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Background - Secure Two-party Computation
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• Privacy-preserving: ensures that each party's input remains confidential


• Security guarantees: Provides cryptographic assurances that neither party can cheat


• Applications: financial service, healthcare, supply chain management, online voting, Ads 
measurement, collaborative machine learning, etc.



Background - Example of Ads measurement
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•    : Ads conversion rate / revenue from intersecting converted individuals.


•     : user set from the publisher that viewed the ads


•     : user set from the advertiser that purchased the product

f

AdvertiserPublisher 

∩
XA XB

|XA ∩ XB |

∑ (XA ∩ XB)

XA

XB



Background - privacy leakage in intersection size revealing protocols
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• Intersection size revealing protocols: Protocols that only returns the cardinality of the 
intersection, with/without other side-information, eg. PSI-CA, PSI-SUM, etc.


• Why hide the intersection? 

All types of Leakages

Track users at the intersect Track users not at the intersect

Ads provider 
A tracks opt-

out users A identifies users consumed at B

Keep sending B’s ad to them

A identifies users not consumed at B

Sell their info to B’s competitors

Advertiser 
provider B 
tracks opt-
out users

B identifies costumers using A

Sell their info at a higher price to A

B identifies costumers not using A

Target them through other platforms



Background - set membership inference attack
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• Malicious party infers a set of users’ membership by invocations of a sequence of protocols


•       denotes the adversary’s input subset for the -th protocol call


• Brute force attack: adversary submits one person at a time and determines his membership
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Baseline attack algorithm [1]
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• Setup binary tree with each node to be a subset of users


• Visit nodes via Priority-based depth-first search (Priority = Intersection size (IS) /# individuals in 
the node)


• IS in the right child = IS in the parent - IS in the left child


• Classify current node if Priority = 0 (negative membership) or Priority = 1 (positive membership)
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Attacking process Attacker’s point of view

[1]: Guo, Xiaojie et al. “Birds of a Feather Flock Together: How Set Bias Helps to Deanonymize You via Revealed Intersection Sizes.” 
 USENIX Security Symposium (2022).



Improvements over the baseline
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• Improvement 1: leverage both positive and negative membership by redefining Priority  

• Improvement 2: optimal tree partition, benefit for cases with limited protocol calls

Priority Queue
Baseline

Modified Algorithm

Positive members

Negative members

Call # Partition Exp.Leak

1 0 0
2 4 0.57

Call # Partition Exp.Leak

1 0 0
2 2 0.928



Deterministic dynamic problem approach - DyPathBlazer

• State: , number of elements in 
current set, number of intersected elements, 
protocol invocation budget.


•  Priority = 


•  stores the optimal partition 
factor  that maximizes the expected inferred 
memberships under current state


• , is pre-calculated offline by back 
tracking (dynamic programming).
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Experiments with Covid-19 tracking record* 

Leakage (left): individuals who tested and the results are inferred during [04-00, 04-11]

Leakage (right):individuals who tested and the results are inferred positive during [04-00, 04-11] 


*: Machine learning-based prediction of covid-19 diagnosis based on symptoms, url: https://github.com/nshomron/covidpre
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Combined with auxiliary information - TreeSumExplorer
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• Observations: Count,  and SUM, 


• Solves an offline N-Sum problem ( find elements in  of length “Count” that sum up to SUM)
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Experiments with ads display and click dataset* 

Advertising company targets the product company:


DyPathBlazer can be adapted to focus on inferring positive/negative membership only, by redefining 
the Priority 

The attack efficiency improved significantly with auxiliary information


*: Taobao Display Advertisement Click-Through Rate Prediction Dataset, url: https://tianchi.aliyun.com/dataset/dataDetail?
dataId=56
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Statistic Approach - Bayesian Active Learning (ActBayesian) 

• Treat each element’s membership as binary random variable


• Select inputs according to their distances to upper / lower threshold (with random sampling)


• Belief is updated using Bayesian posterior update 
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Experiments for PSI-CA with Differential Privacy (DP) protection

• Product company targets the advertising company


• Statistical attack remains valid even with DP protection


•
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Experiments for PSI-CA with DP protection
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Takeaways & Future works

• Takeaways:


• Most traditional MPC protocols are not sufficient to guarantee input privacy. Extra 
validations and privacy enhancements must be incorporated under stringent privacy 
regulation requirements.


• Efficient attacks are able to make membership inference via a small number of protocol 
invocations (3% of the users in a datasets are re-identified within 5 PSI-SUM calls).


• Leakage from statistical attack provides guidance for parameter determination for counter 
measures, such as the privacy budget for DP.


• Future works:


• Rethinking security model of PSI protocol to leverage membership leakage.


• Defenses against proposed attacks: ML to detect pattern, DP in high privacy regime, etc.
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Q/A

The End
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Backup slides - Illustration of backtracking

•  also memorizes maximum 
expected leakage


•  denotes the expected protocol call 
needed to infer individuals.  is derived using 
dynamic programming.

Θ( |ℕ | , Cℕ, τ)
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Backup slides - Lower bound comparison, DyPathBlazer v.s. Baseline

Both cases consider a dataset of 100 individuals. Case 1)  assumes 50 positive members, case 2) 
assumes 10 positive members.  Higher lower bounds from DyPathBlazer guarantees better efficiency in 

the worst-case scenario.
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Backup slides - Steps in the baseline algorithm

{A,B,C,D} {B,C,D,E} m = 3 Z = ∅ T= {A,B,C,D}

{A,B,C,D}

{A,B} {C,D}

{A} {B} {C} {D}

(3/4, (3, {A,B,C,D}))Priority Queue: 

mnode = 3 node = {A,B,C,D} |Tnode | = 4 L= {A,B},   R={C,D}

mL = 1 mR = 2

(1/2, (1, {A,B}))Priority Queue: 

mnode = 2 node = {C,D} |Tnode | = 2 L= {C},   R={D}
{A,B,C,D}

{A,B} {C,D}

{A} {B} {C} {D}

Stops because mnode = |Tnode |

Z = {C, D}

pop()

push



Backup slides - Steps in the baseline algorithm (cont’d)

{A,B,C,D} {B,C,D,E}

{A,B,C,D}

{A,B} {C,D}

{A} {B} {C} {D}

mnode = 1 node = {A,B} |Tnode | = 2 L= {A},   R={B}

mL = 0 mR = 1

(0, (0, {A}))Priority Queue: 

mnode = 1 node = {B} |Tnode | = 1 L= {},   R={}
{A,B,C,D}

{A,B} {C,D}

{A} {B} {C} {D}

Stops because mnode = |Tnode |

Z = {B, C, D}

pop()

push

(1/2, (1, {A,B}))Priority Queue: 

{A,B,C,D}

{A,B} {C,D}

{A} {B} {C} {D}

mnode = 0 node = {A} |Tnode | = 1 L= {0},   R={0}
pop()

(0, (0, {A}))Priority Queue: 

Stops because mnode = 0


