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Abstract—Current machine learning systems offer great pre-
dictive power but also require significant computational re-
sources. As a result, the promise of a class of optimized machine
learning models, called adaptive neural networks (ADNNs), has
seen recent wide appeal. These models make dynamic decisions
about the amount of computation to perform based on the given
input, allowing for fast predictions on “easy” input. While various
considerations of ADNNs have been extensively researched, how
these input-dependent optimizations might introduce vulnera-
bilities has been hitherto under-explored. Our work is the
first to demonstrate and evaluate timing channels due to the
optimizations of ADNNs with the capacity to leak sensitive
attributes about a user’s input. We empirically study six ADNNs
types and demonstrate how an attacker can significantly improve
their ability to infer sensitive attributes, such as class label, of
another user’s input from an observed timing measurement. Our
results show that timing information can increase an attacker’s
probability of correctly inferring the attribute of the user’s input
by up to a factor of 9.89x. Our empirical evaluation uses four
different datasets, including those containing sensitive medical
and demographic information, and considers leakage across a
variety of sensitive attributes of the user’s input. We conclude
by demonstrating how timing channels can be exploited across
the public internet in two fictitious web applications — Fictitious
Health Company and Fictitious HR — that make use of ADNNs
for serving predictions to their clients.

I. INTRODUCTION

Machine learning services have quickly risen in popularity,
allowing companies and individuals to reap the benefits of
efficient and accurate deep learning models for tasks ranging
from image recognition to machine translation. With the con-
tinued increase in the use of machine learning services, these
systems are handling an increasing amount of data, including
potentially sensitive user data, such as demographic or medical
information. Cyber-attacks that steal such confidential informa-
tion can be devastating, and, as more and more information is
stored and manipulated in these systems, securing data against
information leakage remains pivotal.

That machine learning systems are not immune to cyber-
attacks aimed at recovering confidential information has al-
ready been effectively demonstrated. Membership inference
attacks [44], [41], [63], for example, have been used against
machine learning models to determine if an input sample was
part of the target model’s training set. Such attacks potentially

reveal sensitive information about users whose data was used
in training.

Side-channel vulnerabilities provide an avenue for an out-
sider to learn confidential information about a system by ob-
serving the system’s non-functional side effects, such as power
usage or execution time. Though side-channel vulnerabilities
have been known for decades, they remain challenging to
defend against. The susceptibility of machine learning models
to side-channel vulnerabilities is a recent concern, and current
proof-of-concept work demonstrates the potential of side-
channel vulnerabilities as an avenue of information leakage in
machine learning systems. Already, a variety of side channels
have been exploited to retrieve sensitive information about
deep learning systems [1], [33], [10].

Adaptive neural networks are a class of deep learning
models that show promise in addressing the memory and
workload requirements of DNNs through a wide-range of
optimizations that trade accuracy for efficiency. Until now,
no existing side-channel work has considered these adaptive
optimizations as a avenue of potential side-channel leakage.
In our work, we demonstrate that the optimizations made by
ADNNs can introduce critical timing-channel vulnerabilities
in machine learning models, allowing an observer to learn key
attributes of the user’s input.

While many kinds of ADNNs have been introduced, all
share a similar high-level objective: to invest a variable amount
of computation based on the received query in order to
minimize computational overhead. This most commonly arises
through dynamic decisions to invest less computation on input
that can be predicted quickly with high accuracy. In making
these decisions, we observe that the amount of computation
performed, and hence likely the prediction time of the model,
can be correlated with the user input. It is this correlation
which introduces timing channels into ADNNs.

Our work is the first to demonstrate such timing-
channel vulnerabilities. We consider the Machine-Learning-as-
a-Service (MLaaS) model, an umbrella term for a set of cloud-
based tools offered by service providers. The MLaaS model
allows users to benefit from powerful ML models without
needing to invest the resources to train and develop those
models themselves. Pivotal to our study is that under such a
model, multiple clients (whether individuals or employees of
businesses) make queries and receive responses from the same
ML model. We demonstrate how an adversary who is also
a client of a target model F and who is able to take timing
measurements of the response time of F to user queries is able
to leverage timing information to infer sensitive properties of
a victim user’s input.

Our contributions are as follows:
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• We present the first demonstration of timing-channel
leakage due to optimizations made by ADNNs.

• We develop a strategy for leveraging timing channels
in adaptive neural networks to learn sensitive user
information under a clear and realistic threat model.

• We evaluate timing-channel leakage across six kinds
of different ADNNs, considering four different
datasets and three types of private information and
demonstrate how to exploit timing channel leakage in
two fictitious web applications that employ ADNNs.

• We explore the impact of the model hyperparameters
such as exit thresholds and architecture depth on
timing channel-leakage, accuracy, and performance
across all six different ADNNs we consider.

The rest of the paper is organized as follows. In Section
II, we present the required background on ADNNs and side-
channel analysis. In Section III, we walk through a motivating
example of how timing channels can arise in ADNNs. We
present our problem definition, threat model, and approach to
leveraging timing channels to learn sensitive attributes about
user’s input in Section IV. In Section V, we present the results
of our experiments, and we further discuss some of our results
in Section VI. In Section VII, we demonstrate the exploitation
of these timing channels over the public internet through two
case studies. We discuss the limitations of our work in Section
VIII. Our related work is given in Section IX, and we present
our conclusions and future work in Section X.

II. PRELIMINARIES

Memory and workload requirements of DNNs are a major
challenge in the adoption of deep learning techniques, espe-
cially on smaller devices, including smart phones, smart appli-
ances and other embedded devices. There has been substantial
research aimed at minimizing these requirements, and one
recent, promising avenue is a class of networks called adaptive
neural networks. These networks make dynamic decisions at
runtime about the amount of computation to perform based
on factors such as the available resources, deadlines, or, most
commonly and also most critically for our work, the given
input. This allows ADNNs to leverage the observation that not
all input is equally challenging to process and invest a variable
amount of effort based on the input difficulty. Ultimately, this
results in a trade-off between accuracy and performance.

a) Adaptive Neural Networks: Multiple types of
ADNNs have arisen over the past few years. Early-exit neural
networks [48], [20], [13], [23] are neural networks in which a
backbone classifier is augmented with additional exit nodes.
These early exits may be taken when an input sample is
deemed “easy” and able to be inferred with high confidence
without being processed by the entire classifier. Related dy-
namic neural networks [30], [32], [49], [52], [56], [14], [43]
likewise take advantage of the observation that inference might
be expedited if different inputs take different computation
paths and introduce various methods to dynamically select
what part of the inference graph to use for given input.
These techniques include skipping over parts of the inference
graph, dynamically pruning the graph, or fractionally executing
certain layers. Model selection or cascades [61], [47], [28],

[24] are a type of adaptive inference where a family of models
(with varying computational requirements) is trained for the
same task. At inference time, either the appropriate model for
the given input is selected or the input is propagated through
more complex models until a certain criteria is met. Most
current ADNNs are aimed towards tasks in computer vision,
most commonly classification. Nevertheless, recent work [42],
[58], [66], [46] explores the potential of early-exit neural
networks to accelerate inference in DNNs for natural language
processing.

b) Side Channels in Machine Learning Systems: Side-
channel vulnerabilities in machine learning systems have been
leveraged to compromise multiple types of data, including
extracting sensitive model parameters [10], [15], [64], [5], [4],
[55], [33], [53], [26], [19], [60] and learning class labels on
unknown user input [1], [50], [54], [45]. Our work targets the
problem of user privacy in a Machine-Learning as-a-Service
(MLaaS) framework. In such a framework, a user is able
to interact with a machine learning model through an API,
securely sending their own data to the model and receiving the
model’s inference results on that data. Through this interaction,
the user’s input to the machine learning model and the output
of the machine learning model should remain private.

Under such a framework, we formulate the side-channel
problem as follows: Consider the inference performed by a
neural network as a function which takes some sensitive user
input x from input domain X and returns its inference result,
along with a vector of side-channel observables o. These
observables are non-functional characteristics of inference such
as execution time, memory used, or packets transmitted over
a network. A side channel exists if there are at least two
mutually exclusive subsets of the input space X that can be
partitioned using the observables o. In addition to properties
of the neural network itself, whether such a partitioning is
possible is also affected by what ability an observer has to
take precise measurements as well as noise in the observations.
While side channels can arise due to numerous observables,
we focus on side channels in time, also called timing side
channels or timing channels, in our work. Also note that while
the existence of any two mutually exclusive subsets constitutes
a side channel, not all partitions of the input space might result
in a realistic security vulnerability, a point that we will further
discuss as it pertains to side channels in machine learning
systems.

III. MOTIVATION

In dynamically choosing how much computation to per-
form based on the difficulty of the input, ADNNs introduce
multiple possible computation paths for inference. It is possible
that some of these inference paths can be correlated with
some sensitive attribute of the input. Take, for example,
BranchyNet[48], an early-exit network architecture that allows
results for some input to exit the network early when results
for those input can be inferred with high confidence. Branchy-
AlexNet, a simple BranchyNet architecture with early-exit
paths added to the original AlexNet, is depicted in Figure 1.

Notice how the structure of this ADNN resembles the
control flow graph of a program with three possible return
statements where the chosen exit is input-dependent. This
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Fig. 1: Branchy-AlexNet: A simple BranchyNet architec-
ture [48] with two branches added to the original AlexNet.
Each bold ”Exit” node denotes an exit point of Branchy-
AlexNet.

creates a partitioning of the input domain into three different
clusters according to which exit is taken. Should the execution
time of inference be correlated with which exit is taken (a
reasonable assumption given that more computation is done for
later exits but which we experimentally validate in Figure 2),
then there exists a timing channel partitioning the input space
according to exit taken. An observer with the capability to
make timing measurements would therefore be able to infer
which partition or cluster an input belongs to based on the
observed timing measurement. If one or more of these clusters
correlates to a sensitive attribute (such as a unique class label),
then this would result in leaking private information about
the input (in this case the class it belongs to) and could be
considered a privacy violation. An example of such a privacy
violation arising is given in Figure 3. In this figure, we observe
how the execution time for Branchy-AlexNet varies according
to whether the input image is of a benign or malignant skin
mole. When the execution time is low, it is much more likely
that the input image is of a benign mole. An adversary can
use thus use this timing information to make a more informed
inference about the private input image than they would be
able to by guessing simply according to input distribution.
It is important to note; however, that our goal is not to find
correlations between model execution time and every possible
attribute as this is rarely, if ever, possible. Privacy violations
occur even when there is a single characteristic timing profile
that correlates with some sensitive attribute as in the case just
discussed. The stronger the correlation, the more confident an
adversary might be about inference on the input image when
observing that timing profile.

Ultimately, just as how side channels in software arise due
to an observable difference in resource usage across program
paths, we hypothesize that so too can side channels in neural
networks arise due to an observable difference in resource
usage across inference paths. By construction, ADNNs intro-
duce multiple input-dependent inference paths, which results
in different model execution time distributions and thereby
introduces the potential for side channels.

Fig. 2: Execution time (in seconds) for input from the CAN-
CER dataset (introduced in our experimental setup) taking each
of the three exits of Branchy-AlexNet

Fig. 3: Execution time ranges (in seconds) for input from
the CANCER dataset (introduced in our experimental setup)
taking each of the three exits of Branchy-AlexNet

IV. ANALYZING TIMING CHANNELS IN ADAPTIVE
NEURAL NETWORKS

In this section, we present our approach to analyze timing
channels in ADNNs. We begin with the problem definition. As
previously introduced, a timing channel exists if there are at
least two mutually exclusive, non-empty subsets of the input
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space X that can be partitioned using the observable o. For
a timing side channel, the observable is the collected timing
measurements. Not all partitions of the input space result
in realistic security vulnerabilities; however. For example,
consider the partitioning of the input space of images arising
from the three different exits in Figure 1. If there is no
meaningful difference between the images that belong to each
partition, then the attacker is not able to glean any meaningful
information about the input image even if a timing channel
leaks which partition it belongs to. Phrased in another way: if,
for any pair of previously unseen images x1, x2, the probability
that an unknown x ∈ { x1, x2} is x1 remains the same after
the attacker observes which partition x belongs to, then no
meaningful information is leaked by the side channel. This
naturally leads to the question of what information about
images might be meaningful to an attacker.

A. Attributes

For the given input space, X, an attribute A over X is
a finite set of values such that every element of x ∈ X is
deterministically mapped to an element a ∈ A. We focus on
attributes that characterize sensitive properties of the input
domain. Considering user-provided images as input, such
attributes might include class label, predicted class, whether
an input is misclassified, whether an input is above a certain
resolution, or whether an input is adversarial. Attributes might
even consider whether an input has a certain feature related to
a network layer.

B. Threat Model

The capabilities of the adversary also impact whether
a timing channel poses a realistic security threat. In our
threat model, the attacker monitors the timing characteristics
of TLS/SSL encrypted network communication between the
client (victim) and the Machine Learning as a Service (MLaaS)
server. This monitoring can occur over a Local Area Network
(LAN) or across the public internet. By measuring the response
time of the ML server to the client’s request, the attacker
intends to utilize this observed timing information to infer a
sensitive attribute of the user’s input to the model. The attacker
aims to achieve this by leveraging a pre-trained attack model
A described in Section IV-C2.

As an example, let’s consider a scenario where a hospital
application utilizes a machine learning model F to provide
responses (predictions) yp to client queries x. It is assumed
that all inputs to the application are valid images. An example
application could be a web application for predicting skin
cancer, where clients submit images of skin moles and re-
ceive predictions regarding the malignancy or benignity of the
depicted mole. The resulting prediction from the underlying
model should only be disclosed to the client, making the
prediction highly confidential. We assume that the attacker has
black box access to the model with no additional knowledge
of the model internals. We also assume that the model owner
(possibly the hospital/hospital’s partner) that provides the
MLaaS to its clients is trusted and would not try to breach the
confidentiality of the model’s prediction on their client’s input.
The attacker in this scenario is some malicious client of the
hospital MLaaS who knows when another client’s input would
be queried against the hospital MLaaS. The assumptions about

communication between attacker, client, and MLaaS server are
summarised below:

1) The attacker and victim(s) are on the same network
and within the same location.

2) The MLaaS server handles and responds to queries
individually not in batches.

3) The communication between the client and the
MLaas server is over a TLS/SSL encrypted network
stream, hence trying to break the encryption itself is
outside the scope of this work.

4) Despite the encryption of the network stream’s con-
tents (TCP/IP packet payloads), various visible meta-
data, such as packet sizes, timings, directions, and
flags, can still be extracted from message headers us-
ing network analysis tools like Wireshark,Tcpdump.

Fig. 4: Privacy Leakage Threat Model in a Client-Server
MLaaS Framework

Adversary’s Capabilities. We consider an adversary who
is also a client of the application. They can submit queries
to the model F and receive a prediction from F . We assume
that the adversary can submit as many queries as desired and
will not be flagged for suspicious behavior. The adversary can
observe and collect the response time of the application on
both their own queries and those of other users, using packet
capture tools such as Wireshark, Tcpdump etc. The adversary
has access to a manifest dataset DSM. The manifest dataset
is a dataset which is not necessarily a subset of the original
training dataset of the target model F , but belongs to the same
input distribution as the training set.

Adversary’s Knowledge. The adversary has no access to
the model internals. The adversary does not know the model
architecture, weights, or parameters. The adversary only knows
when the victim’s query x is submitted to the MlaaS model
F .
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Adversary’s Goals and Objectives. The adversary’s ob-
jective is to infer a sensitive attribute a of the victim’s input
x to the model. This sensitive attribute a could be the class
label y, the predicted class label yp, or some other property of
the input x. If there is any user input for which the attacker
successfully determines its attribute, then a privacy violation
exists.

C. Attacker’s Strategy for Using Timing-Channel Leakage

Not all timing channels in ADNNs are strong enough to
pose realistic security threats. A number of factors, such as
noise in timing measurements or the degree to which the input
space is partitioned, can impact whether the timing channel is
dangerous and should be mitigated. Ultimately, we consider
these channels to be dangerous if they increase an adversary’s
probability of correctly inferring a sensitive attribute about user
input by a considerable margin. In order to determine whether
a timing channel accomplishes this, we propose the following
attack strategy for an adversary :

1) Obtain Timing Profile T : To create the timing profile
T of the ADNN, we query the target ADNN model F using
data samples (xi, ai) from a manifest dataset DSM, and record
the model’s inference time (ti) observed over the network into
a one dimensional array T . The manifest dataset DSM is a
set of data samples that is available to the attacker. It is not
necessarily a subset of the original training dataset of the target
model F , but belongs to the same input distribution as the
training set. The timing profile T is completed by pairing each
recorded timing measurement ti with the attribute ai of the
corresponding input xi, which we formally define as T =
(t1, a1), ...., (tk, ak) where k is the number of data samples
present in DSM.

2) Train Attack Model A: The next step is to train an attack
model A that takes as input ti and outputs a prediction for
the sensitive attribute ai for any given input xi to the target
ADNN model F . We train the attack model A using our timing
profile T . The key goal of this step is to have the attack model
learn how the timing channel information ti correlates the input
xi with the sensitive attribute ai. To evaluate how well our
attack model A is able to learn this correlation, we adopt the
model’s accuracy, i.e., attack success rate (denoted as ASR).
This is similar to work on membership inference attacks [44],
[41], [63], except in this case we are interested in inferring the
sensitive attribute ai of an input xi to the target ADNN model
F , given it’s observed inference time ti over the network, as
opposed to trying to infer whether xi was used to train the
target ADNN model F .

a) Attack Model Parameters: Our attack model A is
a simple deep neural network (DNN) with two hidden layers
comprising of sixty-four and thirty-two neurons respectively,
and using ReLU as an activation function. Other models, such
as logistic regression or decision trees, might also serve as an
attack model, though our exploratory experiments showed the
simple deep neural network to outperform them in terms of
accuracy. Given the simple nature of our attack model, it can
be trained very easily and quickly usually only taking minutes
to train. The attacker can then leverage the model to infer the
sensitive attribute of a new input.

3) Cluster Timing Observations T : ASR provides us with
a metric to understand the probability of correctly guessing
the attribute over the space of all input images given their
respective timing observations. We observe; however, that
this probability is not necessarily uniform: there might be
some input for which the probability of correctly inferring the
attribute is high given their timing observations and others for
which it is low given their timing observations. We introduce
a clustering-based partitioning algorithm in order to address
the more nuanced question: are there certain time partitions of
the input space for which the ASR is high?

To do this we leverage Kernel Density Estimation (KDE)
[39] an unsupervised statistical method for clustering one
dimensional data, to partition this one dimensional array T into
different time clusters C. We adopt KDE over other popular
clustering algorithms such as K-means [35], kNN [31], and
DBSCAN [11] because KDE is well poised for clustering one-
dimensional data, while the other algorithms are better suited
for multidimensional data. Figure 5 shows the clustering of the
recorded inference times of the Branchy-AlexNet architecture
over the CANCER dataset. We observe that KDE fits T with
a smoothed line, which can be partitioned into three different
clusters based on the different minimas present in the curve. In
the case of Branchy-AlexNet, the number of clusters found by
the KDE algorithm corresponds to the number of exits in the
ADNN, but this not always the case. The closer the inference
times of different exits are to each other, the more likely KDE
is to put them all together in one single cluster. The number
of clusters is impacted by the KDE algorithm’s bandwidth
parameter. We record the accuracy of the attack model on each
cluster, defining this accuracy as the ASR/cluster.

In the context of the timing variability (timing channels)
of ADNNs, the time clusters C serve as representations of this
variability. When a time cluster cj exhibits a high cluster ASR,
it signifies a strong correlation between that specific cluster cj
and a particular sensitive attribute a∗. This correlation suggests
that any timing observation t belonging to cluster cj reveals
information about the sensitive attribute a associated with a
given input x. We view this as a privacy violation, recognizing
the potential breach of privacy when timing observations fall
into such clusters. We summarize our analysis approach in
Algorithm 1.

Algorithm 1 Analyzing Timing Channel Leakage

Require: Manifest dataset DSM = {(x1, a1), ...., (xk, ak)}
1: for all (xi, ai) in DSM do
2: query target model F with (xi, ai) to obtain T =

[ti, ...., tk]
3: pair ti with ai of the corresponding input xi to obtain

timing profile T = (t1, a1), ...., (tk, ak)
4: end for
5: train attack model A:{ti} → ai using T
6: partition T using KDE into C = {c1, ...., cn} where n is

number of time clusters in T
7: calculate A ASR and A ASRj for each cluster for each

cluster cj
8: return A ASR and A ASRj for each cluster cj

Deploying the Adversary’s Strategy. In order to suc-
cessfully infer the private attributes of other user’s input, the
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Fig. 5: Execution time clusters (in seconds) for Branchy-
AlexNet over the CANCER dataset.

adversary implements a two-stage approach. In the first stage
of this approach, the adversary trains an attack model as
described in Section IV-C2. Because timing measurements are
nondeterministic, the attacker may choose to repeatedly query
the model with the same input to train a more robust attack
model.

With the trained attack model A in hand, the attacker is
prepared to infer attributes of the user’s input. When a target
user makes a query to the model F with some unknown
input x∗ and receives a response, the attacker will collect the
appropriate timing observation t∗. For every t∗ collected, the
attacker will then use their attack model A to infer the sensitive
attribute a of the user input x∗, using their timing observation
t∗.

While the training stage is performed in advance of the
inference stage, the attacker also has the ability to update
their attack model A should it be deemed beneficial. For
example, should the attacker somehow determine that the input
distribution has diverged significantly from that of the manifest
dataset, the attacker might want to update their attack model
with observations based on inputs from this new distribution.
Similarly if some change in the underlying model is detected
(for example, it has been increasingly optimized), the attacker
might wish to collect new timing measurements to create a
new attack model for this more optimized model.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

a) Local Area Network (LAN) Setup: For all exper-
iments, we hosted the target machine learning model on
our server machine using the Python Webservice Framework
Flask v1.1.2 and timed the responses on our client machine
connected over a local area network. Our server machine was
a MacBook Pro 2021 (Apple M1 Pro, 16GB RAM), and our
client machine was a Dell XPS 11th Gen (2.4GHz 8-Core Intel
core i5, 16GB RAM). Both machines are on our Ethernet LAN
via a WAVLINKAC 1200 router. Another three computers

Fig. 6: Two-Phase Adversary Strategy

are on the LAN. Under low load, the typical round-trip time
between the client and the server machines through the LAN
was 1.35 msec (min 0.540, mean 1.347, max 1.849).

b) Machine Learning Models: For our experiments we
consider six different types of ADNNs, namely; the early-
exit networks Branchy-AlexNet and Shallow Deep Network,
the model cascade networks RANet and MSDNet, and the
dynamic networks BlockDrop and SkipNet. All six of these
ADNNs are aimed at the task of image classification. Some
additional notes about each follow below.

Early-Exit Networks.

Branchy-AlexNet [48], a network architecture developed
by Teerapittayanon et al. was introduced in our motivation.
The network consists of two early exit classifiers attached to
the main network.

Shallow-Deep Networks (SDNs) [23] another example of
early exit networks, modify traditional Deep Neural Networks
(DNNs) by adding internal classifiers, known as early exits,
at various locations within the network. SDNs prevent over-
thinking in DNNs, where accurate predictions can be made
before the final network layer. This enhances computational
efficiency while maintaining accuracy. SDNs and Branchy-
AlexNet differ in their heuristic approach for early exits. SDNs
utilize confidence scores and a metric called the confusion
metric, while Branchy-AlexNet relies on entropy as a measure
of early exit classifier confidence. In our experiments we make
use of the VGG and ResNet-56 variants.

Model Selection/Cascade networks.

Multi-Scale Dense Networks (MSDNets) [20], an example
of a model selection/cascade network, are designed to capture
multi-scale information and exploit dense connectivity pat-
terns. MSDNets address the challenge of effectively modeling
both local and global contexts in complex data. In MSDNets,
the network is structured into multiple scales or levels, with
each level consisting of dense blocks. Dense blocks are densely
connected layers where each layer receives inputs from all
preceding layers. This dense connectivity promotes feature
reuse and enables effective information flow throughout the
network. The multi-scale aspect of MSDNets allows them to
capture information at different levels of granularity. Each
scale focuses on a specific receptive field size, allowing the
network to analyze fine-grained details at lower scales and
capture broader context at higher scales. By integrating infor-
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mation from multiple scales, MSDNets can effectively capture
both local details and global relationships of different inputs
based on their perceived complexity and classify them using
the most minimal network.

RANet (Resolution Adaptive Networks) [61], an improve-
ment on MSDNet, is another example of a model selec-
tion/cascade network. This network is an ensemble of models
at three different scales and inputs are propagated from lower
scales where the computational requirements are low to higher
scales which have higher computational demands. Inputs exit
the network once the exit criteria at the classifier is met.
When it is not met, they are propagated to the next higher
scale alongside the feature maps learned from the lower scales,
which improve the ability of the classifiers at higher scales to
infer the input. RANet uses the intuition that we can classify
some inputs (easy inputs) at low scales/resolution, while other
inputs which are referred to as hard inputs can be classified
using higher scales or resolutions. Inputs deemed as easy
contain very similar pixel features when the object in the image
is large enough The hard images contains less similar pixel
features when the object in the image is of a very small size.

Fig. 7: RANet input being fed to sub-networks with different
scales [61]

Dynamic Networks.

BlockDrop [56] is an example of a dynamic network.
BlockDrop aims to reduce the total amount of computation
of an original ResNet [17] by dynamically selecting layers
of blocks in the original ResNet to execute while ignoring
the others. This dynamic selection is based on user inputs,
hence BlockDrop produces different computation paths when
evaluating different inputs. BlockDrop consists of a policy
network (an agent) which takes in an input image and outputs
the minimal configuration of blocks that is needed to correctly
classify it. Thus the policy network outputs different block
configurations for different inputs, allowing for them to take
different computations paths through the main network.

SkipNet [52], another example of a dynamic neural net-
work, incorporates a gating network, which acts as a decision-
maker, to selectively determine whether to skip certain con-
volutional blocks based on the activations observed in the
previous layer. This dynamic skip mechanism allows the net-
work to adaptively adjust its architecture to focus on relevant
features, while preserving accuracy and improving overall
computational efficiency.

Fig. 8: BlockDrop policy network outputing different block
policies for different inputs [56]

Fig. 9: SkipNet skipping different convolutional layers based
on the difficulty of the input [52]

c) Attributes: For our experiments, we consider three
different, potentially sensitive attributes.
CLASS LABEL: the actual class of the input.
GENERALIZED LABEL: the super category of the class of
the input. For example, the CIFAR100 dataset can be super
categorized into twenty (20) super classes, where the classes
bear, leopard, lion, tiger, wolf belong to the super class large
carnivores and the classes orchids, poppies, roses, sunflowers,
tulips belong to the super class flowers.
ADVERSARIAL INPUT: whether or not a particular input is
adversarial.

d) Datasets: We consider four datasets in our exper-
iments: CIFAR10, CIFAR100, CANCER, and FAIRFACE.
Branchy-AlexNet, SDN , MSDNet, RANet, BlockDrop and
SkipNet were each trained on the CIFAR10 and the CIFAR100
datasets[25] which contains 32 × 32 RGB natural images, cor-
responding to 10 and 100 classes respectively. The CIFAR10
and CIFAR100 dataset both contain 50,000 training and 10,000
testing images. Branchy-AlexNet, SDN(VGG and ResNet-56
variant), MSDNet, RANet, and SkipNet were also trained on
two additional datasets. The first is the publicly available Skin
Cancer dataset from the ISIC archive [12]. This dataset consists
of 224 × 224 images of benign and malignant skin moles.
The dataset originally contains 2637 training and 660 testing
images. We applied standard data augmentation strategies [18]
to further increase the size of our training and testing dataset
to 10548 training images and 2400 testing images equally
split between benign and malignant classes. The second is
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the FAIRFACE dataset [27]. This dataset consists of 108,501
split into 96336 training images and 12165 testing images. The
dataset is made up of 224 × 224 images and labelled with race,
gender and age groups. For this dataset, we focus on training
the different ADNNs to predict just the age group which
contains 3 respective classes, and we ensured that all images in
the training and test dataset were equally split between all age
classes. We were unable to train the BlockDrop model on the
CANCER and FAIRFACE datasets because of problems with
replicating the training script in the newest PyTorch version.

e) Training: For these experiments, we made use of
the publicly available implementation of the Branchy-AlexNet
architecture [6] based on PyTorch and proceeded to train our
network consisting of three exits, following the configurations
from the original paper [48] by first pre-training the backbone
network on the datasets for 100 epochs and then jointly training
the backbone together with the exits using weights 1.0,1.0,0.3
on the 3 exits respectively. In our experiments on SDN,
MSDNet, RANet and SkipNet, we followed the configurations
from the original papers [23], [22], [20], [21], [61], [62], [52],
[51], and for our experiments on BlockDrop, we used the
released pre-trained model weights built with ResNet 110 on
the CIFAR10 dataset and for the CIFAR100 dataset we use
the pre-trained model weights built with ResNet 32 [57].

f) KDE Bandwidth Parameter: For our experiments,
we use the default KDE bandwidth parameter of 1, which
provides a balanced trade-off between capturing local details of
the continuous timing observations and smoothing the density
estimate.

g) Running Our Experiments: To create the timing
profile, we use the test set of the respective datasets as our
manifest dataset. We train our attack model for a total of 100
epochs, using adam as an optimizer. We repeat each timing
measurements over the LAN 5 times and record the average
to generate our timing profile.

B. Metrics

We report two metrics along with a baseline metric in all
our experimental results, which we describe below:

a) ASR and ASR/Cluster: ASR denotes the accuracy
of the attack model A in predicting the sensitive attribute a
given any timing observation t, while the ASR/cluster denotes
the accuracy of the attack model A to predict the sensitive
attribute a for all timing observation t that fall into cluster
cj . While we report both the ASR and the ASR/cluster metric
in all our results, it is important to note that our goal is not
find perfect/exact correlations between the sensitive attribute
a and the timing observation t (ASR), as this is rarely, if
ever possible, but rather to find individual time clusters cj that
highly correlate with some sensitive attribute a∗ (ASR/cluster).

b) Random Guessing Attack (RandGA): As a baseline
for comparison, we implement the Random Guessing Attack.
In this attack, the adversary does not need to have query access
to the target model nor the ability to make timing observations
on other user’s input. Instead, they make predictions for the
sensitive attribute by assigning probabilities to each possible
value according to any knowledge they have about the input
distribution of the attribute. For our experiments, we assume

an equal probability distribution for all possible values of the
sensitive attribute across all datasets. A comparison between
the probability of an attacker correctly inferring the attribute
using RandGA versus ASR and ASR/Cluster is given in Table
I.

C. Experimental Results

a) Leakage Results: Our results are reported in Table I.
These results show that there are timing channels in ADNNs
that leak sensitive attributes about the user’s input. Consider
the results of Branchy-AlexNet on the CANCER dataset.
We see that the highest ASR/cluster is 82.61%, an 1.65x
higher accuracy than the RandGA of 50%. For SDNet on the
FAIRFACE dataset, we find a cluster with an ASR of 94.29%,
an improvement of 2.83x over the RandGA of 33.33%, and
for BlockDrop on the CIFAR10 dataset, we find a cluster
with ASR of 98.94% an improvement of 9.89x over the
RandGA of 10%. There are also a combination of model
architectures and datasets for which we do not experience high
leakage. For example, the cluster with the highest leakage for
Branchy-AlexNet on the CIFAR10 Dataset has an ASR/cluster
of 22.22%, an improvement of only 2.22x over the RandGA
baseline.

b) What percentage of the input space is vulnerable?:
Having shown significant leakage in some networks, a natural
question to pose is: what percentage of the input space is
contained within clusters with high ASR? We provide these
results in the “Cluster Input Distribution” column of Table I.
The proportion of input that falls into clusters with high
ASR varies across datasets and architectures. For example,
for SDNet on the FAIRFACE dataset, a cluster with the high
ASR of 94.29% contains only 5.42% of the input distribution,
whereas the cluster with the highest ASR for Branchy-AlexNet
on the CANCER dataset contains 27.33%, over a quarter of
the input distribution. Even when the portion of the input space
in clusters with high ASR is low, model owners and clients
should consider whether even leaking attributes about a small
portion of inputs might be considered a major privacy issue.

VI. DISCUSSION

a) Impact of the Number of Possible Attributes: The
results from our experiments in Table I demonstrate a trend
where early exit and model cascade networks are less vulnera-
ble to leaking sensitive attributes via their timing channels on
datasets where the sensitive attribute can take a larger number
of possible values. For example, experiments on the CIFAR10
dataset where the sensitive attribute (Class Label) can take
up to 10 different possible values show less leakage when
compared to the CANCER or the FAIRFACE dataset where the
sensitive attribute can only take 2 or 3 values respectively. In
the case of the dynamic network variants, we still find clusters
with high ASR for the CIFAR10 dataset even with the sensitive
attribute of this dataset having 10 possible values. For SkipNet,
we find a cluster with an ASR of 60%, and for BlockDrop a
cluster with an ASR of 98.94%. This is compared to 10% ASR
of the RandGA, indicating that the timing channels in dynamic
networks can still leak some information about the sensitive
attribute, even if the sensitive attribute can take a large range
of possible values.
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Arch Type Architecture Dataset Attribute No Clusters ASR/Cluster Cluster Input
Distribution RandGA ASR

Non-Adaptive
Networks

AlexNet CANCER Class Label 1 46.76 100 50 46.76
AlexNet FAIRFACE Class Label 1 31.64 100 33.33 31.64
VGG-16 CANCER Class Label 2 [47.57, 56.1] [72.96, 27.04] 50 50.0
VGG-16 FAIRFACE Class Label 2 [36.81, 33.81] [26.06, 73.94] 33.33 34.57
ResNet-110 CANCER Class Label 1 46.53 100 50 46.53
ResNet-110 FAIRFACE Class Label 1 34.57 100 33.33 34.57

Early
Exit
Networks

Branchy-AlexNet CIFAR10 Class Label 3 [13.52, 13.93, 22.22] [44.68, 26.51, 28.81] 10 16.11
Branchy-AlexNet CIFAR100 Generalized Label 4 [16.67, 13.04, 8.05, 5.21] [0.84, 6.2, 2.62, 88.34] 5 6.00
Branchy-AlexNet CANCER Class Label 3 [82.61, 69.01, 60.53] [27.33, 35.66, 37.00] 50 70.37
Branchy-AlexNet FAIRFACE Class Label 3 [78.26, 64.52, 41.46] [4.20, 11.08, 84.72] 33.33 45.71

SDNet CIFAR10 Class Label 5 [19.22, 10.83, 14.71,
21.74, 19.61]

[21.22, 42.98, 29.32,
2.75, 3.73] 10 14.44

SDNet CIFAR100 Generalized Label 3 [5.64, 7.62, 9.63] [66.98, 12.67, 20.35] 5 6.67
SDNet CANCER Class Label 3 [64.5, 66.67, 62.58] [57.58, 2.84, 39.58] 50 63.89

SDNet FAIRFACE Class Label 5 [94.29, 42.0, 36.04
36.88, 43.3]

[5.42, 13.06, 17.75,
22.19, 41.58] 33.33 43.21

Model
Cascade
Networks

RANet CIFAR10 Class Label 3 [25.0, 17.23, 10.58] [2.23, 14.71, 83.06] 10 12.06
RANet CIFAR100 Generalized Label 3 [10.34, 9.47, 6.29] [2.77, 18.72, 78.51] 5 7.06
RANet CANCER Class Label 3 [95.05, 62.07, 66.39] [23.35, 21.55, 55.09] 50 72.26
RANet FAIRFACE Class Label 3 [81.44, 34.84, 45.45] [12.83, 20.17, 67.0 ] 33.33 43.98
MSDNet CIFAR10 Class Label 3 [12.94, 13.51, 20.47] [67.90, 23.76, 8.34] 10 13.61
MSDNet CIFAR100 Generalized Label 3 [9.28, 6.37, 7.27] [19.98, 37.62, 42.4] 5 7.33
MSDNet CANCER Class Label 2 [89.32, 61.4] [20.83, 79.17] 50 68.06
MSDNet FAIRFACE Class Label 2 [77.38, 36.17] [10.92, 89.08] 33.33 41.51

Dynamic
Networks

BlockDrop CIFAR10 Class Label 2 [98.94, 21.57] [4.80, 95.20] 10 25.93
BlockDrop CIFAR100 Generalized Label 3 [100,66.67,4.75] [0.04, 0.41, 99.56] 5 5.06
BlockDrop CIFAR10 Adversarial Input 2 [100,61.16] [4.17, 95.83] 50 62.71

SkipNet CIFAR10 Class Label 5 [0, 60.98, 16.57,
16.51, 0]

[0.01, 1.66, 55.67,
42.64, 0.01] 10 17.56

SkipNet CIFAR100 Generalized Label 3 [0, 8.36, 6.54] [0.1, 30.93, 68.97] 5 7.11

SkipNet CANCER Class Label 5 [77.08, 45.83, 58.73,
51.79, 50.0]

[10.29, 31.62, 30.04,
27.88, 0.17] 50 54.63

SkipNet FAIRFACE Class Label 4 [39.22, 38.06, 48.65, 0] [46.25, 42.52,
11.19, 0.03] 33.33 39.81

SkipNet CIFAR10 Adversarial Input 5 [0, 66.35, 52.78,
55.23, 0]

[0.01, 17.94, 31.99,
50.04, 0.01] 50 56.51

TABLE I: LAN Results (clusters with significantly high ASR >=75% for CANCER, >70% for FAIRFACE, and >50% for
CIFAR10 and CIFAR100 are in bold font)

b) Trends in “Easier” Input Images: We observe a
trend in the CANCER and FAIRFACE datasets where certain
attributes correspond to lower execution times regardless of
the early exit or model cascade ADNN architecture. On the
CANCER dataset, we observe that the early exits/ intermediate
classifiers of early exit and model cascade networks learn
to recognize the benign class of the dataset better than the
malignant class, hence introducing a bias between the two
possible class label values at the earlier exits or classifiers. All
four different architectures (Branchy-AlexNet, SDNet, RANet
and MSDNet) exhibit this behavior. Figure 10 shows this
agreement. Although the difference in the input images of
the CANCER dataset is imperceptible to a non-medically
trained individual, we hypothesize that the features that the
model learns at their earlier exits are more significant to the
benign skin mole class. We also see the similar behaviour and
agreement of all four models on the FAIRFACE dataset, where
the models treats age classes [0-19] and [more than 50] as
easier compared to the age class [20-49]. Figure 11 shows this
agreement.

Not all datasets exhibit such a trend; however. For example,
the classes in CIFAR10 deemed “easy” by the two dynamic
networks evaluated are not the same. This behavior is shown
in Figure 12.

c) Impact of Exit Threshold Hyperparameter: An im-
portant part of developing and deploying early exit (Branchy-

Fig. 10: Input Distribution of benign and malignant skin
mole images across the first time cluster of Branchy-AlexNet,
SDNet, RANet and MSDNet

AlexNet and SDNet) and model cascade (RANet and MSD-
Net) variants of ADNNs is the choice of their exit thresholds
hyperparameter. This threshold hyperparameter is greatly in-
fluenced by the type of setting the ADNN is to operate in. We
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Fig. 11: Input Distribution of FAIRFACE age classes across
the first time cluster of Branchy-AlexNet, SDNet, RANet and
MSDNet

Fig. 12: Input Distribution of CIFAR10 classes across the first
time cluster of BlockDrop and SkipNet

experiment with three different kinds of such settings:

1) Conservative Setting: In this setting, the thresholds
of the earlier exits of the classifiers are chosen to be
very strict to prioritize accuracy over inference time.
The early exits are only taken when the classifiers are
highly confident of the input’s prediction, hence they
aren’t utilized much.

2) Balanced Setting: In this setting, we balance the
accuracy and speed requirements of the networks.
The goal here is to find a sweet spot that maximizes
both accuracy and speed.

3) Relaxed Setting: In this setting, the strict requirement
of the early exits thresholds is relaxed to favor speed
over accuracy, and early exit classifiers are greatly
utilized.

Table II provides our results. We see in the conservative setting
that reducing the exit threshold for the first exit of Branchy-
AlexNet on the FAIRFACE dataset increases the accuracy of
the model from 74.81% to 75.03% but reduces the model
performance from 45.2secs to 47.2secs. The best ASR/cluster
increases from 78.26% in the balanced setting to 100% in the
conservative setting. This further corroborates our hypothesis
that the model learns discriminative features particular to a
specific value of the sensitive attribute at this exit which is
more pronounced at stricter exit thresholds. The opposite can
be observed in the case of RANet on the CANCER dataset in
the relaxed setting. The highest ASR/Cluster observed drops
from a value of 95.05% in the balanced setting to 75% in
the relaxed setting. This is as a result of the relaxed threshold
of the earlier classifiers which allows more inputs with both
possible values of the sensitive attribute to leave the network
via the early exits. This relaxation of the thresholds also causes
the model accuracy to drop from 87.0% to 84.13% and the
model performance to increase from 49secs to 37.9secs.

d) Impact of Model Depth Hyperparameter: While
dynamic networks do not rely on exit thresholds, model
depth is a major hyperparameter. We experiment with different
values of model depth and report the observed timing channel
leakage in Table IV. We observe that the deeper the dynamic
network, the more prone the network is to leak information
via timing channels. For example, we consider two variants
of the BlockDrop architecture trained on CIFAR10. For the
BlockDrop variant built with ResNet-110 (54 blocks), there is
a cluster with an ASR of 98.94%. On the other hand, for the
BlockDrop variant built with ResNet-32 (15 blocks), the largest
ASR/cluster is 87.5%. Similar results are observed for SkipNet.
For SkipNet built with ResNet 110, the largest ASR/cluster is
60.98%, while for a SkipNet built with ResNet-38 (18 blocks),
the largest ASR/cluster is 39.58%.

In the case of BlockDrop, we hypothesize that this leakage
behaviour is due to the policy network of the architectures.
For larger networks, more unique block dropping policies, and
hence computational paths, are generated (469 in the case
of the BlockDrop variant built on ResNet-110 versus only
53 in the case of the variant built on ResNet-32). Similarly,
the gating network of SkipNet generates more computational
paths in the case of larger networks. The greater number of
computational paths potentially leads to greater partitioning of
the input space, which results in higher values of ASR/cluster.

In general, searching for model hyperparameters such as
exit thresholds, model depths, etc that satisfy privacy require-
ments while optimizing performance and accuracy for this
types of ADNNs is a huge search problem given the size of
the set of possible values. Further exploration of this challenge
is left to future work.

e) Learning Adversarial Input: Adversarial machine
learning has been a subject of study for quite some time now,
and can be generally grouped into data poisoning, byzantine
attacks, model evasion attacks and model extraction attacks.
In our case, we consider the case of model evasion attacks,
using the BlockDrop and SkipNet architectures trained on
CIFAR10 dataset. We investigated if we could observe a tim-
ing difference between adversarial inputs and non-adversarial
inputs. Our intuition here is that more of the adversarial inputs
would use a larger number of blocks and hence have longer
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Dataset Architecture Attribute Exit Thresholds Setting Accurracy Performance
(secs)

No
Clusters ASR/Cluster Input

Distribution/Cluster RandGA ASR

FAIRFACE Branchy-AlexNet Class Label [2.0e-03, 5.0e-02] Conservative 75.03 47.2 3 [100.0, 57.63, 38.78] [0.72, 15.28, 84.0] 33.33 42.59
FAIRFACE Branchy-AlexNet Class Label [2.0e-02, 5.0e-02] Balanced 74.81 45.2 3 [78.26, 64.52, 41.46] [4.20, 11.08, 84.72] 33.33 45.71
FAIRFACE Branchy-AlexNet Class Label [5.0e-01, 5.0e-01] Relaxed 73.33 34.9 3 [36.84, 46.72, 42.03] [45.67, 21.64, 32.70] 33.33 40.59

FAIRFACE SDNet Class Label [0.99, 0.99] Conservative 78.64 50.8 5 [90.91, 58.82, 57.47,
46.73, 43.77]

[1.47, 4.94, 11.44,
18.64, 63.5] 33.33 47.69

FAIRFACE SDNet Class Label [0.95, 0.95] Balanced 78.11 46.6 5 [94.29, 42.0, 36.04
36.88, 43.3]

[5.42, 13.06, 17.75,
22.19, 41.58] 33.33 43.21

FAIRFACE SDNet Class Label [0.8, 0.8] Relaxed 77.11 39.9 5 [56.49, 42.31, 40.69,
44.55, 56.63]

[21.67, 24.83, 22.83,
17.69, 12.97] 33.33 47.53

TABLE II: Early Exit Network Hyperparameter on FAIRFACE Dataset

Dataset Architecture Attribute Exit Thresholds Setting Accurracy Performance
(secs)

No
Clusters ASR/Cluster Input

Distribution/Cluster RandGA ASR

CANCER RANet Class Label [ 9.999942e-01, 9.9999730e-01] Conservative 87.16 55.8 3 [100.0, 69.46, 70.18] [0.5, 41.5, 58.00] 50 69.91
CANCER RANet Class Label [ 9.9942e-01, 9.9773e-01 Balanced 87.0 49 3 [95.05, 62.07, 66.39] [23.35, 21.55, 55.09] 50 68.06
CANCER RANet Class Label [ 9.0642e-01, 9.0330e-01] Relaxed 84.13 37.9 3 [65.11, 75.0, 67.36] [51.42, 1.42, 47.16] 50 66.2
CANCER MSDNet Class Label [ 9.99642e-01, 9.99330e-01] Conservative 87.0 48.6 3 [100.0, 77.42, 69.47] [3.67, 32.42, 63.92] 50 73.38
CANCER MSDNet Class Label [ 9.9642e-01, 9.9330e-01] Balanced 86.83 46.5 2 [89.32, 61.4] [20.83, 79.17] 50 68.06
CANCER MSDNet Class Label [ 9.0642e-01, 9.0330e-0] Relaxed 83.33 37.1 2 [66.96, 61.54] [49.33, 50.66] 50 64.35

TABLE III: Model Cascade Network Hyperparameter on CANCER Dataset

Architecture Arch Depth No of
Blocks Dataset Attribute No Clusters ASR/Cluster Input

Distribution/Cluster Random Guess ASR

BlockDrop ResNet 110 54 CIFAR10 Class Label 2 [98.94, 21.57] [4.80, 95.20] 10 25.93

SkipNet ResNet 110 54 CIFAR10 Class Label 5 [0, 60.98, 16.57,
16.51, 0]

[0.01, 1.66, 55.67,
42.64, 0.01] 10 17.56

BlockDrop ResNet 32 15 CIFAR10 Class Label 2 [87.5, 10.32] [0.27, 99.72] 10 10.67

SkipNet ResNet 38 18 CIFAR10 Class Label 6 [39.58, 21.57, 12.13,
11.74, 15.62, 23.64]

[2.57, 15.01, 26.20,
27.54, 21.80, 6.88] 10 15.83

TABLE IV: Dynamic Network Hyperparameter on the CIFAR10 Dataset

inference times compared to the non-adversarial inputs, leading
to execution time correlated with whether or not an image
is adversarial. To generate our adversarial examples for this
experiments, we use the Fast Gradient Sign Attack (FGSM)
method described by Goodfellow et.al [16]. This method
involves adding imperceptible perturbations to an image, which
in turns causes the machine learning model to misclassify it.
The results from this experiments shown in Table I confirms
that there exists time partitions for which we can distinguish
between adversarial and non-adversarial inputs fed to the
BlockDrop model trained on CIFAR10 dataset.

VII. CASE STUDIES

To further exemplify the real-world applicability of exploit-
ing timing channels in ADNNs, we perform two case studies
on two different web applications that use different variants
of adaptive neural networks on their backend. We solely focus
on ADNNs that exhibit high ASR/cluster on the LAN when
considering a specific dataset for these case studies.

A. Case Study Setup

For our case studies, we ran our experiments over the
public internet. We hosted the Fictitious Health Company
and Fictitious HR web application on a Google Cloud server
located in the USA eastern region, which according to Google
Cloud documentation [9] resolves to Moncks Corner, South
Carolina, North America, while the client was located in our
lab in Hoboken, New Jersey USA. The distance between the
server hosted on Google Cloud and our remote client is ap-
proximately 700 miles. According to TRACEROUTE, the route
comprises 7 hops. Round-trip time and noise vary depending

on load, but typical RTT was around 13.1 msec (min 10.5,
mean 13.12, max 14.8, std 1.1).

We first create our attack model using the method described
in Section IV, then we had a fake user residing on the same
network as us submit a query to the web application, we
collected the timing results and proceeded to infer the sensitive
attribute of the user’s input.

B. Fictitious Health Company

Fictitious Health Company is a toy technology company
we designed and implemented that utilizes ADNNs to provide
accurate and timely skin cancer predictions to clients based
on uploaded images of skin moles. It provides a user-friendly
web application accessible over the public internet that allows
healthcare professionals to upload images of skin moles and
receive predictions immediately, helping the health care per-
sonnel to make faster treatment decisions. The assumptions in
this case study are those enumerated in Section IV-B. Most
importantly, we assume the adversary is on the same network
as the victim.

Our results are given in Table V. We observe that for all
architectures, some information is leaked about whether or not
the input image is of a malignant skin mole. For three of the
architectures, an ASR/cluster of over 80% is observed (versus
a baseline of 50%). In the case of RANet, almost a quarter of
input images fall into a cluster with an ASR of 86.49%. We
observe lower ASR/Cluster for SDNet and SkipNet though
both still show an overall ASR of over 60%, meaning that the
adversary has still improved their ability to infer the sensitive
attribute with timing information.
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Architecture Dataset Attribute No Clusters ASR/Cluster Cluster Input distribution RandGA ASR
Branchy-AlexNet CANCER Class label 3 [84.88, 59.43, 70.18] [26.56, 54.30, 19.14] 50 68.24
SDNet CANCER Class label 2 [67.0, 62.45] [46.79, 53.21] 50 64.58
RANet CANCER Class label 2 [86.49, 62.62] [23.46, 76.54] 50 68.75
MSDNet CANCER Class label 2 [83.0, 58.13] [20.46, 79.54] 50 63.89

SkipNet CANCER Class label 5 [75.0, 54.24, 66.06,
0, 0]

[10.04, 63.5, 26.21,
0.17, 0.08] 50 59.72

TABLE V: Fictitious Health Company

C. Fictitious HR

Fictitious HR is a toy technology company we designed
and implemented that utilizes ADNNs to provide accurate
age estimation to its clients based on uploaded images. The
company’s objective is to revolutionize the hiring process by
incorporating AI technology to assist organizations in assess-
ing a candidate’s age, ensuring fair and unbiased decision-
making. It provides a user-friendly web application secured
over the public internet that allows HR professionals to upload
candidate images and receive age estimations. Again, our
assumptions in this case study are those given in Section IV-B.
Most importantly, we assume the adversary is on the same
network as the victim, a job applicant uploading their image
to the Fictitious HR web application as instructed by the hiring
HR personnel.

Our results are given in Table VI. Again, we observe high
ASR/Cluster for at least one cluster for each architecture,
improving the accuracy from 33% to over 70% in all cases.
We observe very strong leakage 92.86% for one cluster of
SDNET, though only 3.48% of the submitted images fall into
this cluster.

D. Additional Internet Experiments

We also perform experiments using the CIFAR10 dataset
across the public internet. We report our results in Table
VII, where we still find clusters with significantly high ASR,
76.09% in the case of BlockDrop and 60.0% in the case of
SkipNet.

E. Impact of Noisy Observations

In our experiments across the public internet, we acknowl-
edge the impact of noise factors such as network congestion,
packet loss, and varying network conditions. These noise
factors introduce unpredictability and inconsistency in network
latency, posing challenges in accurately measuring and inter-
preting timing variations. To mitigate the effect of this noise
on out timing profile, we employ several strategies. Firstly, we
run each input of our manifest dataset ten times and record the
average timing measurements. By collecting multiple samples,
we aim to smooth out the impact of random fluctuations caused
by noise, providing a more reliable estimate of timing varia-
tions. Additionally, we apply statistical techniques to identify
and remove outlier measurements. This helps us eliminate any
extreme values that may be influenced by noise, ensuring that
our analysis focuses on more representative timing data.

Despite these efforts, we suffer a decrease in performance
of our highest ASR for a given cluster when compared to
measurements taken over a local area network environment

due to the inherent noise and variability of the public internet.
However, by accounting for these challenges and employing
appropriate noise mitigation techniques, we strive to minimize
its impact and draw reliable conclusions from our experiments.

VIII. LIMITATIONS

A. Quality of the Manifest Dataset DSM

The ability of an adversary to generate an accurate timing
profile depends on the quality of the manifest dataset. The
more divergence between the input distribution and the man-
ifest dataset, the less reliable our attack model would be in
inferring the sensitive attributes of unseen inputs, given their
timing observations.

B. Normal Distribution of Timing Observations

Given our utilization of the KDE algorithm for clustering
timing observations, it becomes crucial for the timing obser-
vations to approximate a normal distribution. This is because
the KDE algorithm relies on a continuous probability density
function for clustering. If our timing observations deviate
significantly from the normal distribution, it may be advisable
to consider an alternative clustering algorithm.

C. Impact of the KDE’s algorithm bandwidth parameter

The effectiveness of KDE heavily relies on selecting an ap-
propriate kernel bandwidth parameter as an improper selection
may lead to oversmoothing or undersmoothing, resulting in
inaccurate density estimates, misleading clustering outcomes,
and a reduction in our attack model’s performance. Hence it
might be worthwhile to explore other bandwidth values, but
given that this is a search space problem, we leave this for
future work.

D. Noise over LAN and Public Internet

Considering the influence of noise in our experiments con-
ducted over the public internet, we postulate that as the level
of noise amplifies due to factors such as network instability,
network congestion, or increased distance between the client
and server, the reliability of our timing measurements and
observations will diminish. This decrease in reliability directly
affects the capability of our attack model to establish correla-
tions between timing observations and the sensitive attributes
of the input, both across the LAN (Local Area Network) and
over the public internet. Additionally, this noise could also
affect the quality of the timing observations collected for the
target victim’s input further decreasing the performance of our
attack model.
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Architecture Dataset Attribute No Clusters ASR/Cluster Cluster Input distribution RandGA ASR
Branchy-AlexNet FAIRFACE Class label 4 [71.43, 34.22, 29.51, 42.31] [2.59, 41.81, 33.09, 22.52] 33.33 35.51

SDNet FAIRFACE Class label 6 [92.86, 51.26, 34.09,
42.48, 45.2, 52.31]

[3.48, 17.53, 15.78,
24.87, 27.70, 10.64] 33.33 45.94

RANet FAIRFACE Class label 5 [72.94, 37.37, 35.45,
48.44, 52.94]

[12.47, 58.22, 9.75,
9.75, 2.83] 33.33 43.21

MSDNet FAIRFACE Class label 2 [73.21, 39.92] [11.60, 88.40] 33.33 43.45

TABLE VI: Fictitious HR

Architecture Dataset Attribute No Clusters ASR/Cluster Cluster Input distribution RandGA ASR

BlockDrop CIFAR10 Class label 6 [27.27, 76.09, 40.26,
11.15, 0, 0]

[0.61, 5.11, 7.18,
87.08, 0.01, 0.01] 10 17.06

SkipNet CIFAR10 Class label 6 [0, 60.0, 20.87,
16.28, 19.02, 0]

[0.01, 1.5, 47.76,
12.22, 38.50, 0.01] 10 20.39

TABLE VII: Additional Results over the Internet

IX. RELATED WORK

a) Privacy in Adaptive Neural Networks: The work of
Zheng Li et. al aims to investigate how multi-exit networks
affect membership leakages [29]. While this work mainly
concerns itself with the vulnerability of multi-exit networks to
membership inference attacks, our work focuses on how timing
channels in ADNNs may leak information about sensitive
attributes of user’s input to the model.

b) Side Channels in Machine Learning Frameworks:
Existing research aims at studying security vulnerabilities in
machine learning frameworks, including side-channel vulnera-
bilities. These attempts can be categorized along multiple axes:
what type of side-channel observable is considered, what kind
of information is leaked, and what attack scenario is consid-
ered. Previous research has demonstrated side channels due to
micro-architectural events (generally cache hits/misses) [19],
[60], [26], [1], [50], power consumption [55], [54], [4], mem-
ory [38], GPU [53], [33], electromagnetic emanations [5],
[64], and, as in our work, execution time [15], [10], [34],
[45]. A significant fraction of the above work has focused on
side-channel attacks to reverse engineer proprietary machine
learning models. Such attacks use side-channel information,
such as cache hits and misses, to infer model parameters.
Another line of inquiry more closely our work is using side-
channel vulnerabilities to learn properties about user input. The
class label is the most commonly targeted property though the
work of Wei et al [54] uses a power side channel to recover
the input image itself. Other work by Nakai et al [34] uses
timing channels to craft adversarial examples. While some
previous work considers an attack scenario similar to ours
where the attacker has black-box or API-only access to the
model, others consider the case where the adversary either has
full or partial knowledge of the model internals. Measuring
side-channel observables such as electromagnetic emanations
or power consumption also requires physical access to the
model. A characterization of related work along these axes
can be found in Figure 13.

c) Automated Side-Channel Analysis: Extensive re-
search has been devoted to the study of side-channel vul-
nerabilities in software and hardware. Both static [2] and
dynamic [65], [40], [37] techniques to quantify software side-
channel vulnerabilities using entropy-based metrics have been

Work Side-Channel Observable Objective
[1], [19], [26], [50]#, [60] Micro-architectural events ⃝ □ □ ⃝ □

[4]∗, [54]∗, [55]∗ Power consumption □ ⃝ □

[38]# Memory □

[33], [53] GPU □ □

[5]∗, [64]∗ Electromagnetic emanations □ □

[10], [15], [34], [45] Time □ □ △ ⃝
□ = Reverse engineer model ⃝ = Learn sensitive input information △ = Craft adversarial examples
∗ = Physical access required
# = Not black box

Fig. 13: Summary of Side-Channel Vulnerabilities in Deep
Learning Models

proposed; however, none of these metrics explicitly formulate
attributes of the input domain that might be considered sen-
sitive. This is likely partly due to differences in the size of
the domain of secret input compared to the domain in our
work. It also might arise as a result of how side channels
in software tend to partition the secret input: according to
branch conditions in the source code relating to predicates
over that input [7]. As a result, side channels in software tend
to partition the input space according to traits, removing the
need to explicitly check the partitioning. Fuzzing is another
widely used technique for side-channel analysis [36], [8], [3],
[59], [37], usually aimed at efficiently determining if side-
channel vulnerabilities are present in software. In future work,
we plan to explore whether fuzzing might offer some benefits
for efficiently exploring the space of hyperparameters to find
values where no sensitive information is leaked.

X. CONCLUSIONS AND FUTURE WORK

We have presented the first demonstration of information
leakage via timing channels in ADNNs. We demonstrated how
sensitive attributes of user inputs can be recovered through
timing information across six different adaptive neural net-
work architectures and across multiple datasets. Critically, this
information can be learnt by an adversary with only black-
box access to the model who is taking timing measurements
across a network. The timing channels we observe are large
enough in magnitude that different partitions can be observed
even in the presence of noise. In future work, we intend to
leverage our observation that model parameters such as exit
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thresholds greatly impact the vulnerability of these networks
to timing channel attacks by introducing an automated fuzzing-
based approach to exploring the space of network parameters
to generate models that are robust to timing channels, accurate
and efficient. Because runtime factors such as caching can
impact timing measurements, we also intend to introduce an
online monitoring system to detect when timing channels have
arisen in deployed models and introduce mitigation measures
in the case of such an event. Some of the mitigation measures
we plan to explore include; the impact of introducing random
delays during model inference, and the effectiveness of re-
moving block dropping or skipping policies that are linked to
privacy violations.

AVAILABILITY

We share all the code and data needed to gen-
erate our results via https://github.com/akinsanyaayomide/
ADNNTimeLeaks.git and also on Zenodo via https://zenodo.
org/records/10164348
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APPENDIX A
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: Our artifact can be found via https:
//github.com/akinsanyaayomide/ADNNTimeLeaks/tree/main
and also on Zenodo via https://zenodo.org/records/10164348

2) Hardware dependencies: If both client and server side
are simulated on a single machine then all other tabs or
background activities on the machine should be suspended
prior to running the experiment for the most accurate results.

3) Software dependencies: Any commodity machine that
can run Python 3.8.
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4) Benchmarks: The Datasets required for using this ar-
tifact are the following CIFAR10, CIFAR100, CANCER, and
FAIRFACE. The artifact provides a reliable means of obtaining
all the datasets required for running the experiment.

B. Artifact Installation & Configuration

The artifact runs in a Python 3.8 environment, and the arti-
fact contains a requirements.txt file which should be installed
before running the artifact.

C. Experiment Workflow

The experiment workflow consists of two part listed below:

1) Profiling Stage: This stage describes how the client
(adversary) obtains the timing profile of the target
model hosted on the server side.

2) Evaluation Stage: This stage describes how the client
(adversary) evaluates the obtained target model tim-
ing profile for information leakage.

D. Major Claims

• (C1): We show how timing channels in ADNNs
observed over the LAN can increase an adversary’s
ability to infer sensitive user attribute, such as age or
medical information, by up to a factor of 9.89x. This is
proven by experiment (E1) whose results are reported
in Table I of our paper.

E. Evaluation

1) Experiment (E1): [LAN Experiments] [120 human-
minutes + 2 compute-hour]:

[How to] Clone the artifact repository and follow the
instructions in the READMe file.

[Preparation] You might want to setup a Python virtual
environment to avoid any package conflict. You can do so by
following the instructions here https://www.geeksforgeeks.org/
creating-python-virtual-environment-windows-linux/

[Execution] Once the virtual environment has been setup
follow the steps in the READMe file in the artifact repository,
which consists of installing a requirements.txt file.

[Results] After generating the model timing profile in the
profiling stage, follow the steps in the Evaluation stage in the
READMe file to obtain results for each model architecture.
The results obtained should be very similar to the ones
presented in Table 1 of the paper, with maximum variations of
±3% in the cluster accuracies of clusters reported with very
high accuracy (the ones in bold in the paper).

F. Customization

If running all experimental cases proves to be too laborious,
example timing profiles to reproduce main results of the
paper is given in the EvalTimeProfile directory in the artifact
repository.
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