AnonPSI: An Anonymity Assessment Framework for PSI

Bo Jiang, Jian Du, Qiang Yan

Privacy Innovation Lab
TikTok Inc.

Content

- Background
- Deterministic attack: a dynamic programming solution
- Improvement with auxiliary information
- Statistic attack: Bayesian active learning
- Experiments

Background - Secure Two-party Computation

- Privacy-preserving: ensures that each party's input remains confidential
- Security guarantees: Provides cryptographic assurances that neither party can cheat
- Applications: financial service, healthcare, supply chain management, online voting, Ads measurement, collaborative machine learning, etc.

Background - Example of Ads measurement

- f: Ads conversion rate / revenue from intersecting converted individuals.
- X_A : user set from the publisher that viewed the ads
- X_R : user set from the advertiser that purchased the product

Background - privacy leakage in intersection size revealing protocols

- Intersection size revealing protocols: Protocols that only returns the cardinality of the intersection, with/without other side-information, eg. PSI-CA, PSI-SUM, etc.
- Why hide the intersection?

Background - set membership inference attack

- Malicious party infers a set of users' membership by invocations of a sequence of protocols
- X_B^i denotes the adversary's input subset for the i-th protocol call
- Brute force attack: adversary submits one person at a time and determines his membership

Baseline attack algorithm [1]

- Setup binary tree with each node to be a subset of users
- Visit nodes via Priority-based depth-first search (Priority = Intersection size (IS) /# individuals in the node)
- IS in the right child = IS in the parent IS in the left child
- Classify current node if *Priority* = 0 (negative membership) or *Priority* = 1 (positive membership)

[1]: Guo, Xiaojie et al. "Birds of a Feather Flock Together: How Set Bias Helps to Deanonymize You via Revealed Intersection Sizes." USENIX Security Symposium (2022).

Improvements over the baseline

Improvement 1: leverage both positive and negative membership by redefining Priority

Improvement 2: optimal tree partition, benefit for cases with limited protocol calls

Call #	Partition	Exp.Leak			
1	0	0			
2	4	0.57			

Call #	Partition	Exp.Leak			
1	0	0			
2	2	0.928			

Deterministic dynamic problem approach - DyPathBlazer

- State: $(|N|, C_N, \tau)$, number of elements in current set, number of intersected elements, protocol invocation budget.
- Priority = $\max(C_{\mathbb{N}}/|\mathbb{N}|, 1 C_{\mathbb{N}}/|\mathbb{N}|)$
- $\Theta(|\mathbb{N}|, \mathbb{C}_{\mathbb{N}}, \tau)$ stores the optimal partition factor K that maximizes the expected inferred memberships under current state
- $\Theta(|\mathbb{N}|, C_{\mathbb{N}}, \tau)$, is pre-calculated offline by back tracking (dynamic programming).

Experiments with Covid-19 tracking record*

Leakage (left): individuals who tested and the results are inferred during [04-00, 04-11] Leakage (right):individuals who tested and the results are inferred positive during [04-00, 04-11]

^{*:} Machine learning-based prediction of covid-19 diagnosis based on symptoms, url: https://github.com/nshomron/covidpre

Combined with auxiliary information - TreeSumExplorer

- Observations: Count, $|X_A \cap X_B^k|$ and SUM, $\sum (X_A \cap X_B^k)$
- Solves an offline N-Sum problem (find elements in X_B^t of length "Count" that sum up to SUM)

Experiments with ads display and click dataset*

Advertising company targets the product company:

DyPathBlazer can be adapted to focus on inferring positive/negative membership only, by redefining the *Priority*

The attack efficiency improved significantly with auxiliary information

^{*:} Taobao Display Advertisement Click-Through Rate Prediction Dataset, url: https://tianchi.aliyun.com/dataset/dataDetail?dataId=56

Statistic Approach - Bayesian Active Learning (ActBayesian)

- Treat each element's membership as binary random variable
- Select inputs according to their distances to upper / lower threshold (with random sampling)
- Belief is updated using Bayesian posterior update

Experiments for PSI-CA with Differential Privacy (DP) protection

- Product company targets the advertising company
- Statistical attack remains valid even with DP protection

Experiments for PSI-CA with DP protection

			Upper Threshold		Lower Threshold		Tolerance Factor		Sampling Rate		Total Budget	
	Default	θ_{i}	u 🕇	$ heta_l$! 🕇	to	<i>l</i> †	1	• 🖶	7	7	
		Default	0.8	1	0	0.2	0	0.2	0.3	0.9	10	50
₽	True Positive Percentage	0.08	0.14	0.06	0.11	0.02	0.05	0.07	0.05	0.04	0.02	0.17
Better formance	True Negative Percentage	0.27	0.25	0.29	0.22	0.31	0.23	0.25	0.21	0.22	0.12	0.83
Be	Type I error rate	0.083	0.15	0 👃	0.09	0.04	0.072	0.080	0.084	0.08	0.12	0.064
	Type II error rate	0.085	0.087	0.092	0 🖶	0.17	0.077	0.082	0.085	0.082	0.16	0.055

[•] Error analysis under different parameters

Takeaways & Future works

Takeaways:

- Most traditional MPC protocols are not sufficient to guarantee input privacy. Extra validations and privacy enhancements must be incorporated under stringent privacy regulation requirements.
- Efficient attacks are able to make membership inference via a small number of protocol invocations (3% of the users in a datasets are re-identified within 5 PSI-SUM calls).
- Leakage from statistical attack provides guidance for parameter determination for counter measures, such as the privacy budget for DP.

Future works:

- Rethinking security model of PSI protocol to leverage membership leakage.
- Defenses against proposed attacks: ML to detect pattern, DP in high privacy regime, etc.

The End Q/A

Backup slides - Illustration of backtracking

- $\Theta(|\mathbb{N}|, C_{\mathbb{N}}, \tau)$ also memorizes maximum expected leakage
- $\Gamma(|\mathbb{N}|, \mathbb{C}_{\mathbb{N}})$ denotes the expected protocol call needed to infer $|\mathbb{N}|$ individuals. Γ is derived using dynamic programming.

Backup slides - Lower bound comparison, DyPathBlazer v.s. Baseline

Both cases consider a dataset of 100 individuals. Case 1) assumes 50 positive members, case 2) assumes 10 positive members. Higher lower bounds from DyPathBlazer guarantees better efficiency in the worst-case scenario.

Backup slides - Steps in the baseline algorithm

Backup slides - Steps in the baseline algorithm (cont'd)

