
Leaking the Privacy of Groups and More:
Understanding Privacy Risks of Cross-App Content

Sharing in Mobile Ecosystem

Jiangrong Wu
Sun Yat-sen University

wujr28@mail2.sysu.edu.cn

Yuhong Nan*
Sun Yat-sen University

nanyh@mail.sysu.edu.cn

Luyi Xing
Indiana University Bloomington

luyixing@indiana.edu

Jiatao Cheng
Sun Yat-sen University

chengjt6@mail2.sysu.edu.cn

Zimin Lin
Alibaba Group

shike.lzm@alibaba-inc.com

Zibin Zheng
Sun Yat-sen University

zhzibin@mail.sysu.edu.cn

Min Yang
Fudan University

m yang@fudan.edu.cn

Abstract—Cross-app content sharing is one of the prominent
features widely used in mobile apps. For example, a short video
from one app can be shared to another (e.g., a messaging app)
and further viewed by other users. In many cases, such Cross-
app content sharing activities could have privacy implications
for both the sharer and sharee, such as exposing app users’
personal interests. In this paper, we provide the first in-depth
study on the privacy implications of Cross-app content sharing
(as we call Cracs) activities in the mobile ecosystem. Our research
showed that during the sharing process, the adversary can not
only track and infer user interests as traditional web trackers
but also cause other severe privacy implications to app users.
More specifically, due to multiple privacy-intrusive designs and
implementations of Cracs, an adversary can easily reveal a user’s
social relations to an outside party, or unnecessarily expose user
identities and her associated personal data (e.g., user accounts in
another app). Such privacy implications are indeed a concern for
app users, as confirmed by a user study we have performed
with 300 participants. To further evaluate the impact of our
identified privacy implications at large, we have designed an
automatic pipeline named Shark, combined with static analysis
and dynamic analysis to effectively identify whether a given app
introduces unnecessary data exposure in Cracs. We analyzed 300
top downloaded apps collected from app stores in both the US
and China. The analysis results showed that over 55% of the
apps from China and 10% from the US are indeed problematic.

I. INTRODUCTION

Cross-app content sharing (as we call Cracs) is one of the
most frequently used features in mobile apps. Figure 1 shows a
typical procedure of Cracs, in which Alice (as we call sharer)
shares a privacy-sensitive video with Bob (as we call sharee).
Here, Alice clicks the Share button in the video app YouTube
(Step 1). The source app (YouTube) pops up a list of available

* Corresponding author: Yuhong Nan

sharing options and asks Alice which target app she would like
to share (Step 2). After selecting the target app (i.e., Facebook
Messenger) and the sharee (i.e., Bob), the shared content is
displayed as a specific message in the chat box of the target app
(Step 3). Essentially, the technical implementation of Cracs is
to transfer a URL hosting the shared content from the source
app to the target app.

Fig. 1: The process of cross-app content sharing (Cracs).

In many scenarios of Cracs, the shared content may reveal
users’ highly sensitive data such as personal interests, political
leaning, and even sexual orientation. Previous works have
shown that traditional websites tend to implant specific trackers
to monitor and collect users’ online activities (e.g., brows-
ing history), which raises severe privacy concerns to related
users [47]. As countermeasures, various mechanisms are pro-
posed to block such tracking activities in both academia [38],
[35] and industry (e.g., AdBlock [8], AdLock [10], and
AdGuard [9]) However, it is less clear how such tracking
behaviors exist in the mobile ecosystem, particularly for
privacy-sensitive scenarios such as Cracs. Moreover, with the
increasing privacy protection enforcement such as GDPR [64],

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24138
www.ndss-symposium.org

CCPA [3] and PIPL (privacy regulation in China) [21], little
attention has been made to the data practice of Cracs in mobile
apps.

Even worse, privacy implications in Cracs are more than
just revealing privacy-critical personal information of the
sharer. We find that improper design and practices of sharing
activities in mobile systems introduce a new avenue to social
relations of groups of people such as the content sharer with
their sharees who viewed the content (see the threat details
in Section III). In the scenario of Cracs, many source apps
come up with illicit behaviors that can infer the social relations
of individual groups of users, such as the content sharer and
her/his friends (e.g., friends in WeChat), which otherwise are
not available to the apps that host the shared content. The
privacy implications concerning groups of people, such as
social relations, can seriously go beyond the privacy impacts
on individuals’ privacy, as shown by recent studied [43],
[52], with serious impacts on social good, public interest,
and democratic ideals. For example, the privacy of groups of
people is not supposed to be extended to surveillance/advertis-
ing activities against a racial, political, religious, or business
group. Although prior research [67], [53] for mobile apps has
extensively studied privacy threats to an individual user, little
work has been done to understand privacy threats against users’
social relations.

Our work. In this paper, we focus on such an imperative
privacy domain in the less explored context of Cracs in
the mobile ecosystem. To enable a systematic study and
identification of the privacy risks in real-world apps, we first
summarize the following two guidelines to achieve privacy
assurance in Cracs: data minimization as required by privacy
regulations [13], and least privilege [22] which is applicable
for security and privacy protection.

To this end, we identified and generalized three pat-
terns of privacy exposure behaviors in particular apps from
which the contents are shared, namely, sharing behavior
tracking (SBT), sharing data interception (SDI), and sharer
data exposure (SDE). The problems have been introduced by
diverse, improper design and data practices by app developers
and supported by current mobile platforms. In these scenarios,
the sharing activity goes beyond the sharer’s original intention
which shares the in-app content, but also exposes other sen-
sitive information to adversaries which is fundamentally not
necessary.

More specifically, with sharing behavior tracking, the
popular content-hosting apps intend to track all users who
viewed specific contents shared by the sharer, so the apps
can infer social relations between the sharer and the groups
of sharees. With sharing data interception, contents shared
by the sharer are continuously monitored and collected by
either the source app or third-party components the source app
hosts. With sharer data exposure, the improper sharing activity
over-exposing sharer’s personal information of the source app
to the sharee, such as personal homepage, browsing history
records/posted content, and the following/followers list.

To further understand normal users’ experience, percep-
tions, and susceptibility concerning Cracs in the wild and
the underlying privacy threats we identified, we performed
a comprehensive user study with 300 participants. Our study

reveals that while Cracs is frequently used by mobile users,
most of them place a high value on their private data, such
as online identities, and shared content, particularly, their
social connections. Additionally, we observed a significant
decline in users’ willingness to use the Cracs feature once
they comprehended the actual privacy implications, such as
the exposure of social relationships. (see Section III-A), and
profiles accessed by strangers (see Section III-C).

Empirical measurement study. To enable a systematic study
and identification of the privacy risks in Cracs in real-world
apps, we have designed Shark, an automatic pipeline that can
efficiently identify whether the sharing mechanisms in a given
app indeed contain privacy leakage behaviors (i.e., SBT , SDI,
and SDE). Shark is a combination of static and dynamic app
analysis framework specifically designed to analyze sharing
activities in Android apps. It is featured with a set of key
components, allowing us to (1) accurately locate sharing APIs
and the corresponding sharing widgets from the app user
interfaces, (2) automatically trigger the sharing action from the
entry point of the app (e.g., the app landing page), and (3) con-
firm whether a privacy leakage indeed happens. Particularly,
we design a unique runtime testing scenario, which employs
content inspection with differential analysis [54] to confirm
the user identity indeed sent out with the shared content (see
Section VI-E).

With Shark, we analyzed 300 top downloaded apps col-
lected from app markets in both the US and China (i.e., 150
apps from each region, respectively), with a set of interesting
discoveries. Our study shows among the 186 apps with Cracs
functions, 74 of them have at least one privacy leakage pattern.
These apps cover various app categories, such as short video
social, shopping, news, and health. In the meantime, for
popular apps in China, the scale of such a privacy leakage
is significantly larger than US (i.e., 55.83% compared to
10.60%). In addition, we identified two widely used third-
party libraries that aggressively collect users’ sharing data. Due
to the stealthy nature of the exposure pattern, such behaviors
are barely noticeable to app users. Additionally, by manually
inspecting the iOS version of identified apps, we confirmed
that at least 58/71 (81.69%) of apps in iOS are affected by
such privacy exposure behaviors as well.

Finally, we provide comprehensive discussions on how
to mitigate and regulate such privacy implications from the
perspective of various involved parties, such as app users,
system vendors, as well as app markets. We believe these
insights could help to eliminate the two general categories of
privacy exposures related to Cracs, such as the inference of
social relations and political/racial groups of mobile users.

Contributions. We summarize our contributions as follows:

• We provide the first study on privacy implications of
cross-app content sharing in mobile apps. We introduce key
new understandings and generalize three privacy-exposure
venues that exist in the wild.

• We conduct a comprehensive user study to understand
normal users’ perceptions about Cracs and its underlying
privacy threats.

• We propose Shark, a pipeline combined with static analysis

2

and dynamic analysis to detect various privacy-exposure
venues in Cracs.

• We analyzed 300 top downloaded apps to reveal the perva-
siveness of the privacy threats in Cracs in the real world.

Ethical considerations and responsible disclosure. The user
study in our research was approved by the Research Ethics
Committees of our institution(s). The user study is fully anony-
mous, and we did not collect any identifiable information about
participants. All experiments and evaluations are performed
with our own accounts which are specifically used for research.
As responsible disclosure, we reported the identified risks to all
related parties (app developers and third-party SDKs) through
an email notification campaign. The content of the email can
be accessed via Appendix B. Unfortunately, as of the final
submission of the paper (Nov 2023), we have not received any
feedback from them yet. We suspect that legal counsel would
likely advise against responding with any acknowledgment or
admission about the issues we raised.

Roadmap. The rest of the paper is organized as follows.
Section II presents the background of Cracs and our research
motivation. Section III highlights the data exposure scenarios
identified in our research. Section discusses the privacy impli-
cations of Cracs (Section IV). Section V elaborates on the user
study which showed app users’ perceptions regarding Cracs.
Section VI introduces the pipeline of Shark. Section VII shows
our analysis results over the 300 top popular apps. Section VIII
discusses the countermeasures. Section IX discusses related
work and Section X concludes the paper.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we first lay out some background knowledge
about Cracs on mobile systems across Android and iOS. Then
we introduce our motivating example, as well as the scope of
our research.

A. Background

Terminologies. We use the following terminologies to de-
scribe different subjects involved in Cracs process in (Fig-
ure 1): We call the user who shares content as sharer (e.g.,
Alice); we call the user who receives the shared content as
sharee (e.g., Bob). We call the app that shares the content as
source app (e.g., Youtube), and the app that receives the shared
content as target app (e.g., Facebook Messenger). In Cracs,
the source apps could be any app hosting customized content,
such as YouTube, TikTok, and Instagram. The target apps are
commonly social network apps such as Facebook Messenger,
WeChat, etc.

Technical implementations of Cracs. To facilitate Cracs,
there is a protocol between the source app (the shared content
hosting app) and target app (social network app) to ensure
that sharing data can be accurately and correctly transferred
between the two apps. The shared data is mostly a URL
referring to the shared content. which is further encapsulated
under the specific data structure by the sharing SDKs. Finally,
the shared content is transmitted between the source and target
app via cross-app communication mechanisms provided by the
system framework. For example, for Android apps, this is done

via the IPC channel through Intent [11]. There are two types
of SDKs that implement and support Cracs, including target
app SDKs and third-party SDKs.

Typically, the vendor of the target app such as Facebook,
or Twitter, provides a specific SDK, which integrates a set
of APIs for sharing. When the user selects a specific target
app, the source app prepares the content based on the SDK
API of the target app. For example, to support sharing content
from a source app to Facebook friends, the app must embed
the Facebook sharing SDK [18] and invoke the corresponding
API to deliver the content to the sharee (Facebook Messenger).

In the meantime, there are third-party SDKs that integrate
multiple sharing SDKs of different target apps. This eliminates
the tedious process of embedding multiple target app SDKs
and invoking target app APIs with different formats, which is
more convenient for developers of the source app. With such
third-party SDKs, developers only need to invoke the third-
party sharing API with the name of the target app as an addi-
tional parameter. Therefore, the third-party API automatically
invokes the target app SDK API of the corresponding target
app.

B. Problem Statement

The essence of Cracs is the URL of the shared content.
Ideally, just like a simple web page hosting news posts, such
shared content can be simply identified by an identifier of
the shared content (e.g., such as content id, name of the
resource). However, as we will further show in later sections,
in the current design and implementations of Cracs, the actual
URL for delivering the shared content often contains much
more complicated data, which is not necessary for pinpointing
the shared content itself. In this way, the process of Cracs
exposes the user’s sensitive data, and hence, raises various
severe privacy implications.

Motivating example. Figure 2 shows a sample URL ex-
tracted from a real-world news app with more than 2.8 billion
downloads* As can be seen, while the shared content can be
identified by the URL’s parameter 20230625A01ZKI00, the
sharing link also includes additional parameters such as user
identity (uid). In this way, the app effectively records the view
interests of both the shared content sender and receiver.

In the above motivating example, the source app explicitly
violates the principle of data minimization as required by pri-
vacy regulations such as GDPR [64], CCPA [3] and PIPL [21].
For example, both Article 5(1)(c) of the GDPR and Article
4(1)(c) of Regulation (EU) 2018/1725 explicitly stated that
“personal data should be adequate, relevant and limited to
what is necessary for relation to the purposes for which they
are processed.” Given that parameters such as user ID can
uniquely identify an app user, the shared content URL can
be easily integrated with a tracker, allowing an adversary to
monitor the sharing activities of a specific user.

Several previous research [69], [43], [54], [34] has shown
that such tracking behaviors are highly privacy intrusive to
users, as it brings various privacy implications such as infor-
mation leaks [69] and data inference [43].

*We anonymize the app name to avoid potential ethical/legal issues.

3

Fig. 2: A sample sharing URL extracted from the popular
news app App-CN-11. In addition to the identity of the
news (20230625A01ZKI00), the URL is also attached

with other parameters that may expose user privacy.

Unfortunately, to the best of our knowledge, little has been
done so far to understand the privacy implications of Cracs.
More specifically, while previous research in mobile apps has
discussed various user tracking and aggressive data collection
scenarios [57], [54], the collection of sharing activities and its
in-depth privacy implications are out of their scope.

To this end, our research aims to perform an in-depth anal-
ysis of the privacy threats of Cracs in the mobile ecosystem.
Specifically, we want to seek answers to the following research
questions.

• What are the possible privacy implications of Cracs?

• What are users’ perceptions and responses regarding
the data exposure in Cracs?

• How prevalent do such data exposure practices exist
in the current mobile ecosystem?

• What are the possible countermeasures against the
potential privacy risks?

Threat Model. In the process of Cracs, there are multiple
parties involved, including app users such as sharer and sharee,
the source app/service hosting the shared content, as well as
sharing SDKs implemented by either the target app or third-
parties.

We assume the adversary is a curious, opportunistic party
that aggressively collects users’ sensitive data which does
not serve the purpose of completing Cracs. Therefore, any
party that accesses or processes the shared content could be a
potential adversary (the source app, target app, and third-party
SDKs). Note that as we will further show in Section III-C, in
certain scenarios, the adversary could also be the sharee, as
she can obtain the sharer’s private data which is not intended
to share.

The typical victims under this assumption are sharer and
sharee, who might be concerned about if their sensitive infor-
mation (e.g., identities, personal interests, and social relations)
is over-exposed to other parties without their awareness.

III. PRIVACY THREATS IN CROSS-APP CONTENT
SHARING

Privacy expectations. The root cause of privacy threats
in Cracs is the privacy-intrusive design and implementation
that violates two fundamental security principles, namely, data
minimization [15] and least privilege [22].

• Data minimization. Only minimum information of
the shared content should be shared between the sharer
and sharee. The process of Cracs should only expose
and transmit mandatory information for accessing the
content itself. For example, the URL link that only
refers to the shared content.

• Least privilege. Since the process of Cracs is done
locally between the source app and target app with
system-provided features, the back-end server of other
parties (i.e., the source app, the target app, and third-
party sharing SDKs) should not collect, or track in-
formation related to the shared content.

Following the above privacy expectations, in this section,
we present three patterns of privacy threat we have identified in
Cracs. Particularly, sharing behavior tracking (SBT), sharing
data interception (SDI) and sharer data exposure(SDE). Note
that these patterns are orthogonal to each other, meaning that
a single app can have multiple privacy exposure patterns at the
same time.

A. Sharing Behavior Tracking (SBT)

Fig. 3: The process of inferring social relationship via SBT .
Once a tracker-enabled share link is accessed by two app

users, the app’s server can establish their social relationship.

There are two privacy-intrusive designs that the source app
uses to track the sharing activities between the sharer and
sharee, and further, infer their social connections.

• Tracking the sharer. The first one is to implant
a tracker to the shared content, which is associated
with the sharer’s identity. More specifically, since the
URL for Cracs is fully controlled by the source app,
the source app can easily implant a tracker in the
URL [54], allowing itself to persistently track the
shared content with the sharer.

4

• Tracking the sharee. The second one is to track the
sharee who viewed the shared content by requiring
the user to log in to the source app. More specifically,
when the sharee clicks the shared content in the target
app, it either (1) pops up a login page, requiring the
sharee to log in with an account of the source app,
or (2) redirects the sharee to view the shared content
in the source app if the app is already installed on
sharee’s device. In both cases, the source app can bind
the content-viewing activity to the sharee.

Establishing social connections. Figure 3 shows how the
source app establishes social connections between the sharer
and sharee by exploiting the above-mentioned two tracking
mechanisms. Since the shared content is associated with the
identity information of both the sharer (via the tracker) and
sharee (via the login status), the source app can easily know
(1) the two parties are interested in the shared content, and (2)
the two parties are with social connections in the target app.

Note that the connection between sharer and sharee (e.g.,
friends in the target app) is supposed to be confidential and
not accessible to the source app. For example, the contact
list of a WeChat user is confidential to any party other
than WeChat by default. Unfortunately, the implementation of
Cracs provides a perfect channel, allowing the source app to
infer the sharer’s social relations (a group of users) in the target
app. In Section IV, we will provide a more detailed discussion
on the privacy implications of leaking users’ social relations.

B. Sharing Data Interception (SDI)

In sharing data interception (SDI), the adversary explicitly
intercepts the shared content and sends it out to its own
server. Note that such an interaction logic is fundamentally not
necessary for Cracs, as the process of Cracs is done locally
via system-provided IPC mechanisms between the two apps
(as we discussed in Section II-A).

Listing 1: An example of sharing data interception (SDI).
1 public static void shareToPlatForm(int i,

ShareEntity shareEntity) {
2 switch(i) {
3 ...
4 //Share the content to WeChat
5 SNSManager.getInstance().share2WX(shareEntity)
6 //Send the content to app’s own server
7 ShareResultApi.shareResult(shareEntity)
8 ...
9 }

10 }

Listing 1 shows an example of this illicit behavior imple-
mented by a third-party sharing SDK hosted on the source app.
As can be seen, every time the sharer performs Cracs, other
than the legitimate content-sharing process (i.e., invoking the
sharing API share2WX at line 5), the SDK makes an extra
network request to send out the shared content together with
the user associated information, to its own server (i.e., invoking
ShareResultApi at line 7). As we will further show in
Section VII-A, in addition to third-party sharing SDKs, we
observed some source apps are also with SDI.

C. Sharer Data Exposure (SDE)

In addition to SBT and SDI, where the adversary is the
source app or third-party SDK, we have also identified a
potential risk: the sharing URL may expose the user’s sensitive
data from the source app to the sharee. More specifically, in
some cases, the sharer’s identity information (e.g., user ID or
account name) in the source app is unnecessarily exposed to
the sharee through the shared content. As a result, a privacy-
curious sharee can visit and access the sharer’s account-related
information (e.g., profile) in the source app. However, such
information is not supposed to be exposed to sharee.

Fig. 4: Accessing the sharer’s account of the source app by
extracting her identity from the shared link.

As shown in Figure 4, an adversary (i.e., sharee in this
case) with moderate technical background can easily obtain
the URL of the shared content, and extract the user identifier
(i.e., uid in this case) which is associated with the sharer
(step 1). Then the sharee can build a URL that gains access
to the sharer’s homepage in the source app (step 2). As a
consequence, the sharee can profile the sharer’s account-related
content in the source app, such as viewing her likes/collections,
and following/followers (step 3).

In addition, some app developers even directly display the
sharer’s username of the source app on the top of shared
content, which explicitly exposes the sharer’s personal infor-
mation to the public (an example is shown in Figure 5). Based
on this information, a normal person without any technical
background can also access and monitor the sharer’s account
of the source app.

IV. PRIVACY IMPLICATIONS

Given the above three data exposure patterns in Cracs, we
now discuss their privacy implications for app users.

A. User Profile Inference

Firstly, all three identified data exposure patterns provide
additional channels for the adversary to profile and infer the
user’s sensitive information. Particularly, both SBT and SDI
allow the source app and third-party sharing SDKs to collect
and monitor users’ sharing activities. In addition, the SDE
provides a privacy leakage channel to the content sharer, allow-
ing the sharee to access and infer additional information from

5

Fig. 5: Accessing the sharer’s profile in the source app based
on identity exposed with the shared content.

the sharer. Note that different from those profile information
intentionally made public by some users via privacy settings,
the capability of user profile inference in SDE is powered by
the data association across different apps (from target app to
source app), rather than the privacy settings of the specific
platform. In other words, without SDE, an adversary may not
have the chance to uncover the social network account of the
victim sharer, whose account name is not a real name.

Previous research has shown that due to the advertis-
ing/marketing ecosystem, there are strong incentives for app
developers to collect and picture users’ demographic informa-
tion [39]. In the case of Cracs, both SBT and SDI provide
additional vectors for app developers or third parties to collect
and infer users’ demographic information. More specifically,
leveraging the collected share activities of the app user, an
adversary can easily infer the user’s profile information such
as the user’s age, gender, political leaning, and even sex
orientation [43], [65]. Actually, there is evidence indicating
that advertising companies indeed utilize social circles to
perform more precise, targeted campaigns [5].

B. Social Relation Inference

In addition to leaking and inferring the user’s profile
information, for all sharing activities with SBT , it naturally
provides a perfect side channel to leak the user’s social
relation. Compared to the user’s profile information, inferring
the social relation of a particular user is more privacy intrusive.
In other words, SBT enables the adversary to infer who are
influencers (those sharing content) among a group of content
viewers with specific interests in business, politics, or even
religion.

Previous research has shown that social relation data is
highly sensitive [33], [52], [63]. For example, the social
link may infer political groups [52], target mobility [63]. In
practice, in mobile devices, accessing similar information such
as a contact list is strictly limited (i.e., as dangerous permission
in Android [14]). Due to the extensive popularity and usage
of social networks in modern society, relation information in
social platforms can be even more valuable than data such as
phone contacts.

As examples, the following scenarios highlight the impact
of SBT , if an adversary continuously monitors the user’s social
relations over a certain period.

• Identify friends of other social platforms By listing
all shared activities of user A via the social app
WeChat, the app knows a subset of user A’s friends
in WeChat, as well as their corresponding accounts in
the source app.

• Identify family members The adversary sees User
A frequently shares kids’ toys with User B, hence
inferring that User A and B could be close family
members.

• Identify special relationships The adversary sees
User A frequently shares HIV prescriptions with User
B and hence infers that both A and B may have a
health issue with this particular disease.

While it is possible that for SBT , the sharee could choose
to not open the shared content and safeguard her privacy,
we consider this is less likely to happen. This is because in
most cases, the sharer and sharee are in a mutually trusted
environment (e.g., real-world friends). In addition, establishing
such a connection is a one-time effort, which is particularly
feasible for inferring social relations with high values (e.g.,
spouse, family members, and real-world friends) as such
groups of people frequently use Cracs among themselves.

V. USER PERCEPTION ANALYSIS

With the privacy threats shown in Section III, this section
reports our user study aiming at understanding mobile users’
expectations and perceptions of the privacy risks associated
with Cracs.

A. Design of the User Study

This user study seeks answers to the following research
questions:

• RQ1: How prevalent are Cracs functionalities used by
app users?

• RQ2: To what extent do users realize that their sharing
activities result in privacy risks?

• RQ3: How do users perceive the sensitivity of their
data in Cracs, and to what extent are they willing to
tolerate the potential privacy threats?

• RQ4: How do users respond when they realize the real
privacy implications within Cracs?

To make sure all participants understand the context and
core objectives of our survey, we provide a detailed example to
illustrate the Cracs scenario, at the beginning of the question-
naire. After that, we show 11 multiple-choice questions related
to Cracs and ask the participants’ opinions. Moreover, to better
understand the context of the responses, we also collect basic
demographic information about the participants, including their
age range, and educational background at the end of the
questionnaire (Q13 - Q16). We list the full questionnaire as
well as the collected answers of the user study in Appendix A.

6

Recruitment and participant demographics. Under the
Institutional Review Board (IRB) approval of our university,
we leverage Wenjuanxing [28] (one of the most popular crowd-
sourcing platforms in China) to recruit online participants for
our questionnaire. We asked each participant to finish the 16-
question questionnaire, taking about 2.5 minutes with 2 RMB
as compensation (comparable to the minimum hourly wage
in our region). Our study only collects anonymized data. To
ensure the quality of the collected responses, we intentionally
added a Turing test question [25] to filter out potential robots
(Q12).

According to the age range of the participants (i.e., Q13),
156/300 (52%) participants were from 18 to 30 years old, and
140/300 (46.67%) were from 31 to 45. In addition, more than
90% of the participants have a college degree or above (Q14).

Note that the percentage of our participants recruited from
Wenjuanxing with a college degree or above is higher than
the general public in China (37% of the population having
an upper secondary education or above [16]). Therefore, we
anticipate that our participants possess an equal or potentially
greater level of knowledge and experience regarding privacy
compared to the general public [48].

B. Results and Findings

In total, we collected valid responses from 300 participants
in June 2023. The results showed that Cracs is actually
commonly used in the wild. Although the participants were
concerned about such privacy risks, they felt it is very difficult
to recognize or avoid privacy exposure in their regular usage
of Cracs, Cracs. We elaborate on the key findings from the
user study as follows.

• Finding-1: Cracs is commonly used by app users. Based
on the responses of Q1 and Q2, we see all of the participants
use sharing functions in their daily lives. In the meantime,
36.34% of the participants share content at least once a week,
and 94.67% of the users at least once a month.

• Finding-2: App users are not fully aware of the data
exposure of sharing activities. Based on the responses of
Q4, 86.22% of users stay in a login state by default before
they use the sharing function provided by the source app. In
such circumstances, adversaries can track the user more easily,
which leads to SBT , SDI, SDE during Cracs. Furthermore, for
certain apps that require sharers to log in before utilizing the
sharing function, 59.67% of users opt to log in (Q5), thereby
increasing the risk of potential privacy data leaks. Similarly, for
certain apps that necessitate sharees to log in before accessing
shared content, 65.33% of users choose to log in (Q6).

• Finding-3: Users place a high value on their own private
data, and deem privacy leakage that affects them as
unacceptable. We ask users three questions (Q10, Q7, and
Q9) to determine their perception of whether SBT , SDI, SDE
have caused privacy leakage for them. From the results, it can
be seen that users strongly agreed there are privacy risks during
Cracs. For example, 94% of users think that SBT actually
causes them privacy leakage (Q10), and 63.67% of users feel
unacceptable about the case when the source app obtains their
social relationships of the target app (Q11). Similarly, 81%
of people believe that SDI has caused privacy leaks for them

(Q7), and 64% of users feel unacceptable when adversaries
obtain their shared content (Q8). For SDE, 73% of users think
that such a pattern also caused privacy leakage for them and
feel unacceptable (Q9).

• Finding-4: Users’ willingness to share is significantly
dropped after understanding the actual privacy implica-
tions of their sharing activities. According to Q3, more
than half of the participants (55.33%) would rather give up
sharing to preserve their privacy. For the rest who would still
proceed to share, the vast majority of participants (i.e., 29.33%)
expressed that they are forced to give up privacy for Cracs due
to the lack of alternative options. In addition, in response to Q5,
40.33% (121/300) of participants opted to refrain from logging
in if it is mandated for Cracs. Similarly, 34.67% (104/300)
of users choose not to view shared content if the source app
requires them to log in before viewing the content.

VI. ANALYZING Cracs DATA PRACTICES IN MOBILE APPS

Goal and procedure. To better understand real-world apps’
data practices of Cracs activities, it is necessary to perform
a large-scale measurement study over the top-popular mobile
apps collected from app markets. However, manually exploring
and confirming the sharing functions of each app is extremely
time-consuming and tedious. Therefore, we have designed and
implemented Shark, an automated framework, which enables
us to effectively identify the three privacy exposure patterns
(i.e., SBT , SDI and SDE) from a given Android app. Finally,
we manually inspect and confirm whether an iOS version of
the identified app is also affected by such privacy risks.

A. Challenges

Shared content tracking and API labeling. Similar to
prior works for large-scale privacy leaks detection in mobile
apps [49], [53], [58], a naive solution here is directly per-
forming data-flow analysis to inspect whether it is the app
indeed contains the three data exposure pattern (SBT , SDI,
SDE). However, due to the differences in attack vectors and
data exposure patterns, existing tools, even those specifically
tailored for inter-component communication (ICC) data flow
analysis [49], [61], [36], can not detect our problems.

For instance, SBT involves inferring social relations
through a side-channel approach, rather than directly sending
the social relationship to the server, which is the attack vector
of the ICC privacy leak. Besides, the process of implanting
the user’s identity into the content link is on the Source app
server side, which can not be analyzed by prior tools since
they are all based on static analysis. In contrast, detecting
whether a certain field in the shared URL allows the source
app to identify groups of users’ relations requires a differential
analysis (Section VI-D). In addition, due to the pervasive
usage of code-obfuscation techniques [23], in many cases, the
sharing API could be obfuscated due to various reasons, such
as intellectual property protection. For these apps, it is possible
that the method names of sharing APIs will no longer exist in
their app code.

Sharing activity triggering and leakage detection. To find
out whether the privacy leakage pattern indeed exists in the
app, it is necessary to first dynamically trigger those sharing

7

activities. However, this task is non-trivial as it requires accu-
rately modeling a feasible path across two apps. Particularly,
the path refers to starting from the source app’s entry point
(i.e., landing page) to the corresponding sharing function (e.g.,
the share button) and further finishing the sharing process in
the target app (e.g., Facebook).

In addition, we need to confirm whether the shared content
indeed contains any user-identifiable information from the
triggered traffic. Existing techniques such as Query Parameter
Stripping [27] can only identify those explicit trackers with
specific parameter names (e.g., user ID, google ID).
Unfortunately, the trackers in sharing links could be any
customized identifiers (i.e., any random string label), which
can not be directly identified based on the parameter names.

B. Workflow of Shark

Fig. 6: The workflow of Shark.

To overcome the above challenges, we opt to use a mixed
pipeline that integrates both static and dynamic analysis to
detect the three identified patterns in Cracs. The workflow
of Shark is shown in Figure 6, which mainly includes the
following steps:

Static information extraction. Shark first uses static analysis
to extract key information that is necessary for triggering
sharing activities at runtime. More specifically, Shark parses
both the decompiled app code and the UI resource files to
locate the sharing buttons and their hosted activities (i.e., the
UI for triggering sharing functions). Then, Shark constructs
an activity transition graph, which contains a set of feasible
path candidates to trigger and complete the sharing activity
from the source app and the target app. In addition, Shark
employs backward data-flow analysis to track variables related
to the shared content. In this way, it can accurately build the
connection between the share button of the source app and
the target app (i.e., which button leads to WeChat, and which
button leads to Facebook).

Dynamic sharing activity trigger. At runtime, Shark explores
the app and triggers the sharing activities with information
collected by static analysis. In the meantime, we intercept the

concrete sharing related data, as well as its exposing contexts
(e.g., sending destinations, parameters), and pass them into
the leakage detection module to confirm the three exposure
patterns.

Leakage detection. Shark has set up three different rules to
confirm whether an app indeed contains privacy leakage based
on the distinct features of the three data exposure patterns.
Particularly, we have set up a specific testing scenario to detect
SBT , SDI, and SDE. For example, we used differential analysis
to identify whether a particular sharing link indeed contains
user-identifiable information in detecting SBT .

C. Static Information Retrieving

Locating Sharing widgets. With a given source app, Shark
traverses its UI resource files (i.e., the XML file describing app
UIs) and extracts all the clickable widgets. Then, based on the
widget id, Shark extracts the corresponding elements in the
program code, i.e., the specific program variable whose value
is assigned by the API findViewById (element_id),
as well as its corresponding event callbacks (e.g., the function
onClick).

To identify which UI element is indeed related to Cracs,
Shark performs a backward analysis from the content-sharing
API to the top-level UI element. Given the number of sharing
APIs is limited to a relatively small number of social network
platforms (SDKs), we manually review their documentation
and collect these APIs. The full list of APIs is shown in
Table I. The backward analysis starts from the sharing APIs
and ends with the event callbacks (i.e., onClick) of an UI
element. To this end, we can clearly extract the data flow path
and build the connection: sharing widget -> event
callback -> target app SDK. Note that due to the
inherent inaccuracy of static analysis, this process may report
some false positives. For example, a UI element is incorrectly
associated with a sharing API. However, such false positives
will not affect the overall effectiveness of Shark, as our later
dynamic (Section VI-D) only triggers those valid UI elements
for Cracs.

To identify sharing API invocation from the obfuscated
app code, we extract a set of obfuscation-resilient sharing
API signatures from those apps that are not obfuscated. More
specifically, we first extract the method body of each sharing-
related API from apps without code obfuscation. By inspecting
their implementation details, we extract the Android system-
level APIs, class types of the parameters, and data flow
information of the method body as invariants. We use such
invariants to generate the signatures of the sharing APIs. In
this way, our approach can further eliminate the potential false
negatives caused by code obfuscation.

Constructing Activity transition graph (ATG). The Activity
transition graph in Shark contains two parts: (1) the path
from the source app entry point (i.e., main activity) to the
activity hosting the sharing widgets. (2) an additional path
that triggers the sharing function and completes the sharing
function by selecting the target app. For the first part, Shark
implements similar approaches as in previous work [44] to
construct the activity transition graph for the source app
that hosts the sharing content. For the second part, since

8

Fig. 7: An example of Activity transition between source app
and target app.

the sharing destinations are specifically limited to a number
of popular target apps (e.g., Facebook and WeChat), Shark
explicitly adds an activity transition edge in the previously
constructed graph between the source app and the target app.
For example, in Figure 7, with the content shared to WeChat
from the source app to the target app, Shark will add two edges
into the ATG: the edge SelectPlatform Activity ->
SelectFriend Activity and edge SelectFriend
Activity -> Finish Activity. Based on this ATG,
Shark will trigger the share action during the dynamic analysis
process.

D. Dynamic Sharing Activity Triggering

At runtime, Shark takes the previously constructed Activity
Transition Graph (ATG) to reach the widget that triggers the
sharing function with the following two steps: Firstly, Shark
traverses all available paths in the ATG until it reaches the
desired activity, which hosts the sharing widget. Then, Shark
simulates the click event to the sharing widget and completes
the sharing process. Note that Shark utilizes the single-sign-
on feature [29] (e.g., log in via Facebook) to perform an
automated login attempt before sharing. If the automation fails
(e.g., additional identity verification is required by the source
app), we finish the rest login process manually. During the
sharing process, the leakage detection module will help us to
confirm all the patterns we discussed in Section III.

we use Xposed [7], a widely used dynamic app analysis
framework, to hook the sharing APIs and extract the shared
content (i.e., sharing link) from the specific parameters of the
sharing API for future analysis. In the meantime, Shark sets
up a network proxy, which automatically captures the network
packets and data during the sharing process.

E. Leakage Detection

As mentioned earlier, Shark sets up a specific testing
scenario to automate the sharing process to more effectively
confirm whether the sharing activity indeed exposes user iden-
tity. During the automation, Shark will use different strategies
to confirm all three data exposure patterns.

Fig. 8: Approach of SBT detection with runtime analysis.

SBT detection. To detect SBT , we employ differential
analysis to identify whether a shared link indeed contains
user-identifiable information. we consider when different users
share the same content, the link carries the shared content
should remain consistent regardless of the user identity. In
other words, if the same content shared by different users
makes different sharing links, we suspect it is involved in SBT .
To this end, our approach extends the idea from a previous
work [54], which is specifically designed to detect unique
tracking identifiers from the network traffic. Figure 8 shows
the detailed process for this process, which consists of five
steps:

1) We use account A to share specific content once and
obtain the corresponding sharing link l1.

2) We use account A to share specific content for a second
time and obtain the corresponding sharing link l2.

3) We identify parameters that have different values by
comparing the two links l1 and l2. Such parameters are
not user-identifiable data (e.g., timestamp information,
sharing counters, etc.) because they are not consistent
under the same user. We eliminate such parameters from
the sharing link as a new link labeled as l3.

4) We use account B to share the same content as we did in
account A and obtain the sharing link as l4.

5) We compare the parameter values between the two links
l3 and l4. If there are still any parameters with different
values, we consider them as potential user-identifiable
information.

SDI detection. Recall that the key pattern of sharing data
interception (SDI) is the adversary unnecessarily sends out the
shared content to the Internet. To this end, we check whether
the sharing link indeed exists in our captured network traffic.
To detail, we automatically extract the payload body of each
network packet and extract their contained URLs. If the sharing
link also exists in the captured network traffic, we consider the
app exposed user’s sharing activity via SDI.

SDE detection. For SDE, we check whether the sharer’s
username or UID is presented in the shared content/link. We set
up a specific testing scenario to detect SDE. More concretely,

9

TABLE I: API signatures used for sharing.

SDK Provider SDK Sharing API
QQ com.tencent.tauth.Tencent: void shareToQQ(android.app.Activity,android.os.Bundle,com.tencent.tauth.IUiListener)

Qzone com.tencent.tauth.Tencent: void shareToQzone(android.app.Activity,android.os.Bundle,com.tencent.tauth.IUiListener)

Weibo com.sina.weibo.sdk.openapi.a: void shareMessage(android.app.Activity,com.sina.weibo.sdk.api.WeiboMultiMessage,boolean)
com.sina.weibo.sdk.share.ShareResultActivity: void onCreate(android.os.Bundle)

WeChat com.tencent.mm.opensdk.openapi.BaseWXApiImplV10: boolean sendReq(com.tencent.mm.opensdk.modelbase.BaseReq)

DingTalk com.laiwang.ding.share.openapi.ddshareopenapi.MainActivity: void sendWebPageMessage(boolean)
com.laiwang.ding.share.openapi.ddshareopenapi.MainActivity: void sendTextMessage(boolean)

Facebook

com.facebook.share.model.ShareLinkContent$Builder: com.facebook.share.model.ShareLinkContent$Builder setContentDescription(java.lang.String)
com.facebook.share.model.ShareLinkContent$Builder: com.facebook.share.model.ShareLinkContent$Builder setContentTitle(java.lang.String)

com.facebook.share.model.ShareLinkContent$Builder: com.facebook.share.model.ShareLinkContent$Builder setQuote(java.lang.String)
com.facebook.share.ShareApi: void share(com.facebook.share.model.ShareContent,com.facebook.internal.CollectionMapper)

Messenger com.facebook.share.model.ShareMessengerURLActionButton: void writeToParcel(android.os.Parcel,int)
com.facebook.share.model.ShareMessengerURLActionButton$Builder: com.facebook.share.model.ShareMessengerURLActionButton build()

Twitter com.twitter.sdk.android.tweetcomposer.TweetComposer$Builder: void show()

Android System

android.content.ClipboardManager: void setText(java.lang.CharSequence)
android.content.ClipData: android.content.ClipData newPlainText(java.lang.CharSequence,java.lang.CharSequence)

android.content.Intent: void setAction(”android.intent.action.SEND”); android.content.Intent: void setType(”text/plain”); android.content.Context: void startActivity(android.content.Intent)
android.content.Intent: void setAction(”android.intent.action.SEND”); android.content.Intent: void setType(”image/*”); android.content.Context: void startActivity(android.content.Intent)

for a source app, we have a pre-registered account that contains
all the necessary account credentials (e.g., username, user id).
Usually, this information can be found in the settings options
of the source app. Then we use the account to share content
automatically and extract the shared content link, if the shared
content link contains the account credential, we consider the
app has SDE. Note that if the UID is included in the shared
link, Shark will report it as with SBT and SDE both. As
discussed earlier in Section III, the UID not only can be used
by the Source App to associate Sharer and Sharee, but it can
also be utilized by malicious Sharees to infer Sharer’s personal
information.

In addition, for the source app that explicitly displays
the username in the shared content (i.e., discussed in Sec-
tion III-C), we use another account of the target app to
automatically view the content shared from the source app.
Then, we inspect whether the sharer’s username is presented
on the app by checking all texts shown on the UI.

F. Effectiveness of Shark

The effectiveness of Shark lies in whether it can trigger the
sharing widgets in the given app. To this end, we randomly
select ten apps from our dataset (see Section VII) as the evalu-
ation dataset. We manually explored these apps and established
the ground truth data – the available sharing functions and their
corresponding UI widgets. The coverage rate of Shark is shown
in Table II. Note that the design of Shark does not provide
any coverage guarantee in detecting sharing leaks. Instead, we
aim to significantly reduce the manual effort needed for such
analysis.

In this experiment, we set up a time-out threshold of five
minutes for each app. Among the 368 manually identified
sharing widgets, our analysis showed that Shark can effectively
trigger 306 of them, reaching a coverage rate of 83.15%. The
average time taken for the whole exploration is 75.94s, with a
maximum of 289.42s and a minimum of 10.36s. To this end,
we consider Shark can effectively support our analysis for a
larger number of apps.

In addition, recall that Shark employs an obfuscation-
resilient mechanism to label the sharing APIs and improve its
coverage (Section VI-C). For the 300 apps we measured in this
research, we extracted 587 sharing APIs provided by different
target app SDKs. Among them, 144/443 (32.50%) of them
are with code obfuscation. We manually verify the obfuscated

APIs we extracted and the precision is 98.2%, which proves
our mechanism is effective in eliminating false negatives in
detecting sharing APIs.

TABLE II: Effectiveness of Shark in triggering sharing
activities.

App # Trigger Share Action # Total Share Action Coverage
TestApp-1 32 32 100%
TestApp-2 40 48 83.33%
TestApp-3 4 4 100%
TestApp-4 76 96 79.17%
TestApp-5 16 16 100%
TestApp-6 16 25 64%
TestApp-7 48 64 75%
TestApp-8 24 28 85.71%
TestApp-9 30 35 85.71%

TestApp-10 20 20 100%
Total 306 368 83.15%

VII. UNDERSTANDING SHARING LEAKS IN THE WILD

Dataset. In our study, we collected 300 top apps from two
representative countries (e.g., China and US) to observe the
potential impact of privacy risks in the real world. Specifically,
based on the number of downloads, we collected the top 150
apps from the Xiaomi app store [6], one of the largest app
markets in China. In the meantime, we collected the top 150
apps from Google Play [4] under the region of the US. We
chose such a data set because both China and the US are the
two dominant mobile markets. Therefore, our analysis results
can provide generic insights into the mobile ecosystem.

Measurement Setup. Our static analysis is implemented on
an Ubuntu server with two Intel Gold 5218R CPUs (2.10GHz,
20 cores) and 512GB of physical memory; We run the exper-
iment with 25 concurrently running instances of Soot with its
latest version [24] and set 20 minutes timeout for each app. In
dynamic app analysis, we use uiautomator2 [26] to explore the
app with two Google Pixel 4 devices running on Android 10.
Each app is given a five-minute timeout for triggering sharing
activities.

In addition to analyzing Android apps, we also detected
the corresponding iOS version of the apps in our dataset.
Specifically, based on the identified Android apps, we con-
firmed whether the patterns also exist in their iOS version by
analyzing the intercepted network traffic. The iOS apps are
tested with iPhone 6 running on iOS 8.

10

As mentioned earlier in Section I (responsible disclosure),
to avoid potential legal issues, we anonymized the names of
apps and SDKs when presenting our results.

A. Measurement results

TABLE III: Identified apps with the three data exposure
patterns (SBT , SDI, SDE).

Region Type # Apps with
share function # Confirmed pattern Percentage

China

SBT
120

52 43.33%
SDI 19 15.83%
SDE 26 21.67%
Total 120 67 55.83%

US

SBT
66

5 7.57%
SDI 3 4.54%
SDE 1 1.5%
Total 66 7 10.60%

Total affected apps. In total, our analysis confirmed that
among the 300 top apps we investigated, 186 apps have sharing
functions, and 74 of them have at least one pattern. Table III
presents the overall statistics regarding our analysis results in
detail. Specifically, our static analysis module extracts a total
number of 186 apps that have share functions, 120 apps from
China and 66 apps from the US. Then, we manually confirmed
that the candidate apps were indeed embedded and used one
or more target app SDKs (i.e., exclude dead code). Later, the
dynamic analysis confirmed that 57 apps indeed contain the
pattern of SBT , 22 apps contain SDI, and 27 apps contain
SDE. Our identified apps cover various app categories such
as short video, shopping, news, health, and social contact.
Besides, most of them are with more than 100M+ downloads.
In addition, the pervasiveness of such patterns in iOS apps is
consistent with those in Android, we will give more details
later.

TABLE IV: Top 15 apps with SBT in China.

App Name Package Name Version Downloads Category
App-CN-1 c**.s*.a******.u**.a**** 25.9.0 13.4B+ Short video
App-CN-2 c**.x******.p******** 6.64.0 11.6B+ Shopping
App-CN-3 c**.s****.g******* 11.5.20.31491 7.6B+ Short video
App-CN-4 c**.t*****.t***** 10.25.10 6.3B+ Shopping
App-CN-5 c**.s***.w**** 13.6.1 5.4B+ Social Contact
App-CN-6 c**.s******.m****** 12.10.406 4.4B+ Life Style
App-CN-7 t*.d******.b*** 7.35.0 3.6B+ Video social
App-CN-8 c**.s*.a******.a******.v**** 7.6.4 3.2B+ Video social
App-CN-11 c**.t******.n*** 7.1.60 2.8B+ News
App-CN-12 c**.x*****.x** 7.91.0 2.5B+ Social Contact
App-CN-13 c**.a******.v****** 9.2.8 2.2B+ Shopping
App-CN-14 c**.n******.c********* 8.10.10 1.8B+ Music
App-CN-18 c**.m*.m***.m*** 9.9.0.0 1.1B+ Photography
App-CN-19 c**.d*****.k*** 10.23.23 990M+ Live
App-CN-20 c**.t****.w******* 15.0.1 980M+ Shopping

TABLE V: Apps with SBT in US.

App Name Package Name Version Downloads Category
App-US-1 s*.b***.l*** 5.21.3 500M+ Live
App-US-2 c**.c****.e***** 2.165.0 100M+ Art & Design
App-US-5 c**.m***.r****** 10.33.1 10M+ Home Renovation
App-US-6 c**.s********.p******** 90.9.0 1M+ Beauty Fashion
App-US-7 o******.h*** 20.43.0 1M+ Sports

Apps with SBT. Among the 186 apps that have sharing-
related functions, 57 of them in total are with the pattern of
SBT . Besides, we list the top affected apps in both regions in
Table IV and Table V respectively. It can be observed that apps

with huge downloads contain the SBT pattern, which means
there are huge victims that leak their social relationships during
Cracs. In addition, among all the apps affected by SBT that we
detected, there are also apps specifically designed for pregnant
people and some related to physical health. For these types
of apps, social relationships are often even more important, as
we previously mentioned in Section IV-B. Besides, the leakage
rate in China is higher than US (43.33% vs. 7.57%), indicating
the privacy threats in China could be more severe than US.

TABLE VI: Identified trackers in apps with SBT .

Type # Total Example
UserID 28 uuid=d5c8005151c4c1bae61c752c15832aad

Other Identifiers 31
lch=71c4705793bc7b94b

uni=119200070407
trackid=5331964ef4hal6e38

IMEI/DeviceID 3 imei=ad7943e9-cdbc-4973-989e-e6d0e29b0639
device id=1997182679927454

In Table VI, we list all user identifiers (trackers) ex-
tracted from the dynamic differential analysis. As can be seen,
other than those well-known privacy-sensitive data such as
IMEI, DeviceID, a large portion (50%) of user identifiers
are actually not labeled with explicit parameter names, even
higher than the proportion of UserID (45.16%). For example,
App-CN-6, a daily life app including shopping and eating,
with more than 4.4 billion downloads in China, uses the
parameter name lch to identify a unique user. Such a data
practice indicates a large number of apps leak user identifiers
in a more stealthy manner.

• Login requirement for sharing. Another important ob-
servation in our study is that among the identified apps, we
manually checked all the SBT apps and found that 19 out of
57 (33.33%) mandate the user to login before processing the
sharing action or view the shared content. In this way, the app
is actually forcing app users to make the decision between
utility and privacy compromise. However, this requirement
may not be sufficiently noticed by app users, as our user study
indicates that most users prefer to log in before they share
content or view the shared content. As a result, we consider
the privacy leakage pattern of SBT to be more stealthy.

TABLE VII: Top 15 apps with SDI in China.

App Name Package Name Version Downloads Category
App-CN-15 c**.z****.a****** 7.36.1 1.8B+ Social Contact
App-CN-21 c**.d*****.r*** 5.1.3.32 950M+ Books & Reference
App-CN-23 c**.m***.m******** 9.0200.02 710M+ Weather
App-CN-27 c**.s*.a******.a*** 6.6.3 420M+ Car
App-CN-28 c**.y*****.d*** 9.1.10 410M+ Education
App-CN-29 c**.d*****.c****.s**** 5.4.3.1 310M+ Education
App-CN-30 c**.i****.n**** 7.36.1 290M+ News
App-CN-31 c*.s******.a****** 4.8.1 270M+ Social Contact
App-CN-32 c**.s**.a******.s***** 3.7.7 250M+ Social Contact
App-CN-33 c**.b*****.d**** 7.5.7 190M+ Health & Fitness
App-CN-34 c**.l******.b**** 2.68.0 160M+ Home Renovation
App-CN-35 c**.y****.a******* 10.62.0 150M+ Car
App-CN-36 c**.b****.t****** 7.1.1 150M+ Books & Reference
App-CN-37 c**.h***.s***** 6.79.0 150M+ Shopping
App-CN-38 c**.d*****.f**** 7.18.0 140M+ Social Contact

Apps with SDI. Based on the hostnames of the intercepted
SDI traffics, we found that 22 apps collect users’ sharing
activities to their own server. Table VII and VIII shows the
top apps with SDI in China and US respectively. While there
are fewer apps with SDI in the US than in China, the number
of its affected users is still significant.

11

TABLE VIII: Identified apps with SDI in US.

App Name Package Name Version Downloads Category
App-US-1 s*.b***.l*** 5.21.3 500M+ Social Contact
App-US-3 w*.w****** 9.78.1 100M+ Books & Reference
App-US-4 n**.z****.a****** 7.38.7 100M+ Personalization

TABLE IX: Apps with SDI caused by third-party sharing sdk.

Package Name Version Downloads Category Third-party
sharing SDK

c**.m***.m******** 9.0200.02 710M+ Weather SDK-1
c**.d*****.c****.s**** 5.4.3.1 310M+ Education SDK-1

c**.h***.s***** 6.79.0 150M+ Shopping SDK-1
c**.k***.v********** 5.47.0.547002 140M+ VideoPlayer SDK-2

c**.v****** 6.1.10.211025 88M+ VideoPlayer SDK-2

In the meantime, we identified two third-party sharing
SDKs that also intentionally harvested users’ sharing data.
While it is reasonable for such SDK to collect users’ sharing
events for statistical analysis, such shared content collection
practices are never motioned in their related official docu-
ments (e.g., privacy policy and terms-of-service). Besides, their
data collection also includes users’ unique identifiers such
as UserID and IMEI. In total, 5 of our investigated apps
are affected by these two SDKs and more than 1.3 billion
downloads, we show the result in Table IX.

TABLE X: Top 15 apps with SDE in China.

App Name Package Name Version Downloads Category
App-CN-1 c**.s*.a******.u**.a**** 25.9.0 13.4B+ Short video
App-CN-3 c**.s****.g******* 11.5.20.31491 7.6B+ Short video
App-CN-5 c**.s***.w**** 13.6.1 5.4B+ Social Contact
App-CN-8 c**.s*.a******.a******.v**** 7.6.4 3.2B+ Video social
App-CN-9 c**.k****.a****** 11.6.6 3.1B+ Music
App-CN-10 c**.t******.q****** 12.3.5.8 2.8B+ Music
App-CN-12 c**.x*****.x** 7.91.0 2.5B+ Social Contact
App-CN-14 c**.n******.c********* 8.10.10 1.8B+ Music
App-CN-16 c*.k***.p***** 10.5.2.2 1.2B+ Music
App-CN-17 c**.t******.k****** 8.10.150.278 1.1B+ Live
App-CN-18 c**.m*.m***.m*** 9.9.0.0 1.1B+ Photography
App-CN-22 c**.b****.t**** 12.42.5.0 780M+ Social Contact
App-CN-24 c**.s********.d**** 5.19.0 640M+ Shopping
App-CN-25 c**.t******.w***** 8.98.0.588 610M+ Live
App-CN-26 c**.g*******.k*** 7.52.1 590M+ Shopping

Apps with SDE. Table X list the top 15 affected apps
in China. For the US apps, there is only one app named
App-US-1 that contains SDE pattern, which also contains
SBT and SDI. Due to the huge downloads of the affected apps,
lots of sharers will be monitored by the malicious sharees,
including browsing history records/posted content, viewing the
likes, and checking the following/followers list. As our user
study indicates that such privacy exposure is unacceptable
for the sharer (RQ3 Answer), we manually check that all
the SDE apps will set the user’s personal information (e.g.,
browsing history records, posted content) publicly by default.
That means the malicious sharee can monitor the sharer more
easily.

Prevalence of privacy exposure between the two coun-
tries. By comparing the number of pattern instances between
apps in two different countries, we observe that apps in China
are relatively higher. In other words, apps in the US market
seem less privacy intrusive. Specifically, apps with SDI in
China are more than six times as in the US (i.e., 19 v.s. 3).
Our further investigation showed that one of the reasons is
because the two third-party SDK (i.e, SDK-1, or SDK-2) is
not integrated by US apps. Previous research has shown that

Google Play usually enforces more strict app vetting policies
than other third-party markets [50], [46]. We consider such
enforcement may effectively block apps that integrate such
SDK with aggressive data collection behaviors.

Privacy risks in iOS apps. As mentioned earlier in Sec-
tion VI, we also inspect the data exposure in iOS apps. Due
to the well-known challenges [2] in reverse-engineering and
analyzing iOS apps, we opt to inspect a subset of iOS apps
through the intercepted network traffic to inspect the perva-
siveness of privacy leaks in Cracs. To detail, based on those
identified Android apps with at least one of the three privacy
leakage patterns, we obtained their corresponding iOS version
if available. Among all the 74 problematic Android apps we
identified, 71 apps have the corresponding iOS version.

By manually intercepting and inspecting the collected
network traffic, we were able to confirm that at least 58/71
(81.69%) of the apps also with those privacy leakage patterns
as their Android version. Such a pervasiveness of privacy
leakage in iOS apps is not surprising, due to the fundamental
technical similarity in implementing Cracs between the two
platforms. Besides, to enable better analytics, the app server
tends to collect data from both of the two platforms. Since apps
may introduce additional data protection mechanisms (e.g.,
encryption), our result only shows the lower bound of the
sharing data exposure.

B. Case Studies

Here, we highlight three representative cases from our
identified apps, each of them covering one of the privacy
leakage patterns as we discussed in Section III.

Fig. 9: Sharing URL extracted from the famous video app
(App-CN-7) in China.

App with SBT. App-CN-7 is a popular video app with more
than 3.6 billion downloads (as of June, 2023) on our dataset. In
this app, we found that the shared content (e.g., an HIV-related
video) is always associated with a user tracker (i.e., buvid and
mid). As illustrated in Section III-A, given the high popularity
of this app, its privacy harm could be significant. For example,
the video app can continuously track groups of people who are
interested in a specific subject (HIV-blocking pills in this case).

SDK with SDI. SDK-1 provides Cracs functions for the
source app to deliver shared content to the target app. While
it is merely designed to support implementing Cracs by
integrating SDKs of different social network platforms, it
aggressively collects and sends the shared content, together
with the sharer identity to its own server. Figure 10 shows the
detailed information collected by SDK-1 once the user triggers

12

Fig. 10: Shared data collected by SDK-1 via SDI.

Cracs. SDK-1 is integrated by apps with a total number of 2.2
billion downloads in our dataset.

App with SDE. The short video app App-CN-3 shares more
than 7.6 billion downloads in China (as of June, 2023). The app
is with SDE in both its sharing link and UI appearance. More
specifically, the sharer’s UID is explicitly attached to the shared
video link. In addition, the user name of the sharer is shown
on top of the shared content when viewed by the sharee. As a
result, the sharee can easily identify the sharer’s identity, and
further access her profile information on App-CN-3. After 6
months after our first investigation, we find that in the updated
version of App-CN-3, it no longer presents sharer’s UI on
its screen. While it is not clear whether the app developers
change their design based on our email notification campaign,
we believe the updated setup is a good data practice for Cracs.

VIII. DISCUSSION AND COUNTERMEASURES

Suggestions to different parties. Below we discuss how the
mobile ecosystem can better protect user privacy against the
potential privacy risks in Cracs activities.

• App users. Instead of using app-provided sharing
mechanisms, a privacy-sensitive user can take screen-
shots and directly share the content image. In this
way, since the shared content is not delivered via the
adversary-controlled share link, the sharing activity
becomes no longer traceable. However, as a trade-
off, it may bring a negative impact on usability with
additional user operations. For example, the content
receiver might need to manually open the app hosting
the shared content to access necessary information
such as video clips and audio.

• System vendors. Since the sharing mechanism relied
on framework-level support (e.g., Intent in An-
droid) to deliver the sharing link across apps, it is
possible for system vendors to intercept the sharing
link and filter out the parameters which expose user
identity. However, this mechanism is not a silver
bullet, as an adversary can adopt extra effort to hide
user identities in the URL created by herself. For
example, embeds tracker as a fully randomized URL
with the actual shared content. Also, this might not
work well for apps requiring login status to access
shared content.

• Regulators and app markets. More feasible and
practical countermeasures can be adopted by regula-
tors and App markets. Specifically, both authorities
(e.g., FTC [19]) and app markets can explicitly state
how app developers should comply with the privacy-
by-design practices regarding users sharing data. In
addition, app markets such as Google Play can adopt
additional vetting mechanisms to identify such data
patterns.

Limitations of our research. Our research only provides
a lower bound to evaluate the severity of exposure patterns.
Specifically, since the user study is conducted in China, it may
not represent app users in other countries. However, previous
research showed that people in developed countries such as the
US tend to be more privacy-sensitive [1]. Due to the non-trivial
challenges in app analysis, our pipeline has a few limitations in
terms of effectiveness. For example, for the static information
retrieving module (Section VI-C), Shark can not handle the
UI elements that are loaded or created at runtime. Besides,
Shark can not deal with apps that are protected by specific anti-
debugging techniques (e.g., packers [20]), or the payload of
network traffic is encrypted. We believe more advanced reverse
engineering techniques could further improve the effectiveness
of Shark.

IX. RELATED WORK

Our research is closely related to the topics of privacy
leakage analysis and privacy enhancement in mobile apps.
The approach used for identifying privacy exposure is closely
relevant to techniques for privacy leakage detection, runtime
app analysis, and app testing.

Privacy leakage in mobile platforms. Privacy leakage has
been a long-term issue in modern systems. Following this line
of research, for mobile platforms, prior studies have identified
various channels and attack vectors that expose user’s sensi-
tive data [57], [67], [45], such as privilege escalation [37],
sensors on the mobile device [67], [40], [60], and third-party
libraries [53] which are not well-regulated by the mobile
system. Besides, while regulations such as GDPR provide
better privacy enforcement, it takes time and incurs technical
gaps for app compliance. To this end, a lot of researchers
focused on detecting GDPR violations [54], [41], as well
as inconsistencies between app behaviors and their privacy
policies [30], [59], [62]. Compared to these works, privacy
leakage patterns and privacy implications of content-sharing
activities have been overlooked by prior research.

Techniques for leakage analysis and detection. Previous
works have proposed various techniques to better analyze
privacy leakage in the mobile ecosystem. For the Android
platform, static analysis [55], [56], [42], dynamic analysis [66],
[51], and their mixed approaches [68], [57] are extensively
used for detecting privacy leakage in a more efficient way.
For example, FlowDroid [31] is one of the widely used tools
for detecting privacy leakage via static analysis. To overcome
the limitations of static analysis such as high false positives,
more recent research adopts runtime analysis by intercepting
network traffic to identify privacy leaks [51], [58]. These ap-
proaches provide more accurate results as they can effectively
trigger the actual program behaviors. To confirm the privacy

13

leakage pattern in a given mobile app, our approach adopts a
similar traffic analysis mechanism as in [54].

There are a number of research and frameworks focusing
on developing automated app exploration techniques for app
testing [12], [17], [26], [32]. For example, recent work [44]
put efforts into constructing a more refined activity transition
graph, allowing an in-depth exploration of the mobile apps.
Our research utilizes such mechanisms to establish the runtime
testing path from the entry point to the sharing widget. In
addition, existing works are mostly focusing on effectively
exploring a single app. Instead, to effectively trigger and
complete the sharing process, Shark establishes the activity
transition across multiple apps by parsing and adding addi-
tional edges to the activity transition graph.

X. CONCLUSION

In this paper, we performed an in-depth analysis of the
privacy implications of cross-app content sharing (Cracs) in
mobile apps. We identified three types of privacy risks in which
an adversary could collect and infer users’ private information
without her awareness. We conducted a comprehensive user
study to understand users’ perceptions regarding such privacy-
intrusive data practices. The results showed that app users
are indeed concerned about such data exposure patterns. To
show the pervasiveness of the identified issues in real world,
we designed a pipeline named Shark, combined with both
static and dynamic analysis techniques, and analyzed the
top popular mobile apps. Finally, we discuss the possible
countermeasures which can be feasibly adopted by different
parties. Our research highlights new types of privacy threats
which have been ignored for a long time in the mobile app
ecosystem.

ACKNOWLEDGEMENT

We thank all anonymous reviewers for their valuable com-
ments and feedback to improve this paper. Yuhong Nan is
supported in part by the National Natural Science Foundation
of China (62202510), Guangdong Basic and Applied Basic
Research Foundation (2023A1515012971), and the Fundamen-
tal Research Funds for the Central Universities, Sun Yat-
sen University (No.22lgqb26), and the Alibaba Innovative
Research Program (AIR) of Alibaba Group.

REFERENCES

[1] Americans consider certain kinds of data to be more sensitive
than others. https://www.pewresearch.org/internet/2014/11/12/
americans-consider-certain-kinds-of-data-to-be-more-sensitive-than-others/,
2014.

[2] Android vs ios – a comparison of open and closed
source. https://blogs.pennmanor.net/1to1/2016/02/02/
android-vs-ios-a-comparison-of-open-and-closed-source/, 2016.

[3] Ccpa: California consumer privacy act. https://oag.ca.gov/privacy/ccpa,
2021.

[4] Google play app market. https://play.google.com/store, 2021.
[5] How tracking social media shares can strengthen your campaigns. https:

//sproutsocial.com/insights/tracking-social-media-shares/, 2021.
[6] Xiaomi app store. https://m.app.mi.com/, 2021.
[7] Xposed:dynamic instrumentation toolkit for developers. https://repo.

xposed.info/, 2021.
[8] Adblock. https://getadblock.com/, 2022.

[9] Adguard ad blocker. https://adguard.com/en/welcome.html, 2022.
[10] Adlock. your life without ads. https://adlock.com/, 2022.
[11] Android documentation: Intent object. https://developer.android.com/

reference/android/content/Intent, 2022.
[12] Appium: Mobile app automation made awesome. https://appium.io/,

2022.
[13] Art. 9 gdpr: Processing of special categories of personal data. https:

//gdpr-info.eu/art-9-gdpr/, 2022.
[14] Contact list permission in android. https://developer.android.

com/reference/android/Manifest.permission?authuser=1#READ
CONTACTS, 2022.

[15] Data minimization. https://edps.europa.eu/data-protection/
data-protection/glossary/d en#data minimization, 2022.

[16] Education gps: China overview of the education system (eag
2022). https://gpseducation.oecd.org/CountryProfile?primaryCountry=
CHN&treshold=10&topic=EO, 2022.

[17] Espresso: Android ui test. https://developer.android.com/training/
testing/espresso, 2022.

[18] Facebook share sdk. https://developers.facebook.com/docs/sharing/
android, 2022.

[19] Federal trade commission. https://www.ftc.gov/, 2022.
[20] Ijiami inc. http://www.ijiami.cn/, 2022.
[21] Personal information protection law of the people’s republic

of china (pipl). http://www.npc.gov.cn/npc/c30834/202108/
a8c4e3672c74491a80b53a172bb753fe.shtml, 2022.

[22] Principle of least privilege. https://csrc.nist.gov/glossary/term/least
privilege, 2022.

[23] Proguard: Java obfuscator and android app optimizer. https://www.
guardsquare.com/proguard, 2022.

[24] Soot - a framework for analyzing and transforming java and android
applications. https://github.com/soot-oss/soot, 2022.

[25] Turing test. https://en.wikipedia.org/wiki/Turing test, 2022.
[26] uiautomator2: dynamic exploration tool for android. https://appium.io/

docs/en/drivers/android-uiautomator2/, 2022.
[27] url-tracking-stripper: an open-source chrome extension that will re-

move the tracking parameters from urls. https://github.com/newhouse/
url-tracking-stripper, 2022.

[28] Wenjuanxing user study. https://www.wjx.cn/, 2022.
[29] What is single sign-on (sso) and how does it work? https://www.

techtarget.com/searchsecurity/definition/single-sign-on, 2022.
[30] Benjamin Andow, Samin Yaseer Mahmud, Justin Whitaker, William

Enck, Bradley Reaves, Kapil Singh, and Serge Egelman. Actions
speak louder than words:{Entity-Sensitive} privacy policy and data
flow analysis with {PoliCheck}. In 29th USENIX Security Symposium
(USENIX Security 20), pages 985–1002, 2020.

[31] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. Acm Sigplan Notices,
49(6):259–269, 2014.

[32] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration
for systematic testing of android apps. In Proceedings of the 2013 ACM
SIGPLAN international conference on Object oriented programming
systems languages & applications, pages 641–660, 2013.

[33] Michael Backes, Mathias Humbert, Jun Pang, and Yang Zhang.
walk2friends: Inferring social links from mobility profile. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1943–1957, 2017.

[34] Trung Tin Nguyen Ben Stock, Michael Backes. Freely given consent?
studying consent notice of third-party tracking and its violations of gdpr
in android apps. In In Proc. CCS, 2022.

[35] Sruti Bhagavatula, Christopher Dunn, Chris Kanich, Minaxi Gupta,
and Brian Ziebart. Leveraging machine learning to improve unwanted
resource filtering. In Proceedings of the 2014 Workshop on Artificial
Intelligent and Security Workshop, pages 95–102, 2014.

[36] Amiangshu Bosu, Fang Liu, Danfeng (Daphne) Yao, and Gang Wang.
Collusive data leak and more: Large-scale threat analysis of inter-app

14

https://www.pewresearch.org/internet/2014/11/12/americans-consider-certain-kinds-of-data-to-be-more-sensitive-than-others/
https://www.pewresearch.org/internet/2014/11/12/americans-consider-certain-kinds-of-data-to-be-more-sensitive-than-others/
https://blogs.pennmanor.net/1to1/2016/02/02/android-vs-ios-a-comparison-of-open-and-closed-source/
https://blogs.pennmanor.net/1to1/2016/02/02/android-vs-ios-a-comparison-of-open-and-closed-source/
https://oag.ca.gov/privacy/ccpa
https://play.google.com/store
https://sproutsocial.com/insights/tracking-social-media-shares/
https://sproutsocial.com/insights/tracking-social-media-shares/
https://m.app.mi.com/
https://repo.xposed.info/
https://repo.xposed.info/
https://getadblock.com/
https://adguard.com/en/welcome.html
https://adlock.com/
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://appium.io/
https://gdpr-info.eu/art-9-gdpr/
https://gdpr-info.eu/art-9-gdpr/
https://developer.android.com/reference/android/Manifest.permission?authuser=1#READ_CONTACTS
https://developer.android.com/reference/android/Manifest.permission?authuser=1#READ_CONTACTS
https://developer.android.com/reference/android/Manifest.permission?authuser=1#READ_CONTACTS
https://edps.europa.eu/data-protection/data-protection/glossary/d_en#data_minimization
https://edps.europa.eu/data-protection/data-protection/glossary/d_en#data_minimization
https://gpseducation.oecd.org/CountryProfile?primaryCountry=CHN&treshold=10&topic=EO
https://gpseducation.oecd.org/CountryProfile?primaryCountry=CHN&treshold=10&topic=EO
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://developers.facebook.com/docs/sharing/android
https://developers.facebook.com/docs/sharing/android
https://www.ftc.gov/
http://www.ijiami.cn/
http://www.npc.gov.cn/npc/c30834/202108/a8c4e3672c74491a80b53a172bb753fe.shtml
http://www.npc.gov.cn/npc/c30834/202108/a8c4e3672c74491a80b53a172bb753fe.shtml
https://csrc.nist.gov/glossary/term/least_privilege
https://csrc.nist.gov/glossary/term/least_privilege
https://www.guardsquare.com/proguard
https://www.guardsquare.com/proguard
https://github.com/soot-oss/soot
https://en.wikipedia.org/wiki/Turing_test
https://appium.io/docs/en/drivers/android-uiautomator2/
https://appium.io/docs/en/drivers/android-uiautomator2/
https://github.com/newhouse/url-tracking-stripper
https://github.com/newhouse/url-tracking-stripper
https://www.wjx.cn/
https://www.techtarget.com/searchsecurity/definition/single-sign-on
https://www.techtarget.com/searchsecurity/definition/single-sign-on

communications. In Proceedings of the 2017 ACM on Asia Con-
ference on Computer and Communications Security, ASIA CCS ’17,
page 71–85, New York, NY, USA, 2017. Association for Computing
Machinery.

[37] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer,
Ahmad-Reza Sadeghi, and Bhargava Shastry. Towards taming privilege-
escalation attacks on android. In NDSS, volume 17, page 19. Citeseer,
2012.

[38] Jonah Burgess, Domhnall Carlin, Philip O’Kane, and Sakir Sezer.
Redirekt: Extracting malicious redirections from exploit kit traffic.
In 2020 IEEE Conference on Communications and Network Security
(CNS), pages 1–9. IEEE, 2020.

[39] Soteris Demetriou, Whitney Merrill, Wei Yang, Aston Zhang, and
Carl A Gunter. Free for all! assessing user data exposure to advertising
libraries on android. In NDSS, 2016.

[40] Michalis Diamantaris, Serafeim Moustakas, Lichao Sun, Sotiris Ioanni-
dis, and Jason Polakis. This sneaky piggy went to the android ad market:
Misusing mobile sensors for stealthy data exfiltration. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 1065–1081, 2021.

[41] Ming Fan, Le Yu, Sen Chen, Hao Zhou, Xiapu Luo, Shuyue Li, Yang
Liu, Jun Liu, and Ting Liu. An empirical evaluation of gdpr compliance
violations in android mhealth apps. In 2020 IEEE 31st international
symposium on software reliability engineering (ISSRE), pages 253–264.
IEEE, 2020.

[42] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy:
Semantics-based detection of android malware through static analysis.
In Proceedings of the 22nd ACM SIGSOFT international symposium
on foundations of software engineering, pages 576–587, 2014.

[43] Haiqian Gu, Jie Wang, Ziwen Wang, Bojin Zhuang, and Fei Su. Mod-
eling of user portrait through social media. In 2018 IEEE international
conference on multimedia and expo (ICME), pages 1–6. IEEE, 2018.

[44] Wunan Guo, Zhen Dong, Liwei Shen, Wei Tian, Ting Su, and Xin
Peng. ifixdataloss: a tool for detecting and fixing data loss issues in
android apps. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 785–788, 2022.

[45] Julie Haney, Yasemin Acar, and Susanne Furman. ” it’s the company,
the government, you and i”: User perceptions of responsibility for
smart home privacy and security. In 30th USENIX Security Symposium
(USENIX Security 21), pages 411–428, 2021.

[46] Yangyu Hu, Haoyu Wang, Tiantong Ji, Xusheng Xiao, Xiapu Luo, Peng
Gao, and Yao Guo. Champ: Characterizing undesired app behaviors
from user comments based on market policies. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), pages
933–945. IEEE, 2021.

[47] Umar Iqbal, Charlie Wolfe, Charles Nguyen, Steven Englehardt, and
Zubair Shafiq. Khaleesi: Breaker of advertising and tracking request
chains. In 31st USENIX Security Symposium (USENIX Security 22),
pages 2911–2928, 2022.

[48] Murat Kezer, Barış Sevi, Zeynep Cemalcilar, and Lemi Baruh. Age
differences in privacy attitudes, literacy and privacy management on
facebook. Cyberpsychology: Journal of Psychosocial Research on
Cyberspace, 10(1):Article 2, May 2016.

[49] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien
Octeau, and Patrick McDaniel. Iccta: Detecting inter-component privacy
leaks in android apps. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 1, pages 280–291. IEEE,
2015.

[50] Fuqi Lin. Demystifying removed apps in ios app store. arXiv preprint
arXiv:2101.05100, 2021.

[51] Yabing Liu, Han Hee Song, Ignacio Bermudez, Alan Mislove, Mario
Baldi, and Alok Tongaonkar. Identifying personal information in
internet traffic. In Proceedings of the 2015 ACM on Conference on
Online Social Networks, pages 59–70, 2015.

[52] Francesca Malloggi. The value of privacy for social relationships. Social
Epistemology Review and Reply Collective 6, no. 2 (2017): 68-77, 2017.

[53] Yuhong Nan, Zhemin Yang, Xiaofeng Wang, Yuan Zhang, Donglai
Zhu, and Min Yang. Finding clues for your secrets: Semantics-driven,
learning-based privacy discovery in mobile apps. In NDSS, 2018.

[54] Trung Tin Nguyen, Michael Backes, Ninja Marnau, and Ben Stock.
Share first, ask later (or never?) studying violations of {GDPR’s}
explicit consent in android apps. In 30th USENIX Security Symposium
(USENIX Security 21), pages 3667–3684, 2021.

[55] Trung Tin Nguyen, Duc Cuong Nguyen, Michael Schilling, Gang
Wang, and Michael Backes. Measuring user perception for detecting
unexpected access to sensitive resource in mobile apps. In Proceedings
of the 2021 ACM Asia Conference on Computer and Communications
Security, pages 578–592, 2021.

[56] Xiang Pan, Yinzhi Cao, Xuechao Du, Boyuan He, Gan Fang, Rui Shao,
and Yan Chen. {FlowCog}: Context-aware semantics extraction and
analysis of information flow leaks in android apps. In 27th USENIX
Security Symposium (USENIX Security 18), pages 1669–1685, 2018.

[57] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On,
Narseo Vallina-Rodriguez, and Serge Egelman. 50 ways to leak your
data: An exploration of apps’ circumvention of the android permissions
system. In 28th USENIX Security Symposium (USENIX Security 19),
pages 603–620, 2019.

[58] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and
David Choffnes. Recon: Revealing and controlling pii leaks in mobile
network traffic. In Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services, pages 361–
374, 2016.

[59] Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit Elazari Bar On,
Abbas Razaghpanah, Narseo Vallina-Rodriguez, Serge Egelman, et al.
“won’t somebody think of the children?” examining coppa compliance
at scale. In The 18th Privacy Enhancing Technologies Symposium
(PETS 2018), 2018.

[60] Nazir Saleheen, Supriyo Chakraborty, Nasir Ali, Md Mahbubur Rah-
man, Syed Monowar Hossain, Rummana Bari, Eugene Buder, Mani
Srivastava, and Santosh Kumar. msieve: differential behavioral privacy
in time series of mobile sensor data. In Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
pages 706–717, 2016.

[61] Jordan Samhi, Alexandre Bartel, Tegawendé F. Bissyandé, and Jacques
Klein. Raicc: Revealing atypical inter-component communication in
android apps. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pages 1398–1409, 2021.

[62] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester,
Ram Krishnan, Jaspreet Bhatia, Travis D Breaux, and Jianwei Niu.
Toward a framework for detecting privacy policy violations in android
application code. In Proceedings of the 38th International Conference
on Software Engineering, pages 25–36, 2016.

[63] Mudhakar Srivatsa and Mike Hicks. Deanonymizing mobility traces:
Using social network as a side-channel. In Proceedings of the 2012
ACM conference on Computer and communications security, pages
628–637, 2012.

[64] Paul Voigt and Axel Von dem Bussche. The eu general data protec-
tion regulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer
International Publishing, 10(3152676):10–5555, 2017.

[65] Svitlana Volkova, Glen Coppersmith, and Benjamin Van Durme. In-
ferring user political preferences from streaming communications. In
Proceedings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 186–196, 2014.

[66] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and
X Sean Wang. Appintent: Analyzing sensitive data transmission in
android for privacy leakage detection. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages
1043–1054, 2013.

[67] Lichen Zhang, Zhipeng Cai, and Xiaoming Wang. Fakemask: A novel
privacy preserving approach for smartphones. IEEE Transactions on
Network and Service Management, 13(2):335–348, 2016.

[68] Xueling Zhang, Xiaoyin Wang, Rocky Slavin, and Jianwei Niu.
Condysta: Context-aware dynamic supplement to static taint analysis. In
2021 IEEE Symposium on Security and Privacy (SP), pages 796–812.
IEEE, 2021.

[69] Xiaoyong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed,
Xiaorui Pan, XiaoFeng Wang, Carl A Gunter, and Klara Nahrstedt.
Identity, location, disease and more: Inferring your secrets from android
public resources. In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages 1017–1028, 2013.

15

APPENDIX

A. User Study

Q1. Do you often use the cross-app content sharing feature
provided by apps?

(A) Often (225/300, 75%)
(B) Occasionally (75/300, 25%)
(C) Never (0/300, 0%)

Q2. How often do you share content using the cross-app
content sharing feature on apps?

(A) Almost every day (35/300, 11.67%)
(B) Once a week (74/300, 24.67%)
(C) Once a month (175/300, 58.33%)
(D) Almost never (16/300, 5.3%)

Q3. If you were informed that using the cross-app content
sharing feature on an app would leak privacy data, including
shared content and personal identity information, would you
still proceed?

(A) Yes, I don’t care about privacy leaks (20/300, 6.67%)
(B) Yes, because I have no other options (88/300, 29.33%)
(C) No, I am willing to give up sharing for personal privacy

(166/300, 55.33%)
(D) No, I have other ways to protect my privacy (26/300,

8.67%)

Q4. When using the sharing function within an app (such as
TikTok or Taobao), do you log in to your personal account?
For example, when sharing a TikTok video, have you already
logged into your TikTok account?

(A) Yes (259/300, 86.33%)
(B) No (8/300, 2.67%)
(C) Not sure, I didn’t notice (33/300, 11%)

Q5. If an app’s sharing function requires you to be logged
in (i.e., if you are not logged into the app before sharing, a
pop-up will ask you to log in), what would you do in this
scenario?

(A) Refuse to log in and give up sharing (121/300, 40.33%)
(B) Login to complete the sharing function (179/300,

59.67%)

Q6. When receiving interesting content shared by your friends
from other apps (e.g., TikTok) on social media applications
(e.g., WeChat, Messenger), but the app (e.g., TikTok) requires
you to log in before you can view the shared content, what
would you do in this scenario?

(A) Refuse to log in and give up viewing the shared content
(104/300, 34.67%)

(B) Log in as required to view the shared content (196/300,
65.33%)

Q7. When you do content sharing, the third-parties hosted in
this APP (such as advertising, payment, and analytics services)
also obtain your identity and shared content, Do you think this
behavior constitutes a privacy leakage?

(A) Yes (243/300, 81%)
(B) No (28/300, 9.33%)
(C) I don’t know (29/300, 9.67%)

Q8. What do you think when third-parties obtain your identity
and shared content?

(A) Acceptable (108/300, 36%)
(B) Unacceptable, third-parties should not have access to

my content sharing privacy (192/300, 64%)

Q9. If you share content from a source app (e.g., Tik-
Tok, WeiBo, Instagram) with your friends on social media
apps (e.g., WeChat, Messenger, WhatsApp), but your friends
on social media apps (e.g., WeChat, Messenger, WhatsApp)
obtain your account information from the source app (e.g.,
TikTok, WeiBo, Instagram), and can further view your history,
followers, fans, and other information, would you find this
acceptable?

(A) Unacceptable, as this is my private information
(219/300, 73%)

(B) It doesn’t matter, I don’t care (81/300, 27%)

Q10. Do you feel violated if the APP can use your sharing
activity to obtain your social relationships on WeChat (Social
APP)?

(A) Yes (282/300, 94%)
(B) No (18/300, 6%)

Q11. In the following scenario, if a video app (such as Bilibili
or Youtube) could use your video-sharing behavior to obtain
your friend relationships on social media apps (such as WeChat
or Messenger), what is your opinion?

(A) Based on the sharing function, the video app should
obtain my friend relationships on other social applications
(109/300, 36.33%)

(B) The video app has violated my privacy because the
sharing function does not require obtaining WeChat friend
relationships (191/300, 63.67%)

Q12. Attention Test (to exclude robots/random clicks): What
should we say if we accidentally touch someone else in public?

(A) Thank you (0/300, 0%)
(B) I’m sorry (300/300, 100%)
(C) Hello (0/300, 0%)
(D) You are welcome (0/300, 0%)

Q13. What is your age?

(A) 18-30 (156/300, 52%)
(B) 31-45 (140/300, 46.67%)
(C) 46-60 (2/300, 0.67%)
(D) Other (2/300, 0.67%)

Q14. What is the highest level of education you have
completed?

(A) Primary school (0/300, 0%)
(B) Junior high school (4/300, 1.33%)
(C) High school (11/300, 3.67%)

16

(D) College (265/300, 88.33%)
(E) Master or Ph.D. (20/300, 6.67%)

Q15. What is your gender?

(A) Male (118/300, 39.33%)
(B) Female (182/300, 60.67%)
(C) Decline to answer (0/300, 0%)

Q16. What is your professional background?

(A) STEM (Science, Technology, Engineer, Mathematics)
(167/300, 55.67%)

(B) Liberal arts (119/300, 39.67%)
(C) Other (14/300, 4.67%)

B. Email Template used for our notification campaign

To whom it may concern,

We are a security research group from Sun Yat-sen Uni-
versity, Fudan University, and Indiana University Bloomington.
We would like to let you know about a potential privacy risk
identified in the app {Package}.

Background: Cross-app content sharing is a basic func-
tionality in modern apps and this feature is frequently used by
mobile users. Specifically, like your app, the in-app content
(e.g., a video post, product detail) can be shared to other social
apps (e.g., WeChat, QQ) and further opened by other recipients
of the social app user.

Unfortunately, we found that {Package} seems to un-
necessarily implant user-associated unique identifier(s) in the
shared content during the content sharing process. The col-
lection of user identifiers here is not necessary from the
perspective of sharing functionalities.

In the meantime, we found such data exposures (i.e.,
collecting the sharing-related data) are not explicitly mentioned
in your app’s privacy policies ({Policy URL}), which may
lead to potential privacy incompliance required by regulators
and bring app user confusion.

Note that we fully understand the observed data collection
practice could be reasonable for marketing purposes, or it may
caused by un-caution code implementation by app developers.
What we want to point out is that, from the perspective of
a privacy-sensitive user, it is recommended to keep as much
data transparency as possible, and minimize the unnecessary
privacy exposure.

With the above information, we would like to give the
following recommendations:

(1) To better protect user privacy, you may perform addi-
tional, necessary code reviews on the app data practice
in content sharing.

(2) To minimize compliance risks, you may better clarify
the data usage purpose of sharing data/identifiers in
the provided privacy policy.

Lastly, as a research project, part of our findings will be
presented in The Network and Distributed System Security
Symposium (NDSS) – a top-tier conference that fosters in-
formation exchange among researchers and practitioners of

network and distributed system security. Information about this
conference held last year can be accessed at https://www.ndss-
symposium.org/ndss2023/. Note that we will not disclose any
of your identity (such as app name, or affiliated company),
we would kindly ask you to provide the following feedback if
possible.

(1) Would you consider the above issue as a privacy risk?

(2) Could you provide us additional information on the
actual purpose of such data collection, particularly,
user identifiers?

(3) Would you take any action to alleviate this risk, such
as updating the app code, or privacy policy statement?

We look forward to your reply, and please feel free to reach
out for more details.

Sincerely,
Privacy Compliance Research Group

17

	Introduction
	Background and Problem Statement
	Background
	Problem Statement

	Privacy Threats in Cross-App Content Sharing
	Sharing Behavior Tracking (SBT)
	Sharing Data Interception (SDI)
	Sharer Data Exposure (SDE)

	Privacy Implications
	User Profile Inference
	Social Relation Inference

	User Perception Analysis
	Design of the User Study
	Results and Findings

	Analyzing 99993em.5Cracs data practices in Mobile Apps
	Challenges
	Workflow of 99993em.5Shark
	Static Information Retrieving
	Dynamic Sharing Activity Triggering
	Leakage Detection
	Effectiveness of 99993em.5Shark

	Understanding Sharing Leaks in the Wild
	Measurement results
	Case Studies

	Discussion and Countermeasures
	Related Work
	Conclusion
	References
	Appendix
	User Study
	Email Template used for our notification campaign

