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Abstract—The proliferation of consumer IoT products in our
daily lives has raised the need for secure device authentication and
access control. Unfortunately, these resource-constrained devices
typically use token-based authentication, which is vulnerable to
token compromise attacks that allow attackers to impersonate the
devices and perform malicious operations by stealing the access
token. Using hardware fingerprints to secure their authentication
is a promising way to mitigate these threats. However, once
attackers have stolen some hardware fingerprints (e.g., via MitM
attacks), they can bypass the hardware authentication by training
a machine learning model to mimic fingerprints or by reusing
these fingerprints to craft forged requests.

In this paper, we present MCU-Token, a secure hardware
fingerprinting framework for MCU-based IoT devices even if the
cryptographic mechanisms (e.g., private keys) are compromised.
MCU-Token can be easily integrated into various IoT devices by
simply adding a short hardware fingerprint-based token to the
existing payload. To prevent the reuse of this token, we propose
a message mapping approach that binds the token to a specific
request by generating the hardware fingerprints based on the
request payload. To defeat the machine learning attacks, we mix
the valid fingerprints with poisoning data so that attackers cannot
train a usable model with the leaked tokens. MCU-Token can
defend against adversaries who may replay, craft, and offload
the requests via MitM or use both hardware (e.g., use identical
devices) and software (e.g., machine learning attacks) strategies to
mimic the fingerprints. The system evaluation shows that MCU-
Token can achieve high accuracy (over 97%) with low overhead
across various IoT devices and application scenarios.

I. INTRODUCTION

The emerging Internet of Things (IoT) technologies have
been widely applied in various areas of our daily life. For
instance, passive keyless entry (PKE) systems [36] can re-
motely unlock and activate the vehicles with a small key fob,
and IoT hardware security tokens (HSTs) [11] are used to
protect crypto wallets or login websites as universal two-factor
(U2F) authentication. The cost-effective and power-efficient
Microcontrollers (MCUs) are widely adopted by these IoT

* The first two authors contributed equally to this paper.
® Qian Wang and Qi Li are the corresponding authors.

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA

ISBN 1-891562-93-2

https://dx.doi.org/10.14722/ndss.2024.241231
www.ndss-symposium.org

devices since they integrate CPU, RAM, ROM, and peripherals
on a single chip. Meanwhile, the low cost and high integration
also limit the hardware resources available on these devices
(e.g., 256KB memory, 64-300MHz clock frequency). Also,
IoT devices lack of hardware protection such as memory
management unit (MMU) or trusted execution environment
(TEE), rendering them less secure than mobile phones and
laptops.

It is essential to ensure that MCU-based IoT devices are
securely authenticated when interacting with other devices
or the cloud [I], [33]. However, the existing token-based
authentication solutions (e.g., JSON Web Token [5] and rolling
code [9]) suffer from various attacks due to the constrained
system resources and insecure implementations [63], [67]. For
instance, Tesla key fobs are vulnerable to key clone attacks [3]
and RFID/BLE relay attacks [10], [62], which allow attackers
to activate vehicles by masquerading as valid keys or relaying
communication to the real owner’s keys. Moreover, single-
function devices (e.g., U2F hardware keys [48] and hardware
wallets [58]) can be easily cloned [1], [7] once attackers obtain
the internal private keys during manufacturing, retail, or usage
stages. Similarly, smart homes are at risk of token compromise
attacks, which enable adversaries to impersonate legitimate
devices, access user data, manipulate device status, and trigger
malicious rules [30], [29].

The root cause of attacks against these IoT devices is
that they can be impersonated, e.g., by compromising the
communication protocols and secrets, so that the fake devices
can generate the same requests to deceive their peers. Although
unclonable hardware authentication factors have been proposed
to prevent these attacks [21], [38], [24], [2], [49], [56], they
are ineffective when they are applied to MCU-based I[oT
devices. First, most of the required hardware features (e.g.,
magnetic sensor [21], NAND-Flash [24] and TEE [2]) are not
supported by most commercial-off-the-shell (COTS) MCUs.
Although physically unclonable functions (PUF) [41] can
produce device-specific crypto keys or fingerprints, they need
extra integrity circuit (IC) manufacturing procedures to provide
special circuits.

Second, it is still difficult to prevent the man in the middle
(MitM) adversaries [61], [46], [33] that can mimic the hard-
ware fingerprints via machine learning (ML) attacks or reuse
previous fingerprints in forged requests. In particular, machine
learning based attacks are the main threat to these hardware
feature based solutions [51], [40], [57], where the attackers can



collect the leaked fingerprints to train a ML model to mimic
the hardware features and predict valid unused fingerprints.
MitM attacks are real threats for various IoT devices including
USB devices [13] (e.g., U2F and hardware wallets [25]),
short distance devices (e.g., BLE and RFID Passive Keyless
Entry (PKE) [10]), and WiFi and Ethernet devices (e.g.,
Smart Home [30]). Although secure communication protocols
can prevent attackers from stealing fingerprints [56], [21],
numerous real-world exploits indicate that it can still break
these secure communications by constructing different attacks,
e.g., remote exploiting [17], [18], stealing hard-coded crypto
keys [6], and investigating unencrypted traffic in millions of
IoT devices [23], [19].

In this paper, we develop a new authentication system
called MCU-Token for MCU-based IoT devices, which gen-
erates access tokens based on the commonly supported hard-
ware features. MCU-Token can ensure authentication security
even if the existing cryptographic keys and algorithms are
compromised. In particular, it can prevent MitM adversaries
from crafting requests to reuse valid fingerprints when message
integrity (i.e., signature) cannot be guaranteed. To achieve this,
we design a one-round protocol that uses fingerprints to ensure
the message’s integrity and thus cannot be intercepted. We
map the message with a nonce to a hash digest and utilize
the digest bits to decide hardware fingerprinting methods
and settings. MCU-Token can support six different hardware
features to generate different fingerprints with thousands of
different configurations. Consequently, it can produce tens of
thousands of different fingerprints enabling multiple unique
fingerprints for each request. Thus, once an attacker attempts
to reuse a fingerprint, our MCU-Token backend authentication
service can easily detect the attack by identifying a mismatch
between the messages and fingerprints.

Moreover, in order to prevent attackers from obtaining fin-
gerprints for model training even when the message confiden-
tiality (e.g., algorithms and encryption keys) is compromised,
MCU-Token injects noises to fingerprints that the attacker
models trained on the fingerprinted are poisoned. If an attacker
uses leaked fingerprints to train his model, the poisoned
data cannot be used to train the model to accurately predict
new fingerprints, and the MCU-Token backend authentication
service can easily verify if the request is legitimate by checking
if a portion of the fingerprints is valid. Thus, it can effectively
defend against machine learning based attacks that cannot be
throttled by existing hardware feature based defenses such as
PUF [40], [51]. Meanwhile, data poisoning does not affect
backend authentication because it uses multiple fingerprints
for authentication each time, and only a few fingerprints are
poisoned, allowing the unpoisoned ones to successfully pass
authentication.

MCU-Token does not rely on the security of existing
cryptography mechanisms on IoT devices considering many
devices may lack hardware resources to enable strong encryp-
tion protection. Furthermore, MCU-Token is lightweight so
that it can be applied on various resource-constraint embedded
devices as it has small memory and storage footprints. The
MCU-Token backend authentication service can also be easily
deployed on normal IoT devices or on the cloud as it only uses
simple machine learning algorithms such as RandomForest and
ExtraTrees.

We prototype MCU-Token by ~5100 LoC including
~3900 lines of C code for the client runtime and ~1200
lines of Python code for the MCU-Token’s backend service,
which is open source on Github'. We conduct experiments
on different real-world devices, which demonstrate that MCU-
Token is robust to existing attacks. Due to the difficulty of
breaking our fingerprint binding mechanism, e.g., by manipu-
lating payloads, attackers can hardly forge messages and reuse
the fingerprints to bypass MCU-Token. The success rate of
mimicking fingerprints via hardware or software approaches
is less than 1%. In the meantime, MCU-Token achieves an
average 97.78% true positive rate (TPR) with 4.87% false
positive rate (FPR) in identifying 60 devices with 3 different
MCUs. Moreover, the incurred overhead is reasonable low. The
additional power consumption is less than 4% and the average
extra authentication time is around 31ms.

In summary, our contributions are three-fold:

e We perform a systematic study on hardware features
for fingerprinting the COTS MCUs. We explore six key
hardware features and theoretically analyze and experi-
mentally verify the sources of hardware uniqueness.

e We propose a new hardware fingerprint based authenti-
cation mechanism called MCU-Token, which utilizes a
novel ML based design to protect device authentication
without relying on cryptographic mechanisms. It binds
fingerprints to specific requests and injects poisoned data
to defeat different adaptive attacks, e.g., ML based at-
tacks.

e We prototype MCU-Token and demonstrate its usability
and performance by extensively evaluating it on 60 IoT
devices of three types across three real-world scenarios,
i.e., PKE/BLE key fobs, smart home sensors, and FIDO-
U2F [12] hardware tokens.

II. BACKGROUND
A. Hardware-based Authentication

Various hardware-based authentication mechanisms [24],
[14] are proposed to secure IoT authentication. These ap-
proaches consider various hardware features such as physical
signal characteristics [36], [26], magnetic characteristics [21],
sensors with human interaction [49], [38], [59], or physically
unclonable functions (PUFs) [42]. Based on the authentication
methods, these approaches can be categorized into two types.

Hardware Fingerprint as New Device Identifier. These
approaches utilize hardware-derived data to generate unique
device fingerprints as the device identifier to distinguish dif-
ferent devices. The fingerprint data can be uploaded along
with the payload or concealed as side-channel information,
like physical signal strength [36] or time delay [24].

Hardware-Involved Challenge Response Authentication
Protocol. Instead of directly identifying devices via static
device identifiers generated by hardware features, challenge-
response based approaches utilize diverse challenges as input
to the hardware features, obtaining variable responses for
authentication. For instance, the arbiter PUF [40], [15] can
use different bits as input and statistic the relative delays in
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Fig. 1: Machine learning attacks to PUF-based challenge-
response authentication. @ Attackers eavesdrop on the com-
munication to steal challenge-response pairs. @ Attackers learn
the mapping between challenges and responses via machine
learning and mimic the responses to pass the authentication.

the paths of the circuit as responses. These approaches collect
enough challenge-response pairs (CRPs) and store them as
key-value data [66] in the server or learned by ML models [20]
during the device enrollment phase. In the authentication
phase, the corresponding CRP is retrieved to verify if the
response is coincident with a specific challenge. Human in-
teractions can also be used as challenges, e.g. T2Pair [38]
employs users’ button or twist operations as challenges and
validates the received actions on the server.

B. Attacks to Hardware-based Authentication

The MitM adversaries should be considered in IoT scenar-
ios, as many IoT devices are resource constraint to adopt a
secure implementation of TLS with SSL pinning [46], [27],
or even do not encrypt the transmitted messages [19]. Under
an insecure communication channel, attackers can launch two
typical attacks:

Fingerprint Mimic Attacks. Attackers may attempt to repli-
cate the hardware characteristics of target devices using iden-
tical hardware or alternative devices such as FPGAs. This
threat is addressed by existing hardware fingerprinting stud-
ies because no two devices are truly identical at IC level,
and devices of the same type can still be discriminated by
their micro hardware features. However, attackers can also
use software approaches (e.g., machine learning) to mimic
the hardware features. Figure 1 shows the steps of machine
learning attacks, where attackers can train a model based on a
few existing fingerprints and mimic the new fingerprints. ML
attack is a common threat to both hardware fingerprints based
device identifiers and the challenge-response based authenti-
cation protocols. For instance, attackers can easily predict the
responses of a given challenge for all existing PUF [51]. The
hardware features of MCU can also be easily mimicked by
machine learning. As shown in Figure 2, the features used by
[IoT-ID [56] can be mimicked with high accuracy after attackers
gain less than 10 unique fingerprints.

Fingerprint Reuse Attacks. When the communication chan-
nel is insecure, attackers can eavesdrop and relay existing
requests [63], [10], which is prevalent in existing RFID and
BLE car key fobs. MitM attackers can also replay the existing
requests to reuse the fingerprint or offload the challenges of
servers to real devices to get valid responses. In this case,
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Fig. 2: Machine learning attack on IoT-ID [56]’s ADC feature.

Table I: The drawbacks in existing hardware-based authenti-
cation approaches. O, @, and @ refer to unsupported, partial
support, and full support respectively.

Approaches Su]{port Resist Mimic Resist Reuse
COTS MCU Attacks Attacks
Signals [26], [35], [36], [32] (] [ J ()
Human Interactions [38], [49], [59], [39] ) (] O
PUF [15], [40], [41], [42], [45] o o (©)
Hardware Fingerprints [37], [21], [24], [44] Qo Qo (@]
Multiple Hardware Features (MCU-Token) [ } [ ] [ }

they do not need to mimic and generate fake fingerprints
but can reuse the valid devices’ real fingerprints. They can
further modify communication data while reusing the existing
authentication data (e.g., hardware fingerprints, PUF response),
such as changing less sensitive commands (e.g., “turn on the
light") into dangerous commands (e.g., “open door") after
compromising the encryption and signature secrets.

C. Limitations of Existing Hardware-based Authentication

As shown in Table I, existing works including both device
identifier based or challenge response based approaches are
all vulnerable to fingerprint mimic attacks and fingerprint
reuse attacks. Currently, only signal-based approaches [35] can
resist these attacks as the physical radio features are difficult
to mimic and replicate. However, the physical signal-based
approaches can only work on wireless (e.g., RFID [36] and
BLE [32]) devices. This is also a common flaw of most of the
existing works (except IoT-ID) that can only work on dedicated
devices and are not practicable for COTS MCU. PUF-based
approaches usually require special IC fabrication processes
to produce hardware discrepancies, e.g., the arbiter PUF [42]
requires additional arbiter circuitry and is only supported by
dedicated devices (e.g., some types of NXP MCUs [8]).

[oT-ID [56] is the only work that supports general MCU-
based IoT devices, which use commonly supported hardware
features such as clock oscillators and ADC. However, it does
not take adversaries into account and the hardware-based
device identifier is just another access token that can be stolen
by the attackers during transmission or at the server. Thus, it
is still vulnerable to token compromise attacks.

III. THREAT MODEL AND ASSUMPTION

We assume attackers may have compromised the commu-
nication channel and stolen the authentication tokens of valid



devices. Their attack goal is to impersonate legitimate devices
to perform malicious operations, such as unlocking a car by
mimicing a key fob or triggering the execution [29] of trigger-
action rules in smart homes by event spoofing [30].

As the attackers have compromised both the access control
token and the encryption and signing mechanisms (if existing),
they can eavesdrop and manipulate the requests of real devices
or even impersonate the devices to send fake requests. To
bypass the potential additional hardware-based authentication
mechanisms (e.g., MCU-Token), they can perform fingerprint
mimic attacks to generate valid fingerprint data via software or
hardware approaches, such as collecting the existing hardware
fingerprint data and training their own models to mimic the
hardware behaviors (software mimic attack) or using the same
types of hardware to mimic the real devices (hardware mimic
attack). They can also reuse previous authentication informa-
tion to send fake requests or forward the packages between
the devices and the server (i.e., replay attack), or alter requests
(i.e., tampering attack).

We assume that the collection of training data can take
place in a secure environment, such as during device manu-
facturing in a factory, and that the training mode cannot be
triggered after the training phase. Moreover, we assume that
the device is not compromised by attackers, either locally or
remotely. Adversaries who have compromised the device are
beyond our scope, and we discuss them in § VIIL.

IV. SYSTEM DESIGN
A. MCU-Token Overview

Figure 3 shows the overall architecture of MCU-Token.
For a sensitive request, the client runtime on local devices
can generate a hardware fingerprint based access token and
send this token along with the requests. A client fingerprint
generation module is integrated into the devices’ firmware for
generating an extra hardware fingerprint based access token
that is sent along with the requests. A backend fingerprint
verification module can be deployed on other devices or on
the cloud for validating the token.

MCU-Token generates fingerprints based on the message
digest of corresponding request. Since fingerprints derived
from static features may still be stolen, we use non-repetitive
fingerprints for different requests. Similar to the challenge
response based approaches, our fingerprint is created by
changing the fingerprint generation configurations (e.g., using
different hardware features) to produce unique fingerprint
values. To prevent attackers from impersonating the backend
to send fake challenges and directly read out the devices’
responses, we adopt a one-round protocol and autonomously
generate the challenges from the local devices by adopting the
client’s message digest as the challenge code. In this way, our
fingerprint is bound to specific requests and attackers can no
longer reuse fingerprints to craft requests.

MCU-Token protects the fingerprints by randomly mixing
poisoned results on the responses. Our one-round protocols
can still be exploited by ML attacks as our message digesting
rules are known to attackers. They can retrieve the original
challenges and responses by eavesdropping on the commu-
nication and training a model to predict the responses. It is

Client
Message Mapping
MCcU
'T111] Voltage Number Rate Address
E [ E OOIO .:
Hardware 8%8\ é [:]

Features  ,nc RTC SRAM

l

Raw Fingerprints

Request

MCU-Token<-
! Poisoning
' Poisoned Fingerprints
1
N
:Backend
1
: Predicted
! Fingerprints Fingerprint
: Predictor
: Verifier
:
i

Backend

Fig. 3: The architecture of MCU-Token. A hardware
fingerprint-based token (i.e., MCU-Token) is sent along with
the request from devices. The token mixes multiple valid
fingerprint values (green block) with poisoned results (red
block), and the backend verifies the token by comparing the
fingerprints with the predicted values.

Request Message Mapping

Hash(0x0,1700902800)
=101]10101| 0011

taskiy  taskyrgs

/api/1/vehicles/{id}

_—

"emd": DOOR_UNLOCK (0x0),

"nonce": 1700902800 Data Poisoning Hardware Features

"token™: [2631, | «——————— DAC_ADC(10101,0011)
} [2631, 41822]

Backend —
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difficult to make the hardware fingerprints unpredictable to the
attackers as the responses of dedicated hardware features are
simple to be fitted by machine learning. A more practical way
is to prevent attackers from obtaining enough valid fingerprints
to train their model. We choose to add poisoned data to
the responses by changing some of the fingerprints to fake
data, making attackers cannot distinguish the valid data and
fake data. If they train their model with the poisoned data,
their model may fail to precisely predict the responses, which
can be easily identified by our backend verification module.



In contrast, MCU-Token is only trained with valid data in
the device binding phase and does not update the model
with poisoned data. As such, MCU-Token can resist machine
learning attacks as our backend module is not affected by the
poisoned data and can still authenticate devices based on the
remaining unchanged fingerprint data.

Figure 4 shows a running example of using MCU-Token
in the Telsa BLE car key. For sensitive commands, such as
unlocking the car door, MCU-Token is triggered to add a
token to the request. The token consists of two fingerprints
generated by different hardware features. Both the client and
the backend implement the same message mapping algorithms
that use the digest bits of the raw command and a nonce to
select hardware features as fingerprinting tasks and determine
the corresponding task arguments. One of the fingerprints is
intentionally altered with poisoned data. The backend authen-
tication service independently maps the task arguments from
the request payload and generates two fingerprint values using
the predictor. Access is granted when the verifier determines
a close match between one of the client’s fingerprints and the
predicted values.

B. Selecting Hardware Features

To ensure MCU-Token can generate unique fingerprints for
different requests, it is crucial to identify an adequate number
of commonly supported hardware features in major MCUs.
However, previous studies [56] only explored limited hardware
features. Therefore, we explore new hardware features by
examining the datasheets of MCUs. We identify potential
hardware features by looking for theoretical evidence [42]
that the IC-level variation of a particular hardware feature
can lead to performance or accuracy deviations. We then
conduct experiments to validate the output variable ranges of
these features across different settings or inputs, and evaluate
their ability to reliably discriminate between identical devices.
Table II, lists some of the hardware modules on STM32F4
serials with their functional descriptions. The features behind
these modules may not have been explored or implemented
on MCU devices, but their sources of uniqueness have already
been revealed by existing work. Thus, we investigate the
following 6 common hardware modules of COTS MCUs:

DAC/ADC. A digital-to-analog converter (DAC) can convert
digital values to analog signals, such as voltage. Conversely, an
analog-to-digital converter (ADC) performs the reverse func-
tion of converting analog signals to digital outputs. Previous
studies [64], [56] have demonstrated that each ADC exhibits
distinct biases when outputting digital values. By generating
multiple analog signals through the DAC, we can induce
variations in the ADC’s output values and use these biases
to uniquely identify devices.

Float Point Unit (FPU). Similar to GPU [37], the FPU is
also dedicated to accelerating float number arithmetic. Their
computing power for float point calculations can vary among
devices of various models. By assessing their performance
in executing diverse computing tasks, we can discern and
differentiate between distinct devices.

Pulse Width Modulation (PWM). PWM regulates power
levels by turning signals on and off at a constant frequency.

Table II: Hardware modules on STM32F4 serials with their
functional descriptions and sources of uniqueness.

Hardware on MCUs*
TIMx. RTC, WDG
SRAM, Flash, ROM
ADC, DAC, PWM
FPU, CRC, CRYP
PWR, DMA, RCC

12C, SPI, USART
* All abbreviations refer to RM0090 Reference Manual.

Functionality Source of Uniqueness

Clock and timer Skew[56], Phase[44]

Storage medium Special property[60]

Voltage processor Numerical error[56]

Computing units Performance[37]

System controller Manufacturing defects[32]

Data transmitter Transmission delay[22]

By analyzing the accumulated power over specific time in-
tervals at different frequencies, it is possible to differentiate
between different MCUs based on the observed accumulation
discrepancy.

Real Time Clock (RTC). RTC provides timers by maintaining
an accurate time base via the crystal oscillator. As clocks
usually have fixed drifts from ideal frequencies, we use this
feature (i.e., RTCFre) to set timers with diverse frequencies
to statistically record the accumulated time drift. The time
phase [44] among multiple clocks can also be used as a feature
(i.e., RTCPha). On MCU-based devices, the main clock is
always a fast clock and peripheral clocks are always slow.
For instance, the main clock’s frequency is 180MHz and a
crystal oscillator clock’s is 32kHz on STM32F429. Thus, we
can use the dual clocks of the system and the peripherals to
get instantaneous phases and measure the phase features.

SRAM. Previous approaches [34], [42] indicate that the initial
states of SRAM cells are usually stable and can be used as a
kind of PUF. We collect the initial bit states within a specified
SRAM address range during device boot-up and employ sta-
tistical features derived from these bits to differentiate various
devices.

Flash. Previous study [24] uses NAND-flash’s different sector
read times as distinctive fingerprinting features because the
NAND-Flash is located on a separate chip with dedicated
drivers, which requires access via the I2C/SPI bus and can
affect the access time of sectors. In contrast, most MCUs are
only equipped with NOR-Flash, where different sectors exhibit
similar read times due to their integration on the same chip as
the MCU, enabling direct access. Thus, we exclude this feature
as only a few devices have NAND-flash.

Rather than generating a static fingerprint, we manipulate
the settings or inputs to generate varying fingerprints from
these hardware features. Each individual hardware feature can
serve as a fingerprinting task, producing multiple fingerprint
results by utilizing different input arguments. For instance,
we use DAC to generate a voltage and ADC to read it.
Theoretically, the read voltage of ADC and the input voltage
of DAC can be formulated as a proportional mapping,

2’!’65ADC _ 1
Vapc = Vpac * grespac — 1 (H
res means the resolution. However, as shown in Figure 5a,
this mapping is not exactly linear and its density distribution
may vary by devices (see Figure 5b). By inputting different
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Algorithm 1: Message Mapping Algorithm

Input: request
Qutput: task
1 task < [ ], digest < 0
2 operation < GetOperation(request)
3 nonce < GetNonce (request)
4 payload < GetPayload(request)
5 total Num < GetTaskNumber ()
6 for i < range(0,totalNum) do

7 // provide protection for the operation
8 hy < Hash(operation,nonce, digest)

9 // provide protection for the payloads

10 ho < Hash(nonce, payload;)

1 // connect with another payload

12 hs < Hash(nonce, payload_;)

13 digest < Hash(hq, ho, h3)

14 argo, ..., argmy, < DivideArguments (digest)
15 task; < (argo, ..., argm)

16 end

17 return task

voltages via DAC, we can distinguish different devices from
the actual voltage read by ADC. Similar approaches can be
applied to other hardware features, such as setting different
RTC clock sources and reading different address ranges in
SRAM. The detailed designs of the fingerprinting tasks for
the 6 hardware features are discussed in Appendix A. In this
way, we can gain enough (arguments, fingerprint) pairs for
different requests.

C. Binding Requests with Unique Hardware Fingerprints

We aim to protect the integrity of client requests, so as
to prevent adversaries from gaining access to the backend via
tampering with users’ requests. Traditional techniques based
on message authentication codes [4], [27] are not sufficient,
since they require the client side to store secret keys which
would be easily compromised on IoT devices as reported
by [67], [6]. We propose to bind each request with unique
hardware fingerprints without relying on the assumptions of
key security on IoT devices. In this way, any deliberate
manipulation targeting requests would be detected by checking
the correctness of the fingerprints.

As described in § IV-B, we leverage multiple hardware
modules to execute some hardware tasks which take as input
the request-derived arguments and output unique hardware
fingerprints. Here, the request should be mapped into unique
task arguments to avoid collisions between fingerprints from
different requests. Unfortunately, the requirement may be hard
to satisfy, because the input space of one hardware task may
be very small. As an example, the number of the arguments
designed for ESP32S2 is about 20,000. For a hash function
whose outputs are mapped into a space size (denoted as d) of
20,000, assuming there are 2'0 distinct inputs, the probability
of a collision in the output has already reached 99%. If each
task’s arguments are generated by the above hash function
based on the specific content from the request, an attacker can
compromise the integrity of the request with high probability
by manipulating specific content and constructing collisions.

To address the issue, we devise a novel random message
mapping algorithm that maps some content in the request to
arguments of multiple hardware tasks via a hash function,
rather than each content corresponding to only one task. This
exponentially increases the output space of the single hash
function, thus exponentially reduces the probability of colli-
sions. The detailed process is shown in Algorithm 1. request
contains an operation, a nonce (e.g., a random number), and
several payloads (line 2-4). For each request, we divide pay-
loads into total Num groups and generate the i-th payload via
payload[i mod total Num] sequentially. Note that total Num
means the number of tasks used for an authentication which
is a pre-defined fixed number (line 5). Then, we generate
task arguments for the total Num hardware tasks according
to the request information (line 6-15). For each round, A
is the digest of the operation, the nonce, and the digest in
the last round. ho is the digest of the i-th payload from the
beginning of the payload group while A3 is calculated by the
i-th payload from the end of the payload group. Such a design
correlates a payload content to arguments of two hardware
tasks, decreasing the probability of output collisions. Finally,
we concatenate hl,h2, h3 and use an extra hash calculation
to get the digest in this round. The specific segmentation of
digest constitutes the arguments which are further fed into the
corresponding hardware tasks.

D. Countering Machine Learning Attacks

Once requests and fingerprints are transferred in the net-
work, they may be abused by attackers. Essentially, they may
learn the relationships between requests and fingerprints and
then forge reasonable fingerprints to cheat the backend (i.e.,
software mimic attacks).

To resist those misbehaviors, one intuitive method is to
make the hardware tasks as complex as possible to prevent
the attackers from easily learning the relationships. Existing
works on PUF [41] concentrate on constructing unpredictable
relationships between the inputs and outputs of hardware
modules. However, these approaches may depend on special
circuits which are only available on some dedicated devices.
In this work, instead of relying on specific complex hardware
tasks, we tend to generate unlearnable fingerprints only based
on some common hardware modules (as specified in § IV-B).

Inspired by the data poisoning attacks widely explored
in the area of machine learning [55], we randomly add



some well-crafted noises to the raw hardware fingerprints to
generate poisoned fingerprints. There are three requirements
for the poisoned fingerprints: (1) Verifiability: the poisoned
fingerprints can be successfully authenticated by the backend
according to the raw ones. (2) Dissimilarity: the poisoned
fingerprints should detach from the raw ones as much as
possible to prevent attackers from learning the features of
the raw fingerprints. (3) Unidentifiability: the noises in those
fingerprints cannot be identified and removed by attackers
through advanced techniques such as machine learning.

To satisfy the first requirement, we randomly retain a
portion of the raw fingerprints as normal ones which will be
used to pass the authentication on the backend side. For the
remaining fingerprints, we make a trade-off between the dis-
similarity and the unidentifiability when adding random noise.
To increase the dissimilarity between the raw and the poisoned
fingerprints, the noises added should be as large as possible yet
would enable attackers to easily identify poisoned fingerprints.
Here, we generate the well-crafted noises that are slightly
larger than the inherent hardware errors. Specifically, for a
pair of (arguments, fingerprint), the poisoned fingerprint
is computed as:

fppoisoned = fpraw * (noise + 1) +C 2)

where C' is a constant and noise is randomly sampled from
distributions (e.g., Laplace distribution).

E. Verifying Fingerprints at Backend

We describe how to authenticate a request along with
its fingerprints on the backend side. According to the above
construction method of poisoned fingerprints, a straightforward
solution is to compare them with the raw fingerprints and
check whether the number of matched elements is larger than
a pre-defined threshold. Based on this idea, we propose a
novel fingerprint predictor to mimic the behavior of each
hardware module and to predict an approximation of the raw
fingerprints generated by the clients. The predicted fingerprints
generated by the predictor are finally fed into a verifier to
compare with the poisoned fingerprints sent by the clients.
Throughout the authentication process, the backend does not
know if a fingerprint is poisoned. It just checks the number
of fingerprints that match the raw ones to decide whether the
authentication passes. The retained raw fingerprints (i.e., the
normal ones) will match the predicted ones, ensuring that the
authentication can succeed. The details are as follows.

The predictor consists of a set of sub-predictors, which
are regression models for one task of one client. Essentially,
before one client device is deployed (e.g. during device
manufacturing in a factory), the backend collects enough
(arguments, fingerprint) pairs for each task and uses them
to train a new sub-predictor. Meanwhile, the verifier also con-
tains a set of sub-verifiers, each as a binary classifier for one
sub-predictor. In the deployment phase, a sub-verifier is trained
using fingerprints from the corresponding client (same with
the sub-predictor’s) as positive samples and those from other
clients as negative samples. In the real-world environment,
it takes as input one predicted fingerprint generated by the
corresponding sub-predictor and that from a client and outputs
whether the latter is correct.

When receiving a request from one client, the authentica-
tion process has the following steps. (1) The backend uses the
message mapping algorithm to generate total Num tasks, sim-
ilar to the relevant operations on the client side. The task output
item is represented by a (arguments, fingerprint) pair for
convenient utilization in later operations. (2) The predictor
launches appropriate sub-predictors for the above tasks and
predicts the corresponding fingerprints based on the tasks and
arguments. (3) The verifier uses relevant sub-verifiers to check
whether the predicted fingerprints match that of the client
for each task. The backend determines authentication as valid
by checking if the number of matched fingerprints exceeds
a pre-defined threshold (i.e., accept Num). Specifically, the
backend maintains a timestamp or sequence number of the
requests to prevent replay attacks. To prevent wireless signal
relay, the backend measures the message round trip time and
compares it with the predicted times based on specific tasks.
(4) The backend returns the authentication result to the client
for further communications.

V. SECURITY ANALYSIS
A. Countering Fingerprint Mimic Attacks

In this subsection, we present how MCU-Token resists
fingerprint mimic attacks, including hardware mimic attacks
and software mimic attacks as introduced in § III.

1) Hardware Mimic Attack: To launch hardware mimic
attacks, one adversary may purchase devices with MCU-
Token installed and with the same types of hardware as
the victim devices to generate fingerprints for any request.
Regarding those attacks, we utilize hardware features to con-
struct hardware fingerprints. These hardware features exhibit
variations across different devices, even if they have the same
model, making fingerprints generated for different devices
distinct. Consequently, attackers’ devices can be identified as
unauthorized due to the distinctive fingerprint patterns derived
from the specific hardware characteristics.

2) Software Mimic Attack: Attackers can launch software
mimic attacks by eavesdropping on communication channels,
monitoring requests with fingerprints, and learning their rela-
tionships. To defeat those misbehaviors, MCU-Token utilizes
the data poisoning based method that adds random well-crafted
noises to the raw hardware fingerprints. Note that the noises
not only make adversaries fail to learn the correct relationships
between the requests and the raw hardware fingerprints, but
are also random and stealthy to avoid adversaries identifying
and removing them. It is difficult for attackers to distinguish
the poisoned data as the data is slightly modified from valid
fingerprints. This discrepancy is adequate to prevent attackers
from precisely predicting fingerprints. If attackers learn with
poisoned fingerprints, the deviated data can significantly de-
grade the performance of their model. We present a quantitative
analysis through a linear hardware task as an example, which
can be represented by the function: When all the fingerprints
are poisoned, the function parameters fitted by an attacker are,

w' = (1 + noise) x w

3
b = (14 noise) xb+ C ©)

In Appendix B-A, we prove the above equation and show how
MCU-Token rejects the poisoned fingerprints.



B. Countering Fingerprint Reuse Attacks

Besides fingerprint mimic attacks, we illustrate the security
of MCU-Token against fingerprint reuse attacks, including
replay attacks, forwarding attacks, tampering attacks, and relay
attacks.

1) Replay Attack: In our message mapping approaches,
any changes in the request payload result in different finger-
prints. Therefore, MCU-Token can utilize the existing times-
tamp or sequence numbers of the protocols, or keep our
nonce growing. The backend can record the last value of this
increasing number and reject repeated requests.

2) Relay Attack: For wireless devices, attackers may relay
the physical signals (e.g., BLE [10], RFID [31]) to valid
devices at a distance. Similar to existing approaches [50],
[54], MCU-Token can measure the request’s round-trip time to
identify the signal relay. For the requests delivered by networks
(e.g., HTTP), attackers may forward authentication requests to
valid devices. Our one-round protocol can ensure that requests
are initiated by the clients, so attackers cannot simply offload
the server’s requests to trigger authentication on real devices.
They can only try to reuse the fingerprints of existing requests,
which is discussed in the subsequent tampering attacks.

3) Tampering Attack: If an attacker tampers with requests
to launch tampering attacks, such as replacing operations in
the request while retaining the fingerprints, MCU-Token can
easily detect such misbehaviors with high probability. Specif-
ically, the request is tightly bound with its fingerprints via
the message mapping algorithm. Any unwanted modifications
targeting request contents would result in significantly different
hardware tasks being generated on the server and client sides
using the same message mapping algorithm with a high
probability. Compared to the naive approach of just hashing
once, our algorithm can exponentially increase the attackers’
attempt times. In Appendix B-B, based on a hash collision
problem, we analyze Algorithm 1 step by step to show how
MCU-Token creates obstacles to the tampering attack.

VI. EVALUATION

To evaluate MCU-Token’s authentication performance and
security, we aim to answer the following four questions:

Q1 Which hardware features can be used for fingerprinting?

Q2 How accurate is MCU-Token’s authentication under dif-
ferent client and backend settings?

Q3 Can MCU-Token defend against various fingerprint
mimic attacks and reuse attacks?

Q4 How much overhead MCU-Token bring to real scenarios?

To answer Q1, we evaluate the performance of every single
fingerprint and their combinations for device authentication
and their stability under different environments (§ VI-B). For
Q2, we show the true positives and false positives of MCU-
Token in authentication with different parameter settings, es-
pecially poisoning-related configurations (§ VI-C). For Q3,
we launch hardware mimic attacks, software mimic attacks,
and tampering attacks to evaluate the security of MCU-Token
(§ VI-D). At last, we conduct case studies on various usage
scenarios to demonstrate the usability of MCU-Token for Q4
(§ VI-E).

Table III: Devices used in evaluation.

Model-brand  Microcontroller  Frequency  # of devices
ESP3282 Xtensa LX7 240MHz 30

STM32F103 Cortex M4 72MHz 20

STM32F429 Cortex M4 180MHz 10

A. Experiment Setup

1) Client-side Implementation: We implement MCU-
Token on 30 ESP32S2, 20 STM32F103, and 10 STM32F429
MCU-based devices, as shown in Table III. We deploy the
6 hardware features in IV-B on these devices. Details of the
designed tasks are shown in Appendix A.

2) Backend-side Implementation: We implement the back-
end authentication service using Python and deploy it on a
Windows 10 PC with 16 GB RAM and 2.8 GHz CPU. The
communication between the backend and the client devices are
developed through serial ports. Our predictors are regression
models, specifically ExtraTrees, and our verifiers are classi-
fication models, specifically RandomForest, all implemented
using Scikit-learn [47]. The hash function used in Algo-
rithm 1 is APHash?https:/github.com/ArashPartow/hash. For
data poisoning, noise is obtained from the uniform distribution
of [0.08,0.2], and we empirically set C' (in Equation 2) to 1
(discussed later).

The regression models are trained with (arguments,
fingerprint) pairs in the model training phase. When training
classification models, we randomly sample 10 other devices
as negative examples. We train a regression model and a
classification model for each hardware task of each client. For
each device and hardware feature, we gather 5,000 pairs of
data. We use half of them to train our models and the other
half to test.

B. Usability of Hardware Feature for Fingerprinting

1) Identifiability of Hardware Fingerprints for Device
Authentication: We evaluate whether a hardware feature can
be used to identify one device in the subsection. For each
hardware task on each device, we generate a fingerprint
(without poisoning) and check two properties: (1) if it can
be successfully verified at the backend side; (2) if it will
be misidentified as other devices. In the evaluation, we use
all the devices described above. For each device type, we
separately employ each device to impersonate all other devices
to figure out whether it will be misidentified as other devices.
Especially, we build two metrics: (1) true positive rate (TPR)
equal to the proportion of devices that pass the authentication
process successfully to the total devices, (2) false positive rate
(FPR) equal to the proportion of misidentified devices to the
total devices.

Table IV shows the TPRs and FPRs of different types of
features of different devices. We can see that RTCFre and
SRAM achieve a TPR of more than 90% and an FPR of less
than 8% for various devices, meaning that these two hardware
features can identify one device with a high probability. By

Zhttps://github.com/ArashPartow/hash
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Table IV: TPRs and FPRs of various hardware features.

ESP32S2 STM32F429 STM32F103
TPR FPR TPR FPR TPR FPR
DAC_ADC  83.74 8.58 82.73 16.83 96.25  37.90
FPU 76.59  38.90 83.50  29.94 76.65  36.63
PWM 84.83 17.54 84.90  37.67 80.00  35.57
RTCFre 91.76 1.96 89.88 7.49 99.19 1.96
RTCPha 77.04  58.38 73.88  58.10 7456  36.88
SRAM 94.27 0.01 98.69 0.05 96.89 0.03
Ensemble 96.63 9.44 97.06 14.10 97.94 14.31
Ensemble* 98.47 1.06 97.67 6.89 98.68 1.64

“The results of excluding useless features, i.e., FPU and RTCPhra for
ESP32S2, PWM and RTCPhra for STM32F249, DAC/ADC, FPU and PWM
for STM32F103.
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Fig. 6: Features fluctuations in different environments.

contrast, there are hardware features with high FPRs, such as
the FPU on ESP32 and STM32F103. FPUs are unavailable on
ESP32S2 and STM32F103. We use software-based floating
point calculators, which results in a high false positive.

Besides evaluating each individual hardware features, we
utilize multiple hardware features to achieve more accurate
authentication. We eliminate useless fingerprints for each de-
vice category, i.e., FPU and RTCPhra for ESP32S2, PWM
and RTCPhra for STM32F249, DAC/ADC, FPU and PWM for
STM32F103. As shown in Table IV, our approach achieves a
FPR of 1.06% while maintaining a TPR of 98% (on ESP32S2).

2) Stability of Hardware Fingerprints under Various
Real-world Environments: We evaluate the stability of hard-
ware features in different environments with varied temper-
atures and humidity. The environmental parameters in nor-
mal conditions are 28°C and 61% relative humidity (RH).
Besides, we set up two humidity environments: 37% RH
(called dry) and 98% RH (called wet), and two temperature
environments: —23°C (called frozen) and 52°C (called hot).
We collect (arguments, fingerprint) pairs under different
environmental conditions. Then, we calculate the distances
between these pairs and the pairs collected under normal
conditions. The distances are calculated as the relative error
between fingerprints under the same arguments. The
average distance fluctuations during different environments are
shown in Figure 6.

We find that fluctuations of different hardware features are
different. For all features, the degree of change in distances
is less than 0.1. Considering the influence of the two factors,
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Fig. 7: TPRs and FPRs of MCU-Token under different param-
eter settings.

humidity has almost no influence. It is evident that temperature
has a significant impact on hardware fingerprints, in particular
on RTCFre and DAC/ADC. However, it is important to note
that these temperature settings are rarely encountered in real-
life scenarios. Even if they do exist, we can collect fingerprint
information from these environments to train the backend’s
predictors and validators to avoid false positives/negatives.

C. Authentication Accuracy of MCU-Token

We assess the authentication accuracy of MCU-Token
under different parameter settings. There are three parameters
in the work: (1) totalNum denotes the number of hard-
ware tasks executed by clients; (2) used Num represents the
number of fingerprints without being poisoned by clients;
(3) acceptNum depicts the threshold of verified fingerprints
required for successful device authentication at the backend
side. In the evaluation, we select DAC/ADC, PWM, RTCFre,
and SRAM in MCU-Token, according to the evaluation results
in § VI-B. By default, we set total Num to 10, used Num to
5, accept Num to 3. The following evaluations are all based
on ESP32S2 devices.

We set total Num = 10 and change other two parameters.
Figure 7a shows the results under varied usedNum and
acceptNum = [“4Num] When usedNum is 1, MCU-
Token only uses one type of hardware feature as the fingerprint,
the TPR or FPR is equal to the average TPR or FPR value of all
individual features in Table IV. As used Num increases, TPR
increases and FPR decreases because the larger number of used
fingerprints provides more information of device identities. In
Figure 7b, we change accept Num with used Num as 5. As
accept Num increases, more fingerprints need to be verified
by the verifier, leading to the reduction in both TPR and FPR.
Actually, we can set the ratio of accept Num to usedNum to
balance the TPRs and FPRs.

To confirm whether the normal fingerprints can pass au-
thentication and the poisoned ones cannot, we conduct experi-
ments by introducing various levels of noise to modify the raw
fingerprints. As shown in Figure 8, low TPRs indicate that the
poisoned fingerprints are unlikely to pass authentication. When
noise exceeds 0.08 (the noise used is from [0.08, 0.2]), the
TPR drops to less than 2%. The results show that successful
authentication only relies on normal fingerprints and is not
affected by poisoned ones.
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soned fingerprints. TPR shows
whether authentications pass.

Table V: Hardware mimic attack success rates.

ESP32S2  STM32F103 ~ STM32F429
ESP32S2 0.0188 0.0000 0.0000
STM32F103 0.0001 0.0606 0.0078
STM32F429 0.0000 0.0000 0.1058

D. Security of MCU-Token against Various Attacks

We launch various adaptive attacks including hardware
mimic attacks, software mimic attacks, and tampering attacks
to evaluate the security of MCU-Token.

1) Hardware Mimic Attack: During the experiment, we
simulate hardware mimic attacks by having an attacker use
a device that has the same or similar brand and model as
the victim’s device. The devices are randomly divided into
two groups: legitimate devices and attacking devices. We then
initiate the authentication process using the attacking devices
and assess whether they are correctly identified as illegal
devices. Finally, we measure the success rate of impersonation
attacks using various types of devices. The success rate is
shown in Table V.

In Table V, the rows represent the type of devices that are
known to the backend (called target devices) while the columns
represent the types of devices used by the attacker (called
source devices). When the source device has the same brand
and model as the target device, the attacker can successfully
launch an attack. However, the success rates are still low, less
than 11%. For the attacks using different device models, the
success rates are even lower, with less than 0.01% success
rate. These results indicate that hardware mimic attacks are
ineffective against MCU-Token.

2) Software Mimic Attack: We evaluate the machine
learning based software mimic attacks and consider the that
attackers can collect (arguments, fingerprint) pairs (which
are partially poisoned) and train a regression model to learn
the relationship between arguments and fingerprint. First,
we evaluate the effectiveness of MCU-Token in defending
against software mimic attacks. Then, we show the effective-
ness of MCU-Token by analyzing attacks on single features.
Furthermore, we consider an attacker who attempts to filter out
poisoned pairs to demonstrate that poisoned pairs are unable
to be identified.
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Fig. 9: Software mimic attack results on MCU-Token. "filter" indicates that the attacker
filters out poisoned pairs for training and "correct" indicates the attacker corrects outputs.

Defending Effectiveness Against Software Mimic Attacks.
We evaluate the effectiveness of MCU-Token in defending
against machine learning attacks with different attack settings.
The backend authentication service’s settings are the same as
§ VI-C. We consider an attacker who trains a regression model
for each hardware feature and generates fake fingerprints
based on the requests to cheat the backend authentication. The
models used by attackers are the same as those used by the
backend. Furthermore, attackers can employ various training
and predicting strategies to carry out their attacks. For training,
the attacker chooses to filter (arguments, fingerprint) pairs,
(1) the attacker uses all the pairs directly; (2) the attacker
randomly selects used Num pairs as normal pairs. At the same
time, we consider that the attacker may try to correct the output
fingerprints, (1) the attacker predicts fingerprints directly;
(2) the attacker predicts fingerprints directly with probability
usedNum /total Num. Otherwise, the attacker selects a value
from the noise range and corrects fingerprints through the
reverse process of poisoning. The attacks with corrected results
can utilize the poisoned pairs to improve attack performances.
Combining the choices of filtering and correcting, there are
4 different attack strategies. We evaluate success rates for
different attack strategies under various parameter settings. The
results are shown in Figure 9.

The parameter settings are the same as those used for
device verification. The used ratio of every single feature is
30%, which means during the attacks the attacker obtains
30% of all normal pairs (non-poisoned pairs) for training.
The value of usedNum determines the ratio of the normal
pairs. In Figure 9a we vary usedNum from 1 to 10. When
usedNum is 1 or 2, the majority of pairs obtained by the
attacker are poisoned and the authentication success threshold
(i.e., accept Num) is set to a very low value (i.e., 1). Therefore,
the strategies involving corrected output achieve a high success
rate of 32.3%. When usedNum is close to total Num, the
attacker obtains more normal pairs and trains his models more
effectively. When the number of normal pairs and poisoned
pairs is equal, the entropy is at its highest, resulting in an
attack success rate of around 1% regardless of the strategies.
Figure 9b shows that as accept Num grows, the difficulty of
passing the authentication also increases.

In Figure 9c, we change the used ratio of normal pairs. The
used ratio refers to the number of normal pairs obtained by the
attacker. We find that when the attacker gets more normal pairs,
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Fig. 10: Software mimic attack success rates on single fingerprints. (a) and (b) are the attack performances without and with
data poisoning, respectively. (c) and (d) demonstrate the influence of different parameter settings.

the success rate (SR) decreases but does not increase. The
reason is that with more normal pairs there are more poisoned
pairs (with the default setting, the number of normal pairs
and poisoned pairs are the same). The models trained by the
attacker are affected more, resulting in the generation of invalid
fingerprints for the corresponding arguments. This indicates
that data poisoning is effective in preventing software mimic
attacks.

Software Mimic Attacks on Single Features. We further an-
alyze the mimic attacks on single features. In this experiment,
we use the same attack settings as in the previous experiment.
The training process for the attackers is the same as before.
For testing, we use only one fingerprint for authentication and
check if the backend is fooled. We use the highest success rate
of the four attack strategies as the final result.

Figure 10a and Figure 10b show how MCU-Token pro-
vides protection to a single feature. In Figure 10a, we set
usedNum = totalNum, and the pairs obtained by the
attacker are all normal ones. In Figure 10b, we set used Num :
total Num 1 : 2, and half of the pairs are poisoned.
It is important to note that, in these two different settings,
the number of obtained normal pairs is the same, but in the
latter one there are extra poisoned pairs. Without protection,
the success rate mainly depends on complexity of the fea-
tures. For SRAM, the power-on voltages of SRAM cells are
unpredictable so the success rate is very low (almost 0%)
no matter how many pairs are known. But for other single
features, the attacker achieves more than 50% success rate with
0.3 of all the normal pairs, particularly in the feature PWM.
When protected by MCU-Token, the success rate on PWM
decreases to approximately 13% and for other fingerprints, the
success rate is lower than 10%. The magnitude of the decline is
remarkable. More importantly, as the obtained ratio increases,
the success rate decreases. The results prove that the presence
of poisoned pairs helps protect single features.

As for the parameters of MCU-Token, used Num affects
the ratio of normal pairs. The attack success rate for a single
feature will initially decrease and then increase as used Num
increases. acceptNum only works when authenticating with
multiple features and has no influence on a single feature. The
results are shown in Figure 10c and Figure 10d.

Poisoned Fingerprint Identification. We conduct an ad-
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Table VI: Identification accuracy of poisoned fingerprints.

DAC/ADC  RTCFre SRAM PWM

Unsupervised learning 0.5201 0.5042 0.4993 0.5354
Supervised learning 0.5142 0.5220 0.5409 0.5293

Incremental learning 0.5120 0.5005 0.5032 0.4889
Extra-device 0.9682 0.5745 0.4959  0.8991

ditional experiment to illustrate that an attacker is un-
able to identify the poisoned fingerprints. We consider
three different attack methods: (1) Unsupervised learn-
ing: the attacker uses clustering algorithms to divide the
(arguments, fingerprint) pairs into 2 clusters. (2) Super-
vised learning: the attacker randomly selects a portion of the
collected (arguments, fingerprint) pairs as normal ones to
train models. To identify a valid pair, the attacker predicts
a fingerprint and calculates the related error with the true
fingerprint. If the error is greater than a threshold (e.g., noise),
the attacker regards the pair poisoned. (3) Incremental learning:
this method is almost the same as the supervised learning
based method. The difference between them lies in the way of
training models. For initialization, the attacker randomly se-
lects a small number of collected (arguments, fingerprint)
pairs to train the models, then uses the models to identify the
subsequent unknown pairs. If a pair is classified as a normal
(non-poisoned) one, the attacker can renew the models with
this new pair. We assume the attacker retrains the models with
a fixed number of pairs, i.e., the training step.

We test various clustering algorithms, ratios of training data
and training steps for each scheme. Also, we test different
features individually. The maximum identification accuracy for
each scheme is shown in Table VI. The identification of poi-
soned pairs is a 2-class classification task. The highest accuracy
among different schemes is around 54%, only 4% higher than
50%, which indicates that software-based approaches fail to
identify poisoned data.

Furthermore, we test a mixed scheme that combines soft-
ware with hardware, called extra-device. The attacker replaces
models with hardware to give fingerprints. In DAC/ADC and
PWM, this scheme gets greater than 90% accuracy, but in the
other two fingerprints, the accuracy is still low. Accuracy is
related to the discrepancy between two devices and the value
of added noises. For instance, for a arguments, fpo, fp1 are
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Fig. 11: Tampering attacks on MCU-Token.

fingerprints from two devices. If |M| > noise, the
poisoned pair may not be identified. This guldes us to a better
way to launch poisoning, i.e., keeping noise in the range of
discrepancies among different devices.

Other Parameter Settings. MCU-Token prevents software
mimic attacks via data poisoning and the poisoned pairs cannot
be identified. We do not experiment with other parameter
settings such as C' in Equation 2, as they are not key parameters
and have little effect on protection effectiveness. As long as the
poisoned pairs can affect the training phases of the attackers,
MCU-Token works well. The key point is the ratio of the
normal pair the attackers can get and how they use it. These
settings have been shown in the experiments above.

3) Tampering Attack: In MCU-Token, an attacker may
tamper with the operation or payloads of requests. We assume
that the attacker knows the message mapping algorithm in-
stalled on the client side and the attacker tries to modify the
requests and keep the tasks the same (and the tokens will be
the same). To simplify, we set parameters as below. total Num
is 2, the number of operation types is 200 (the car key BLE
operation types in Telsa are around 40), the size of payloads
is 32 bit and the size of the nonce is 16 bit. We test the
attack success rates with various numbers of arguments (i.e.,
the output size of the message mapping algorithm). The results
are shown in Figure 11.

The line whose label is "only h;" means that in Algo-
rithm 1 we only use h; to generate arguments (the same for
others). Figure 11a shows the success rate. Figure 11b shows
the average times of modifying the request to launch a suc-
cessful attack. Results prove that our algorithm is immune to
tampering attacks. With a 10,000 output space size, the attack
success rate is less than 1% and the number of arguments
used in ESP32S2 is about 20,000 (i.e, the output space size is
20,000). What’s more, comparing the results between "only
h," and "only h3", we observe that it is more difficult to
modify the operation than the payloads. "h; hso" shows that
ho raises SR as attackers can modify payloads to keep the
digest the same. With hg the success rate reduces greatly and
the success average times are almost the squared values of
those without hs.

E. Case Studies on Various Usage Scenarios

To show MCU-Token’s usability on different IoT devices,
we choose some typical scenarios to perform case studies to
evaluate the energy consumption of reasonable tasks number.
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Table VII: Power and time for fingerprint generation.

Encrypt  Voltage FPU Clock  Storage
Bsps2 O RN e loms  1oms
STM32F429 0~27 ri‘s’v %;?n"s" 0~871 g\SN (ZZ?HVSV 0.17 nl1 :\/
STM32F103 0'5' nSl‘SN (1)-1 I fn‘z Oi;gqv: 0.81 nSl\SN 0.1 1 1151?/

1) Smart Home: Smart home devices adopt trigger-action
platforms [30] to execute automation rules, which usually
adopt token-based authentication and may be abused to mali-
ciously trigger rules [30], [29]. We use the STM32F429 device
as an IoT temperature sensor which can report the current
temperature to trigger a rule of "if the temperature is higher
than 32°C, open the window". After adopting MCU-Token, the
trigger action platform can check the extra hardware access
token to verify if the temperature data is actually from the
sensor rather than attackers’ phantom device [67]. Since the
temperature data may be uploaded very frequently, we only use
4 fingerprints in the token to find a tradeoff between security
and energy consumption.

2) PKE/BLE Key Fob: Existing PKE key fob uses rolling
codes [9] for authentication and the risk is that attackers can
record some codes to perform cryptographic attacks [36] to
reveal the generating of rolling code or reuse the rolling code.
As shown in Figure 4, we generate the MCU-Token’s access
token based on the command and use the rolling code as the
nonce. We prototype the PKE rolling code mechanism on the
ESP32S2 device and use two fingerprints for each request
which only increases 32 bits to the existing payload. For the
BLE key fob using RSA, we can use more fingerprints (e.g.,
8) as BLE can send longer payloads. By verifying the extra
access token, we can prevent cryptographic attacks [36] and
relay attacks on these devices.

3) Hardware Security Token (HST) for FIDO-U2F:
MCU-Token can be easily integrated into the existing FIDO-
U2F [12] service for verifying if the FIDO-U2F HSTs are
trusted devices. We use the STM32F103 devices as a HST
which implements the FIDO-U2F client and deploys the FIDO-
U2F server on the PC. FIDO-U2F’s existing counter can
be used as our nonce for message mapping and generate
a hardware fingerprint based token based on the response
payload. Since the HSTs have a high security requirement
and are less sensitive to performance, we can generate 8
fingerprints and half of them are poisoned data. This token
can be added as extra information in the attestation certificate
and the server can verify this item to check the authenticity of
HSTs. As a result, attackers attempting to clone the HST [7]
still cannot impersonate the real device, even if they have
stolen the private keys.

Table VII shows the energy consumption when authentica-
tion with MCU-Token, which varies on different fingerprinting
tasks. Compared to the baseline of default token-based authen-
tication using AES encryption, our fingerprinting generation
incur an extra energy consumption of less than 4% on average.
The extra time consumption is less than 31ms (2 fingerprints)
and 115ms (8 fingerprints) on average.



VII. RELATED WORK

Hardware Fingerprints are widely explored on various plat-
forms such as mobile, PC, and IoT devices, to distinguish and
track devices [37], [52], [65] or to authenticate devices [36],
[26], [56], [24], [21], [22]. Unfortunately, most of these
fingerprinting features require special hardware support, such
as GPU [37], [52], mobile sensors [65], [32], and NADA
flash [60], [24], which are absent in MCU-based embedded
devices. For the approaches target IoT devices, HODOR [36]
and [26] employ RFID signal features to fingerprint devices
which is not a general solution for other kinds of IoT devices.
DeMiCPU [21] and [22] do not consider the attackers can
MitM mimic or forward the fingerprint. Our approach (i.e.,
MCU-Token) aims at proposing a general fingerprint frame-
work for all kinds of COTS MCUs that can resist MitM advi-
sories. IoT-ID [56] is the closest work but they use invariant
fingerprints as the device identifier, which is vulnerable to both
software mimic (ML attacks) and MitM interference. Our work
first extends IoT-ID’s solution to generate variable fingerprints
based on different inputs and then proposes an arguments
mapping protocol to bind the inputs with specific commands
to ensure the integrity of messages.

Hardware-backed Authentication. Various PUF mecha-
nisms [41] are proposed to enforce IoT authentication by
dynamically reproducing cryptographic keys from devices
rather than storing the keys on the firmware which can reduce
the risks of key stolen. Priyanka et al. [41] investigate the
performance and security of different PUF mechanisms and
find that these approaches do not take both MitM attacks and
software/physical impersonation attacks into consideration at
the same time. For instance, the existing approach proposes
Challenge-Response (CRP) based PUF protocols [45], [53],
[15] to prevent replay attacks and software impersonation
attacks. are proposed to solve this problem. However, they
cannot protect the integrity of the commands and thus are
vulnerable to several MitM attacks [40], [41]. Most of these
PUF approaches require extra hardware supports (e.g., special
circuits) which are not supported by our target devices, i.e.,
COTS MCU. MCU-Token aims to provide a general fingerprint
framework that can be easily extended by adding new PUF-
based fingerprint features (e.g., SRAM, Flash) that do not
require extra hardware support. Moreover, we ensure the
security of fingerprints by proposing argument mapping and
data poison approaches to defend against MitM attacks and
impersonation attacks.

Embedded Device Authentication Security. Embedded de-
vice authentication has been long regarded as vulnerable [67],
[25]. Mirai [16] exploits weak passwords to compromise
millions of devices. BIAS [18] and KNOB [17] can perform
MitM attacks on almost all Bluetooth devices by impersonating
validate devices. Existing USB hardware tokens [48], [13] are
also proved to be insecure and can be cloned or impersonated
during manufacturing or shipments. To protect these devices,
various authentication or pairing approaches are proposed.
T2Pair [38], [49], and [59] utilize the sensing operations (e.g.,
knob, button, or touch screen) to secure the pair of IoT devices.
Their limitation is requiring Human-in-the-loop to generate
sensor data. Using hardware features (e.g., fingerprint [21],
[24], PUF [28], [43]) to secure the authentication is widely
discussed in various platforms. However, IoT-ID [56] is the
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only work that focuses on MCU-based devices. We address
several applicable issues of IoT-ID by proposing a new hard-
ware fingerprint authentication framework MCU-Token, which
can work on all kinds of MCU devices and can resist traditional
token compromise and MitM attacks.

VIII. DISCUSSION

Attackers Compromise the Devices. MCU-Token aims to
mitigate device impersonation attacks due to credential theft,
weak cryptographic support, or insecure authentication imple-
mentation. For attackers who have compromised the system
locally or remotely, they may manipulate this device to send
requests with valid authentication data (e.g., MCU-Token’s
hardware fingerprints), which is outside the scope of authen-
tication security and not the design goal of MCU-Token. If
they want to clone [7], [1] this device for off-path exploitation
(e.g., via Phantom Client [67]), they still need to collect enough
fingerprint data to mimic the real hardware features. However,
the specific fingerprinting parameters used for data collection
are unknown to attackers. Therefore, attackers need to explore
a large number of fingerprinting parameters to obtain the set
of training data, which is time-consuming and can be easily
detected by the backends or the device owner.

The Maximum Limit of Requests Supported. In MCU-
Token, the maximum number of requests that can be issued is
determined by the range of hardware task arguments. In fact,
the argument range for hardware tasks is typically large enough
to accommodate the number of device requests in practical
scenarios. For example, in a PKE/BLE key fob scenario,
there are 20,000 different argument values on the ESP32S2
device. Assuming a person sends five distinct requests per
day (e.g. unlocking the door) and 4 fingerprints are used
per authentication, MCU-Token can provide protection for
approximately 1,000 days. In addition, we can extend the
current lifetime of MCU-Token by extracting new fingerprints
from existing hardware features and retraining the backend.
For instance, changing the SRAM address ranges can generate
different fingerprints. All fingerprinting tasks and arguments
can be changed to get more fingerprints for new requests.

Device Aging. In practice, hardware fingerprints may change
due to device damage, aging, or other factors, resulting in
failed server authentication at the backend side. Regarding
this issue, customers can securely return their devices to
the backend for re-collection of fingerprint data. Thus, these
devices can be successfully authenticated when they are re-
deployed in the customers’ environments.

MCU-Token with Fewer Hardware Features. Hardware fea-
tures used in MCU-Token may not be available on all devices,
such as the DAC. But MCU-Token can still work, because
fewer hardware features do not mean fewer fingerprints. On
the one hand, SRAM and RTCs are available on almost all
types of MCUs. Also, SRAM and RTCs can provide sufficient
fingerprints. On the other hand, we can increase the number of
fingerprints by modifying the fingerprinting tasks to generate
as many fingerprints as possible.

Future Works. MCU-Token provides a general hardware
fingerprinting scheme. It is promising to extend MCU-Token
by supporting more hardware features and PUFs [42].



IX. CONCLUSION

We introduce MCU-Token, a hardware fingerprint based
authentication mechanism to enhance the security of existing
token-based authentication approaches for MCU-based IoT
devices. MCU-Token can protect device authentication when
traditional cryptography-based approaches (e.g., message en-
cryption and signature) are compromised by attackers. With
its simplicity, MCU-Token can be applied in diverse scenarios
to authenticate different MCU-based IoT devices with high
accuracy and can resist common attacks. The MCU-Token
solution can be easily integrated into all kinds of existing [oT
devices as its client runtime supports major COTS MCUs and
its backend authentication service can be deployed on common
IoT devices or on the cloud.
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APPENDIX A
DETAILS OF DESIGNED TASKS

The following are the designed details of the tasks for 6

features, along with their arguments and corresponding outputs

(.e.,

fingerprints):

DAC/ADC. We use DAC to convert a number to an analog
voltage and use ADC to read it, then calculate the error
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between the read voltage and the theory voltage as the output.
The arguments are, (1) the value of DAC input; (2) the working
state of voltage drain drain; (3) the format of ADC voltage,
the raw value or the corrected value; (4) the output mode,
including different error representations and different pins of
ADC.

FPU. We use the calculation of Mandelbrot fractal calculating,
which is a way to test the speed of FPU. The arguments are,
(1) whether FPU is used; (2) the x-bound of Mandelbrot set;
(3) the y-bound of Mandelbrot set. The output is time spent
of calculating.

PWM. We utilize ADC to measure voltages generated by
PWM, and the output is calculated as the sum of voltages
over multiple periods. The arguments are, (1) the clock source
of PWM; (2) the frequency of the clock; (3) the number of
measured period; (4) the working state of voltage drain drain;
(5) the duty ratio of PWM.

RTCFre and RTCPha.During frequency testing, we measure
the time it takes to complete several periods as the output. The
arguments are: (1) the clock source; (2) the number of clock
division; (3) the adjusting value, which is used to adjust clock
during different environments; (4) the number of measured
period. Also, we measure the instantaneous phase of source
clock. The arguments are: (1) the clock source; (2) the number
of clock divisions; (3) the supposed period of clock ticking.

SRAM. The input is a target address (required to be 4-aligned)
of SRAM as the start address. And we make the following 32-
bit (contains the start address) into an integer as output.

APPENDIX B
SECURITY PROOF OF MCU-TOKEN

MCU-Token relies on data poisoning to defend against soft-
ware mimic attacks and uses the message mapping algorithm to
defend against tampering attacks. In this section, we provide
theoretical proofs of the security of these two key designs.
Combined with the analysis in § V, we can demonstrate the
security of the entire system of MCU-Token.

A. Proof of Data Poisoning Effectiveness

Influence of Poisoned Data on Model Learning. We for-
mulate how the poisoned data can affect the model to learn a
linear mapping as a regression problem and solve it:

Problem statement: There is mapping ¥ = a * X + 0,
and pairs in the mapping can be formatted as (x,y). Now, we
transform all (z,y) to (z,y’),y’ = cy+d. If an attacker learns
with the modified pairs and aims to make the mean square error
as small as possible, what mapping will be learned?

Solution: The mapping learned by the attacker is still a
linear one, which can be formatted as Y/ = o' * X + 0.
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According to the least square method, we can calculate a’, b'.
oS- —Y)
Y(z —7T)?
Y —-7Z)(cy+d—cy—d)
B Y(x —7)?

“

= ca

bV =y —d7

=cy—car +d
=cb+d

The Effectiveness of MCU-Token’s Poisoned Fingerprints
Identification. We show how MCU-Token identifies the poi-
soned fingerprints based on the solution. The backend checks
whether a fingerprint is legal or not by comparing it to
the raw fingerprint and can tolerate the hardware bias. If a
fingerprint is within the bias, the backend accepts it, otherwise
the fingerprint is rejected. We use y for the fingerprint and x
for the arguments. According to the proof, when it comes to
a new z, an attacker Will give a y'. Compared to the original
y we have A = [#25 ] = (c— 1) + ‘#HJ As long as A is
greater than the hardware bias, i’ will not match the original
y and will be rejected by the backend.

B. Proof of Message Mapping Algorithm’ Security

Proof of the Hash Collision Security. To analyze the security
of Algorithm 1, we construct and solve a hash collision
problem and prove it can ensure collision security under our
settings.

Problem statement: There is hash function H whose output
space size is d. Payloads are pg, p1. ¢ is a command. The results
are hg = H(c||po||p1), h1 = H(c||p1||po). The purpose of the
attacker is to modify ¢ to ¢’ and to keep h({, = ho, h} = hj.
Solve the probability.

Solution: The ¢ is fixed and the attacker modifies pg, p.

For a fixed pj, as the output of H is uniformed,
1

P{ho = holpo, P} = 7 (5)

Although in hg.h; the difference is only the position of pg, p1,

the outputs will be completely different and also be seen as
uniform.

1
We assume there are n kinds of combinations for pg, p1, Then

-1,
—5)

P{ho=h{,hi =h\}=1—( pz

(N

A Step-by-step Analysis of Algorithm 1. Based on this
proof, we explain the security of the whole message mapping
algorithm. We use the case where there are only two tasks, i.e.
the algorithm produces 2 tasks, each of which has d different
possible values (we use "space size" to represent the number of
possible values). The attacker aims to tamper with the request
and keep the output tasks the same.

With only a single hash function: if the generation of
two tasks is independent, the attacker only needs to tamper



Table VIII: Different combinations of models.

RandomForest ExtraTree DecisionTree
RandomForest 0.85,0,09 0.83,0.08 0.83,0.08
ExtraTree 0.85,0.09 0.84,0.08 0.84,0.08
DecisionTree 0.85,0,09 0.83,0.08 0.84,0.08

with tasks whose space size is dg twice. In total, the attacker’s
attempt times are at most 2d.

With h; (line 8): h; links the generation of the two tasks.
If the attacker replaces the operation or the nonce, both tasks
will change, which means that the attacker needs to consider
the space size of the combination of two tasks. The space size
of the combination of two tasks is dgy * dy, i.e. the attempt
times are at most d3.

With h,, ho (line 10): hy provides integrity protection for
payloads, but allows the attacker to modify payloads to keep
the same tasks. The attacker can modify hs respectively for
the two tasks, and the attempt times are at most 2dy.
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With h;, h2, hs (line 12): To solve the problem posed by
ho, we add hs. According to the proof, with hg the attacker’s
attempt times are at most d%. Furthermore, if there are more
generations of tasks linked together, the difficulty for attackers
to manipulate the request will increase.

In MCU-Token, the output space of ESP32S2 devices is
20,000 (i.e. d), and the success rate for an attacker is about
2% (i.e. P) with 107 (i.e. n) attempt times.

APPENDIX C
PERFORMANCE OF DIFFERENT MODEL COMBINATION

We compare the effectiveness of different models in pre-
dictors and verifiers of MCU-Token backend’s authentication
service. These models are tested on the DAC/ADC features
of ESP32S2 devices. The TPRs and FPRs are shown in
Table VIII. The predictor models are in the rows and the
verifier models are in the columns. The results show that
different models have little effect on MCU-Token.



APPENDIX D
ARTIFACT APPENDIX

This artifact contains the source code of MCU-Token and
the instructions to run it. MCU-Token is designed for au-
thenticating embedded devices via hardware fingerprinting. To
evaluate the basic functionality, you need at least one of these
development boards: ESP3252, STM32F429, or STM32F103.
If you do not have any of these devices, we offer a demo
that can be executed on the Renode emulator to showcase the
functionality. Furthermore, we provide a dataset obtained from
our physical devices, allowing you to reproduce the paper’s
experimental results without necessitating any IoT hardware.

A. Description & Requirements

1) How to access: All the documents and source code are
available on github: https://github.com/loT AccessControl/MC
U-Token/tree/master. And the DOI link is https://zenodo.org
/doi/10.5281/zenodo.10117167.

2) Hardware dependencies: MCU-Token is implemented
on the following devices, ESP32S2, STM32F429, and
STM32F103. Make sure you have at least one of them to
collect fingerprint data and validate the results.

3) Software dependencies: In summary, to compile the
source code and deploy MCU-Token, you need to install one
of the following software.

e ESP32-idf for ESP32S2
e Keil for STM32F429 and STM32F103
e Renode for emulation

4) Benchmarks: None.

B. Artifact Installation & Configuration

1) Install Python(3.8) and other required software.
2) Clone the source code from the repo.
3) Install the requirements from requirements.txt.

C. Experiment Workflow

The detailed steps for generating fingerprints for a device
and evaluating them are as follows:

1. Install MCU-Token on your devices and ensure that
the wires are connected correctly (according to Device-
porting/README.md).

2. Collect training data through the serial port. We pro-
vide shell scripts to collect fingerprint data (see MCU-
Token/server). For example,

python bat_generator.py
——device_number 0 ——port COM3

3. Evaluate the accuracy of fingerprint verification. We
provide shell scripts for generating logs which contain the
core results for generating the figures in our paper (see
reproducable). Such as,

bash 0_generate_ref_log.sh
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D. Major Claims

e (Cl): We can generate a hardware-based access token for
each command and collect fingerprints for each device.
This is proven by the experiment (E1).

e (C2): We evaluate the performance of the tokens (hard-
ware fingerprints) with different settings. Including the
accuracy of authentication, the robustness in different
environments and the effectiveness of defense against
three types of attacks. This is proven by the experiment
(E2).

E. Evaluation

1) Experiment (E1): [30 human-minutes]: Generate
hardware-based access tokens for commands and extract
hardware fingerprints for devices. Details are shown in
Device-porting/README.md.

[Preparation] Install MCU-Token on your device or open
Renode. If you are using a physical device, make sure the wire
connection is correct.

[Execution] For a physical device, open the serial port and
use the "token_gen" command to generate a token for the
command. For example,

token_gen SET _TEM SEATI 25

Use the "fp_gen" to extract hardware fingerprints, for example,

fp_gen STM32 11010 0 O

If you do not have a physical device, you can follow the steps
in the document to use Renode.

[Results] If you use "token_gen", the command token is
printed to the serial port. If you use "fp_gen", the results of
fingerprint tasks are printed to the serial port. In a physical
device, you will see u§ serials (unreadable). And in Renode
you will get readable results (strings).

2) Experiment (E2): [30 human-minutes + 2 compute-
hours]: Evaluate the performance of the hardware tokens (fin-
gerprints). The details are shown in document Reproducable.

TL;DR Run Step-2 and get the results in our paper.
[Preparation] Install Python(3.8).

[Execution] Step-1: You can generate the evaluation results
with the provided "*_log.sh" scripts (may take several hours).
After replacing the original results with yours, you can use the
plotting programs to get the figures and tables that are similar
to or the same as those in the paper. You can train your own
models based on the dataset provided by us and evaluate the
data of your devices. Step-2: You can run the plotting programs
to get the figures and tables based on our data, for example,

python3 Fig-2_plot.py
[Results] With Step-1, you can get the raw results logs and

get the evaluation results. With Step-2, you can reproduce all
the tables and figures in our paper.


https://octopart.com/esp32-s2-devkitm-1-espressif+systems-112268552
https://estore.st.com/en/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-discovery-kits/stm32f4discovery.html
https://stm32-base.org/boards/STM32F103C8T6-Blue-Pill
https://renode.io/
https://github.com/IoTAccessControl/MCU-Token/tree/master
https://github.com/IoTAccessControl/MCU-Token/tree/master
https://zenodo.org/doi/10.5281/zenodo.10117167
https://zenodo.org/doi/10.5281/zenodo.10117167
https://github.com/IoTAccessControl/MCU-Token/tree/master
https://github.com/IoTAccessControl/MCU-Token/tree/master/MCUToken/server
https://github.com/IoTAccessControl/MCU-Token/blob/master/Device-porting/readme.md
https://github.com/IoTAccessControl/MCU-Token/blob/master/Device-porting/readme.md
https://github.com/IoTAccessControl/MCU-Token/tree/master/MCUToken/server
https://github.com/IoTAccessControl/MCU-Token/tree/master/MCUToken/server
https://github.com/IoTAccessControl/MCU-Token/tree/master/MCUToken/server#reproduce-results-in-the-paper
https://github.com/IoTAccessControl/MCU-Token/blob/master/Device-porting/readme.md
https://github.com/IoTAccessControl/MCU-Token/tree/master/MCUToken/server#reproduce-results-in-the-paper
https://github.com/IoTAccessControl/MCU-Token/tree/master/MCUToken/server/evaluation/result
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