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Abstract—Although there has been extensive research on the
transferability of adversarial attacks, existing methods for gener-
ating adversarial examples suffer from two significant drawbacks:
poor stealthiness and low attack efficacy under low-round attacks.
To address the above issues, we creatively propose an adversarial
example generation method that ensembles the class activation
maps of multiple models, called class activation mapping ensem-
ble attack. We first use the class activation mapping method
to discover the relationship between the decision of the Deep
Neural Network and the image region. Then we calculate the
class activation score for each pixel and use it as the weight for
perturbation to enhance the stealthiness of adversarial examples
and improve attack performance under low attack rounds.
In the optimization process, we also ensemble class activation
maps of multiple models to ensure the transferability of the
adversarial attack algorithm. Experimental results show that our
method generates adversarial examples with high perceptibility,
transferability, attack performance under low-round attacks, and
evasiveness. Specifically, when our attack capability is comparable
to the most potent attack (VMIFGSM), our perceptibility is close
to the best-performing attack (TPGD). For non-targeted attacks,
our method outperforms the VMIFGSM by an average of 11.69%
in attack capability against 13 target models and outperforms the
TPGD by an average of 37.15%. For targeted attacks, our method
achieves the fastest convergence, the most potent attack efficacy,
and significantly outperforms the eight baseline methods in low-
round attacks. Furthermore, our method can evade defenses and
be used to assess the robustness of models1.

I. INTRODUCTION

Deep Neural Networks (DNNs) have achieved remarkable
achievements in image classification [1]–[3]. They are playing

1Corresponding author is Xia Hui, e-mail: xiahui@ouc.edu.cn. Hui
Xia and Rui Zhang contributed equally to this work. Our code is
available at https://github.com/DreamyRainforest/Class Activation Mapping
Ensemble Attack/tree/main

an increasingly important role in many fields [4]. In au-
tonomous driving, DNNs accurately recognize and understand
road and traffic conditions by analyzing images and data
from cameras and radar sensors. In the medical area [5]–[8],
DNNs automatically identify and segment lesions in medical
images, helping doctors diagnose and treat diseases more
quickly and accurately. In the security field [9]–[12], DNNs
achieve automatic alarm and tracking of security monitoring
systems by recognizing and tracking objects such as faces and
vehicles. In addition to the above application areas, DNNs
have wide applications in many other fields. For example,
DNNs are used for natural language processing for machine
translation, sentiment analysis, and text generation tasks [13],
[14]. In recommendation systems, DNNs can use to recom-
mend products, music, movies, and other content. In industrial
control, DNNs can use to predict machine failures and optimize
production lines. However, as DNNs are increasingly applied
in more fields, the threat of adversarial attacks is becoming
more serious [15]–[20].

An adversarial attack is a malicious attack against machine
learning models to deceive the model and cause it to make
incorrect predictions. Adversarial attacks may have a serious
impact on the security and privacy of a model. For example,
when the adversarial attack is successfully executed against
an image classification model, a harmless image may be
incorrectly classified as a completely different object, leading
to serious safety issues. In autonomous vehicles, attackers can
deceive the vehicle’s cameras by adding specific patterns and
noise, resulting in traffic accidents. In facial recognition tasks,
attackers may trick the system by adding invisible noise to
human eyes, thus accessing sensitive personal information. The
above examples demonstrate that we must consider the risk of
adversarial attacks when developing and deploying DNNs.

Researchers have proposed many methods to defend
against adversarial attacks [21], [22], including adversarial
training [23], defensive regularization [24], and adversarial
example detection [25], [26]. Adversarial training [27] is
a commonly used method that enhances the robustness of
DNNs by adding adversarial examples to the training data and
alternating between adversarial and benign examples during
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training. Defensive regularization methods limit the mapping
space between model input and output by introducing reg-
ularization terms into the loss function, thereby reducing the
impact of adversarial examples. Adversarial example detection
methods attempt to detect adversarial examples from input
data to prevent them from entering the model. Although these
methods can effectively improve the robustness of DNNs,
adversarial attacks continue to evolve and pose significant
challenges. Therefore, more efforts and exploration are still
needed to research the security and robustness of DNNs.

Understanding the principles and methods of adversarial
attacks, exploring possible attack methods, and mitigating
potential risks are essential to enhance the security and ro-
bustness of DNNs. Various adversarial attack methods have
been proposed, including optimization-based and gradient-
based methods, which can achieve high success rates in
the white-box setting [28]–[32]. However, in the black-box
setting, the attack efficacy is lower due to the inability to
access the target model’s internal details. Some transferability-
enhancing attack methods have been proposed to solve the
above problem, including gradient optimization attack, input
transformation attack, and model ensemble attack [33]–[38].
However, these methods add indiscriminate perturbations to all
pixel locations in the image, resulting in generated adversarial
examples with poor stealthiness and low attack capability for
low-round attacks. In particular, compared to the two types of
methods, gradient optimization attack and input transformation
attack, the model ensemble attack is an efficient attack method
and widely used to improve black-box attack performance.
Therefore, in this work, we still focus on model ensemble
attacks and attempt to perturb important locations to enhance
the stealthiness and convergence speed of the adversarial
examples’ attack capability under low-round attacks.

Severi et al. [39] utilized machine learning interpretabil-
ity tools, such as Shapley Additive exPlanations, to gener-
ate malware samples that would be misclassified as benign
samples by a classifier. Inspired by their work, we attempt
to employ the Class Activation Mapping (CAM) method
to generate adversarial examples. The CAM method can
reveal the connection between the decisions of DNNs and
the regions in an image, resulting in adversarial examples
with solid attack capabilities. However, the targeted nature
of CAM scores may result in adversarial examples applying
only to specific target models, leading to poor transferability.
To address this problem, we incorporate CAM scores as
weights for adding perturbations to each pixel, enhancing
the attack capabilities for low attack epochs and stealthiness.
Additionally, we improve the transferability of adversarial
examples by ensembling CAM scores from multiple models.
Thus, we propose a class activation mapping ensemble at-
tack. We validate our attack method on the ILSVRC 2012
validation set and compare it with ten baseline methods
regarding perceptibility and attack ability for two attack modes
(targeted and non-targeted). Experimental results show that
our attack method generates adversarial examples with good
stealthiness and has good attack and transferability abilities for
13 models, including AlexNet [40], VGG16 [41], Efficient-
Net b0 [42], ResNet18/34/50 [43], WideResNet50/101 [44],
Inception v2 [45], MobileNet v2 [46], ConvNeXt [47],
ViT [48], RegNet [49]. Our contributions are summarized as
follows:

• As far as we know, this is the first black-box adver-
sarial attack method that considers both attack trans-
ferability and perturbation weighting simultaneously.

• We use a strategy different from traditional meth-
ods to improve the stealthiness and transferability
of adversarial attack algorithms. Traditional methods
directly integrate the outputs of multiple models into
the objective function, while we incorporate the CAM
into the search process for minimum perturbation. This
method can avoid adding excessive perturbations in
unimportant regions, thereby preserving the stealthi-
ness of the adversarial examples. It can quickly change
the decision region of benign images to enable the at-
tacking algorithm to exhibit good attack performance
with low attack rounds. We also ensemble the CAM
of multiple models to ensure the transferability of
adversarial examples, thereby improving the success
rate and robustness of the attack.

• Experimental results show that our method produces
adversarial examples with good perceptibility, attack
ability, transferability, convergence, and evasiveness.
Specifically, when our attack ability is comparable to
the most vigorous VMIFGSM attack, our perceptibil-
ity is close to the best-performing TPGD. Compared
to VMIFGSM, L2 is reduced by 24.08, Low fre by
13.91, SSIM by 0.04, and PSNR by 0.69 in our
method. Under non-targeted attack mode, compared to
the VMIFGSM, our method improves the average at-
tack success rate against 13 target models by 11.69%,
and compared to the TPGD, the average attack success
rate is enhanced by 37.15%. Under targeted attack
mode, our method converges fastest and has the most
substantial attack ability, and the attack ability is
significantly better than the eight baseline methods
under low attack rounds. The attack success rate of
our method has been at least 10% higher than that of
VMIFGSM since the fourth round. Also, our method
can bypass defense methods, making it helpful in
evaluating the robustness of models.

In the following chapters, we will briefly introduce our
research method’s main content and contributions. Specifically,
this paper will be divided into the following sections: Section
II will review existing research related to adversarial attacks,
including gradient-based attacks, input transformation attacks,
and model ensemble attacks. Section III will briefly introduce
seven adversarial attack methods to help readers understand
our attack strategy. Section IV will elaborate on our research
method, a class activation mapping ensemble attack for gen-
erating adversarial examples. Section V will introduce the
datasets, experimental settings, and evaluation metrics used
in this study, as well as the detailed implementation of our
method. Also, we will present the experimental results and
compare the performance of different methods regarding attack
effectiveness, transferability, and evasiveness. Finally, in Sec-
tion VI, we will summarize the contributions and limitations
of our method and present future research directions and
recommendations.
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II. RELATED WORK

Research on adversarial attacks can be roughly divided
into five categories: gradient-based attacks, optimization-based
attacks, score-based attacks, decision-based attacks, and trans-
ferable attacks. We focus on transferable attacks, and in
this section, we introduce existing transferability-enhancing
methods from three aspects: gradient-based attacks, input
transformation attacks, and model ensemble attacks.

A. Gradient Optimization Attack

The gradient-based attack method is a standard adversarial
attack method that utilizes the gradient information of the
target model to generate adversarial examples. The most
famous way among them is the Fast Gradient Sign Method
(FGSM) [50], which obtains a perturbation vector by multiply-
ing the gradient direction of each pixel with the perturbation
and then adds it to the benign image to generate an adversarial
example. Although FGSM has a high success rate in attacking
a single model, it cannot guarantee the transferability of the
attack effect to other models. Kurakin et al. [51] proposed the
Basic Iterative Method (BIM) by setting multiple smaller steps
to construct more accurate adversarial examples. Madry et
al. [52] searched for perturbations within the L-norm ball range
of the data point and proposed Projected Gradient Descent
(PGD). Although PGD has good attack ability in white-box
settings, it is prone to overfitting the target model in black-box
settings, leading to poor transferability of adversarial examples.
To enhance the transferability of adversarial examples, Dong
et al. [53] proposed a Momentum Iterative Fast Gradient
Sign Method (MIFGSM), which stabilizes the update direction
during iterations and avoids poor local maxima. Lin et al. [54]
introduced Nesterov Accelerated Gradient into gradient-based
attacks by effectively looking ahead to improve the transfer-
ability of adversarial examples. Wang et al. [55] introduced
variance tuning in gradient-based iterative attacks to enhance
the transferability of attacks. Although these methods improve
the transferability of adversarial examples, the effects are
insignificant.

B. Input Transform Attacks

The input transformation-based attack method enhances
the attack’s transferability by utilizing the image’s invariance.
This type of attack method mainly includes methods such as
rotation, translation, and scaling to transform the image. Xie et
al. [56] proposed the Diverse Input Method (DIFGSM), which
increases the transferability of adversarial examples by using
input diversity such as randomly adjusting size and padding
to create different input patterns. Dong et al. [53] generated
adversarial examples by optimizing perturbations on a set of
translated images and proposed the Translation-Invariant At-
tack Method (TIFGSM). Lin et al. [54] demonstrated the scale
invariance of deep learning models and proposed the Scale-
Invariant Method (SINIFGSM) to improve the transferability
of adversarial examples by optimizing adversarial perturba-
tions on scaled copies of the input image. Wang et al. [57]
proposed the Admix attack, which computes the gradients
on the input image and mixes them with a small portion
of each additional module image while using the original
label of the input to generate more transferable adversarial
examples. Although these methods improve the transferability

of adversarial examples to some extent, the improvement is
insignificant.

C. Model Ensemble Attacks

The model ensemble attack improves the transferability
of the attack by attacking multiple models. This method can
effectively bypass the defense mechanisms of different models,
improving the success rate and transferability of the attack.
Liu et al. [58] first proposed ensemble attacks by averaging
the predictions (probability) of multiple models and using
existing adversarial attack methods (such as FGSM and PGD)
to improve the transferability of adversarial examples. Dong
et al. [56] proposed two variants of multi-model ensemble
attacks, which generate adversarial examples by integrating
multiple models’ logit outputs and losses to improve the trans-
ferability of adversarial examples. However, these methods
uniformly integrate all models’ outputs and use stochastic
gradient descent for optimization can easily get trapped in local
optima. Therefore, Xiong et al. [59] proposed a Stochastic
Variance-Reduced Ensemble attack (SVRE), but the efficiency
of generating adversarial examples is slow, and the attack
capability of adversarial examples is not significant.

Although existing methods have shown some improvement
in the transferability of adversarial examples, the effect is
insignificant. Moreover, these methods indiscriminately add
perturbations to all pixel positions in the image, resulting
in poor perceptual quality and low attack capability at low
iteration counts. In summary, the current methods could be
improved in improving adversarial examples’ transferability
and stealthiness.

Inspired by the above approach, we are still committed to
using model ensemble attacks to enhance the transferability of
adversarial examples. However, unlike the previous method,
we do not ensemble multiple target models’ logit outputs,
predictions, and losses, but rather the CAMs of numerous
models. By integrating the CAMs of various models, we
can ensure the transferability of adversarial examples and
improve the attack capability of adversarial examples at low
attack rounds while improving the stealthiness of adversarial
examples to some extent.

III. TECHNICAL BACKGROUND

We briefly introduce seven adversarial attack methods:
FGSM, PGD, TPGD, NIFGSM, MIFGSM, VMIFGSM, and
SVRE. This is to help readers understand our attack strategy.

A. Fast Gradient Sign Method (FGSM)

The FGSM [50] is a standard adversarial attack that can
deceive DNNs into producing incorrect outputs. FGSM can be
described as follows: assuming that x is the benign image, y
is the true label, and L(x,y; θ) is the loss function, θ is the
model parameters. The process of generating an adversarial
example with FGSM is as follows:

x′ = x + α · sign(∇xL(x,y; θ)) (1)

where x′ is the perturbed image, α is the magnitude of the
perturbation, ∇xL(x,y; θ) is the gradient of the loss function
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L(x,y; θ) with respect to the input image, sign(∇xL(x,y; θ))
is the sign of the gradient element-wise. This method is
computationally efficient because it only requires one forward
and backward propagation to generate an adversarial example.
However, the choice of the perturbation magnitude may affect
the attack effectiveness, and it needs to be selected experimen-
tally or by other methods.

B. Projected Gradient Descent (PGD)

The main idea of PGD [52] is to iteratively add a certain
amount of perturbation within a specific range to the input
image to cause misclassification. The optimization objective
is:

min
x′
{L(F(x′),y; θ)} s.t., ‖x′ − x‖∞ ≤ ε (2)

F is the target model, ε is the maximum perturbation range, ‖·
‖p represents the Lp norm. To solve the optimization problem,
PGD iteratively updates the perturbation using the gradient
descent method, i.e.,

xt+1 = Πx+ε(xt + α · sign(∇xtL(F(xt),y; θ))) (3)

where y is the true label, xt is the sample obtained after
the t-th iteration, α is the learning rate, sign(·) represents the
sign function, and Πx+ε(·) represents the projection operation.
Overall, PGD is a powerful and flexible iterative adversarial
attack algorithm that gradually approaches the optimal solution
by updating the perturbation multiple times, generating more
effective adversarial examples.

C. Theoretically Grounded Approach (TPGD)

The author discusses the trade-off between adversarial
robustness and accuracy in DNNs [60]. The authors propose
a theoretically grounded approach that balances the trade-
off by modifying the training data. Specifically, the authors
define a loss function that combines adversarial robustness and
accuracy, called TPGD. The form of the loss function is:

L(θ) = E(x,y)∼D[max
δ∈S
LCE(F(x + δ),y)− ξR(δ)] (4)

D is the distribution of the training data, LCE is the cross-
entropy loss function, S is the set of adversarial examples,
R(δ) is the robustness evaluation of adversarial perturbation
δ, ξ is a balancing factor. The meaning of this loss function
is to maximize the cross-entropy loss function for correctly
predicted examples among all adversarial examples, while
simultaneously minimizing the robustness evaluation of the
adversarial examples to achieve a balance between adversarial
robustness and accuracy. The authors prove that this loss func-
tion can be minimized under certain conditions and propose
an optimization algorithm to solve this minimization problem.

D. Nesterov Accelerated Gradient Fast Gradient Sign Method
(NIFGSM)

The authors propose an adversarial attack method based
on Nesterov accelerated gradient and scale invariance, called
NIFGSM [54]. Mathematically, this method can be represented
by the following equation:

x′ = x + α · sign(gt) (5)

where gt is the gradient computed using Nesterov accelerated
gradient method. Specifically, this method uses the Nesterov
Accelerated Gradient Method to calculate the adversarial gra-
dient quickly and uses scale invariance to ensure the stability of
the attack effect. The Nesterov Accelerated Gradient Method is
a momentum-based optimization algorithm that can accelerate
the convergence speed of gradient descent. Its mathematical
expression is as follows:

vt+1 = µ · vt − η · ∇xF(xt + µ · vt) (6)

xt+1 = xt + vt+1 (7)

where µ is the momentum parameter, η is the learning rate.

Scale invariance means that the attack effect should remain
stable for different scales of input data. Scale invariance
is achieved by dividing the perturbation into two parts: a
global scaling and a local perturbation. Specifically, the attack
perturbation can be represented as:

d = α · sign(gt)�
‖x‖2
‖gt‖2

(8)

where � represents element-wise multiplication, ‖x‖2 and
‖gt‖2 represent the L2 norms of the input data and the
adversarial gradient. Combining Nesterov’s accelerated gradi-
ent method and scale invariance achieves good performance
in both adversarial attack effectiveness and computational
efficiency.

E. Moment Iterative Fast Gradient Sign Method (MIFGSM)

The MIFGSM [53] is a commonly targeted adversarial
attack algorithm against DNNs, based on the FGSM and the
Momentum Gradient Descent algorithm. The basic idea of
MIFGSM is to add a momentum term to FGSM to speed up the
attack and increase the attack’s success rate. Its mathematical
expression is:

xt+1 = clip(xt + α · sign(gt))

gt = µ · gt−1 +
∇xL(xt,y; θ)

||∇xL(xt,y; θ)||1
(9)

where µ is the momentum factor used to control the smooth-
ness of the perturbation, the clip function is used to truncate
xt to ensure it is within the range of [x− ε,x + ε]. MIFGSM
algorithm introduces a momentum term, enabling the attacker
to find the path to a successful attack faster and avoid getting
stuck in local minima. Additionally, MIFGSM can increase the
attack success rate and amplitude by increasing the number of
epochs, but it also increases attack time and cost.

F. Variance-based Moment Iterative Fast Gradient Sign
Method (VMIFGSM)

VMIFGSM [55] is an improved targeted attack algorithm
for DNNs. It introduces variance information based on the
MIFGSM algorithm to better explore the model’s gradient in-
formation and accelerate the attack process. The mathematical
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expression of the VMIFGSM algorithm is as follows:

x
′

t+1 = x
′

t + α · sign(gt+1)

ĝt+1 = ∇x′L(x
′

t,y; θ)

gt+1 = µ · gt +
ĝt+1 + vt
||ĝt+1 + vt||1

vt+1 = V (x
′

t)

(10)

where vt+1 represents the gradient variance of the N samples,
V (·) is the approximate of gradient variance, i.e., V (x) =

1
N

N∑
i=1

∇xiL(xi,y)−∇xL(x,y), N represents the number of

sampled examples. The dynamic step size setting can help
attackers better explore the gradient information, accelerate the
attack process, and improve the attack success rate.

G. Stochastic Variance Reduced Ensemble Attack (SVRE)

The authors propose an adversarial attack method based
on an ensemble with random variance reduction to improve
the transferability of adversarial examples, called SVRE [59].
This method includes three key components: random pertur-
bation, variance reduction, and ensemble. Specifically, random
perturbation is used to increase the diversity of attack samples,
variance reduction is used to reduce the impact of noise and
improve the efficiency and stability of the attack, and the
ensemble combines the prediction results of multiple models
to improve the success rate and transferability of the attack.
The goal of this method is to minimize a loss function on
the attack samples, which consists of the distance between the
output of the original model and the adversarial model and a
regularization term.

To improve attack efficiency, the authors use a stochastic
gradient descent-based optimization method with a mini-batch
technique to randomly select a subset of data for an update.
In addition, a new ensemble strategy, weighted averaging, is
introduced to balance the contributions of different models.
Finally, experiments on multiple datasets show that compared
with other adversarial attack methods, this method has a higher
attack success rate and better transferability.

IV. METHODOLOGY

This section overviews the proposed method from prob-
lem definition and class activation mapping ensemble attack.
Firstly, the problem is defined by presenting the objective
functions for targeted and non-targeted attacks, which intro-
duces the problem that needs to be addressed. Secondly, the
class activation mapping is introduced to enhance the method’s
attack performance and integrate the CAM into finding the
minimum perturbation that avoids adding excessive perturba-
tions in unimportant regions, thus ensuring the stealthiness of
adversarial examples.

A. Problem Definition

Adversarial attacks can be viewed as an optimization
problem. The goal is to deceive a DNN by applying small
perturbations to the input image, resulting in a significantly
different output than the original. Specifically, adversarial
attacks can be defined as follows: given a target model F with
parameters θ and an input image x, find a small perturbation

δ such that the output of x is significantly different from
the output of x

′
,x

′
= x + δ, while the magnitude of the

perturbation δ is small enough to be imperceptible to humans.
Where ε is the perturbation constraint. This can be formulated
as the following constrained minimization problem:

min
δ
d(x

′
,x)

s.t.,F(x; θ) 6= F(x
′
; θ)

(11)

where d(x
′
,x) represents the distance between x and x

′
,

which can be Euclidean distance, Lp norm distance, etc.

For the non-targeted attack, the purpose of a non-targeted
attack is to deceive a DNN by causing it to predict an incor-
rect label by maximizing the prediction error. The objective
function for a non-targeted attack can be formulated as the
following optimization problem:

x
′

= arg max
||x−x′ ||<ε

L(x
′
,y; θ) (12)

For the targeted attack, the goal of the attack is to find
the closest x

′
to the input image x, such that the perturbed

image x
′

is classified by the model F as the targeted label y
′
.

Assuming the input image x, the specified targeted label y
′
,

and the model’s classification function F, the targeted attack
can be formulated as the following optimization problem:

Algorithm 1 Class Activation Mapping Ensemble Attack

Require: Target model F, loss function L, input image x, true
label y, perturbation constraint ε, attack epochs T, decay
factor µ.

Ensure: Adversarial example x
′
.

1: α = ε/T ;
2: g0 = 0;
3: v0 = 0;
4: x

′

0 = x;
5: for t = 0→ T − 1 do
6: Compute gradient with Eq. (17);
7: Update gradient with Eq. (16);
8: Update x

′

t+1 with Eq. (15);
9: end for

10: x
′

= x
′

T ;
11: Return x

′
.

x
′

= arg max
||x−x′ ||<ε

L(x
′
,y

′
; θ) (13)

To improve the stealthiness of the adversarial example, at-
tackers often need to add some constraints, such as limiting the
size of the perturbation, to ensure that humans do not observe
the perturbation. Different adversarial attack algorithms use
other loss functions and constraints. For example, gradient-
based adversarial attack algorithms such as the FGSM and
PGD use cross-entropy loss and norm constraints to maximize
the error and limit the perturbation size. However, their attack
capability is defined by gradient information. On the other
hand, evolutionary algorithms-based adversarial attack algo-
rithms use the objective function to guide the search process to
find the most aggressive perturbation, but their computational
costs are often high. Although the aforementioned methods
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have made great progress in improving the perception of
adversarial examples, the adversarial examples generated by
the above method have relatively weak attack ability in a black-
box setting.

Researchers have proposed various methods to enhance
the performance and transferability of adversarial attack algo-
rithms. One commonly used way is integrating multiple models
to improve the model’s robustness and attack capability. For
example, various models can be trained simultaneously in
adversarial training, and then their outputs are integrated to
obtain stronger robustness. In adversarial attacks, the model
ensemble attack method can enhance attack capability. This
method produces adversarial examples by weighted averaging
the outputs of multiple models, thereby improving attack
performance. Although these methods have some improvement
in attack transferability, they all have the drawbacks of poor
low iteration attack capability, slow convergence speed, and
poor stealthiness.

The CAM can discover the relationship between a DNN’s
decision and the image region and visualize the model’s output
based on its feature map, thereby providing attackers with
more information to construct adversarial examples. Therefore,
we use the CAM to create adversarial examples, which can
effectively enhance the attack capability of adversarial attack
methods. We still focus on model ensemble attacks to improve
the transferability of adversarial examples. However, unlike
existing research on model ensemble attack methods (such as
integrating multiple models’ logit outputs, prediction probabil-
ities, and losses), we solve the problem of poor transferability
by integrating multiple models’ CAMs to construct adversarial
examples.

B. Class Activation Mapping Ensemble Attack

Overview: In the black-box attack setting, attackers can
only access the input and output of the target model without
obtaining its internal structure and parameter information.
Therefore, we need to construct substitute models to gen-
erate adversarial examples to deceive targeted DNNs. We
first train substitute models (gradient substitute model and
CAMs substitute model) and use the CAM method to calculate
the class activation score of each pixel, which is used as
the weight of the perturbation to ensure the stealthiness of
the adversarial examples and enhance the attack performance
under low attack epochs. In the optimization process, we
integrate the CAMs [61] of multiple CAM-based substitute
models to ensure the transferability of the adversarial attack al-
gorithm. Compared to traditional methods, using CAM scores
as perturbation weights can effectively avoid adding exces-
sive perturbations in unimportant regions, thereby ensuring
the stealthiness of the adversarial examples. Meanwhile, this
method can add perturbations in a targeted manner and quickly
change the decision region of benign images, enabling the
adversarial attack method to exhibit good attack performance
even under low iteration times.

Substitution model: When selecting a substitute model,
various factors, such as the complexity of the model, the
similarity to the target model, and the availability of training
data, need to be considered. Generally, the more similar the
substitute model is to the target model, the more effective

the generated adversarial examples will be. Based on prior
knowledge, we choose a gradient substitute model, which is
used to determine the sign direction of perturbation, and select
the model with larger heatmap regions as the CAMs substitute
model, which calculates the weights of the perturbations.

Non-targeted attack: Given the target model F and the
input image x, find a perturbed image x

′
such that the output

of x and the output of x
′

differ significantly, while the
perturbation in x

′
is small enough not to draw human attention,

and without specifying a specific deceived output. Specifically,
the non-targeted attack can be represented as the following
minimization-constrained problem:

x
′

= arg max
||x−x′ ||<ε

L(x
′
,y; θ) + ||x̃− x

′
||2 (14)

where x̃ is the maximum of ensemble class activation maps,

x̃ = max{x1cam, x2cam, · · · , xncam}

xcam is the score of the class activation mapping, n is the
number of CAM-based substitute models.

The first term is used to improve the attack capability
of adversarial examples, while the second term is used to
improve their transferability among different models. We use
the gradient variance optimization method to optimize the ob-
jective function. However, differently from the method in [53],
we incorporate CAMs [61] as the weight of the perturbation
to further enhance the optimization effect. Specifically, we
multiply the CAM with the perturbation to obtain a new
perturbation vector. Then we use the sign of the gradient
variance of the gradient substitute model as the direction for
updating the perturbation, thereby improving the adversarial
attack ability of the adversarial examples. That is,

x
′

t+1 = x
′

t + (λ · α) · (w · Mc) · sign(gt+1) (15)

gt+1 = µ · gt +
ĝt+1 + vt
||ĝt+1 + vt||1

(16)

ĝt+1 = ∇x
′
t
L(x

′
,y; θ) + ||x̃− x

′
||2 (17)

vt+1 =
1

N

N∑
i=1

∇xiL(xi,y; θ)−∇xL(x,y; θ) (18)

where λ represents the perturbation step size factor, w rep-
resents the perturbation magnitude factor used to constrain
the magnitude of perturbation,Mc represents the perturbation
weight of pixels, i.e., the score of class activation map of
CAMs substitute model,

Mc(a, b) = max{m1
c(a, b),m

2
c(a, b), · · · ,mn

c (a, b)} (19)

mc(a, b) =

K∑
k=1

(αkcF
lk(a, b)) (20)

where c represents the class of interest in addition to the current
class,

αkc =
∑
a,b

(
Flk(a, b)∑
a,b ∂Flk(a, b)

∂Sc(F
l)

∂Flk(a, b)
Flk(a, b)) (21)

where l represents the index of the target layer, Fl represents
the response of the target layer, Flk represents the response of
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TABLE I: Non-targeted Attack: Perceptive measure (Gradient substitute model: ResNet50, CAMs substitute models: WideRes-
Net101, Inception, and ResNet34, Target model: ResNet50, ε = 16/255, α = 1/255, λ = 0.75, w = 2).

Metric
Attack TPGD [60] PGD [52] TIFGSM [53] DIFGSM [56] NIFGSM [54] MIFGSM [53] SINIFGSM [54] VMIFGSM [55] VNIFGSM [55] OUR

PSNR 31.54 29.60 30.75 29.60 29.32 29.39 29.20 29.41 29.31 30.10

MSE 0.0008 0.0012 0.0009 0.0012 0.0012 0.0012 0.0013 0.0012 0.0012 0.0011

L2 120.02 175.88 139.00 175.58 185.30 182.62 190.08 182.64 186.75 158.56

L∞ 0.2751 0.2813 0.2765 0.2828 0.278 0.2848 0.2816 0.2828 0.2842 0.2795

Low fre 47.27 69.90 72.98 70.91 78.79 78.27 82.14 82.16 83.45 68.25

SSIM 0.8900 0.8100 0.8900 0.8100 0.7900 0.8000 0.7900 0.8100 0.8022 0.8500

AASR 37% 49% 53% 60% 62% 63% 69% 71% 71% 71%

the kth feature map in layer l, Flk(a, b) represents the response
at position (a, b) in feature map Flk, and Sc(F

l) represents
the score of the interested class,

Sc(F
l) =

K∑
k=1

∑
a,b

(
∂Sc(F

l)

∂Flk(a, b)
Flk(a, b)) + Φ(Fl) (22)

Φ(Fl) =
∑L

t=l+1

∑
j

∂Sc(F
l)

∂µtj
btj (23)

where µtj represents the unit in the t-th layer, and btj represents
the offset of the unit in the t-th layer. The pseudo-code for
the class activation mapping ensemble attack is shown in
Algorithm 1.

Targeted attack: Give the input image x, the target label
y

′
, and the model F, the objective function for targeted attack

can be derived as follows:

x
′

= arg max
||x−x′ ||<ε

−L(x
′
,y

′
; θ)− ||x̃tar − x

′
||2 (24)

where x̃tar is the integrated class activation map of the target
class,

x̃tar = max{x1tar cam, x2tar cam, · · · , xntar cam}

xtar cam is the score of the targeted class activation mapping.
It should be noted that

x
′

t+1 = x
′

t + (λ · α) · (w · Mtc) · sign(gt+1)

Mtc(a, b) = max{m1
tc(a, b),m

2
tc(a, b), · · · ,mn

tc(a, b)}

mtc is the activation map score for the specified class. Where

mtc(a, b) =

K∑
k=1

(αktcF
lk(a, b))

αktc =
∑
a,b

(
Flk(a, b)∑
a,b ∂Flk(a, b)

∂Stc(F
l)

∂Flk(a, b)
Flk(a, b))

Stc(F
l) =

K∑
k=1

∑
a,b

(
∂Stc(F

l)

∂Flk(a, b)
Flk(a, b)) + Φ(Fl)

Φ(Fl) =
∑L

t=l+1

∑
j

∂Stc(F
l)

∂µtj
btj

V. EXPERIMENT

We validate our method mainly through five parts: ex-
perimental settings, perceptual evaluation, attack performance
analysis, robustness analysis, and ablation studies. In the
experimental settings, we introduce the dataset, evaluation
metrics, baseline methods, and defense methods. In the percep-
tual evaluation section, we employ various visual perceptual
metrics to analyze the perceptual differences between adver-
sarial examples and benign images. The attack performance
analysis section primarily assesses the attack capability of the
proposed method in non-targeted and targeted attacks. In the
robustness analysis section, we evaluate the effectiveness of
the proposed attack against various defense methods. In the
ablation studies section, we analyze the rationality of using
CAMs as adversarial perturbation weights and investigate the
impact of different modules and parameter values on the attack
performance of our method.

A. Experimental Settings

Dataset: We validate the proposed method on the ILSVRC
2012 validation set and the data subsets provided in refer-
ences [53]–[55] while ensuring that each developed model
correctly classifies all selected test images.

Models: To differentiate the roles of different models,
we categorize the models into the following three types:
CAMs substitute models, which are employed to compute
perturbation weights; gradient substitute models, which are
used to calculate gradient signs when crafting adversarial
examples; and target models, solely employ to evaluate the
attack performance of the proposed method, without access
to any information about the model. It is worth emphasizing
that all the models we used, including CAMs substitute,
gradient substitute, and target models, are pre-trained models
specifically designed for the Imagenet dataset and provided
within the PyTorch library. We employ WideResNet101 [44],
Inception v2 (Inception) [45], and ResNet34 [43] as CAMs
substitute models, and ResNet50 [43] as the gradient sub-
stitute model. We also regard models such as AlexNet [40],
VGG16 [41], EfficientNet b0 (EfficientNet) [42], WideRes-
Net50 [44], MobileNet v2 (MobileNet) [46], ResNet18 [43],
ConvNeXt [47], ViT [48], and RegNet [49] as target models.

Metrics: The perceptual metrics include PSNR, Mean
Squared Error (MSE), SSIM, Low fre, CIEDE2000, L2 norm,
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Fig. 1: Adversarial example generated by our method and baseline methods under non-targeted attack. L2, SSIM, and PSNR
represent perceptual metrics, and ‘ASR’ represents the success rate of attack against the target model (Target model: ResNet50,
Attack mode: non-targeted attack, Gradient substitute model: ResNet50, CAMs substitute models: WideResNet101, Inception,
and ResNet34, ε = 16/255, α = 1/255, epoch = 10, λ = 0.75, w = 2).

Fig. 2: Adversarial examples generated by our method and baseline methods under targeted attack. ‘Ori-label’ represents the
original label of the image, ‘Tar-label’ represents the targeted label we specified, ‘Epoch’ represents the iteration round of the
attack, and ‘Adv-label’ represents the predicted label of ResNet50 (Target model: ResNet50, Gradient substitute model: ResNet50,
CAMs substitute models: WideResNet101, Inception, and ResNet34, ε = 16/255, α = 1/500, λ = 0.75, w = 4).

and L∞ norm. The attack capability metrics include the Attack
Success Rate (ASR) against one target model and the Average
Attack Success Rate (AASR) against 13 target classifiers.

Baseline: We evaluate ten baseline methods in our
study, including PGD [52], TPGD [60], DIFGSM [56],
TIFGSM [53], MFGSM [53], NIFGSM [54], SINIFGSM [54],
VMIFGSM [55], VNIFGSM [55], SVRE [59]. The ensemble
model of SVRE are Inception v3, Inception v4, InceptionRes-
net v2, and ResNet101.

Defense: We test seven defense methods, including Feature
Squeezing (Fea. Squ.) [62], Label smoothing(Lab. Smo.) [63],
Engstrom [64], Salman [65], Singh [66], Liu [67], and
Shan [68]. The Fea. Squ., Engstrom, and Lab. Smo. methods
utilize ResNet50 as the target model. Salman’s method uses
WideResNet50 as the target model. Singh utilizes ViT, and Liu
employs ConvNeXt as the target model. Shan’s target model
is the same as work [68].

Parameter: We set the perturbation constraint for all attack
methods, α = 1/500 or 1/255, ε = 16/255, µ = 1, N = 5,
w = 2 or 4.

B. Perceptual Evaluation

Fig. 1 and Fig. 2 depict the adversarial examples generated
by our method and baseline methods under non-targeted and
targeted attacks. Please refer to Fig. 1 in the Appendix for
the results of the baseline methods converging to the target
label. To validate the perceptibility of our method, we employ
six distance metrics to analyze the perceptibility of adversarial
examples under non-targeted and targeted attacks, as shown
in Table I and Table II. Table I presents the perceptibility
of the adversarial examples generated by ten attack methods
with similar attack capabilities under non-targeted attacks.
Specifically, when our attack capability is comparable to
VMIFGSM and VNIFGSM. Compared with VMIFGSM, our
perceptibility drops by 24.08 for L2, decreases by 13.91 for
Low fre, increases by 0.04 for SSIM, and increases by 0.69
for PSNR. Table II demonstrates the perceptibility of the
adversarial examples generated by nine attack methods with
similar attack capabilities under targeted attack mode. This
table shows that our method achieves the best perceptibility
among the eight baseline methods with comparable attack
capabilities, while SINIFGSM performs the worst. Notably,
compared to VNIFGSM, our method improves the PSNR
metric by 2.12 and reduces the SSIM by 0.088 and Low fre
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TABLE II: Targeted Attack: Perceptive measure (Gradient substitute model: ResNet50, CAMs substitute models: WideResNet101,
Inception, and ResNet34, Target model: ResNet50, ε = 16/255, α = 1/500, λ = 0.75, w = 4).

Metric
Attack PGD [60] TIFGSM [53] DIFGSM [56] NIFGSM [54] MIFGSM [53] SINIFGSM [54] VMIFGSM [55] VNIFGSM [55] OUR

PSNR 29.53 28.46 29.28 25.40 25.28 25.25 28.44 28.26 30.38

MSE 0.0012 0.0015 0.0012 0.0029 0.0030 0.0030 0.0015 0.0016 0.0010

L2 178.01 226.04 187.76 438.01 450.13 453.71 224.41 233.84 149.55

L∞ 0.2797 0.2865 0.2818 0.3070 0.3064 0.3081 0.2875 0.2860 0.2794

Low fre 70.72 156.72 79.58 189.33 196.84 213.69 111.75 116.93 64.48

SSIM 0.8067 0.8514 0.8017 0.6092 0.6029 0.6195 0.7826 0.7737 0.8616

AASR 39% 57% 58% 64% 67% 65% 65% 65% 65%

(a) AASR (b) CIEDE2000 (c) Low fre (d) L2

(e) L∞ (f) MSE (g) PSNR (h) SSIM

Fig. 3: Non-targetrd Attack: Perceptive measure (Gradient substitute model: ResNet50, CAMs substitute models: WideResNet101,
Inception, and ResNet34, ε = 16/255, α = 1/255, λ = 0.75, w = 2).

by 52.45. Compared to SINIFGSM, our method improves the
PSNR metric by 5.13 and reduces the L2 by 304.16 and
Low fre by 149.21.

To further analyze the perceptibility of adversarial exam-
ples under non-targeted attacks, we control the attack ca-
pability of our method to be similar to the most vigorous
VMIFGSM by adjusting the value of λ and evaluate the
perceptibility of adversarial examples at different epochs, as
shown in Fig. 3. From Fig. 3(a), it can be seen that the
VMIFGSM and our method have the most vigorous attack
capability, while the PGD and TPGD have weaker attack
capabilities. By analyzing Fig. 3(b) to 3(h), it can be observed
that the perceptibility of the ten methods gradually decreases as
the number of epochs increases and the perturbation increases.
Among the nine baseline methods, the TPGD generates adver-
sarial examples with the best visual perceptibility and lowest
perturbation, followed by the PGD and DIFGSM. Regarding

the four metrics of MSE, PSNR, SSIM, and L2, the visual
perceptibility of SINIFGSM is the worst, and the perturbation
is the largest, while our perceptibility is between the above-
mentioned methods. Due to the computational complexity
involved in achieving comparable attack capability to the most
vigorous baseline attack under targeted attacks, we do not
constrain our method to have a similar attack capability in
showcasing the changes in the perceptibility of adversarial
examples. For the changes in the perceptibility of adversarial
examples under targeted attacks, please refer to the Fig. 2 in
the appendix.

In conclusion, our method exhibits good stealthiness under
the non-targeted and targeted attacks compared to the baseline
methods when they have similar attack effectiveness. This is
attributed to our utilization CAM is the weighting factor for
perturbations, which avoids adding perturbations in unimpor-
tant regions.
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(a) AlexNet (b) EfficientNet (c) Inception (d) MobileNet (e) ResNet18 (f) ConvNeXt

(g) ResNet34 (h) ResNet50 (i) VGG16 (j) WideResNet50 (k) WideResNet101 (l) RegNet

Fig. 4: Non-targeted attack: attack success rate (Gradient substitute model: ResNet50, CAMs substitute models: WideResNet101,
Inception, and ResNet34, ε = 16/255, α = 1/500, λ = 0.75, w = 2).

(a) AlexNet (b) EfficientNet (c) Inception (d) MobileNet (e) ResNet18 (f) ConvNeXt

(g) ResNet34 (h) ResNet50 (i) VGG16 (j) WideResNet50 (k) WideResNet101 (l) RegNet

Fig. 5: Targeted attack: the attack success rate that can mislead the gradient substitution model into classifying as a specified
label and can also mislead the targeted model (CAMs substitute models: WideResNet101, Inception, and ResNet34, ε = 16/255,
α = 1/500, λ = 0.75, w = 4).

C. Attack Performance Analysis

Fig. 4 demonstrates the impact of adversarial examples
generated at different epochs on the performance of the target
model under non-targeted attacks. From Fig. 4(a) to 4(l),
it can be seen that with the increase of attack epochs, the
attack ability of adversarial examples generated by ten attack
methods will gradually increase until convergence. Compared
with the nine baseline methods, our method has the most
vigorous attack ability, followed by VMIFGSM. Specifically,
our method has a faster convergence rate. Its attack ability
can converge to the level of the most powerful attack method
around the 20th epoch, reducing about ten epochs compared
with the baseline methods. At the same time, our method
has a significantly better attack ability than the nine baseline
methods in the first 20 epochs. This effect is practical for all
12 target models.

To demonstrate this ability clearly, we show the attack
ability of adversarial examples generated at the 10th epoch
in non-targeted attack, as shown in Table III. From the table,
it can be seen that our method has a significantly better attack
ability than nine baseline methods. Compared with the most
substantial attack method VMIFGSM, our method improves
the average attack ability against 13 target models by 11.69%,
and compared with the most perceptible attack method TPGD,
it improves the average attack ability by 37.15%. Compared to
VMIFGSM, our method achieves 17% and 15% higher attack
success rates against the EfficientNet and RegNet.

Fig. 5 illustrates the impact of adversarial examples gen-
erated at different epochs on the performance of the target
model under targeted attacks. As the number of attack epochs
increases, the attack capabilities of the nine attack methods
gradually increase until convergence. Our method consistently
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(a) Robust: Non-targeted (b) Robust: Targeted (c) Ave. robust: Non-targeted (d) Ave. robust: Targeted

Fig. 6: Non-targeted attack and targeted attack: robustness analysis (Gradient substitute model: ResNet50, CAMs substitute
models: WideResNet101, Inception, and ResNet34, Target model: ResNet50, Non-targeted attack: w=2, Targeted attack: w=4).

(a) w = 3: Non-targeted (b) λ=0.75: Non-targeted (c) w = 3: Targeted (d) λ=0.75: Targeted

Fig. 7: Non-targeted attack and targeted attack: the influence of λ and w on the attack capability of adversarial examples (Gradient
substitute model: ResNet50, CAMs substitute models: WideResNet101, Inception, and ResNet34, ε = 16/255, α = 1/255).

exhibits significant advantages over the eight baseline meth-
ods in attack capability, convergence speed, and low-iteration
attack capability in targeted attack. The attack capabilities of
the baseline methods do not increase significantly in the first
20 epochs. Our method significantly eight baseline methods
regarding attack capability against the AlexNet, EfficientNet,
VGG16, ConvNeXt, ResNet18, WideResNet101, and Mo-
bileNet.

To demonstrate this ability clearly, we show the attack
ability of adversarial examples generated at the 11th epoch
in the targeted attack, as shown in Table IV. Table IV presents
the attack capabilities of our method and the baseline methods
in targeted attack mode. As the number of attack epochs
increases, the attack capabilities of the nine methods gradually
increase until convergence. Similar to non-targeted attacks, our
method exhibits the fastest convergence and the most vigorous
attack capability, significantly outperforming the eight baseline
methods at low attack epochs.

In summary, our method outperforms the baseline methods
with the fastest convergence speed and most vital attack capa-
bility, significantly surpassing the baseline methods, especially
at low attack epochs.

D. Robustness Analysis

To evaluate the evasion capability of our method against
different defense methods, we present the impact of various
attack methods on the robustness under the non-targeted and

targeted attacks, as shown in Table V. The table shows that
compared to the baseline methods, our method has the most
significant impact on the robustness under non-targeted and
targeted attacks. Notably, robustness is most severely affected
for defense methods such as Fea. Squ. [62] and Lab. Smo. [63],
followed by Shan [67]’s adversarial training method, while
the impact on Engstrom [64]’s defense is relatively weaker.
Although our method exhibits a decrease in attack capability
compared to the undefended scenario, it still outperforms
the baseline methods. While specific baseline methods show
increased attack capability against defense methods compared
to the undefended model, they have already reached their
limits. Thus, it can be inferred that our method exhibits a
certain level of evasion capability against defense methods.

Fig. 6 illustrates the relationship between perceptibility
changes and the model’s robustness with defense methods. We
control the transformation parameter λ to achieve variations in
the perceptibility of adversarial examples, where larger values
result in more significant perturbations and poorer image
perceptibility. Fig. 6(a) and 6(b) depict the changes in the
robustness of the model with defense methods for non-targeted
and targeted attacks. These subplots show that as image
perceptibility decreases, the robustness of models with defense
methods also gradually decreases. Fig. 6(c) and 6(d) present
the average robustness of various defense methods, where
image perceptibility is evaluated using λ and the SSIM. These
subplots demonstrate that as image perceptibility decreases,
the robustness of models with defense methods also decreases.
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TABLE III: Non-targeted Attack: the success rate of non-targeted attacks in the 10th epoch (Gradient substitute model: ResNet50,
CAMs substitute models: WideResNet101, Inception, and ResNet34, ε = 16/255, α = 1/500, epoch = 10, λ = 0.75, w = 2).

Model
Attack SVRE PGD TPGD DIFGSM MIFGSM NIFGSM TIFGSM SINIFGSM VNIFGSM VMIFGSM OUR

ResNet18 0.15 0.44 0.26 0.50 0.47 0.52 0.38 0.50 0.55 0.57 0.73

ResNet34 0.10 0.37 0.20 0.51 0.48 0.52 0.43 0.48 0.63 0.63 0.77

ResNet50 0.16 1.00 0.63 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00

AlexNet 0.08 0.39 0.28 0.42 0.33 0.29 0.28 0.36 0.31 0.33 0.41

MobileNet 0.18 0.50 0.36 0.53 0.51 0.47 0.42 0.57 0.58 0.63 0.72

WideResNet50 0.14 0.48 0.33 0.54 0.50 0.51 0.52 0.57 0.68 0.70 0.83

WideResNet101 0.08 0.30 0.25 0.38 0.42 0.41 0.33 0.41 0.53 0.56 0.73

VGG16 0.43 0.16 0.33 0.45 0.42 0.43 0.41 0.49 0.59 0.61 0.74

Inception 0.23 0.10 0.19 0.28 0.26 0.28 0.25 0.26 0.37 0.40 0.48

EfficientNet 0.35 0.11 0.30 0.38 0.39 0.40 0.33 0.40 0.49 0.51 0.68

ConvNeXt 0.28 0.16 0.25 0.32 0.29 0.28 0.27 0.28 0.33 0.36 0.48

ViT 0.15 0.05 0.11 0.14 0.14 0.17 0.17 0.15 0.23 0.23 0.33

RegNet 0.42 0.18 0.33 0.51 0.53 0.51 0.41 0.48 0.62 0.60 0.75

TABLE IV: Targeted Attack: the attack success rate in the 11th epoch that can mislead the gradient substitution model into
classifying as a specified label and can also mislead the targeted model (Gradient substitute model: ResNet50, CAMs substitute
models: WideResNet101, Inception, and ResNet34, ε = 16/255, α = 1/500, epoch = 11, λ = 0.75, w = 4).

Model
Attack PGD [52] DIFGSM [56] MIFGSM [53] NIFGSM [54] TIFGSM [53] SINIFGSM [54] VNIFGSM [55] VMIFGSM [55] OUR

ResNet18 0.3667 0.4333 0.3750 0.3500 0.2750 0.3833 0.4417 0.4583 0.7000

ResNet34 0.2750 0.2667 0.3417 0.3583 0.2750 0.3250 0.4417 0.4583 0.6333

ResNet50 0.5750 0.7333 0.9167 0.9000 0.7583 0.8167 0.9667 0.9417 0.9750

AlexNet 0.3583 0.4000 0.3083 0.3000 0.2833 0.3167 0.2917 0.2750 0.6500

MobileNet 0.4167 0.4417 0.3750 0.4083 0.3833 0.3917 0.5167 0.4917 0.7250

WideResNet50 0.2667 0.3917 0.3833 0.3917 0.3750 0.4000 0.5333 0.4750 0.6667

WideResNet101 0.2583 0.3167 0.2917 0.3417 0.2583 0.3083 0.3083 0.3417 0.5333

VGG16 0.4083 0.4417 0.4333 0.4417 0.3917 0.4000 0.5750 0.5167 0.9917

Inception 0.2500 0.2667 0.2167 0.2417 0.2333 0.2250 0.3417 0.3250 0.4500

EfficientNet 0.3417 0.3000 0.3667 0.3417 0.2917 0.3083 0.3917 0.3750 0.5917

ConvNeXt 0.0000 0.0700 0.0900 0.10 0.0600 0.1000 0.1000 0.1300 0.3700

ViT 0.4800 0.2600 0.5600 0.5300 0.0900 0.4500 0.4100 0.4600 0.6800

RegNet 0.1400 0.1800 0.5100 0.4600 0.1100 0.2400 0.2800 0.3000 0.6500

Overall, as the perceptual quality of images deteriorates, the
robustness of models with defense methods decreases for both
non-targeted and targeted attacks.

In conclusion, our method exhibits a certain level of
evasion against defense methods in non-targeted and targeted
attacks, making it valuable for evaluating the robustness of
models.

E. Ablation Study

Fig. 7 analyzes the influence of two parameters, λ and
w, on our method’s attack capability of generating adversarial
examples. It can be seen from the figure that the attack

capability of generating adversarial examples increases with
the increase of both parameters, and the change in the value
of w has a more significant effect on the attack capability of
generating adversarial examples. Moreover, compared with the
non-targeted attack mode, the parameter change significantly
impacts the attack capability of generating adversarial exam-
ples in the targeted attack.

To validate the rationality of using CAM as perturbation
weights, we demonstrate the attack capabilities of generating
adversarial examples using different perturbation weighting
methods, as shown in Table VI. Fix indicates adding a fixed
perturbation value to all pixels. Uniform represents adding per-
turbations that follow a uniform distribution. Gauss represents
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TABLE V: Robustness analysis (accuracy of models with defense methods) (Gradient substitute model: ResNet50, CAMs
substitute models: WideResNet101, Inception, and ResNet34, Non-targeted attack: w=2, Targeted attack: w=4).

Attack
Method

Non-targeted Attack Targeted Attack

Fea. Squ. Lab. Smo. Engstrom Salman Singh Liu Shan Fea. Squ. Lab. Smo. Engstrom Salman Singh Liu Shan

BENIGN —— —— 61% 65% 68% 73% —— —— —— 61% 65% 68% 73% ——

DIFGSM 37% 47% 59% 59% 64% 67% 58% 45% 54% 59% 59% 64% 67% 52%

MIFGSM 32% 28% 61% 60% 64% 67% 58% 40% 41% 58% 59% 64% 65% 52%

NIFGSM 36% 27% 61% 60% 64% 68% 47% 41% 38% 58% 59% 64% 66% 41%

PGD 47% 52% 60% 59% 64% 68% 66% 51% 63% 58% 59% 65% 66% 42%

SINIFGSM 28% 41% 59% 59% 64% 66% 64% 45% 49% 58% 60% 63% 66% 52%

TIFGSM 43% 53% 62% 59% 64% 68% 64% 44% 58% 58% 59% 63% 66% 50%

TPGD 46% 61% 60% 60% 64% 68% 55% ——

VNIFGSM 21% 23% 61% 60% 64% 67% 60% 31% 27% 58% 61% 63% 67% 46%

VMIFGSM 23% 22% 61% 60% 64% 66% 45% 33% 24% 59% 61% 63% 67% 48%

OUR 16% 12% 61% 59% 64% 66% 43% 25% 21% 57% 61% 63% 65% 39%

TABLE VI: CAM effectiveness analysis (Gradient substitute model: ResNet50, CAMs substitute models: WideResNet101,
Inception, and ResNet34, ε = 16/255, α = 1/500, λ = 0.75, Non-targeted attack: w=2, Targeted attack: w=4).

Non-targeted Attack

Method
Model ResNet18 ResNet34 ResNet50 Alexnet MobileNet WideResNet50 WideResNet101 VGG16 Inception EfficientNet ConvNeXt ViT RegNet

Uniform 0.43 0.50 1.00 0.00 0.00 0.00 0.00 0.45 0.00 0.00 0.29 0.16 0.50

Gauss 0.23 0.17 0.25 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.24 0.08 0.28

Clam [69] 0.51 0.52 0.98 0.00 0.01 0.00 0.00 0.52 0.00 0.00 0.31 0.19 0.47

Fix [54] 0.55 0.63 1.00 0.31 0.58 0.68 0.53 0.59 0.37 0.49 0.33 0.23 0.62

OUR 0.73 0.77 1.00 0.41 0.72 0.83 0.73 0.74 0.48 0.68 0.48 0.33 0.75

Targeted Attack

Method
Model Resnet18 Resnet34 Resnet50 Alexnet MobileNet WideResNet50 WideResNet101 VGG16 Inception EfficientNet ConvNeXt ViT RegNet

Uniform 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gauss 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

CALM [69] 0.67 0.28 0.29 0.58 0.28 0.20 0.08 0.27 0.11 0.18 0.08 0.29 0.19

Fix [54] 0.44 0.44 0.97 0.29 0.52 0.53 0.31 0.58 0.34 0.39 0.10 0.41 0.28

OUR 0.70 0.63 0.98 0.65 0.73 0.67 0.53 0.99 0.45 0.59 0.37 0.68 0.65

TABLE VII: Attack Success Ratio of different modules (Target
model: WideResNet101, ε = 16/255, α = 1/500, epoch = 7,
λ = 0.75, Non-targeted attack: w=2, Targeted attack: w=4).

Mode
Module Module 1 Module 2 Module 3 ALL

Non-targeted attack 0.5333 0.525 0.6583 0.7000

Targeted attack 0.4583 0.3667 0.5250 0.5333

adding perturbations that follow the Gaussian distribution.
CALM [69] represents the CALM method based on attribute
attribution. The table shows that our method exhibits the
strongest attack capability and transferability for generating

adversarial examples compared to the four perturbation-adding
methods. The Fix method follows closely, while Gauss and
Uniform exhibit the weakest attack capability and transfer-
ability. The adversarial example generated by the CALM [69]
method possesses certain attack capabilities but weaker trans-
ferability. This validates the rationality of using CAM as
perturbation weights.

To validate the effectiveness of our method, we analyze
the attack capability of adversarial examples under different
modules, as shown in Table VII. Module 1 only includes
the first term of the loss function, Module 2 includes both
the first and second terms of the loss function, Module 3
includes the first term of the loss function and uses class
activation mapping scores as perturbation weights, and ALL
includes all modules. The table shows that when generating
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adversarial examples under both targeted and non-targeted
attack modes, the attack capability is the weakest when only
using Module 1, the strongest when using all modules, and
the second strongest when only using Module 3. Comparing
the performance of Module 1 and Module 3, it can be seen
that the addition of Module 3 significantly improves the attack
capability of adversarial examples. The combination of Module
2 and Module 3 further enhances the attack capability of
adversarial examples.

Regarding the analysis of computational costs, please refer
to Appendix Table III.

VI. CONCLUSION

Although many studies have focused on the issue of model
transferability in attacks, there still exist problems of poor
stealthiness and low attack effectiveness in generating adver-
sarial examples. To address these issues, we propose a class
activation mapping ensemble attack. This method considers
each pixel feature’s role in the image, using the CAMs to im-
prove attack performance. We attack the ResNet50 model and
test the transferability of adversarial examples on models such
as WideResNet101, Inception, and ResNet34. Experimental
results show that our method can generate adversarial examples
with better transferability and perform better under low-round
attacks.

In the future, we will continue to focus on research on the
transferability of model ensemble attacks, aiming to improve
the transferability of attack methods significantly. We will also
try more attack methods and techniques, including combining
reinforcement learning and meta-learning, to improve attack
performance.
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APPENDIX

PERCEPTUAL EVALUATION

Fig. 1 extends DIFGSM, SINIFGSM, VMIFGSM, and
VNIFGSM, four baseline methods, to generate adversarial

examples in the target attack mode converging to the target
label. Due to the weaker attack capability of the PGD method,
it did not converge to the target label even with an increased
number of epochs.

Analyzing the perceptibility of nine attack methods under
targeted attack mode at different epochs with the same attack
capability involves a significant computational burden. To
facilitate computation, when analyzing the perceptibility of
adversarial examples at different epochs, we did not con-
strain the attack effectiveness of the baseline method under
the targeted attack mode. Fig. 2 illustrates the variations in
image perceptibility, measured by six distance metrics under
targeted attack at different epochs. Fig. 2(a) presents the attack
capability of adversarial examples at different epochs. From
this figure, it is evident that the attack capability of our method
gradually increases with the increase in epochs until it con-
verges. Moreover, our approach exhibits significantly higher
attack capability at low epochs than the baseline method.
Fig. 2(b) to 2(h) demonstrate the perceptibility of adversarial
examples evaluated using different perceptual metrics. From
these subfigures, it can be observed that the perceptibility of
adversarial examples generated by all attack methods gradually
converges as the number of epochs increases. Specifically,
before the attack effectiveness of adversarial examples con-
verges, our method exhibits lower perceptibility than baseline
methods. This is because, at low epochs, even though our
method focuses on adding perturbations in critical regions with
weighted perturbations, the weighted perturbations are more
significant than the unweighted perturbations. As a result, our
method shows poor perceptibility compared to the baseline
methods in fewer epochs. Nevertheless, the attack capability
of the baseline method is significantly lower than ours. As the
number of epochs increases, the baseline method adds minor
perturbations across the entire image. At lower epochs, there is
not much change in perceptibility. However, the perceptibility
starts to deteriorate when the number of epochs reaches a
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TABLE II: Targeted attack: attack success rate at different epoch (Gradient substitute model: ResNet50, CAMs substitute models:
WideResNet101, Inception, and ResNet34, Target model: ResNet50, ε = 16/255, α = 1/500, λ = 0.75, w = 4).

Epoch
Attack PGD [52] DIFGSM [56] MIFGSM [53] NIFGSM [54] TIFGSM [53] SINIFGSM [54] VNIFGSM [55] VMIFGSM [55] OUR

1 0.0000 0.0083 0.0083 0.0083 0.0000 0.0083 0.0083 0.0083 0.0167

2 0.0167 0.0000 0.0250 0.0250 0.0167 0.0250 0.0250 0.0250 0.0250

3 0.0250 0.0167 0.0250 0.0250 0.0000 0.0167 0.0250 0.0250 0.0583

4 0.0417 0.0333 0.1250 0.0917 0.0333 0.0500 0.0500 0.0667 0.1667

5 0.0750 0.0750 0.1333 0.0917 0.0250 0.0417 0.0500 0.0583 0.1917

6 0.1000 0.0750 0.2667 0.2083 0.0500 0.1667 0.1333 0.1417 0.3000

7 0.1333 0.1083 0.2833 0.2083 0.0500 0.1333 0.1417 0.1417 0.3083

8 0.1250 0.1917 0.4417 0.3583 0.1250 0.2917 0.3083 0.3000 0.4167

9 0.1417 0.225 0.4333 0.3500 0.1167 0.2667 0.3083 0.3000 0.4750

10 0.1917 0.2333 0.5333 0.4917 0.2083 0.3833 0.3583 0.3667 0.6083

11 0.2333 0.2750 0.5250 0.4917 0.1833 0.3667 0.3667 0.3500 0.6417

13 0.2500 0.3250 0.7250 0.6333 0.2500 0.4167 0.4417 0.4333 0.7333

17 0.3250 0.4833 0.8750 0.8667 0.3833 0.6667 0.7083 0.7083 0.8833

19 0.3667 0.5167 0.9083 0.9167 0.4250 0.7083 0.7917 0.8167 0.9250

22 0.3333 0.6167 0.9583 0.9750 0.6167 0.8250 0.8833 0.8917 0.9667

25 0.3583 0.6750 0.9750 0.9833 0.6583 0.8583 0.9500 0.9417 0.9833

TABLE III: Average time cost (Gradient substitute model: ResNet50, CAMs substitute models: WideResNet101, Inception, and
ResNet34, ε = 16/255, α = 1/500, epoch = 11, λ = 0.75, Non-targeted attack: w=2, Targeted attack: w=4).

Mode
Model DIFGSM [56] MIFGSM [53] NIFGSM [54] TIFGSM [53] SINIFGSM [54] VNIFGSM [55] VMIFGSM [55] OUR

Non-targeted Attack 0.942011s 0.540739s 0.505559s 1.055500s 1.464435s 1.648041s 1.642374s 1.393054s

Targeted Attack 1.197577s 0.765150s 0.808836s 1.273745s 3.828091s 2.452281s 2.695090s 1.629163s

TABLE IV: The rationale behind using separate substitute models for gradient and CAM computation under non-targeted attack.

Method
Target model ResNet18 ResNet34 ResNet50 Alexnet MobileNet WideResNet50 WideResNet101 VGG16 Inception Efficientnet ConvNeXt ViT RegNet

Same substitute model 0.4750 0.5000 1.0000 0.0000 0.0000 0.0000 0.0000 0.4750 0.0000 0.0000 0.2917 0.1250 0.5167

Multiple substitute models 0.7300 0.7700 1.0000 0.4100 0.7200 0.8300 0.7300 0.7400 0.4800 0.6800 0.4800 0.3300 0.7500

certain threshold. Additionally, by analyzing the results after
the 40th epoch, it can be concluded that our method exhibits
attack effectiveness comparable to the most vigorous attack,
VMIFGSM. At the same time, the perceptibility falls between
the optimal perceptual method and the most vigorous attack
method. This conclusion aligns with the findings in non-
targeted attacks.

ATTACK PERFORMANCE ANALYSIS

Table I displays the attack capabilities of our method and
baseline methods in the non-targeted attack. As the number
of attack epochs increases, the attack capabilities of the nine
attack methods gradually strengthen until convergence. Com-
pared to the baseline methods, our method exhibits the fastest
convergence and vigorous attack capability, significantly out-
performing the baseline methods at low attack epochs. Starting

from the 3rd epoch, our attack capability surpasses the most
robust method, VMIFGSM, by at least 10%. In particular, at
the 9th iteration, our method’s attack capability is improved
by 20.83%.

Table II shows the attack capabilities of our method and
baseline methods in targeted attacks. As the number of attack
epochs increases, the attack capabilities of the nine attack
methods gradually increase until convergence. Similar to non-
targeted attacks, our method converges the fastest and has
the strongest attack capability, significantly outperforming the
eight baseline methods at low attack epochs. Starting from the
4th iteration, our attack capability surpasses VMIFGSM, the
strongest method, by at least 10%. Particularly, at the 10th
iteration, our method’s attack capability increases by 24.16%
compared to VMIFGSM, and at the 11th iteration, it increases
by 29.17%.
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Fig. 1: Adversarial examples generated by our method and baseline methods under targeted attack (Target model: ResNet50,
Gradient substitute model: ResNet50, CAMs substitute models: WideResNet101, Inception, and ResNet34, ε = 16/255, α =
1/500, λ = 0.75, w = 4).

(a) AASR (b) CIEDE2000 (c) Low fre (d) L2

(e) L∞ (f) MSE (g) PSNR (h) SSIM

Fig. 2: Targetrd Attack: Perceptive measure (Gradient substitute model: ResNet50, CAMs substitute models: WideResNet101,
Inception, and ResNet34, ε = 16/255, α = 1/255, λ = 0.75, w = 4).

ABLATION STUDY

To analyze the computational cost of generating adversarial
examples using our method, we present the average time cost
for generating a single adversarial example under non-targeted
and targeted attack modes when different attack methods
achieve comparable attack performance. The results are shown
in Table III. The table shows that generating adversarial ex-
amples for targeted attacks incurs higher time costs than non-
targeted attacks. This is because targeted attacks are more chal-
lenging and require multiple epochs. In both non-targeted and
targeted attack modes, the average time taken by our method
to generate each image falls between the fastest method,
MIFGSM, and the slowest method, SINIFGSM. Therefore,
although some additional time is involved in computing the
perturbation weights, it does not significantly exacerbate the
overall time cost. Our method exhibits higher time costs than
less performant attack methods such as DIFGSM, MIFGSM,
and NIFGSM. However, it is significantly more efficient than
most power attack methods like VNIFGSM and VMIFGSM.

Table IV demonstrates the rationale for using different
substitute models for computing gradients and heatmaps. From
this table, it is evident that adversarial examples generated
using different substitute models exhibit stronger transfer-
ability than adversarial examples generated using the same
substitute model. This validates the effectiveness of using
different substitute models for generating adversarial examples.
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