AnonPSI: An Anonymity Assessment Framework for PSI

Bo Jiang, Jian Du, Qiang Yan

AnonPSI Privacy Innovation Lab J' TikTok



Content

 Background

 Deterministic attack: a dynamic programming solution
* |Improvement with auxiliary information

o Statistic attack: Bayesian active learning

 EXperiments

AnonPSI Privacy Innovation Lab J' TikTok



Background - Secure Two-party Computation

* Privacy-preserving: ensures that each party's input remains confidential
e Security guarantees: Provides cryptographic assurances that neither party can cheat

* Applications: financial service, healthcare, supply chain management, online voting, Ads
measurement, collaborative machine learning, etc.
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Background - Example of Ads measurement

« [ :Ads conversion rate / revenue from intersecting converted individuals.
* X, : user set from the publisher that viewed the ads

* X, : user set from the advertiser that purchased the product
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Background - privacy leakage in intersection size revealing protocols

* Intersection size revealing protocols: Protocols that only returns the cardinality of the
intersection, with/without other side-information, eg. PSI-CA, PSI-SUM, etc.

 Why hide the intersection?
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Background - set membership inference attack

* Malicious party infers a set of users’ membership by invocations of a sequence of protocols

. Xlig denotes the adversary’s input subset for the i-th protocol call

* Brute force attack: adversary submits one person at a time and determines his membership
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Baseline attack algorithm [1]

* Setup binary tree with each node to be a subset of users

* Visit nodes via Priority-based depth-first search (Priority = Intersection size (/S) /# individuals In
the node)

* /S inthe right child = /S in the parent - /S in the left child

» Classify current node if Priority = 0 (negative membership) or Priority = 1 (positive membership)
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[1]: Guo, Xiaojie et al. “Birds of a Feather Flock Together: How Set Bias Helps to Deanonymize You via Revealed Intersection Sizes.”
USENIX Security Symposium (2022).
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Improvements over the baseline

* |Improvement 1: leverage both positive and negative membership by redefining Priority
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 Improvement 2: optimal tree partition, benefit for cases with limited protocol calls
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Deterministic dynamic problem approach - DyPathBlazer

 State: (|N |, Cn, 7), number of elements in Dequeue P”O”ty Queue | Enqueue FEENR R
current set, number of intersected elements,
protocol invocation budget.

Update

® ] ] — — ®( ‘ N ‘ ’ C ’ T)
Priority = max(Cn/|N|, 1 —Cn/|NJ) 1y
« O(|N], Cn;,7) stores the optimal partition Update
factor K that maximizes the expected inferred Otherwise -
memberships under current state C, — Né

* O(|N],Cn,7),is . by back LL=OOFCL=K
tracking (dynamic programming).
[Update Inference]
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Experiments with Covid-19 tracking record*

Leakage (left): individuals who tested and the results are inferred during [04-00, 04-11]
Leakage (right):individuals who tested and the results are inferred positive during [04-00, 04-11]
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*. Machine learning-based prediction of covid-19 diagnosis based on symptoms, url: https://github.com/nshomron/covidpre
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Combined with auxiliary information - TreeSumExplorer

. Observations: Count, | X, N Xg\ and SUM, Z (X4 N Xg)

« Solves an offline N-Sum problem ( find elements in Xlta of length “Count” that sum up to SUM)
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Experiments with ads display and click dataset*

Advertising company targets the product company:
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DyPathBlazer can be adapted to focus on inferring positive/negative membership only, by redefining
the Priority

The attack efficiency improved significantly with auxiliary information

*: Taobao Display Advertisement Click-Through Rate Prediction Dataset, url: https://tianchi.aliyun.com/dataset/dataDetail?
datald=56
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Statistic Approach - Bayesian Active Learning (ActBayesian)

* Treat each element’s membership as binary random variable

e Select inputs according to their distances to upper / lower threshold (with random sampling)

* Belief Is updated using Bayesian posterior update
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Experiments for PSI-CA with Differential Privacy (DP) protection

* Product company targets the advertising company

e Statistical attack remains valid even with DP protection
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Experiments for PSI-CA with DP protection

Upper Lower Tolerance Sampling Total
Threshold Threshold Factor Rate Budget
6,1 0, ¥ tol 1 ri T 4
Default
0.8 1 0 0.2 0 0.2 0.3 0.9 10 90
True Positive
. . . . . 0.0 . . .
Percentags 0.08 0.14 | 0.06} 0.114| 0.02 | 0.05 0.07 | 0.05[| 0.04 | 0.2 0.174
%
« S| | True Negative
®
S 8| percentage 0.27 025 | 029% 0224| 031 | 023 | 0254 0214| 022 | 0.12 | 083t
q) | -
m O
D erz';":a'te 0.083 015 | 0 ] 009f| 004 | 0072 | 0.080) 0.084f 0.08 | 0.12 0.064]
Type |l 0.085 0.087 | 0092} 0 | 0.17 | 0.077 | 0.0824 0.085< 0.082 | 0.16 | 0.055}
error rate ' ' '

* Error analysis under different parameters

AnonPSI Privacy Innovation Lab J' TikTok



Takeaways & Future works

 Takeaways:

 Most traditional MPC protocols are not sufficient to guarantee input privacy. Extra

validations and privacy enhancements must be incorporated under stringent privacy
regulation requirements.

* Efficient attacks are able to make membership inference via a small number of protocol
invocations (3% of the users in a datasets are re-identified within 5 PSI-SUM calls).

 [eakage from statistical attack provides guidance for parameter determination for counter
measures, such as the privacy budget for DP.

* Future works:
* Rethinking security model of PSI protocol to leverage membership leakage.

* Defenses against proposed attacks: ML to detect pattern, DP in high privacy regime, etc.
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The End
Q/A
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Backup slides - lllustration of backtracking
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» ['(|N], Cy) denotes the expected protocol call /

needed to infer | N |individuals. I' is derived using
dynamic programming.
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Backup slides - Lower bound comparison, DyPathBlazer v.s. Baseline
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Both cases consider a dataset of 100 individuals. Case 1) assumes 50 positive members, case 2)
assumes 10 positive members. Higher lower bounds from DyPathBlazer guarantees better efficiency in
the worst-case scenario.
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Backup slides - Steps in the baseline algorithm
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Backup slides - Steps in the baseline algorithm (cont’d)

Priority Queue: (1/2, (1, {A,B}))
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