assume
that it is computationally infeasible for an adversary to obtain
sensitive information by observation or participation. Still,
malicious parties with unlimited computation resources can
break this system. On the other hand, adversaries do not
threaten information-theoretic PIR (IT-PIR) protocols with
infinite computation resources. However, they come with other
assumptions, e.g., a widespread one relevant to our work is
that out of all the parties participating in the protocol, only
a certain number of them (up to a specific threshold number,
t) may collude. This assumption is observed in various kinds
of protocols, such as secret sharing [17], [18], onion routing

networks [19], mix networks [20], and cryptographic voting
[21], [22].

Multi-server IT-PIR is quite efficient compared to coun-
terparts such as computational assumption-based single-server
PIR, which suffers heavy computational overhead for (homo-
morphic) encryption. A naive single-server PIR involves the
client downloading the entire database to retrieve the desired
record and is thus infeasible for practical implementation. An
improvement in the performance and feasibility of deployment
for single server PIR schemes have been observed with the
introduction of the offline-online PIRs, where during the offline
phase, some information about the database is precomputed and
exchanged to optimize the server’s processing time during the
online phase. However, even the most performant single-server
PIR schemes [23], [24] suffer from high query processing
times and, thus, are overall less efficient than multi-server
schemes.

Although more efficient, successful practical implementation
of multi-server IT-PIR schemes requires a non-collusion guaran-
tee between the servers, as stated earlier. Some works explicate
how non-collusion assumptions in cryptographic protocols such
as PIR and secure multi-party computation are deployable
in practice [25]–[27]. These works offer collusion mitigation
strategies for collusions that do not occur via unknown side-
channels external to the protocols. They propose modeling
collusion as games and design retaliation mechanisms that
result in the most viable stable strategies for the game to not
involve collusion, thus leading to the adoption of these strategies
within the protocols.

IT-PIR assumes that the database host is untrusted; thus, a
user’s query must not indicate the requested data. The trivial
solution to this problem entails sharing the entire database with
the user so that they may obtain their desired rows of data
locally. However, as discussed, this is obviously not practical
because databases can be quite large. So we instead explore
protocols with total communication costs less than (sublinear
to) the database size, as stated in [6], as the non-triviality
property of any practical PIR protocols.

The roots of our proposed protocol can be traced back to
Chor et al.’s multi-server IT-PIR protocol [3] based on the
idea of sharing queries among multiple non-colluding database
servers. The protocol models the database as a string of bits out
of which a user fetches a specific bit while keeping the index
of the fetched bit private and is further extended in Goldberg’s
robust IT-PIR protocol [28], which models the database as a
set of 𝑏-bit blocks and allows a user to fetch multiple such
blocks obliviously. This emulates a more realistic scenario and
led to the development of protocols that facilitate querying
variable-length records [29].

A. Vector-Matrix PIR Model
Our protocol is built around the commonly used vector-

matrix model for PIR [28], and we model our database D as
an r × s matrix, D ∈ Fr ×s , where r corresponds to the number
of data blocks. Each data block has s words, D⃗𝑖 ∈ Fs , and
each word w is a finite field element from F. To fetch the
𝑖 th block of data, D⃗𝑖, a user encodes an r -dimensional query
vector, 𝑒𝑖 ∈ Fr , with a 1 in the 𝑖 th position and 0s at every
other index. Per linear algebra, the product of this query vector
with the database matrix, 𝑒𝑖 ·D ∈ Fs , produces the desired 𝑖 th

3

data block, D⃗𝑖. These requests are positional queries because
they require a user to know the physical location of the blocks
of data in the database, but having to possess knowledge of
row numbers for every block in the matrix can be a major
inconvenience for both the user and the service provider. This
procedure is not private and thus requires strategic modification
to make it private. As mentioned earlier, we opt to use linear
secret sharing to overcome this problem, where the user shares
their query vector component-wise across ℓ number of servers,
the share vectors are multiplied with copies of the database
matrix hosted in each server, and the user receives independent
products from each of the servers. The user then performs
a component-wise secret reconstruction using the responses
received from the servers to obtain the desired block of data.
Following in the footsteps of [7], we select Shamir’s secret
sharing scheme [17] as proposed in Goldberg’s IT-PIR protocol
[28] as our choice of linear secret sharing scheme. Shamir’s
(t +1, ℓ)-threshold scheme in the vector-matrix model ensures
that the user obtains their desired results as long as t + 1 or
more servers out of ℓ respond. In contrast, a collusion of fewer
than t +1 servers fails to reveal anything about the information
requested by the user.

Our protocol exploits the concept of indexes of queries
introduced in Hafiz-Henry’s protocol. The protocol introduced
in [7] utilizes indexes of queries to support expressive queries
that utilize contextual information rather than positional infor-
mation to fetch relevant data blocks. Although Chor et al. [30]
introduced a scheme for keyword-based querying that translates
keyword searches into positional queries, is comparable but
with multiple rounds of interactions, [7]’s index of queries
mechanism was more suitable for our protocol since it requires
a single round of interaction to fetch the data, thus minimizing
communication costs.

B. Polynomial Batch Coding
To potentially reduce the size of the database hosted on a

server, Henry [31] modified the vector-matrix model, which
results in each server hosting an encoded bucket obtained from
the database. The encoded bucket is typically smaller than the
database, reducing the cost of hosting data and communication
and computation costs.

As proposed in [31], the buckets are obtained via the
ramification of Shamir’s secret-sharing scheme. In the typical
secret-sharing scheme, there would be a threshold t , the
maximum number of shares an attacker could possess and
still fail to learn the secret. But possessing t +1 or more shares
results in the secret being revealed to the attacker. Rampification
involves relaxing the threshold, where the privacy does not
entirely collapse as soon as an attacker comes to possess t +1
shares. Instead, while the attacker still knows nothing about
the secret while possessing t or fewer shares, to learn the
secret thoroughly, the attacker would now have to possess
t +u secret shares. Possessing more than t but fewer than
t +u shares results in a partial loss of privacy. This relaxation
benefits a protocol capable of packing u -times as many bits
into the secret sharing scheme. The shares possessed by the
user still look the same, but there is a u -fold improvement
in the information that can be packed. So, in Shamir’s secret
sharing, the random polynomials still encode a secret in the 𝑦-
intercept. The difference is that we can obtain different secrets
upon evaluating the polynomials at other values of 𝑥.

This idea is extended to modify the database by changing
its r blocks into r

u u -tuples, interpolating component-wise
through each of them at some predefined 𝑥-coordinates to
obtain r

u length-s vectors of degree-(u −1) polynomials and
then placing a single component-wise evaluation of each vector
of polynomials into each of the ℓ > u buckets. So, to fetch
the 𝑖 th block from the database, the user would identify which
out of the available r

u buckets possesses evaluations of the
polynomial vector passing through the block being sought and
the 𝑥-coordinate value at which the polynomial passes through
the block.

In the simplest form of our proposed scheme, every PIR
server must host copies of a potentially large number of indexes
of aggregate queries to cater to a broad spectrum of user queries.
However, an adversary capable of observing the activity in the
servers can identify which index of queries is accessed by a user
query, thus obtaining information about the user’s query and
subsequent data interests. This could be mitigated if, instead
of having multiple indexes of queries for various queries, all
the indexes of queries that need to be hosted on the server
could be batched together using polynomial batch coding, thus
resulting in just a single batch index of queries of polynomials.
As a result, every user query must pass through the same
batch index of queries hosted on each server, thus obstructing
information leakage about the user query through the hosted
indexes of queries. Our protocol greatly benefits from u -ary
coding because the indexes of queries stored in the servers
can be batched together, preventing information leakage, and
drastically reducing the storage and communication cost and
the cost of computations when queried.

Further enhancements to the scheme are achieved by
implementing the data structure called indexes of batch queries,
where users can aggregate multiple data blocks through a single
request. Like indexes of queries, the concept of u -ary coding
can also be used to perform polynomial batch coding of multiple
users queries into a single query vector. The responses provided
by the servers after the batched queries pass through indexes
of queries can be reconstructed and evaluated at different 𝑥-
coordinate values to obtain the blocks requested by each query
that was batched into the query vector. While this enhancement
allows for the performance of top-𝐾 queries in its simplest
instantiation, it can also be utilized by a user to generate
histograms through a single request by batching together count
queries for every value of the histogram field being constructed.
The mechanism and practical examples of histogram queries
are further explored in later sections discussing implementation
details of supported aggregate queries and case studies.

C. Index of Queries Technique
A data structure called a permutation matrix is at the heart of

the idea of indexes of queries, as introduced in [7]. Permutation
matrices are constructed by permuting the rows of an identity
matrix. In general, the permutation is performed according to
the context of various slices of information. In permutation
matrices, each row is mapped to a possible column value in the
database to apply a query filter. Each column in the permutation
matrix corresponds to a row in the database. To serve a query
for a specific condition, for each row of the matrix, a 1 is
placed in the required column of the matrix to demarcate
the corresponding row in the database, thus indicating which
record in the database satisfies the condition for each of the

4

possible values of the filter column in the database (each of
which is mapped to a row in the permutation matrix). Thus, a
permutation matrix for the number of hospitalizations and one
for the number of instances of a particular disease would look
different. Still, it can be constructed from the same database
containing all the relevant information for constructing the
matrices. Depending on the 1s in the permutation matrices,
query filter clauses involving equalities and inequalities can be
supported.

Permutation matrices are the most uncomplicated instances
of indexes of queries, which are a generalization of the same.
Permutation matrices, by definition, are restricted to a single 1
in each row and column, thus representing the particular case of
the index of matrices, where a sorted view of each block of the
database is presented. The index of queries is a broader concept.
The matrices may take a few different forms, possessing no
non-zero elements in some columns, making certain database
sections inaccessible through them, or even having multiple 1s
in each row. We discover that permuting identity matrices limit
the queries to keyword searches and many other non-aggregate
applications; permuting over a matrix with multiple 1s in each
row and 0s in the remaining positions allows for each row in
the matrix, aggregation over several records in the database,
the columns in the permutation matrix corresponding to which
have 1s in that row, owing to linearity. Thus, matrices permuted
from identity matrices and matrices with multiple 1s in each
row are constructed according to query interests for storage on
the PIR servers.

The number of columns in each index of queries matches the
number of rows in the database. Still, a user is only required to
know the number of rows in each index of queries to construct a
query since the dimension of the query vector must be the same
as the number of rows in the index of queries. Additionally,
a user does not require any positional knowledge for the
information they seek, contrary to most prior PIR schemes,
thus also providing the database owner with the benefit of
less sharing of information. To perform a query successfully
and obtain the information that they desire, a user needs to
know the number of rows of the index of queries to construct
a correct dimensional query vector and the necessary keyword
to pass along to the PIR servers to identify the correct index of
queries for the query, for example, “hospitalizations” to locate
the index of queries tracking the number of hospitalizations
and obtain information about hospitalizations by state.

IV. PRIVATE AGGREGATE QUERIES

The non-private version of the IT-PIR framework is quite
simple, the multiplication between the standard basis vector
(one-hot vector) and the database produces the result. However,
the application of the XOR-based additive secret sharing tech-
nique or Shamir’s additive secret sharing turns it into a private
version with perfect (information-theoretic) security, where
per-server computation is much better than computational-
PIR techniques. Likewise, though the multiplication between a
standard aggregate vector and the database produces component-
wise addition of columns, combining this with batch coding and
the index of queries technique empowers PIR to support more
sophisticated queries with the same perfect security guarantee
and better communication and computation costs (when p « r).
This is true that all of these are achievable due to the linearity of
the PIR constructions. In this section, we present our indexes

of aggregate queries techniques-based IT-PIR constructions.

A. Indexes of aggregate queries
First, we define the standard aggregate vector and simple

index of aggregate queries next.

Definition IV.1. Let I be a set of indices, 𝛽 be the cardinality
of the set I, 𝛽 = |I|, and 2 ≤ 𝛽 ≤ r . A standard aggregate vector
𝑒I ∈ Fr is a (0,1)-vector with an 1 value at each index of the
set I.

Note that when |I| = 1, the standard aggregate vector turns
into a standard basis vector. The following observation is
straightforward when we multiply a standard aggregate vector
with a database using simple linear algebra.

Observation IV.2. If 𝑒I is a standard aggregate vector and
I is a set of indices {𝑖1, . . . , 𝑖ℎ} where ℎ = wt(𝑒I),1 then 𝑒I ·D
is a component-wise linear combination of particular records
(indexed by I) of the database.

That means, 𝑒I ·D = D⃗𝑖1 + . . . + D⃗𝑖ℎ
∈ Fs , is a component-

wise addition across selected records. We can accumulate such
standard aggregate vectors and build an index of aggregate
queries. Next, we define the simple index of aggregate queries
in light of the simple index of queries [7].

Definition IV.3. A simple index of aggregate queries for a
database D ∈ Fr ×s is a (0,1) -matrix Π ∈ Fp ×r in which each
row is a standard aggregate vector.

Now, we can quickly realize the following observa-
tions—

Observation IV.4. If 𝑒 ∈ Fr is a standard basis vector and
Π ∈ Fr ×r is a simple index of aggregate queries, then 𝑒 ·Π is
a standard aggregate vector 𝑒I ∈ Fr , namely, 𝑒I = 𝑒 ·Π.

Observation IV.5. Let 𝑒 ∈ Fp be a standard basic vector and let
Π ∈ Fp ×r be a simple index of aggregate queries with rank pℎ.
If (𝑥1, Q⃗1), . . . , (𝑥ℓ , Q⃗ℓ) is a component-wise (t +1, ℓ) -threshold
sharing of 𝑒, then (𝑥1, Q⃗1 ·Π), . . . , (𝑥ℓ , Q⃗ℓ ·Π) is a component-
wise (t + 1, ℓ) - and (1, ℓ) -threshold sharing of a standard
aggregate vector 𝑒I ∈ Fr ; namely, of 𝑒I = 𝑒 ·Π.2

We define the 𝑡-privacy for indexes of aggregate queries as
follows—

Definition IV.6. Let D ∈ Fr ×s and let each Π1, . . . ,Π𝑛 be an
index of aggregate queries3 for D. Requests are t -private with
respect to Π1, . . . ,Π𝑛 if, for every coalition 𝐶 ⊆ [1. .ℓ] of at
most t servers, for every record index 𝑖 ∈ [1. .p], and for every
index of aggregate queries Π ∈ {Π1, . . . ,Π𝑛},

Pr
[
𝐼 = 𝑖

|︁|︁𝑄𝐶 = (Π; Q⃗𝑗1
, . . . , Q⃗𝑗t

)
]
= Pr

[
𝐼 = 𝑖

|︁|︁ 𝐸Π

]
,

where 𝐼 and 𝑄𝐶 indicate the random variables respectively
describing the “category” index the user requests and the

1𝑖ℎ is the position where the last 1 is in the �⃗�I , and ℎ can be computed by
the hamming weight, wt() , of �⃗�I .

2Specifically, the r − pℎ entries corresponding to all-0 columns in Π are
(1, ℓ)-threshold shares of 0; the remaining pℎ entries are each (t +1, ℓ)-
threshold shares of either 0 or 1.

3We didn’t use “simple” here because each Π𝑗 can either be a simple index
of aggregate queries or one of the more sophisticated types we introduce next.
In particular, by permitting Π𝑗 to be various indexes of aggregate queries, we
can use Definition IV.6 to define privacy for all constructions.

5

Hospitalization_ID Patient_ID Admit_date Gender_ID Days_hospitalized State_ID

D≔

0001 1 01-02-2022 1 (Male) 10 2 (OR)
0002 2 01-04-2022 1 (Male) 2 1 (CA)
0003 3 08-06-2022 2 (Female) 14 3 (WA)
0004 1 07-23-2022 1 (Male) 2 2 (OR)
0005 3 09-01-2022 2 (Female) 7 3 (WA)
0006 4 05-14-2022 3 (Other) 2 1 (CA)

Small sample hospitalization record database.

combined distribution of query vectors it sends to servers in 𝐶
(including the “hint” that the query would go through Π), and
where 𝐸Π is the event that the request is passed through Π.

From this definition, we understand that we can replace any
“index of queries” matrices in any observations, definitions, and
theories with the “index of aggregate queries” that proposed
in [7]. For example, we have—

Theorem IV.7. Fix u > 1 and 𝑗 ∈ [0. .u − 1], and let Π =(
Π1, . . . ,Πℓ

)
∈
(
Fp ×r)ℓ be ℓ buckets of a u -batch index of

aggregate queries with bucket (server) coordinates 𝑥1, . . . , 𝑥ℓ ∈
F \ {0, . . . ,u − 1}. If (𝑥1, Q⃗𝑗1

), . . . , (𝑥ℓ , Q⃗𝑗ℓ
) is a sequence of

component-wise (t +1, ℓ) -threshold shares of a standard basis
vector 𝑒 ∈ Fp encoded at 𝑥 = 𝑗 , then (Π, 𝑥1, Q⃗𝑗1

), . . . , (Π, 𝑥ℓ , Q⃗𝑗ℓ
)

is t -private with respect to Π.

Where we define u -batch index of aggregate queries as
follows—

Definition IV.8. Say u > 1 and let 𝑥1, . . . , 𝑥ℓ ∈ F\ {0, . . . ,u −1}
be pairwise distinct scalars. A sequence Π1, . . . ,Πℓ ∈ Fp ×r of
matrices is a u -batch index of aggregate queries for Goldberg’s
IT-PIR with bucket coordinates 𝑥1, . . . , 𝑥ℓ if (i) Π𝑖1

≠ Π𝑖2
for

some 𝑖1, 𝑖2 ∈ [1. .ℓ], and (ii) for each 𝑗 = 0 , . . . ,u −1,

𝜋 𝑗 ≔
ℓ∑
𝑖=1

Π𝑖 ·
(𝑗 − 𝑥1
𝑥𝑖 − 𝑥1

)
· · ·

(𝑗 − 𝑥𝑖−1
𝑥𝑖 − 𝑥𝑖−1

) (𝑗 − 𝑥𝑖+1
𝑥𝑖 − 𝑥𝑖+1

)
· · ·

(𝑗 − 𝑥ℓ
𝑥𝑖 − 𝑥ℓ

)
is a simple index of aggregate queries.

Algorithm 1 General Algorithm For Our Protocol
STEP 1: Secret shares of client query vector generated
STEP 2: Secret shares of client query vector and keyword hint
to select batch index of aggregate queries shared with servers
STEP 3: Keyword hint isolates required batch index of
aggregate queries in each server
STEP 4: Secret share of client query vector multiplied with
the selected batch index of aggregate queries in each server
STEP 5: Result obtained in the previous step multiplied with
database matrix in each server
STEP 6: Results from each server sent back to the user
STEP 7: Results obtained from each server used to reconstruct
desired query result

B. Various Indexes of Aggregate Queries
The index of aggregate queries scheme facilitates the

retrieval of results for several commonly used aggregate queries
with a single interaction with the servers, thus making it a
powerful tool to build an aggregate query framework around. It
can support SUM, COUNT, MIN/MAX Histogram, and MEAN
queries. Our scheme does not require the user to be aware of
any details about the database being queried or the indexes of
aggregate queries that are required for the aggregation (other
than some semantic understanding for keyword-based indication

of information to be aggregated). For each round of interaction
(i.e., a client sends a query to the server, and the server responds
back to it), the upload cost is O(p), (p is the number of search
terms and the height of the index matrix), and the download cost
is O(s) (s is the number of words of a record) regardless of the
query type and how many records are retrieved. We highlight
examples of aggregate queries using a sample hospitalization
records database D as the target for the queries.

1) Indexes of SUM Queries: To execute a SUM query
in the form: SELECT SUM(days_hospitalized) FROM
daily_patient_records WHERE patient_id = 3. An in-
dex of aggregate queries is constructed based on the
daily_patient_records table that indicates each day of hospital-
ization for each possible value of A and is shared with each
server containing a copy of the database. It is hosted by the
server alongside indexes of aggregate queries for other potential
searches as well. The client constructs an a-dimensional query
vector, where a is the number of possible values for the variable
in the filter clause. The scheme then follows the steps described
in Algorithm 1 to generate the desired SUM. The index of
aggregate queries matrix for serving this query is:

Πpatient≔

(Patient 1)

(Patient 2)

(Patient 3)

(Patient 4)

1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 0 0 1

Similarly, to find the total number of days of hospitalization
for male-identifying patients who were admitted before June
2022, we would require an index of aggregate queries of the
form:

Πduration≔
(Male)

(Female)

(Other)

1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

2) Indexes of COUNT and Histogram Queries: COUNT

queries work similarly to SUM queries but might require some
preprocessing or post-processing depending on the query’s
field. We start with a relatively simple example of counting
the number of patients who identify as female. The SQL
query would look something like: SELECT COUNT(*) FROM
daily_patient_records WHERE gender_id = G.

Typically, most databases are designed to have a constant
integer, the value stored in the id column for a specific
categorical variable, whose actual value is stored in a master
table. Filtering on the id column and counting the rows would
provide the desired response for the query. For this specific
query, the client constructed a g-dimensional query vector,
where g is the number of different possible values of gender
id. The secret shares of the query vector for the gender id
corresponding to females are sent to the different servers, along
with a keyword indicating aggregation over gender. Each server
hosts an index of aggregate queries associated with gender
and a copy of the database. The secret shares filter the index
of aggregate queries via multiplication, the product of their
multiplication is then multiplied by the database to return shares
from each server back to the user. Upon reconstruction, the user
will receive an aggregation over the gender_id column, which,
when divided by the gender_id corresponding to the desired
gender, yields the count value, which in this case would be
the count of hospitalized patients who identify as female. The
following is the index of aggregate queries matrix for serving

6

this query:

Πpopulation≔
(Male)

(Female)

(Other)

1 1 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

Some preprocessing is required on the database to extend
the count operation to count using categorical filter variables.
Categorical fields operated on by count queries should be
identified, and a separate master table must be constructed
with integer-type id columns for each categorical variable
to be counted. These columns are populated with arbitrary
values for each level of each variable. The master table can
be used to generate a denormalized view on which the count
query can operate. This preprocessing is required only if an
id column does not exist for a categorical variable that needs
to be counted. However, most databases are designed such
that categorical variables of importance come with associated
id columns for usage in fact tables. Consider the example of
constructing a query to find the total number of hospitalizations
in the state of California. For the execution of this query, if a
state_id column is unavailable in the database, a master table
must be constructed where one of the columns is state_id, and
California is assigned an arbitrary integer value I. The SQL
query executed on a denormalized view of the database would
be: SELECT COUNT(*) FROM hospital_admission_records
WHERE state_id = I. The procedure for obtaining the result
of this query is identical to that of the previous example, and
follows Algorithm 1. The necessary index of aggregate queries
matrix is:

Πstate≔
(California)

(Oregon)

(Washington)

0 1 0 0 0 1
1 0 0 1 0 0
0 0 1 0 1 0

Histograms work similarly to count queries, with the difference
being that histograms require counts of every level of a
categorical variable rather than the count of a single value.
This can be demonstrated with the help of the examples used
for explaining the mechanism for the COUNT query. In the
first example, instead of counting the number of hospitalized
patients who identify as female, the user might instead want
to construct a histogram of hospitalized patients by gender.
The corresponding SQL query would be: SELECT COUNT(*)
FROM daily_patient_records GROUP BY gender_id.

This would simply translate to a set of count queries, each
counting a possible value of the gender_id field. Suppose the
number of different possible gender_ids is g. In that case, g
query vectors are batched together instead of just a single query
vector, as in the case of obtaining the number of hospitalized
patients who identify as female. The protocol then follows
Algorithm 1 in order to compute the counts required to construct
the histogram.

Similarly, if a histogram is required for a categorical variable
with non-numeric values, the same preprocessing is required,
as in the case of the second example for COUNT queries. The
entire process is identical, except for the construction of the
query vector. For the example of obtaining the histogram of
hospitalized patients by state, the construction of the query
vector would involve identifying the number of different
possible values of state_id and then batching together as
many queries, one for each state_id. The secret shares of
this batched query vector would be shared with the servers

along with a keyword suggesting that the target index of
aggregate queries is the one associated with the state. This
would serve the SQL query : SELECT COUNT(*) FROM
hospital_admission_records GROUP BY state_id.

3) Indexes of MIN and MAX Queries:: Min and Max
aggregations can be achieved using simple indexes of queries.
An example of a query for demonstrating the usage of
MIN and MAX functions is a user request for the oldest
date of hospitalization in California and, conversely, the
most recent date of hospitalization in California. The corre-
sponding SQL queries would be: SELECT MIN(date_time)
FROM hospital_admission_records WHERE state_id = I
and SELECT MAX(date_time) hospital_admission_records
WHERE state_id = I.

To use MIN or MAX in conjunction with GROUP BY, for
instance, in a situation where the user is curious about the
state with the fewest hospital admissions, they can obtain the
response of a corresponding histogram query on the GROUP
BY field and perform a sorting operation to yield the desired
MIN or MAX.

The index of queries matrices required for serving the MAX
and MIN SQL queries mentioned earlier are:

Πlatestadmission≔
(California)

(Oregon)

(Washington)

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0

Πoldestadmission≔

(California)

(Oregon)

(Washington)

0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

4) Indexes of Mean Queries:: Calculating a mean requires

computing a sum and a count for the same column. To retrieve
the result of a mean query from the database, a user would have
to batch [4.3] two queries, one each for computing a summation
and the other for fetching the count, and the corresponding
mechanisms are as described previously. For example, a user
might be interested in the average age of hospitalized patients
in California, and let us assume that the State_ID for California
in our example database is 1. The corresponding SQL query
would be: SELECT MEAN(age) FROM daily_patient_records
WHERE state_id = I.

To obtain this information, the query can be de-
constructed into two queries: SELECT SUM(age) FROM
daily_patient_records WHERE state_id = I and SELECT
COUNT(*) FROM daily_patient_records WHERE state_id
= I.

In our example, I = 1. For both queries, an i-dimensional
query vector must be constructed, where i is the number
of possible values for the state_id field, and the protocol
would then proceed to perform the steps in Algorithm 1.
The response received from the servers for these two batched
queries would provide the user with the sum of the ages of the
patients hospitalized in California and the number of patients
hospitalized in California. Thus, the user can now easily perform
a local division operation with the response of the SUM query
and that of the COUNT query to obtain the desired mean age
of the patients hospitalized in California.

7

C. Batch Indexes of Aggregate Queries

Here, we showcase how we could batch u number of
indexes of aggregate queries using the hospitalization database
D, which holds six records. Its schema includes the attributes
of hospitalization ID, patient ID, admit date, gender ID, number
of days hospitalized, and state ID. Suppose we target to build
a PIR set up to support a user who is interested in either
“to find the total number of days of hospitalization for male-
identifying patients who were admitted before June 2022,” or
“the count of hospitalized patients who identify as female.” To
facilitate such interesting (but complicated) aggregate queries,
we recall two simple indexes of aggregate queries, Πduration

and Πpopulation, described in Section IV-B1 and Section IV-B2,
respectively.

Each row of Πduration and Πpopulation is a standard aggregate query
that points to patients’ gender. For instance, the first row of
Πduration adds the values of the number of hospitalization days of
male patients admitted before June 2022. Now we can batch
them by the process of Section III-B, i.e., the 2-ary polynomial
batch codes, and produce:

Πduration,population(𝑥) ≔

1 1 0 𝑥 0 0
0 0 𝑥 0 𝑥 0
0 0 0 0 0 1

 ∈
(
F[𝑥]

)3×6
.

We can easily check that evaluating Πduration,population(𝑥) component-
wise at 𝑥 = 0 and 𝑥 = 1 recovers Πduration and Πpopulation, respectively.
Each of ℓ servers holds an evaluation of Πduration,population(𝑥) at
𝑥 = 𝑥𝑗 , where 𝑥1, . . . , 𝑥ℓ ∈ F\{0,1} are arbitrary, pairwise distinct
scalars. (Note that each such evaluation, a bucket held by a
server, is a 2-batch index of aggregate queries per Defini-
tion IV.8.) If the client likes to know the count of hospitalized
patients who identify as female, she encodes the standard basis
vector 𝑒1 ∈ F3 at 𝑥 = 1. Moreover, we can enable the client to
fetch aggregate information of both of them only in a single
round by the batch query mechanism. In that case, she has to
encode the same standard basis vector 𝑒1 at 𝑥 = 0 and 𝑥 = 1 at
once. Thus, we can define the indexes of 𝑘-batch aggregate
queries as follows:

Definition IV.9. Fix 𝑘 > 1 and let 𝑥1, . . . , 𝑥ℓ ∈ F\ {0, . . . , 𝑘 −1}
be pairwise distinct scalars. A sequence Π1, . . . ,Πℓ ∈ Fp ×r of
matrices is an index of 𝑘-batch aggregate queries for Goldberg’s
IT-PIR with bucket coordinates 𝑥1, . . . , 𝑥ℓ if, for each 𝑖 = 1, . . . ,p,
the matrix

𝜋𝑖0
...

𝜋𝑖 (𝑘−1)

is a simple index of aggregate queries matrix, where, for each
𝑗 ∈ [0. . 𝑘 −1],

𝜋𝑖 𝑗 ≔ 𝑒𝑖 ·
ℓ∑

𝑛=1
Π𝑛 ·

(𝑗− 𝑥1
𝑥𝑛 − 𝑥1

)
· · ·

(𝑗− 𝑥𝑛−1
𝑥𝑛 − 𝑥𝑛−1

) (𝑗− 𝑥𝑛+1
𝑥𝑛 − 𝑥𝑛+1

)
· · ·

(𝑗− 𝑥ℓ
𝑥𝑛 − 𝑥ℓ

)
.

We demonstrate the end-to-end pipeline for our novel IT-
PIR pipeline that utilizes the indexes of aggregate queries data
structures that we introduce in Figure 1. Note that the security
analysis (described in Appendix B) and complexity analysis
coincide with that of Hafiz-Henry [7]. Thus, with similar 𝑡-
privacy and communication complexity, we achieve a new set
of aggregate queries.

V. EVALUATION RESULTS

A. Benchmarking Experiments
To assess our protocol’s query throughput and scaling

capabilities, we designed several experiments to benchmark
the protocol’s performance. These experiments test the first 4
steps of the proposed algorithm. Benchmarking was performed
on a server with 256 GB RAM and 5 GPUs. Similar to [7],
we implement Barrett Reduction [32] for modulo arithmetic
operations. To save storage space, matrices were reduced to
compressed column storage representation [33]. For every
experiment, the mean value of 100 trials was reported for
each query throughput value. Error bars were negligible for
each data point. Vector-sparse Matrix multiplication (VspM)
throughput on GPU measures how many queries (clients) can
be multiplied by an evaluation of the batch indexes of aggregate
queries. This measurement includes the time to copy to and
from the local host to the GPU device. If a client wants to
batch multiple queries together, it does that itself and sends
an evaluation of the polynomial-encoded query vector to a
server. The server can multiply different query vectors from
different clients with its stored evaluation of the batch indexes
of aggregate queries, i.e., the GPU throughput of the server.
This relationship is linear, and the inverse of the throughput
will give the latency per client (query). The server doesn’t have
to wait for more queries from more clients.

The purpose of the first experiment (as shown in Figure 2)
is to observe the impact of increasing the number of rows in the
database while other variables are maintained at constant values.
We vary the number of rows, r , in the database (which is equal
to the number of columns in the index of aggregate queries)
from 214 to 224 while keeping the number of rows in the index
of queries, p constant at 216 and keeping the number of indexes
of aggregate queries batched (u) constant at 6. Additionally,
the number of rows over which aggregation occurs is also fixed
at 1. We derive the trend for 128,256, and 512 bit moduli.
The general trend observed is an expected monotonic decrease
in the throughput with an increasing number of rows in the
database. Increasing the bit size of the modulus results in a
depreciation of the query throughput attained in most cases.
We observe that for a database with over 16 million rows,
our protocol is capable of supporting around 4000 queries per
second, for modulus with bit sizes of 128, 256 and 512.

The second experiment is very similar to the first, but this
time we vary the number of rows in the index of aggregate
queries instead of varying the number of rows in the database.
We vary the number of rows, p, in the index of aggregate
queries from 21 to 217 while keeping the number of rows in the
database, r constant at 220 and keeping the number of indexes
of aggregate queries batched (u) constant at 6. The number
of rows over which aggregation occurs is fixed at 24. There
seems to be no major impact of varying the number of rows
in the index of aggregate queries until varied from 216 to 217,
at which point, we observe a drop in the query throughput.
Increasing the bit size of the modulus results in a depreciation
of the query throughput consistently.

The third experiment demonstrates the capability of the
protocol to perform aggregations over varying numbers of
rows. To evaluate how well the aggregation scales, we maintain
the number of rows, columns, and indexes of aggregate queries

8

Fig. 2: Query throughput with a varying number of rows in the
database. The number of rows in the index of aggregate queries,
number of rows for aggregation, and number of indexes of
aggregate queries batched are kept constant

Fig. 3: Query throughput with a varying number of rows in the
index of aggregate queries. The number of rows in the database,
number of rows for aggregation, and number of indexes of
aggregate queries batched are kept constant

batched together fixed at p = 214, r = 216, and u = 6 respectively.
The number of rows over which aggregation occurs varies from
21 to 211. The experiment is performed with a 256-bit modulus.
Other than a single unexpected spike during scaling (when the
number of rows over which aggregation occurs is increased
to 24 from 23), increasing the number of rows over which
aggregation occurs progressively reduces the query throughput
until it plateaus out as shown in Figure 5. For queries that
aggregate over up to 512 rows in the database, the protocol
can support around 4,000 queries per second, which is about
half the throughput observed for non-aggregate queries on an
identical database with a modulus of the same bit size.

Our final experiment determines the capability of our
protocol to scale in terms of the number of queries it can
serve by batching several indexes of aggregate queries. For
this experiment, the number of rows and columns are fixed at
p = 214 and r = 216, respectively, and the number of rows over

Fig. 4: Query throughput with a varying number of rows for
aggregation. The number of rows in the index of aggregate
queries, the number of rows in the database, the number of
indexes of aggregate queries batched, and the bit size of the
modulus are kept constant.

which aggregation is performed is maintained at 24. The number
of indexes being batched, u , is, however, varied from 21 to 210.
The experiment is performed with a 256-bit modulus–results are
plotted in Figure 3. We observe that the time required to perform
the batching operation monotonically increases with an increase
in the number of files being batched as expected. The time
required to batch a thousand files is about 32 seconds.

Fig. 5: Batching time with a varying number of indexes of
aggregate queries batched. The number of rows in the index of
aggregate queries, number of rows in the database, number of
rows for aggregation, and bit size of modulus are kept constant.
The NNZ percentages refer to the number of non-zero columns
in the batched indexes of aggregate queries, and this percentage
becomes higher as progressively larger numbers of indexes are
batched.

B. Practical Applications
To demonstrate the practical application of our protocol

in real-world situations, we designed three case studies based
on real databases. The case studies are primarily concerned
with steps 5 to 7 of the protocol. The first case study utilizes

9

a medical database, MIMIC3 [34], which collects clinical
data. Medical datasets are often sensitive and require cautious
handling and querying. Additionally, an untrusted database
owner who can observe a user’s query to a clinical database
might be able to infer information about the user based on the
information they are looking for in the database. To prevent this,
our protocol can be implemented with the medical database. The
second case study demonstrates the applicability of our protocol
to a gigantic social media database constructed from Twitter.
A social media platform query can reveal various information
about the user to a malicious database owner who can observe
user queries. Additionally, databases of popular social media
platforms tend to host enormous amounts of user data and are
thus ideal databases for testing how well our protocol scales
and performs on large volumes of data. Our third and final
case study compares the performance of our protocol to the
most similar instance of our work, a protocol called Splinter,
which is also capable of performing private aggregate queries.
To perform this comparison, we recreate the same queries that
Splinter performs on a synthetic Yelp database, which hosts
restaurant reviews.

1) Case study I: MIMIC3 Medical Database: Mimic 3 is
a freely available clinical database comprising de-identified
data of a large number of patients admitted to the Beth
Israel Deaconess Medical Center between 2001 and 2012. The
database contains data in various formats, but our case study
mainly deals with tabular data. Numerous tables within the
database outline details about the hospitalization of patients and
the details of the care that they received during their stay. We
design several practical aggregate queries on some of these data.
Specifically, we use the “Admissions” and “Prescription” data
for our queries. The queries performed can be broadly divided
into two groups, based on which of them were batched together
to form indexes of aggregate queries. The first group of queries
is accumulated together into an index of aggregate queries in
which every row corresponds to a value in the column that
stores the admission type for a particular patient, thus providing
an individual’s hospitalization’s nature or circumstances. These
queries are all based on the Admissions table, which has 58,976
rows. For this experiment, 4 indexes of aggregate queries
of dimension 4x58,976 were batched. The queries for which
the matrices were constructed for batching into this index of
aggregate queries are:

• Count of urgent admissions: This is a query to compute
the number of admissions to the hospital that were catego-
rized as ‘urgent.’ SELECT COUNT(*) FROM admissions
WHERE admission_type = ‘URGENT.’

• Mean hospital stay duration for patients of Hispanic
ethnicity categorized as urgent admissions: This query
looks more closely at admissions to the hospital that
were categorized as ‘urgent’ and filters out the His-
panic population. It then computes the mean dura-
tion of stay for this filtered subset of patients. SE-
LECT MEAN(hospitalization_duration) FROM admis-
sions WHERE admission_type = ‘URGENT’ AND eth-
nicity = ‘HISPANIC.’

• Most recent admission categorized as urgent: This query
fetches the urgent hospital admission with the most recent
timestamp value, thus performing a MAX aggregation:
SELECT MAX(admittime) FROM admissions WHERE
admission_type = ‘URGENT.’

• Histogram of admission types: This is a query to obtain
the counts of the different buckets in the admission_type
column. So, essentially it is a number of count queries
batched together. The equivalent SQL query is: SELECT
COUNT(*) FROM admissions WHERE admission_type
= A. Where A represents a possible value in the admis-
sion_type column.

While the previous set of queries was all batched at the level
of admission type, we also constructed indexes of aggregate
queries that were batched at the patient level. This results in
indexes of aggregate queries of dimension 1,400x4,156,450,
since each row of the matrix corresponds to one of the 1,400
Hispanic patients in the dataset and the database constructed
by joining the admissions and prescription tables has 4156450
rows. For this experiment, two indexes of aggregate queries
were constructed and batched. The queries that these matrices
serve are:

• Total number of doses of drugs administered to a His-
panic patient admitted as an urgent admission: This
query aggregates over the dose_val_rx field for each
patient to obtain the desired response for a particular
patient. SELECT SUM(dose_val_rx) FROM admissions
WHERE admission_type = ‘URGENT’ AND subject_id
= ‘100012.’

• Total Hospitalization Duration of Hispanic patient admitted
as an emergency admission: This query aggregates over
the hospitalization duration field for a patient receiving an
emergency admission, thus performing addition over stay
durations across every instance of emergency hospitaliza-
tion of a particular patient present in the database. SE-
LECT SUM(hospitalization_duration) FROM admissions
WHERE subject_id = ‘100012’ AND admission_type =
‘EMERGENCY.’

2) Case Study II: Twitter Database: Twitter is a very
popular social media platform with a sizable active user
base and, thus, hosts an enormous amount of data that users
can query. A malicious database owner capable of observing
the details of incoming queries to the database can use the
information gained from the queries to make inferences about
the users querying the database. For instance, numerous users
query Twitter about political information. Observing these
queries can help a database owner make inferences about a
user’s political affinity or, more generally, a user’s political
interests, which is potentially sensitive information that a user
would normally prefer to keep private. Additionally, tracking
a user’s queries over a period of time can allow the database
owner to make inferences about a user’s preferences and
interests that can be used for targeted advertising. It is thus
useful for such databases to incorporate a scheme for privatizing
query information. Owing to the volume of data on Twitter,
we decided to scrape a large number of records from Twitter
to implement our scheme and demonstrate its scalability for
application to large real-world databases. We extracted around
a million tweets from Twitter that have political relevance using
popular hashtags such as ’USElections’, ’congress’, ’Trump’
and more and limited the search space for scraping to a 2 year
period around US elections. The scraped database is around
400 MB in size.

We devise indexes of aggregate queries to serve four distinct
queries to the database and batch them together. Each row of

10

the batched index of aggregate queries corresponds to a distinct
user in the database, and the number of columns corresponds
to the number of records in the database. For this experiment,
2 indexes of aggregate queries were constructed and batched.
The queries are:

• Total likes received across all tweets made by a par-
ticular user: This query aggregates all the likes (pos-
itive responses) that any specific individual has ob-
tained and provides a sense of their popularity. SELECT
SUM(like_count) FROM twitter_data WHERE user_id
= ‘100012.’

• Count of tweets by a particular user that received no
retweets: Similar to the previous query, the count of tweets
by a user that was not shared by any other user also
provides a sense of how popular or influential the user
is. SELECT COUNT(*) FROM twitter_data WHERE
user_id = ‘100012’ AND no_retweets = 0.

• Mean number of likes on posts made by a politician: The
average number of likes on the tweets made by a politi-
cian’s account indicates their popularity, and observing a
user seek this information also sheds some light on their po-
litical interests and affinities. SELECT MEAN(like_count)
FROM twitter_data WHERE user_id = ‘100012.’

• Histogram of likes on the posts of a set of politicians: To
do a comparative analysis of the popularity of a group
of politicians, a histogram can be computed for the likes
on the tweets made by the group of politicians. This is
achieved by batching a number of SUM queries, each com-
puting the sum of likes on the tweets of a single politician.
SELECT SUM(like_count) FROM twitter_data WHERE
user_id in (‘100012’, ‘100013’, ‘100014’) GROUP BY
user_id.

3) Case Study III: Yelp Database: In order to compare
our protocol with an existing scheme for performing private
aggregate queries called Splinter, we recreate an experiment
presented by the authors of Splinter. Splinter uses the Yelp
academic dataset to emulate querying a restaurant review
website. The queries implemented are:

• SELECT COUNT(*) WHERE category="Thai."
• SELECT TOP 10 restaurant WHERE cate-

gory="Mexican" AND (hex2mi=1 FOR hex2mi=2
OR hex2mi=3) ORDER BY stars.

• SELECT restaurant, MAX(stars) WHERE
category="Mexican" OR category="Chinese" OR
category="Indian" OR category="Greek" OR
category="Thai" OR category="Japanese" GROUP
BY category.

We only demonstrate the first and the third query using
our protocol since the second query requires precomputing
the hex2mi field that was part of the preprocessing step for
Splinter, and recreating it requires explicit details of the exact
computation that generates the field. The attribute details for
each case study are available in Appendix A.

The indexes of aggregate queries for the first set of queries
on the MIMIC 3 database were 4×58,976 in dimension and
were thus consistently faster to generate than the 333,286×
1,004,129 dimensional Twitter database indexes of aggregate
queries or the other MIMIC 3 indexes of aggregate queries
which were of dimension 1,400×4,156,450. Overall, the time

required for generating indexes is consistently of the order of
a few seconds, with the index for aggregating hospitalization
duration of any patient taking the longest for generation, at
around 30 seconds. It should be noted that generating indices
is typically a one-time activity and should ideally be performed
only once, when the database itself is updated. The same applies
to the process of batching the indexes of aggregate queries,
most of which require less than a minute, which is sufficiently
fast, given the fact that this would be a single time operation
performed everyday in a practical implementation. The storage
requirements for the indexes of aggregate queries are also
nominal, with the larger MIMIC 3 queries requiring the most
space, but they require just around 34 MB for storage. The
server response generation times for each of the queries are
remarkable for a database with a million records. The maximum
time the protocol takes for a query is around 0.45 seconds,
which is for the Twitter queries. The performance of the YELP
queries were also comparable to those of Twitter and MIMIC
3. To mirror the queries in Splinter [8] exactly, we duplicated
the records in the database to scale it by a factor of 4 like
they did, and found the server response time and the storage
size to increase linearly. In addition to the initial versions of
the Twitter queries, we applied a filter on the users to only
include those who had at least a single tweet with over 100
likes, in order to shrink the search space to a size that may be
somewhat more common for a regular query to a database. This
significantly improved index generation time, GPU throughput,
as well as server response generation time. Additionally, it
requires a fraction of storage space when compared to the
extreme case with all the users included.

In order to accelerate the server response generation, zero-
column operations can be skipped entirely to save compute
time, but doing so is contingent on the structure of the indexes
of aggregate queries. As in the case of Twitter, if the indexes
of aggregate queries are such that there are no columns where
every element is 0, there will be no benefit obtained from
this optimization, and this is reflected by the fact that the
server response generation throughput both with and without
zero column skipping implemented is 1.13 secs/query for
the unfiltered Twitter queries. The server response generation
throughput can be further optimized by constraining the servers
to only operate on and produce the fields in the database on
which aggregations are performed. Since that is a much smaller
subset of the all the fields in the database, the server response
generation becomes significantly faster for every query.

Comparison with Baseline: In order to obtain a baseline
to compare our protocol against, we evaluate the queries in
our case studies using Goldberg’s IT-PIR technique [28]. The
performance of Goldberg’s protocol is reported in the 3rd
sub-column, "Regular IT-PIR" of the last column, "Server
response generation time per query" in Table I. While our
protocol produces a server response from the 4 million record-
long MIMIC-3 database in a fraction of a second, Gold-
berg’s protocol requires over 7 seconds. Unlike our protocol,
Goldberg’s technique would require multiple such interactions
between client and server in order to serve expressive aggregate
queries, thus increasing the actual query response generation
time significantly. Goldberg’s protocol is designed to send
positional queries to the servers and so, aggregate queries
with conditions such as searching or sorting require multiple
rounds of interaction with the database, consequently requiring

11

C
as

e
st

ud
y

da
ta

ba
se

Se
ar

ch
sp

ac
e Index of

aggregate
queries matrix
for

Index
matrix
size, 𝑝× 𝑟

Index
matrix
gener-
ation
time
(secs)

Multiple
index
matrices
batching
time
(mins)

Additional
data
structure
storage
Size
(MiB)

VspM
through-
put
on GPU
(clients/sec)

Server response gen-
eration time (secs)
per query

All
Attr.

Essen.
Attr.

Regular
IT-PIR

Tw
itt

er A
ll Likes 333,286× 1.98 4.450 22.77 4,927.76 1.13 0.45

1.13Retweets 1,004,129 7.77

Fi
lt. Likes 2,714× 0.06 0.039 5.30 5,601.52 0.01 0.01

Retweets 1,004,129 0.09

M
IM

IC
3

A
ll

Admission Type

4×58,976
0.06

0.002 0.76 2,0534.12 0.11 0.04 0.11Ethnicity 0.39
Latest Admission 0.98
Oldest Admission 0.95

Fi
lt. Dosage 1,400× 2.12 0.101 34.34 4,412.80 0.26 0.10 7.37

Stay Duration 4,156,450 2.03

Y
el

p A
ll Restaurant Type 1,312× 1.09 0.070 5.33 10,364.48 0.13 0.03 0.13

Highest Rated 150,346 10.88

A
ug

. Restaurant Type 1,312× 3.51 0.061 21.78 6,585.88 0.54 0.14 0.54
Highest Rated 601,384 43.06

TABLE I: Experimental results for three case studies. p is the number of possible search terms and r is the number of records
in the database. The search space column indicates which results correspond to the all-possible search terms (All), and which
correspond to filtered versions of the queries with the search spaces reduced (Filt.) for Twitter and MIMIC 3. For Yelp, the Aug.
results correspond to the results obtained for the scaled-up version of the dataset. Index matrix generation time measures the
time required to scan the database and generate the individual indexes of aggregate queries in CCS representation. Index matrix
batching time measures the time required to interpolate and evaluate the polynomials required for batching. Data structure storage
size is the size of the CCS representation files of the batched indexes of aggregate queries. VspM throughput measures the
number of clients (queries) being served per second on a GPU. The server response generation times measure the time required
to generate the response with all the attributes of the database and with only the attributes undergoing aggregation using our
protocol, and for Goldberg’s regular IT-PIR with a positional query, respectively. For all timing measurements, the mean values
of 100 measurement trials are reported, error bars were negligible and were thus not reported.

significantly more time in several circumstances to produce
results for aggregate queries when compared to our protocol.
Goldberg’s protocol can be described as an atomic unit for more
complex queries like aggregate queries. The speedup obtained
by our protocol over the baseline Goldberg’s protocol is further
enhanced when operating with only the necessary attributes for
computations, as evidenced by the results presented in the 2nd
sub-column, "Essen. Attr." of the last column, "Server response
generation time per query" in Table I.

The steps common to our protocol and the baseline
Goldberg’s IT-PIR protocol are performed on the CPU. This
first entails client query generation on CPU and distribution
using Shamir’s secret sharing. The secret share vectors sent
to the servers undergo an additional step in our protocol that
is not a part of the baseline protocol. This step involves a
multiplication of the vectors with the sparse IAQ matrices, and
is measured on the GPU in order to accelerate the protocol.
This produces a vector which is multiplied with the database
matrices on CPU on each server, and this step is similar to the
step in the baseline protocol where the secret share vector is
multiplied with the database matrices. These steps are evaluated
on the CPU for both protocols. The same server is used for
evaluating both protocols.

VI. DISCUSSION

A. Database Updates

Enterprise databases have a fixed refresh rate (often daily),
and thus, the database could potentially change with every
refresh. A client query is associated with a specific version
of the database, and so a new version of the database would
require a new client query, as is common for any PIR protocol.
The process of updating the indexes of aggregate query
can be automated and is quite trivial owing to them being
sparse and being stored in compressed column storage (CCS)
representation. This can be achieved by a stored procedure for
noting the updated values resulting from the database refresh
and scanning the CCS files, and updating the corresponding
stored values (both in index as well as pointer files, in case the
number of non-zero elements change as a result of the database
refresh). In case an index is required to be generated from
scratch, a one-time effort (for a specific version of a database)
is required to employ our efficient hash map-based algorithm
for scanning and constructing the matrices.

Suppose the client wishes to execute a query that the existing
IAQs cannot serve. Combining that IAQ would require a similar
effort. This involves a simple scanning operation on the relevant
database attribute in order to produce the CCS-represented

12

files and batch them with existing IAQ matrices of the same
dimension. The orders of time for these operations can be
estimated from some of the examples in TABLE I. These
updates should be reflected in every server hosting the database
and the IAQ matrices. As per the protocol, the length of client
queries is made to be equal to the number of rows (p) in the
IAQ matrices, not the number of records (r) in the database
unless p = 𝑟 . Thus, the length of client queries is only impacted
if and when a database refresh results in a change in the
number of search terms in an attribute of interest, resulting
in a change in the number of rows in the corresponding IAQ
matrix. This protocol, like other PIR protocols, is designed to
obfuscate reading access patterns only, not write patterns. There
are further complexities that emerge when integrating novelties
into existing live systems, and the scope of this research is
restricted to the design and evaluation of a novel protocol, with
a preliminary exploration of practical implementations.

B. Minimum Configuration
Being a t -private u -batch IT-PIR protocol, the minimum t

and u is 1, in which case, the number of servers ℓ is 2. For our
t -private u -batch IT-PIR scheme, ℓ must be at least t +u to let
the client reconstruct the correct record. Thus, for the minimal
case where both t and u are both equal to 1 (u=1 would
mean that there is only a single index of aggregate queries,
and thus, there is no batching), the desired query response can
be reconstructed only when both servers produce the correct
response, and there is no collusion. However, if additional
servers are incorporated, as long as any two (or more) of the
servers are not colluding, the query response can be successfully
reconstructed. This allows our protocol to tolerate collusion of
a number of servers, as long as at least t +u servers do not
collude.

C. Byzantine Robustness
Most modern distributed storage and computation schemes

rely on servers that are owned by third parties. In light of
the current landscape of cyber security and privacy, it is not
unreasonable to believe that one or more of the servers in a
multi-server scheme can become compromised at some point
and either not respond or produce incorrect responses. Thus,
it is important to take the Byzantine robustness of multi-
server schemes into account when considering their practical
viability. Our model can be extended to a v -Byzantine-robust
model from our basic assumption of an honest-but-curious
(passive) adversary. Devet et al. [5] proposes t -private v -
Byzantine-robust vector-matrix model-based IT-PIR protocols
that our protocol conforms to as well owing to its (algebraic)
linearity property, allowing it to fit into any vector-matrix model-
based IT-PIR protocol. This protocol modifies the client-side
configuration of Goldberg’s protocol [28] by using improved
decoding algorithms to achieve Byzantine robustness equal to
the theoretical limit (v < 𝑘 −t −1, where 𝑘 is the number of
servers that respond). Thus, our protocol can tolerate collusion
or Byzantine failure of up to v servers without compromising
the integrity of query outputs reconstructed from the server
responses. Under this formulation, the adversary is assumed to
be passive when v = 0.

D. Comparison with Splinter
The major challenge in performing a perfect comparison

with Splinter’s [8] Yelp case study results is that Splinter’s
results were measured on a server with 1.9 TB of RAM,

which is significantly higher than our 256 GB RAM server.
Additionally, while Splinter reports the total response time, a
breakdown of the execution times for each step in the process
is not provided (with the exception of the information that
the network latency of the provider was 14ms). Given these
differences in the experimental setup, when comparing the
two common queries (Subsection V-B3) between the protocols,
although Splinter is faster at serving the relatively simpler
Restaurant Type query (54 ms vs. our protocol’s 140 ms
with essential attributes only), our protocol produces a quicker
response time for the more complex Highest Rated query,
thus underscoring the practical viability of implementing our
protocol for enterprise databases. The code base for the Function
Secret Sharing implemented in Splinter is available on Github,
but dedicated end-to-end code for reproducing the results
reported in the paper and instructions for the same are not
publicly available, thus making it challenging to execute both
protocols on the same server.

VII. ADDITIONAL EXPERIMENTS

A. Server Response Generation For Larger Databases
For our initial experimentation with case studies, the primary

objective was to showcase that our protocol can be used
for executing realistic queries on real-world databases with
a relatively high number of records. However, despite some
of the case studies having databases with records in the order
of millions, the overall size of the databases was not too big.
As a result, we picked two of our case studies (Twitter Filt.
and MIMIC 3 Filt. of Table I) and augmented each record
in the corresponding databases to make the total size of the
databases 40 GiB (while keeping the number of records in the
corresponding databases the same like before). The Twitter and
the MIMIC 3 datasets were (row-wise) augmented 535× and
84×, respectively, compared to the original datasets. With these
40 GiB databases, we executed the same queries as in the main
case study for the corresponding databases, and we measured
the wall clock time for execution of the queries using our IAQ
protocol as well as the baseline Goldberg’s IT-PIR protocol.
We also measure our results for a number of different modulus
sizes, including GF(28), similar to Hafiz-Henry [7]. Since in
the binary field, GF(28) operations, each word is 8 bits, and a
lookup table is used, multiplications are performed faster than
regular arithmetic. As a result, it is a practical and common
choice for the modulus.

As per our observations from Table II, GF(28) and GF(216)
moduli provide faster query response times than the 128-bit and
the 256-bit moduli. As we increase the modulus (a.k.a. each
word size), since the size of each row is kept fixed, the number
of words is reduced, and beyond a certain point, increasing
the modulus size results in faster query response owing to
a reduction in the number of multiplications and additions
resulting from the reduction in number of words. Using the
GF(28) modulus, our protocol obtains a ~141× improvement in
server response generation time over the baseline protocol
for the Twitter queries and a ~31× improvement for the
MIMIC 3 queries. The server response generation for both
Twitter and MIMIC 3 queries closely mirror each other for
the baseline protocol since the size of both the databases have
been augmented to the same value of 40 GiB, but since our
protocol exploits the sparsity of our derived data structures,
which are different for different databases, the server response

13

DB Size Case Study Records Record Size Protocol GF(28) GF(216) −𝑚ZZ𝑃 −𝑤128 −𝑚ZZ𝑃 −𝑤256

40 GiB
Twitter Filt. 1,004,129 41.8 KiB Baseline 16.8 32.1 1006.1 580.6

This work 0.1 0.2 7.7 4.9

MIMIC 3 Filt. 4,156,450 10.5 KiB Baseline 17.5 33.6 1010.6 589.3
This work 0.6 1.1 36.6 21.2

64 GiB
Twitter Filt. 1,004,129 67.0 KiB Baseline 27.5 51.0 1754.1 988.8

This work 0.2 0.3 12.2 7.6

MIMIC 3 Filt. 4,156,450 16.5 KiB Baseline 27.8 51.7 1703.8 981.3
This work 0.9 1.5 49.9 33.2

TABLE II: Server response generation times for different modulus sizes using our IAQ protocol and the baseline protocol on
augmented 40GiB and 64GiB databases. Reported server response times are in seconds and are the means of 10 trials.

generation times for the two databases using our protocol does
not always shadow each other despite the size of the database
being identical.

We also perform the same set of experiments by augmenting
the databases to a size of 64 GiB, and the trends are similar to
those observed for experiments on the 40 GiB databases.

B. Benchmarking Query Throughput on CPU
In this section, we discuss benchmarking the query through-

put of our protocol on the CPU. In our main results, we perform
the step of multiplying client vectors with batch indexes of
aggregate queries on the GPU. This was motivated by the
fact that most enterprise compute servers that deal with large
volumes of data typically have GPU(s) on them. In order to
assess the performance of the query throughput on the CPU, we
replicate the setup of our first benchmarking experiment. For
instance, the number of rows (p) in the indexes of aggregate
queries is set to 216, the number of rows over which aggregation
occurs is set to 4, and the number of indexes batched is
kept constant at 6. The number of columns in the indexes
of aggregate queries (r) is varied from 216 to 220 and the
number of clients served per second is observed with various
modulus bit sizes, e.g., 27, 28, and 29. Note that our NTL-
based CPU implementation of vector-sparse-matrix (VspM)
multiplication is very basic and doesn’t leverage any parallel
processing or hand-optimized assembly coding, contrary to our
GPU implementation. There are optimization and engineering
tricks available even for CPU implementation that were out of
the scope of our attention.

We observe that the query throughput drops drastically
on the CPU, as expected. While with a 27-bit modulus, it is
possible to serve 8 queries per second for a database with
216 records—this number diminishes to around 5 queries per
second when the number of records is increased to 220 (around
a million) and the modulus size is 29 (= 512)-bit. However,
despite a seemingly low throughput, it should be noted that
server response generation is performed on the CPU, and our
case studies demonstrate that given the order of server response
generation times reported in Table I and Table II, it is unlikely
that this step will become a bottleneck even when computed
on the CPU with no sophisticated optimization tricks.

VIII. RELATED WORK

Despite a relative dearth of literature on expressive querying
mechanisms that can support a plethora of aggregate queries,
there have been a number of attempts to achieve such protocols

due to the importance of aggregate queries in data analytics.
Wang et al. [8] proposes an approach to privatizing aggregate
queries called Splinter, which aims to hide sensitive parameters
in a user’s query by extending function secret sharing [9] to
hide aggregate query results and specific inputs. Splinter splits
a query into multiple parts and sends each part to a different
provider, which holds a copy of the data. This query obfuscates
only the particular item value that the user desires, such as a
specific item ID. The provider then inputs all the items in the
shared function it got from the user and sends them back to
the user. The user then receives all the results and combines
all the shares to produce the desired result. This approach
is used in different ways depending on the aggregate query.
Splinter, however, has a strict assumption of non-collusion,
while our protocol can tolerate collusion of servers up to a
configurable threshold number. Additionally, our protocol can
perform several operations, such as MIN, MAX, and Top-K,
with a single interaction. In contrast, Splinter requires multiple
round trips for instances of these queries with a large number
of disjoint conditions.

Similarly, recent work attempts to provide users with an
interface for private aggregate queries [10]. Still, it formulates
the construction for a single server K user problem. They
present a two-pass model for secure aggregation, where over
the first round, any number of users less than U out of K
users respond to the server that wants to learn the sum of the
users, and the remaining users are viewed as dropped. Over
the second round, any number of users less than U out of the
surviving users respond. From the information obtained from
the surviving users over the two rounds, the server can decode
the desired sum. This protocol is not formulated as a means
of securely performing an aggregate query for a user – rather,
it tries to solve the problem statement of securely computing
the sum of a number of inputs provided by a group of users,
while some users may not respond. It is thus also limited in
the aggregations it can support.

Ahmad et al. [11] proposes a scheme somewhat similar
to what our protocol aims to achieve. They present a system
for oblivious document ranking and retrieval with a pipeline
for sending keywords to a server, a ranked list of documents
sent back by the server in response, and one of the documents
selected and opened. Although sharing similarities with our
protocol in that both schemes employ the preparation of
specialized data structures for enhancing the process of private
information retrieval and are capable of supporting Top-K
queries, they are solving inherently different problems because

14

COEUS was explicitly developed for search relevance queries.
Thus, Top-K is the only aggregate query it can support. While
COEUS focuses primarily on oblivious ranking and retrieval
of search results, our protocol primarily focuses on oblivious
retrieval of aggregated results from a database.

A number of other recent works attempt to tackle the
challenges of securely performing aggregations. For instance,
Kadhe et al. [35] proposes a solution scheme based on a finite-
field version of the Fast Fourier Transform that also relies on
Shamir’s secret sharing, but the correctness of the response may
not be assured. Additionally, it is designed only for aggregating
updates shared by clients to a central server, whereas our
protocol is not restricted to aggregations – it can support
expressive keyword searches as well. Similarly, Bonawitz et
al. [36] proposes a multi-party computation-based solution
for secure aggregation that also uses Shamir’s secret sharing.
Pillutla et al. [37] and So et al. [38] attempt to solve the secure
aggregation problem specifically in the setting of federated
learning. However, the problem that these works attempt to
solve involves collecting updates from numerous clients and
aggregating them in an incorruptible server, and they attempt
to solve certain problems that are not necessarily a concern for
our protocol, such as malicious clients attempting to corrupt
the central aggregation by sharing poisoned updates.

Somewhat similar to our protocol, searchable symmetric
encryption (SSE) schemes can be used for keyword searches
over encrypted documents. To achieve efficiency, SSE schemes
are inflicted with some degree of leakage. The vast majority
of the literature on SSE only considers the leakage from the
encrypted search index, which is only a part of the overall SSE
system, and as a result, they do not have as much protection for
queries from a system-wide viewpoint [12]. Additionally, most
SSE schemes focus on index retrieval only, and few perform
both index retrieval and document retrieval. Our protocol has a
major benefit over SSE schemes because it can privately search
and retrieve documents from a database without requiring any
encryption for the database and can also retrieve the actual
documents, unlike the majority of SSE schemes that only
perform index retrieval. Although there exist SSE schemes
capable of supporting conjunctive and disjunctive queries [39],
they aren’t typically capable of performing private aggregate
queries and, thus, can, at best, support a subset of our protocol’s
capabilities.

Oblivious RAM (ORAM) attempts to solve a similar
problem as PIR. While the amortized communication com-
plexity of ORAMs is historically low, and they feature no
computation on the server, the lower bounds often make them
infeasible to implement for practical applications. Additionally,
the feasibility of implementation for ORAMs is further impacted
by them often requiring a download and reshuffle of the entire
database [40]. There are works that have pushed ORAMs
towards sublinear worst-case complexity [41], [42], but schemes
proposing further improvements to communication complexity
have come at the cost of increasing client memory from constant
to logarithmic [43] or polynomial [44], [45]. For dynamic
searchable encryption, ORAM can achieve a worst-case search
complexity of 𝑂 (𝑀𝑙𝑜𝑔(𝑁)) where 𝑁 is the total number of
keyword-file identifier pairs and 𝑀 is the maximum number of
matched file identifiers in the index [46]. However, ORAMs can
be used in conjunction with PIR schemes to exploit PIRs’ better

worst-case guarantees and become feasible for implementation
for practical applications [40].

Like ORAMs, oblivious datastores also attempt to mitigate
similar threats as PIR does. Pancake [47] formulates a passive
adversary capable of continuously monitoring accesses to
encrypted data. While the assumption that adversaries cannot
inject queries allows it to outperform well-known ORAM
schemes such as PathORAM [43], Pancake requires accurate
knowledge of the original access distribution to guarantee
security. Waffle [48], another oblivious datastore, improves upon
Pancake by removing the requirement for prior knowledge of
access sequences, and improves performance by compromising
on security guarantees, since providing completely uniform
accesses on the server is expensive. Our protocol does not
require prior access patterns and does not compromise on
security guarantees for improved performance.

IX. CONCLUSION AND FUTURE WORK

We presented a novel framework that augments regular
IT-PIR protocols (e.g., Goldberg’s IT-PIR) with aggregate
queries, e.g., SUM, COUNT, MEAN, Histogram, etc. We
proposed constructions of effective indexes of aggregate queries
comprising new standard aggregate vectors. When we conflux
these auxiliary data structures with the polynomial batch
coding technique, we open up new opportunities, i.e., enabling
aggregation with searching, sorting, ranking, and various
constraints. We evaluated them by benchmarking and simulating
several privacy-preserving real-world applications that enable
a user concerned about privacy to submit aggregate queries to
untrustful databases obliviously. Our results show that efficient
implementation of our framework on GPU can achieve fast
query response time while assuring the privacy of aggregate
queries. An interesting avenue for future research would be
to explore techniques that support more complex queries, e.g.,
various JOIN operations, potentially utilizing different batch
coding and indexing schemes.

ACKNOWLEDGEMENT

We thank Ryan Henry for collaborating on the prior work [7]
and for supervising the PhD dissertation research [49] of the
leading author, Syed Mahbub Hafiz, upon which the ideas
developed in this paper are built. We are thankful to NDSS
anonymous reviewers of this paper and the associated artifact,
including our anonymous shepherd, for their valuable comments
to improve the manuscript and artifact. This project is based
upon work supported partly by the UC Noyce Institute: Center
for Cybersecurity and Cyberintegrity (CCUBE).

REFERENCES

[1] S. Winer, “Suspect accused of endangering national security in spyware
theft plot,” 7 2018.

[2] S. S. Hsu, “Former acting homeland security inspector general indicted
in data theft of 250,000 workers,” 3 2020.

[3] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 965–981,
1998.

[4] T. Riise, “An introduction to information-theoretic private information
retrieval (it-pir),” Master’s thesis, The University of Bergen, 2019.

[5] C. Devet, I. Goldberg, and N. Heninger, “Optimally robust private
information retrieval,” in 21st USENIX Security Symposium (USENIX
Security 12), pp. 269–283, 2012.

15

[6] S. M. Hafiz and R. Henry, “A bit more than a bit is more than a bit
better,” Proceedings on Privacy Enhancing Technologies, vol. 2019,
no. 4, 2019.

[7] S. M. Hafiz and R. Henry, “Querying for queries: Indexes of queries for
efficient and expressive it-pir,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1361–1373,
2017.

[8] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and M. Zaharia,
“Splinter: Practical private queries on public data,” in 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17), pp. 299–313, 2017.

[9] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing,” in Annual
international conference on the theory and applications of cryptographic
techniques, pp. 337–367, Springer, 2015.

[10] Y. Zhao and H. Sun, “Information theoretic secure aggregation with
user dropouts,” IEEE Transactions on Information Theory, 2022.

[11] I. Ahmad, L. Sarker, D. Agrawal, A. El Abbadi, and T. Gupta, “Coeus:
A system for oblivious document ranking and retrieval,” in Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles,
pp. 672–690, 2021.

[12] Z. Gui, K. G. Paterson, and S. Patranabis, “Rethinking searchable
symmetric encryption,” Cryptology ePrint Archive, 2021.

[13] S. M. Hafiz, R. Henry, W. Wnuck, C. Gupta, and B. Vora, “smhafiz/pri-
vate_queries_it_pir: Private Aggregate Queries v1.0.0 Public Release,”
Dec. 2022.

[14] I. Goldberg, D. Wagner, and E. Brewer, “Privacy-enhancing technologies
for the internet,” in Proceedings IEEE COMPCON 97. Digest of Papers,
pp. 103–109, IEEE, 1997.

[15] H. T. Tavani and J. H. Moor, “Privacy protection, control of information,
and privacy-enhancing technologies,” ACM Sigcas Computers and
Society, vol. 31, no. 1, pp. 6–11, 2001.

[16] V. Seniv𝑐ar, B. Jerman-Blav 𝑧iv𝑐, and T. Klobuv𝑐ar, “Privacy-
enhancing technologies—approaches and development,” Computer Stan-
dards & Interfaces, vol. 25, no. 2, pp. 147–158, 2003.

[17] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22,
no. 11, pp. 612–613, 1979.

[18] A. Beimel, “Secret-sharing schemes: A survey,” in International confer-
ence on coding and cryptology, pp. 11–46, Springer, 2011.

[19] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” tech. rep., Naval Research Lab Washington
DC, 2004.

[20] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design of
a type iii anonymous remailer protocol,” in 2003 Symposium on Security
and Privacy, 2003., pp. 2–15, IEEE, 2003.

[21] P. Y. Ryan and S. A. Schneider, “Prêt à voter with re-encryption mixes,”
in European Symposium on Research in Computer Security, pp. 313–326,
Springer, 2006.

[22] D. Chaum, R. T. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L.
Rivest, P. Y. Ryan, E. Shen, A. T. Sherman, and P. L. Vora, “Scantegrity
ii: End-to-end verifiability by voters of optical scan elections through
confirmation codes,” IEEE transactions on information forensics and
security, vol. 4, no. 4, pp. 611–627, 2009.

[23] A. Henzinger, M. M. Hong, H. Corrigan-Gibbs, S. Meiklejohn, and
V. Vaikuntanathan, “One server for the price of two: Simple and fast
single-server private information retrieval,” in Usenix Security, vol. 23,
2023.

[24] S. J. Menon and D. J. Wu, “Spiral: Fast, high-rate single-server pir via
fhe composition,” in 2022 IEEE Symposium on Security and Privacy
(SP), pp. 930–947, IEEE, 2022.

[25] T. Gong, R. Henry, A. Psomas, and A. Kate, “More is merrier in
collusion mitigation,” arXiv preprint arXiv:2201.07740, 2022.

[26] Z. Wang, S.-C. S. Cheung, and Y. Luo, “Information-theoretic secure
multi-party computation with collusion deterrence,” IEEE Transactions
on Information Forensics and Security, vol. 12, no. 4, pp. 980–995,
2016.

[27] Z. Wang, Y. Luo, and S.-c. Cheung, “Efficient multi-party computation
with collusion-deterred secret sharing,” in 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 7401–7405, IEEE, 2014.

[28] I. Goldberg, “Improving the robustness of private information retrieval,”
in 2007 IEEE Symposium on Security and Privacy (SP’07), pp. 131–148,
IEEE, 2007.

[29] R. Henry, Y. Huang, and I. Goldberg, “One (block) size fits all: Pir and
spir with variable-length records via multi-block queries.,” in NDSS,
2013.

[30] B. Chor, N. Gilboa, and M. Naor, Private information retrieval by
keywords. Citeseer, 1997.

[31] R. Henry, “Polynomial batch codes for efficient it-pir,” Cryptology ePrint
Archive, 2016.

[32] P. Barrett, “Implementing the rivest shamir and adleman public key
encryption algorithm on a standard digital signal processor,” in Con-
ference on the Theory and Application of Cryptographic Techniques,
pp. 311–323, Springer, 1986.

[33] I. S. Duff, R. G. Grimes, and J. G. Lewis, “Sparse matrix test problems,”
ACM Transactions on Mathematical Software (TOMS), vol. 15, no. 1,
pp. 1–14, 1989.

[34] A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng,
M. Ghassemi, B. Moody, P. Szolovits, L. Anthony Celi, and R. G. Mark,
“Mimic-iii, a freely accessible critical care database,” Scientific data,
vol. 3, no. 1, pp. 1–9, 2016.

[35] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramchandran,
“Fastsecagg: Scalable secure aggregation for privacy-preserving federated
learning,” arXiv preprint arXiv:2009.11248, 2020.

[36] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
pp. 1175–1191, 2017.

[37] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for
federated learning,” IEEE Transactions on Signal Processing, vol. 70,
pp. 1142–1154, 2022.

[38] J. So, B. Güler, and A. S. Avestimehr, “Byzantine-resilient secure
federated learning,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 7, pp. 2168–2181, 2020.

[39] A. Bag, D. Talapatra, A. Rastogi, S. Patranabis, and D. Mukhopadhyay,
“Two-in-one-sse: Fast, scalable and storage-efficient searchable symmetric
encryption for conjunctive and disjunctive boolean queries,” in 23rd
Privacy Enhancing Technologies Symposium (PETS 2023), 2023.

[40] T. Mayberry, E.-O. Blass, and A. H. Chan, “Efficient private file retrieval
by combining oram and pir,” Cryptology ePrint Archive, 2013.

[41] E. Kushilevitz, S. Lu, and R. Ostrovsky, “On the (in) security of hash-
based oblivious ram and a new balancing scheme,” in Proceedings of
the twenty-third annual ACM-SIAM symposium on Discrete Algorithms,
pp. 143–156, SIAM, 2012.

[42] E. Shi, T. H. H. Chan, E. Stefanov, and M. Li, “Oblivious ram with o
((log n) 3) worst-case cost,” in Advances in Cryptology–ASIACRYPT
2011: 17th International Conference on the Theory and Application of
Cryptology and Information Security, Seoul, South Korea, December
4-8, 2011. Proceedings 17, pp. 197–214, Springer, 2011.

[43] E. Stefanov, M. v. Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren,
X. Yu, and S. Devadas, “Path oram: an extremely simple oblivious ram
protocol,” Journal of the ACM (JACM), vol. 65, no. 4, pp. 1–26, 2018.

[44] E. Stefanov and E. Shi, “Oblivistore: High performance oblivious cloud
storage,” in 2013 IEEE Symposium on Security and Privacy, pp. 253–267,
IEEE, 2013.

[45] E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious ram,”
arXiv preprint arXiv:1106.3652, 2011.

[46] Z. Wu and R. Li, “Obi: a multi-path oblivious ram for forward-and-
backward-secure searchable encryption.,” in NDSS, 2023.

[47] P. Grubbs, A. Khandelwal, M.-S. Lacharité, L. Brown, L. Li, R. Agarwal,
and T. Ristenpart, “Pancake: Frequency smoothing for encrypted data
stores,” in 29th USENIX Security Symposium (USENIX Security 20),
pp. 2451–2468, 2020.

[48] S. Maiyya, S. Vemula, D. Agrawal, A. El Abbadi, and F. Kerschbaum,
“Waffle: An online oblivious datastore for protecting data access patterns,”
Cryptology ePrint Archive, 2023.

[49] S. M. Hafiz, Private Information Retrieval in Practice. PhD thesis,
2021. Copyright - Database copyright ProQuest LLC; ProQuest does
not claim copyright in the individual underlying works; Last updated -
2023-06-21.

[50] L. Guan, X. F. Liu, W. Sun, H. Liang, and J. J. Zhu, “Census of twitter
users: Scraping and describing the national network of south korea,”
Plos one, vol. 17, no. 11, p. e0277549, 2022.

16

[51] B. Kusumasari and N. P. A. Prabowo, “Scraping social media data for
disaster communication: how the pattern of twitter users affects disasters
in asia and the pacific,” Natural Hazards, vol. 103, no. 3, pp. 3415–3435,
2020.

[52] M. H. Al Walid, D. Anisuzzaman, and A. S. Saif, “Data analysis
and visualization of continental cancer situation by twitter scraping,”
International Journal of Modern Education and Computer Science,
vol. 11, no. 7, p. 23, 2019.

[53] A. Singh, B. S. Prakash, and K. Chandrasekaran, “A comparison of
linear discriminant analysis and ridge classifier on twitter data,” in 2016
International Conference on Computing, Communication and Automation
(ICCCA), pp. 133–138, IEEE, 2016.

APPENDIX A
ATTRIBUTE DETAILS AND ADDITIONAL INFORMATION FOR

CASE STUDIES

Through our case studies, we attempt to demonstrate the
scalability of our protocol with respect to the number of
records in the database being queried. Each of our case studies
has a different number of rows in the database, with the
MIMIC-3 database having 4 million records. Additionally, we
further demonstrate the scalability of our protocol through
our benchmarking experiments, where we vary the number of
records in the database up to over 16 million. Our benchmarking
experiments suggest that the impact of a variation in the width
(number of columns) of the database is largely inconsequential
across the range of variation that was tested, motivating us
to focus more on the variation in the number of rows in the
database.

A. MIMIC 3
The fields required for constructing the indexes of aggregate

queries, performing filtering, and observing aggregations are the
type of admissions, ethnicity of patients, patient id, admission
and discharge time of patients, and drug dosage. To support
some of the queries, we perform some preprocessing on the
database to derive a few columns from existing columns in
the MIMIC 3 database. These involve computing a duration
of hospitalization field using the admit time and discharge
time fields, an additional column that demarcates whether the
ethnicity of any given patient is Hispanic or not, and finally,
an integer id column for type of admission. Overall, there are
9 fields, 4 Bytes each, resulting in each record being 36 Bytes
in size. However, in order to serve all the queries in this case
study, aggregation occurs only over 4 of those fields (admission
type id, field indicating whether a patient is Hispanic or not,
hospital duration and drug dosage), thus providing the option
of retaining only those fields when observing PIR throughput
for the queries.

B. Twitter
Publicly available databases are often scraped for usage in

research, and Hafiz-Henry [7] is an example of this, where they
scrape the publicly available IACR-ePrint archive. There are
other works [50]–[53] that scrape publicly available Tweets in
order to use them for their research. Besides, Twitter/X provides
a Python library (https://www.tweepy.org/) to do similar tasks,
which suggests that they are ethically not opposed to the usage
of publicly shared tweets. Scraped tweets have been used for
a broad spectrum of research, as exemplified by some of these
works, which cover social network analysis for social sciences,
identification of crucial needs and responses during disasters,
linking patients with common illnesses to form enriched datasets

for future research and comparison of the performance of
classifiers.

Among the scraped fields, the ones that we use for building
the indexes of aggregate queries and for aggregating are the
number of likes on the tweets, the number of reshares on each
tweet, the raw tweet itself, and also the user ids associated
with each tweet. Similar to the MIMIC 3 database, we perform
some preprocessing on the database to generate some additional
columns to aid with counting. The first additional column is an
integer user_id column with distinct integer values for every
distinct user in the database, and the other additional column
is a binary column to indicate whether a tweet was retweeted
at least once or not. We use 5 attributes per record, with each
record being 276 Bytes in size. However, since aggregation
occurs only over 3 of those fields (integer user id field, count
of likes, and the field that indicates whether a tweet has been
reshared or not), we are required only to retain those fields
(total 12 Bytes) to observe results of aggregations.
C. Yelp

We utilize the fields business id, stars, and category. We
perform preprocessing to add a field that indicates whether a
restaurant belongs to the category ‘Thai.’ This results in each
record possessing 4 attributes, each of size 4 Bytes, leading to
the size of each record being 16 Bytes.

APPENDIX B
SECURITY ANALYSIS IN THE LIGHT OF HAFIZ-HENRY [7]

The difference between our protocol and Goldberg’s IT-PIR
protocol is the inclusion of indexes of aggregate queries. We
prove that even after the inclusion of both a single index of
aggregate queries and u -batch index of aggregate queries, the
protocol is still t -private.

A. Single index of aggregate queries is t -private
We claim that a t -private Goldberg’s IT-PIR query through

a single (unbatched) index of aggregate queries Π is still t -
private. The definition of regular 𝑡-privacy requires, for every
coalition 𝐶 ⊆ [1. .ℓ] of at most t servers and for every record
index 𝑖 ∈ [1. .r], that

Pr
[
𝐼 = 𝑖

|︁|︁𝑄𝐶 = (Π; Q⃗𝑗1
, . . . , Q⃗𝑗t

)
]
= Pr

[
𝐼 = 𝑖

]
, (1)

where the random variables 𝐼 and 𝑄𝐶 denote respectively
describing the block index the user requests and the joint
distribution of share vectors it sends to servers in 𝐶 (including
the “hint” that the query would go through Π).

However, in case some of the blocks of D cannot be ac-
cessed through Π, Equation (1) requires modification. Multiple
different indexes of aggregate queries are likely to exist, each
having an associated conditional distribution for 𝐼, and it is not
adequate to constraint 𝐼 to span solely across blocks accessible
via Π. A sound definition would require incorporating the
notion of curious PIR servers updating their priors by utilizing
the information they gain upon observing which specific index
of aggregate queries a user request passes through. In order
to reflect this idea, we modify the t -privacy definition as
follows.

Definition B.1. Let D ∈ Fr ×s and let each Π1, . . . ,Π𝑛 be an
index of aggregate queries for D. Requests are t -private with
respect to Π1, . . . ,Π𝑛 if, for every coalition 𝐶 ⊆ [1. .ℓ] of at

17

most t servers, for every set of record indexes I ∈ [1. .r]𝛽 , and
for every index of aggregate queries Π ∈ {Π1, . . . ,Π𝑛},

Pr
[
𝐼 = I

|︁|︁𝑄𝐶 = (Π; Q⃗𝑗1
, . . . , Q⃗𝑗t

)
]
= Pr

[
𝐼 = I

|︁|︁ 𝐸Π

]
,

where 𝐼 and 𝑄𝐶 denote the random variables respectively
describing the record indexes the user requests (to aggregate)
and the joint distribution of query vectors it sends to servers in
𝐶 (including the “hint” that the query would go through Π), and
where 𝐸Π is the event that the request passes through Π. (Recall
the set I and its cardinality 𝛽 notations from Definition IV.1.)

Notice that the privacy guarantee is identical between a
t -private expressive query through a basic index of aggregate
queries Π and a t -private aggregate query over the database
DΠ ≔ Π ·D. This results in Definition B.1 reducing to a usual t -
privacy definition when Π ∈ Fr ×r is the identity matrix.

This observation, along with the t -privacy of Goldberg’s
IT-PIR [28], [31], leads us to the next theorem.

Theorem B.2. Let D ∈ Fr ×s and let each Π1, . . . ,Π𝑛 be a
simple index of aggregate queries for D. If Π ∈ {Π1, . . . ,Π𝑛}
with Π ∈ Fp ×r and if (𝑥1, Q⃗1), . . . , (𝑥ℓ , Q⃗ℓ) is a component-wise
(t +1, ℓ) -threshold sharing of a standard basis vector 𝑒 ∈ Fp

from a client, then ℓ tuples, (Π, 𝑥1, Q⃗1), . . . , (Π, 𝑥ℓ , Q⃗ℓ), are
t -private with respect to Π1, . . . ,Π𝑛.

Proof: We consider a coalition 𝐶 comprising t servers and
fix I ∈ [1. .r]𝛽 and Π ∈ {Π1, . . . ,Π𝑛} with Π ∈ Fp ×r . 𝐼 denotes
the random variables describing the indexes (within D) of the
blocks (to aggregate and) requested by the user, 𝐽 denotes the
index of the standard basis vector encoded by the user in the
query, and 𝑄𝐶 corresponds to the joint distribution of share
vectors, along with the “hint” indicating that the query passes
through the index of aggregate queries matrix Π, sent to the
servers in 𝐶.

As per Definition B.1, we need to show that

Pr[𝐼 = I | 𝑄𝐶 = (Π; Q⃗𝑗1
, . . . , Q⃗𝑗t

)] = Pr[𝐼 = I | 𝐸Π],

where 𝐸Π denotes the event that the user’s request is via Π.
The key observation underlying the proof is that

Pr[𝐼 = I | 𝐸Π] = Pr[𝑒𝐽 ·Π = 𝑒I | 𝐸Π]

and Pr[𝐼 = I | 𝑄𝐶 = (Π; Q⃗𝑗1
, . . . , Q⃗𝑗t

)] = Pr[𝑒𝐽 ·Π = 𝑒I | 𝑄𝐶 =

(Π; Q⃗𝑗1
, . . . , Q⃗𝑗t

)] .
Therefore, we have

Pr
[
𝐼 = I

|︁|︁ 𝐸Π

]
= Pr

[
𝑒𝐽 ·Π = 𝑒I | 𝐸Π

]
= Pr

[
𝑒𝐽 ·Π = 𝑒I

|︁|︁𝑄𝐶 = (Π; Q⃗𝑗1
, . . . , Q⃗𝑗t

)
]

= Pr
[
𝐼 = I

|︁|︁𝑄𝐶 = (Π; Q⃗𝑗1
, . . . , Q⃗𝑗t

)
]
.

Here, the second line utilizes the t -privacy of secret shares,
(𝑥1, Q⃗1), . . . , (𝑥ℓ , Q⃗ℓ), of the query vector received by ℓ servers,
individually.

B. u -batch index of aggregate queries is t -private
Here, we prove Theorem IV.7.

Theorem B.3. Fix u > 1 and 𝑗 ∈ [0. .u − 1], and let Π =(
Π1, . . . ,Πℓ

)
∈
(
Fp ×r)ℓ be ℓ buckets of a u -batch index of

aggregate queries with bucket (server) coordinates 𝑥1, . . . , 𝑥ℓ ∈
F \ {0, . . . ,u − 1}. If (𝑥1, Q⃗𝑗1

), . . . , (𝑥ℓ , Q⃗𝑗ℓ
) is a sequence of

component-wise (t +1, ℓ) -threshold shares of a standard basis

vector 𝑒 ∈ Fp encoded at 𝑥 = 𝑗 , then (Π, 𝑥1, Q⃗𝑗1
), . . . , (Π, 𝑥ℓ , Q⃗𝑗ℓ

)
is t -private with respect to Π.

Proof: The proof for this theorem is similar to that of
Theorem B.2. We consider a coalition 𝐶 comprising t servers
and fix I ∈ [1. .r]𝛽 and Π ∈ {Π1, . . . ,Π𝑛} with Π ∈ Fp ×r . 𝐼
denotes the random variables describing the indexes (within
D) of the blocks requested by the user, 𝐽 denotes the index of
the standard basis vector encoded by the user in the query, 𝐾
denotes the 𝑥-coordinate at which the standard basis vector is
encoded, and 𝑄𝐶 corresponds to the joint distribution of share
vectors, along with the “hint” indicating that the query passes
through the u -batch index of aggregate queries Π, sent to the
servers in 𝐶.

As per Definition B.1, we need to show that

Pr[𝐼 = I | 𝑄𝐶 = (Π; Q⃗𝑗1
, . . . , Q⃗𝑗t

)] = Pr[𝐼 = I | 𝐸Π],

where 𝐸Π denotes the event that the user’s request is through
Π. The key observation is that

Pr[𝐼 = I | 𝐸Π] =
u−1∑
𝑘=0

Pr[𝑒𝐽 ·𝜋𝑘 = 𝑒I | 𝐾 = 𝑘, 𝐸Π] ·Pr[𝐾 = 𝑘 | 𝐸Π]

and Pr[𝐼 = I | 𝑄𝐶 = (Π; Q⃗𝑗1
, . . . , Q⃗𝑗t

)] =
∑u−1

𝑘=0 Pr[𝑒𝐽 · 𝜋𝑘 = 𝑒I |
𝐾 = 𝑘,𝑄𝐶 = (Π; Q⃗𝑗1

, . . . , Q⃗𝑗t
)] ·Pr[𝐾 = 𝑘 | 𝐸Π].

Therefore, we have

Pr
[
𝐼 =I

|︁|︁ 𝐸Π

]
=

u−1∑
𝑘=0

Pr[𝑒𝐽 ·𝜋𝑘 = 𝑒I | 𝐾 = 𝑘, 𝐸Π] ·Pr[𝐾 = 𝑘 | 𝐸Π]

=

u−1∑
𝑘=0

Pr[𝑒𝐽 ·𝜋𝑘 = 𝑒I | 𝐾 = 𝑘,𝑄𝐶 = (Π; Q⃗𝑗1
, ., Q⃗𝑗t

)]

·Pr[𝐾 = 𝑘 | 𝐸Π]
=Pr

[
𝐼 = I

|︁|︁𝑄𝐶 = (Π; Q⃗𝑗1
, . . . , Q⃗𝑗t

)
]
,

Here, the second line utilizes the t -privacy of secret shares,
(𝑥1, Q⃗1), . . . , (𝑥ℓ , Q⃗ℓ), of the query vector received by ℓ servers,
individually.

Corollary B.4. The proposed private aggregate queries proto-
col is a t -private IT-PIR as long as at least t +u of ℓ servers
respond correctly.

For u = 1, i.e., a single index of aggregate queries, no
batching occurred, we have—

Corollary B.5. The proposed private aggregate queries proto-
col is a t -private IT-PIR as long as at least t +1 of ℓ servers
respond correctly.

18

APPENDIX C
ARTIFACT APPENDIX

In this appendix, we will provide a high-level guide for
the usage of our codebase and for reproducing the results
presented in our work. Our experiments were performed
on a server with 256GB of RAM and 5 GPUs. Software
installations required for using our codebase include PERCY++,
Socket++, CUDA, NTL, and GMP. The artifact provided
at https://github.com/smhafiz/private_queries_it_pir/tree/v1.0.0
supports the research in the paper by facilitating practi-
cal, real-world implementations of our protocol and also
provides the capability for benchmarking the protocol on
different hardware configurations before actual implementation
in live databases. https://github.com/smhafiz/private_queries_
it_pir/blob/v1.0.0/AE_Doc_Revised.pdf provides a detailed
instruction manual for using our code for benchmarking,
validating our results, as well as implementation on other
datasets. This instruction manual categorically links each of
our major results, both benchmarking as well as case studies,
to our artifact in the repository.

A. Description & Requirements

1) How to access: The codebase for our artifact and the cor-
responding detailed instruction manual are available at the pub-
licly available repository: https://github.com/smhafiz/private_
queries_it_pir/tree/v1.0.0. Additionally, the AEC-approved ar-
tifact version is available at the following DOI link: https:
//doi.org/10.5281/zenodo.10225325.

2) Hardware Requirements: The experimentation server
had 256GiB RAM and 5 GPU cores. The protocol can be
implemented on servers with fewer hardware resources as
well, with an expected impact on performance. However, it is
recommended to use a server with a GPU.

3) Software Requirements: Experiments were performed on
a Ubuntu 22.04 server with kernel-5.4.0-88-generic and GCC
version 9.4.0. Additionally, the list of dependencies required
for running the codes are:

• GMP 6.3.0
• NTL 11.5.1
• Socket++
• Percy++ 1.0.0

Further instructions for environment setup are available
in our detailed instruction manual available at
https://github.com/smhafiz/private_queries_it_pir/blob/v1.
0.0/AE_Doc_Revised.pdf.

4) Benchmark: While the raw datasets used for our exper-
iments are not part of the artifact, the indexes of aggregate
queries for replicating our case study experiments are part of
the artifact and stored in compressed column storage (CCS)
format as outlined in our detailed instruction manual.

B. Artifact Installation & Configuration

In order to configure the artifact, all the files and folders
from the repository https://github.com/smhafiz/private_queries_
it_pir/tree/v1.0.0 need to be downloaded into the machine being
used for running the experiments. Then, instructions enlisted
at https://github.com/smhafiz/private_queries_it_pir/blob/v1.0.0/

AE_Doc_Revised.pdf will have to be followed to complete the
configuration of the environment. These instructions outline
the installation of the dependencies and the corresponding
configuration steps.

C. Experiment Workflow

The results section can be divided into two major sections:
benchmarking and case studies. The setup and configuration
mentioned in the previous section must precede all steps of
either experimental workflow. The experimental workflow for
the benchmarking results is straightforward, as we have stan-
dalone scripts for each benchmarking experiment for replicating
them. For the case studies, the experimental flow is outlined in
detail in the instruction manual at https://github.com/smhafiz/
private_queries_it_pir/blob/v1.0.0/AE_Doc_Revised.pdf. It also
includes a comprehensive example to help replicate the results
and use the artifact in general. The workflow follows the
sequence of subsections in the Case Studies section in the
instruction manual. These are:

• Real-world Dataset collection (GPU not required)
• Scanning database and generating the IAQ matrices (GPU

not required)
• Batching the IAQ matrices (GPU not required)
• Client query vector and IAQ sparse matrix multiplication

time (ideally GPU required)
• Server response generation time (GPU not required)

D. Major Claims

The major claims regarding the artifact are as fol-
lows:

• (Claim 1): Our benchmarking experiments demonstrate
the scalability of our protocol, and our artifact will
help demonstrate similar trends. Also, provided testing is
performed on similar hardware, our artifact will reliably
reproduce the results of our benchmarking experiments.

• (Claim 2): Our protocol can be implemented in several
real-world databases, as demonstrated by our case studies,
and typically outperforms the baseline Goldberg’s IT-PIR
protocol. The artifact will be able to reiterate this claim
and help reproduce the results of our case studies. The
artifact can also be used with minor modifications for
implementation on other datasets.

E. Evaluation

All the detailed setup, configuration steps, operational steps,
and experimental procedures for the evaluation of our protocol
through our artifact are provided at https://github.com/smhafiz/
private_queries_it_pir/blob/v1.0.0/AE_Doc_Revised.pdf. Our
experiments can be broadly categorized into the benchmarking
experiments and the case studies. The document first enlists the
necessary steps for reproducing the benchmarking experiments,
linking each major result in our benchmarking section to
experimentation instructions. Results can be reproduced if the
same hardware configuration as ours is used. The document
also provides a detailed set of instructions on how to perform
our case study experiments. Under the assumption that the same
hardware specifications are available during the evaluation of
the artifact as ours, the time required for generating the case

19

https://github.com/smhafiz/private_queries_it_pir/tree/v1.0.0
https://github.com/smhafiz/private_queries_it_pir/blob/v1.0.0/AE_Doc_Revised.pdf
https://github.com/smhafiz/private_queries_it_pir/blob/v1.0.0/AE_Doc_Revised.pdf
https://github.com/smhafiz/private_queries_it_pir/tree/v1.0.0
https://github.com/smhafiz/private_queries_it_pir/tree/v1.0.0
https://doi.org/10.5281/zenodo.10225325
https://doi.org/10.5281/zenodo.10225325
https://github.com/smhafiz/private_queries_it_pir/blob/v1.0.0/AE_Doc_Revised.pdf
https://github.com/smhafiz/private_queries_it_pir/blob/v1.0.0/AE_Doc_Revised.pdf
https://github.com/smhafiz/private_queries_it_pir/tree/v1.0.0
https://github.com/smhafiz/private_queries_it_pir/tree/v1.0.0
https://github.com/smhafiz/private_queries_it_pir/blob/v1.0.0/AE_Doc_Revised.pdf
https://github.com/smhafiz/private_queries_it_pir/blob/v1.0.0/AE_Doc_Revised.pdf
https://github.com/smhafiz/private_queries_it_pir/blob/v1.0.0/AE_Doc_Revised.pdf
https://github.com/smhafiz/private_queries_it_pir/blob/v1.0.0/AE_Doc_Revised.pdf
https://github.com/smhafiz/private_queries_it_pir/blob/v1.0.0/AE_Doc_Revised.pdf
https://github.com/smhafiz/private_queries_it_pir/blob/v1.0.0/AE_Doc_Revised.pdf

study results should be as indicated in the results, and most
of the benchmarking experiments should be trivial (with the
exception of Figure 5, which can take up to a few hours). Error
bars for the vast majority of our experiments were found to be
trivial, and that should be the case for any evaluation performed
using our artifact.

1) Preparation: The steps outlined for preparing and con-
figuring the software environment, as mentioned earlier and
in the instruction manual, are to be performed first before any
experiments can be reproduced.

2) Execution: The benchmarking results are obtained by
running the individual scripts for the corresponding experiments.
In order to execute the case study scripts, the codes associated
with each section of the experimental workflow outlined earlier
must be executed in sequence as per the detailed instructions
in the manual. Please refer to the example at the end of the
instruction manual to get a sense of the exact commands that
need to be executed.

3) Results: The results for the benchmarking experiments
are stored in corresponding output files and can be plotted
to replicate the graphs. For the case studies, most results are
printed out into the terminal. Details on how to observe the
results are available in the instruction manual.

F. Customization

Our artifact allows several kinds of customization. For the
benchmarking experiments, benchmarks can be obtained over
different ranges of values for parameters and for different
fixed values of parameters by making small tweaks inside
the shell script. The variable values can be altered to desired
values or ranges of values to obtain alternative benchmarks.
The case study results are specific to the datasets we used,
but in order to use the artifact for other datasets, the steps in
the instruction manual can be used to prepare the indexes of
aggregate queries for other datasets and queries. Once they
are stored in compressed column storage (CCS) format, the
succeeding steps in the instruction manual should allow a user
to obtain the desired server response times.

G. Notes

This appendix only provides a high-level guideline
for using our artifact and understanding the experimental
flow. Our instruction manual available with the artifact
at https://github.com/smhafiz/private_queries_it_pir/blob/v1.0.
0/AE_Doc_Revised.pdf is a more comprehensive and thorough
walkthrough of how to use the artifact. It contains details
regarding each step and outlines the exact instructions that need
to be executed. We strongly recommend reading the manual
for a more in-depth understanding of how to use our artifact
to perform our experiments as well as extend it for further
experiments with new datasets.

20

https://github.com/smhafiz/private_queries_it_pir/blob/v1.0.0/AE_Doc_Revised.pdf
https://github.com/smhafiz/private_queries_it_pir/blob/v1.0.0/AE_Doc_Revised.pdf

	Introduction
	Threat Model
	Background
	Vector-Matrix PIR Model
	Polynomial Batch Coding
	Index of Queries Technique

	Private Aggregate Queries
	Indexes of aggregate queries
	Various Indexes of Aggregate Queries
	Indexes of SUM Queries
	Indexes of COUNT and Histogram Queries
	Indexes of MIN and MAX Queries:
	Indexes of Mean Queries:

	Batch Indexes of Aggregate Queries

	Evaluation Results
	Benchmarking Experiments
	Practical Applications
	Case study I: MIMIC3 Medical Database
	Case Study II: Twitter Database
	Case Study III: Yelp Database

	Discussion
	Database Updates
	Minimum Configuration
	Byzantine Robustness
	Comparison with Splinter

	Additional Experiments
	Server Response Generation For Larger Databases
	Benchmarking Query Throughput on CPU

	Related Work
	Conclusion and Future Work
	References
	Appendix A: Attribute Details and Additional Information for Case Studies
	MIMIC 3
	Twitter
	Yelp

	Appendix B: Security Analysis in the light of Hafiz-Henry hafiz2017querying
	Single index of aggregate queries is t-private
	-0.75muu0.75mu-batch index of aggregate queries is t-private

	Appendix C: Artifact Appendix
	Description & Requirements
	How to access
	Hardware Requirements
	Software Requirements
	Benchmark

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Preparation
	Execution
	Results

	Customization
	Notes

