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Abstract—In Intelligent Transport Systems, secure communi-
cation between vehicles, infrastructure, and other road users is
critical to maintain road safety. This includes the revocation of
cryptographic credentials of misbehaving or malicious vehicles
in a timely manner. However, current standards are vague about
how revocation should be handled, and recent surveys suggest
severe limitations in the scalability and effectiveness of existing
revocation schemes. In this paper, we present a formally verified
mechanism for self-revocation of Vehicle-to-Everything (V2X)
pseudonymous credentials, which relies on a trusted processing
element in vehicles but does not require a trusted time source.
Our scheme is compatible with ongoing standardization efforts
and, leveraging the Tamarin prover, is the first to guarantee the
actual revocation of credentials with a predictable upper bound
on revocation time and in the presence of realistic attackers. We
test our revocation mechanism in a virtual 5G-Edge deployment
scenario where a large number of vehicles communicate with
each other, simulating real-world conditions such as network
malfunctions and delays. Results show that our scheme upholds
formal guarantees in practice, while exhibiting low network
overhead and good scalability.

I. INTRODUCTION

Intelligent Transport Systems (ITS) are a key technology
for innovation in transportation that link different modes
of transportation and address safety, congestion, emissions,
and efficiency problems. Increased connectivity in vehicles,
called Vehicle-to-Everything (V2X) communication, incorpo-
rates digital interactions with other road users with potentially
safety-critical impacts on the vehicle and its passengers. As
highlighted by Sedar et al. [40] there are many possible
incentives for attackers to target V2X systems, which range
from personal interest (e.g. tracking or insuarance fraud) to
geopolitical conflict (e.g. causing congestion or accidents).

A large body of academic research and technical standards
for V2X communication focuses on privacy-preserving proto-
cols to enroll and manage pseudonymous identities [46], [12],

[30], [19], [20], [6]. The key argument for such protocols is
that special care must be taken to ensure vehicle routes and
patterns in their use of V2X services must not be observable
by other V2X participants in the network. Yet, the central
concern in transportation has always been road safety. In
V2X scenarios, road safety requires that misbehaving network
participants, e.g., faulty or malicious vehicles that report
inaccurate road and traffic conditions, can be identified and
prevented from causing harm. For example, the US Security
Credential Management System (SCMS) defines revocation
”an essential design objective” [6].

In a practical working system, it must be possible to 1) de-
tect, and 2) punish such misbehaving participants by removing
them from the network. We identify a common shortcoming
in existing privacy-preserving V2X approaches, with respect
to their capability to punish malicious or misbehaving actors
after misbehavior connected to a participant’s pseudonym is
detected: Ensuring that this participant will not be able to
communicate with other vehicles in the future and effectively
revoking all their existing credentials in a timely manner is
either not guaranteed and avoidable by the attacker, or is in-
efficient and not scalable due to bandwidth and computational
overheads. Indeed, recent surveys [48], [45] highlight that
existing schemes based on active [6] or passive [20] revocation
suffer from scalability issues, low reactiveness, or both.

To address these challenges, we build upon decentralized
revocation schemes based on self-revocation [46], [12], [30],
which utilize a Trusted Component (TC) embedded in vehicles
for secure credential management. Self-revocation enables
vehicles to self-certify and also self-revoke pseudonymous
credentials, obsoleting most of the centralized public key
infrastructure of current ITS designs. This paper addresses a
number of shortcomings of previous work, summarized by the
following contributions:

1) We design a secure self-revocation scheme that, in con-
trast to earlier work, can guarantee revocation with an
upper bound on revocation time, without relying on a
trusted time source in TCs (Sect. V);

2) We formalize and verify our design using the TAMARIN
prover [34], showing that it provides strong guarantees
on the revocation of credentials even in presence of a
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powerful adversary who drops and/or delays revocation
requests (Sect. VI);

3) We evaluate the security, performance, and scalability of
our design, showing that our approach guarantees prompt
revocation and low utilization of resources, even in the
presence of network malfunctions and a high number
of attackers, in difference to related work (Sects. VII
and VIII).

4) We discuss applicability of our revocation scheme to
state-of-the-art V2X protocols, showing that it is com-
patible with current standards in the EU and US, as well
as Direct Anonymous Attestation (DAA) (Sect. VIII-B).

We provide the full formal specifications and an implementa-
tion of our design with this publication [39]. The most recent
version of this artifact is also available on GitHub1.

II. BACKGROUND

In the EU, performance and security requirements for ITS
and advanced use cases (such as vehicle platooning or remote
driving) are laid out in [15] and [17]. For example, it is
specified that ITS need to support “high connection density
for congested traffic” with “3,100 to 4,300 cars per square
kilometer.” Vehicles in these scenarios communicate at rates
of up to 50 messages/s with an end-to-end latency of no more
than 20 ms (platooning), or even via continuous data streams
of up to 25 MBit/s with an end-to-end latency of no more than
5 ms (remote driving) [17].

To maintain security in these scenarios, infrastructure and
vehicles must implement efficient protocols that facilitate
credential management, including revocation, and signing and
verifying message content while upholding privacy objectives
and legal requirements on data protection. As summarized by
Hicks and Garcia [25], the requirements for the management
of V2X credentials involve communicating parties to verify the
authenticity of messages, guarantee unlinkability, minimize the
repercussions of a compromise of central trust management
systems, and enable revocation of vehicles upon the detection
of policy violations, malfunction, or malicious interaction.
Therefore, vehicles must be capable to timely manage the
validity of credentials, which involves changing their own
pseudonym certificates and validating those of communicating
parties. Importantly, communications and security management
protocols must also account for extended periods without
connectivity, where a vehicle is unreachable or powered off.

Certificate Management and Revocation. In Europe, the
architecture for credential management in V2X is defined by
ETSI [19], [20], while the US follows the SCMS design [6].
In both architectures, ITS participants possess two types
of credentials: 1) long-term credentials, for authenticating a
vehicle towards the ITS infrastructure, and 2) pseudonym
credentials (pseudonyms in short), for secure and privacy-
preserving peer-to-peer communication, such as Vehicle-to-
Vehicle (V2V), Vehicle-to-Infrastructure (V2I), or Vehicle-to-
Pedestrian (V2P). Long-term credentials can be either private
keys stored in secure elements of vehicles at manufacture
time, or certificates obtained during enrollment with the ITS.
Pseudonyms are typically retrieved from the infrastructure
upon successful authentication and authorization of a vehicle

1https://github.com/EricssonResearch/v2x-self-revocation

(via its long-term credential), and are usually short-lived (with
lifetime of up to weeks [16]) and rotated regularly to prevent
vehicle tracking.

Revocation aims at excluding a participant from interacting
with others. We distinguish between identity-based revocation
and message-based revocation, which differ in the way that the
decision to revoke is made: The former is based on a vehicle’s
canonical identity, and is necessary to enforce legal/policy
requirements (e.g., to have only insured vehicles on the road),
in case of private-key compromise (e.g., a leak), or when a
vulnerability affecting a certain component or vehicle vendor
becomes public, requiring revocation of multiple vehicles at
once. The latter, which is the focus of our work, is based on
peer-to-peer traffic, where a misbehaviour detection system is
in place to report faulty or malicious messages to a Revocation
Authority (RA), which eventually mandates the revocation of
the vehicle that signed such messages. When a vehicle gets
revoked, its long-term credentials are blacklisted by the ITS
in order to deny it future requests, e.g., for re-enrollment
or for obtaining new pseudonyms. Additionally, all current
vehicle’s pseudonyms should be made unusable, to prevent
the transmission of malicious messages to other peers. In this
regard, SCMS and ETSI use two opposing strategies, i.e.,
active and passive revocation, respectively (cf. Sect. III).

Trusted Execution and DAA. A common approach to establish
a root of trust in distributed systems is by relying on Trusted
Components (TCs), such as Trusted Platform Modules (TPMs)
or Trusted Execution Environments (TEEs) [33], which pro-
vide the means to securely store and use long-term creden-
tials, perform key generation, remote attestation, and sealing.
Several papers propose the use of trusted components inside
vehicles to manage cryptographic credentials and increase
security and privacy [23], [44], [28]. Based on the security
features provided by TCs, Direct Anonymous Attestation
(DAA) has been developed as a privacy-preserving protocol
to remotely authenticate a system [7], [26]. In difference to
ongoing standardization efforts in ITS and SCMS, which rely
heavily on centralized public key infrastructure [19], [20], [6],
the application of DAA in an ITS context obsoletes most
central PKI by relying on secure processing elements (notably
TPMs), which enable a decentralized credential management.
For example, some DAA schemes allow vehicles to derive
pseudonyms autonomously from long-term credentials [46],
[12]. These pseudonyms are self-certified using DAA signa-
tures that can be verified by other ITS participants.

III. RELATED WORK

Traditional message-based revocation schemes take two
opposing directions: Active revocation, where the information
of revoked pseudonyms is distributed to vehicles in real
time, and passive revocation, where pseudonyms have a short
lifetime and are left to expire. Additionally, recent schemes
propose a novel approach based on self-revocation.

Active revocation. Active revocation is employed by SCMS
and consists in the distribution of Certificate Revocation Lists
(CRLs) [11] to all vehicles in the network, containing the list
of pseudonyms that have been revoked and thus should not
be trusted. Vehicles use this information to decide whether
or not to accept or discard a message received from other
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peers. CRL updates are issued regularly by the RA to indicate
newly revoked pseudonyms, and must be received as quickly
as possible by all vehicles to ensure the safety of the system.
However, as CRLs grow large over time, the associated compu-
tation and communication overheads make these mechanisms
less suitable for real-time systems. Several papers propose
optimizations to reduce the size of CRLs and the verification
overhead [41], [29], though recent surveys show that these
optimizations are still far from ideal [45], [48]. The SCMS
design relies on linkage values to identify all pseudonyms of a
vehicle with a single value, effectively reducing the size of the
CRL but significantly increasing the delay to decide whether
to accept or not a network message [6].

Passive revocation. As an alternative to active revocation,
some schemes propose issuing pseudonym certificates that
have a fixed and short lifetime, forcing vehicles to request
new pseudonyms regularly to continue participating in the net-
work [25], [43], [1]. Internal CRLs of long-term credentials are
used by the infrastructure to deny such requests to malicious
vehicles, thus negating the need for pseudonym revocation.
Passive revocation is also adopted in the ETSI standard [20].

Since pseudonym certificates are not revoked, vehicles
detected as malicious can continue their operation until the last
of their pseudonyms has expired. As such, malicious vehicles
still have a non-negligible time window after their detection
in which they can spread false information and cause safety-
related incidents [16], and has been identified as an open
issue [48]. Thus, to increase security, pseudonym lifetimes
would need to be quite short. However, with shorter lifetimes
and increasing participants in the network, the traffic between
infrastructure and vehicles would increase significantly, along
with the risk of Sybil attacks [14].

Self-revocation. Some DAA protocols adopt a scheme called
self-revocation, where revocation is performed with the active
cooperation of the vehicle to be revoked [46], [12], [30]. The
concept of self-revocation was initially proposed by Förster
et al. in their REWIRE protocol [21], as a privacy-preserving
revocation scheme for vehicular networks that leverage a
hardware-based TC in vehicles. In such a scheme, the RA
broadcasts an Order for Self-Revocation (OSR), containing
the pseudonym identifier to be revoked. The idea is that,
upon reception of such message, the targeted vehicle will
detect that the revoked pseudonym is one of its own and then
proceed with the deletion of all its credentials, such that the
vehicle will be unable to generate malicious messages any
further. This approach eliminates the need for CRLs or short
pseudonym lifetimes, providing substantial benefits in terms
of performance and scalability [3].

This simple scheme works with the assumption that the
TC is a trusted entity and will behave as expected, i.e., that
it will delete the credentials as soon as the OSR is received.
In case such messages are delayed or dropped, e.g., due to a
network disruption or a malicious host, Förster et al. propose
the use of keep-alive messages that are periodically broadcast
by the RA to vehicles and used to detect network interruptions,
causing the automatic deletion of all credentials in a TC if no
messages are received for an extended period. However, this
approach is described only informally, and does not address
an attack scenario where only OSRs are dropped, but keep-
alive messages are not. The REWIRE scheme was formally

Infrastructure

V2X participant

Vehicle + TC

Fig. 1: Lifecycle of a V2X architecture. An infrastructure
enrolls vehicles (1) and equips them with pseudonymous
credentials (2) which they can use to take part in V2X
communication (3). On-demand, the infrastructure revokes
pseudonyms or certificates (4).

verified in [47], though the possible disruption of OSRs was
not addressed. Furthermore, a similar heartbeat mechanism
is later proposed in subsequent work [46], [12], [30], which
suffers from the same limitations. Finally, all solutions seem
to implicitly rely on a notion of trusted synchronized time
to check the freshness of revocation requests and compute
timeouts, but such a feature may not be available on all
vehicles due to the limitations of current technologies [2], [4],
neither do previous papers discuss possible issues related to
clock drifting between vehicles and the RA.

IV. MOTIVATION AND SYSTEM MODEL

Section III highlights that, while active and passive revoca-
tion schemes present some drawbacks, self-revocation of pseu-
donyms seems a promising solution to remove misbehaving or
malicious participants from the V2X network efficiently and in
a timely manner. However, related work on the topic ignores
several challenges posed by realistic attackers and does not
provide strong guarantees or upper time bounds for revocation.
None of the previous papers effectively solved the problem of
attackers actively dropping/delaying revocation requests, and
the heartbeat idea was only informally introduced but never
developed [46], [12], [30]. To the best of our knowledge, there
are no self-revocation schemes available that work in practice,
making these protocols unsuitable for real-world deployment
in V2X systems. Earlier formal verification work [47] does not
address this problem, and no related paper provides an upper-
bound analysis nor a comprehensive evaluation. Additionally,
previous work hints at the requirement of trusted timestamps
in network messages, but none provides a full design that
integrates a trusted time source in TCs. In fact, under a realistic
attacker model, current confidential computing technologies,
and TEEs particularly, cannot rely on a trusted time source [2].
Thus, previous works that implicitly assume trusted synchro-
nized time cannot currently be implemented securely.

In this work, we aim to address these issues by providing
a reliable, formally verified revocation mechanism that can be
employed in V2X systems and beyond. We propose a design
that considers the challenges of having a reliable time source
in TCs, and we discuss optional extensions that may bring
additional advantages. We strive to minimize the computational
and communication overheads caused by revocation schemes,
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making our design efficient and suitable for any kind of system
and network. Below, we overview our system model, discuss
attacker capabilities, and introduce our objectives. Our design
is then detailed in Sect. V.

A. Vehicles and Trusted Components

In V2X, participants can be vehicles, pedestrians, traffic
lights, and so forth. For readability, in this paper we only dis-
cuss vehicles, but our system model can be generalized to any
participant in the network. We consider vehicles as integrated
systems composed of a number of Electronic Control Units
(ECUs) connected by a local in-vehicle network such as a CAN
bus. These ECUs may also be connected to a wide variety of
sensors and actuators, used to retrieve information from the
vehicle itself or its surroundings (e.g., speed, position), or to
perform actions (e.g., accelerate, brake). Typically, all such
components are managed by a central unit called On-Board
Unit (OBU), which is also responsible for processing network
messages sent to and from the vehicle [31].

Additionally, we assume that vehicles contain a secure pro-
cessing element called the Trusted Component (TC), respon-
sible for credential management and cryptographic operations,
analogously to DAA protocols (cf. Sect. II). In our system
model, the TC is a passive device that exposes an interface to
the OBU for tasks such as enrollment/attestation, pseudonym
generation, and message signing/verification. Therefore, all
sensitive operations are performed on the TC itself, and the
OBU cannot directly access cryptographic keys or other sensi-
tive material. Examples of TCs are the TPM, ARM TrustZone,
or TEEs such as Intel Security Guard Extensions (SGX) and
ARM Confidential Compute Architecture (CCA). Nowadays,
trusted components are ubiquitous in modern hardware [38],
and with recent developments in the automotive domain,
starting with Infineon’s automotive-certified Optiga TPM [27]
(released in 2018) and automotive security processors such
as the NXP NCJ38A [37] (available since 2020), TEE so-
lutions are available and working groups within the Trusted
Computing Group and Global Platform are active in designing
automotive security services based on TEEs [42], [22].

In our attacker model (cf. Sect. IV-C), we consider all com-
ponents of the vehicle potentially malicious or compromised,
except the TC. Therefore, at high level, we can define a vehicle
as the sum of two main components: the untrusted host and
the TC. Just like sensors, timing components used for precise
timestamping are also part of the untrusted host, such that the
TC cannot rely on a trusted notion of time by itself [2], [4].
Therefore, our design does not assume a trusted time source in
vehicles to guarantee a timely revocation, but relies on trusted
timestamps (or ”epochs”) distributed by the ITS infrastructure
to TCs (cf. Sect. V).

B. The Vehicle Lifecycle in a V2X Network

The lifecycle of a vehicle in a V2X network is depicted
in Fig. 1 and, in short, is composed of four main phases:
1) enrollment, 2) pseudonym generation, 3) operation, and
4) revocation. Although our paper mainly focuses on the last
phase, every revocation scheme, to be effective, has some de-
pendencies on the other phases. For example, vehicles that do
not properly check the validity of signatures might erroneously

accept messages signed with invalid or revoked pseudonym
certificates, making the revocation process useless. Thus, in
this section we first compile a set of functional requirements
that a V2X protocol should implement in order to use our
revocation scheme effectively. These requirements are based
on the architectures proposed in state-of-the-art V2X credential
management systems, and are discussed at high level: Our goal
is to make our revocation scheme protocol-agnostic in order
to be compatible with most existing protocols such as DAA or
technical standards such as ETSI and SCMS (cf. Sect. VIII-B).

Enrollment. Each vehicle is equipped with a TC which exclu-
sively stores credentials and performs cryptographic operations
with them (cf. Sect. IV-A). In the initial phase, a vehicle enrolls
to the V2X network by authenticating to the infrastructure, e.g.,
by presenting a valid certificate [20]. With trusted components
such as TEEs, remote attestation also becomes an essential
step to make sure that the TEE is configured correctly and
is up to date, and the TC is running genuine software [38].
Successful enrollment should result in the issuance of a long-
term credential, used by the vehicle as a token to authenticate
subsequent requests to the infrastructure and to obtain pseu-
donym certificates (cf. Sect. II).

Requirement 1: Vehicles correctly enrolled to the network
are issued a long-term credential, stored in the TC.

Pseudonym generation. In this phase, a vehicle uses the
long-term credential obtained during enrollment to get a new
pseudonym certificate. This process can be done either on-
line, where the pseudonym is issued by the infrastructure
upon successful authorization [20], [6], or offline, where the
vehicle’s TC performs a key derivation from the long-term
credential [46], [12]. Either way, only non-revoked vehicles
should be able to obtain new pseudonyms.

Requirement 2: Pseudonym certificates are obtained using
(valid) long-term credentials through online or offline proto-
cols.

Operation. Pseudonyms are then used to authenticate messages
that vehicles exchange with network peers. For readability and
without loss of generality, this paper focuses on the com-
munication between vehicles (V2V), but peers could also be
pedestrians (V2P), smart city infrastructure (V2I), and so forth
(cf. Sect. II). V2V messages may include information about
the vehicles themselves (e.g., speed, location, direction) and
the surrounding environment (e.g., traffic, accidents). These
messages need to be integrity-protected and authenticated to
prevent message spoofing or tampering, and time-stamped to
provide freshness; Both actions are performed by the TC, using
pseudonym credentials for the former and its internal time now
for the latter (we elaborate more on now in Sect. V).

Requirement 3: V2V messages are signed by the TC using
its own valid pseudonyms and timestamped according to an
internal TC variable now , representing the TC’s current time.

We then require that vehicles correctly check the authenticity
of V2V messages to ensure that they have been signed using
a valid pseudonym certificate. Furthermore, we demand that
messages older than a predefined age are discarded, to prevent
processing outdated information.

Requirement 4: Vehicles should check the signature of re-
ceived V2V messages to ensure that they have been generated
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using a valid pseudonym. A message with timestamp tv2v
should only be accepted by a receiving TC if not older than a
predefined window Tv w.r.t. its internal time now :

tv2v ≥ now − Tv (1)

Revocation. We expect the infrastructure to operate mecha-
nisms for misbehavior detection and reporting, where pseudo-
nyms can be flagged, e.g., for spreading messages that contain
false information [6], [18]. Based on such reports, the RA can
decide to revoke the corresponding vehicle’s credentials using
the reported pseudonym. This is the concept of message-based
revocation introduced in Sect. II.

Requirement 5: The RA makes decisions on revocation by
employing misbehavior detection mechanisms in the network,
to identify and report misbehaving pseudonyms.

Moreover, we require that only non-revoked vehicles can enroll
to the network, otherwise it would be trivial for attackers to
bypass revocation by simply re-enrolling to the network. This
can be achieved by keeping an internal blacklist of long-term
credentials [20], [6]. Revoked vehicles may be reinstated at the
discretion of the ITS infrastructure, e.g., after a factory reset.

Requirement 6: Only vehicles whose credentials have not
been revoked can (re-)enroll to the V2X network.

We observe that a vehicle in a V2X network is operational
iff two conditions are fulfilled: 1) the vehicle has at least one
valid pseudonym, and 2) the TC’s internal time now is loosely
synchronized with the others, i.e., within window Tv. If either
of these two conditions is not met, a vehicle cannot generate
valid and fresh V2V messages, according to Reqs. 3 and 4.
Hence, we define effective revocation as follows:

Definition 1 (effective revocation): A vehicle is consid-
ered effectively revoked when either all its pseudonyms are
made unusable (or expire), or when its TC gets permanently
de-synchronized, i.e., when now cannot be updated anymore.

C. Attacker Model

We consider a powerful attacker that has control over
a vehicle with valid credentials and wants to disrupt the
V2X network by spreading malicious V2V messages, avoiding
revocation of their pseudonyms as long as possible. Examples
of attack vectors include faulty sensors, software bugs in
ECUs, root access to the attacker’s own car, etc.

We assume a Dolev-Yao style attacker that controls the
network stack and can tamper with, rearrange, resend, and stall
network messages but not break established cryptography [13].
The attacker is assumed to have full control over all hardware
and software on vehicles except for functionality implemented
by their TC, which is protected and fully trusted. Entities in
the ITS infrastructure (e.g., the RA) are also trusted.

Besides the aforementioned cryptographic limitations, our
attacker is not able to perform physical attacks on the TC.
We stress that voltage tampering attacks against the hardware
can still be a real threat and cannot be tackled by network
protocols, but need to be addressed on lower levels of the
stack [9], [35]. Side channel attacks against the TC are also
out of scope and will have to be mitigated through the usual
means of hardware and software defenses [32], [8].

D. Objectives

Based on our system and adversary model, and the open
issues of existing schemes (cf. Sect. III), we define objectives
for a practical and secure real-world revocation mechanism:

O1 Guarantee of revocation: Revocation should always
succeed within a deterministic upper bound, even in case
of delayed or dropped revocation requests. In particular,
the effective revocation time is a time period starting with
the revocation decision made by the RA and ending when
the vehicle is effectively revoked.

O2 No assumptions on trusted time: Synchronizing trusted
time across multiple vehicles with a strong attacker is
challenging and no assumptions should be made on
having access to a local trusted time source.

O3 Scalability: Any revocation mechanism suitable for V2X
scenarios must be scalable in terms of vehicles and share
of attackers in the network. This covers both computa-
tional as well as network overhead.

O4 Adaptability: The revocation mechanism needs to be
configurable for different network characteristics and se-
curity requirements. It must be able to tolerate varying
degrees of network latency.

V. DESIGN

In a nutshell, our design has the RA send periodic messages
containing the pseudonyms of vehicles to be revoked, as well
as information used for a loose time synchronization between
all participants. Vehicles need to relay these messages to their
TCs in order to be able to communicate with the network,
otherwise they will eventually get de-synchronized. Hence, at-
tackers cannot postpone revocation indefinitely, and eventually
they become effectively revoked after a fixed amount of time
that can be configured by system parameters (O1, O4). Below,
we describe our design in detail.

Time synchronization. Our definition of effective revocation
introduced in Sect. IV, together with Reqs. 3 and 4, suggests
that TCs need a reliable representation of time (i.e., now).
Since a trusted and synchronized local time source is not
always available in TCs (O2), we rely on a trusted server
(i.e., the RA) that distributes timing information to all vehicles
in order to roughly synchronize them to a reference time
frame, which could be the actual time and date or an epoch
counter [5]. Note that vehicles can still use a local time source
for precise timestamping in real-time communication, though
it is considered part of the untrusted environment just as other
sensors (cf. Sect. IV-A).

The heartbeat. The RA periodically distributes authenticated
messages called heartbeats (HBs). HBs include a so-called
Pending Revocation List (PRL), i.e., a list of pseudonyms pend-
ing revocation. When the RA decides to revoke a pseudonym
ps , based on Req. 5, it calls an internal REVOKE function to
add the pseudonym identifier (e.g., a hash of its public key) to
the PRL, such that subsequent HBs will contain this revocation
request. As we will discuss in Sect. V-A, each pseudonym
needs to stay in the PRL only for a limited period. In addition,
every HB contains a timestamp thb, which is used to provide
freshness information to the HB and to distribute timing
information to the vehicles, used for time synchronization. In
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summary, the format of a HB is the following:

HB := PRL ∥ thb ∥ sigRA(PRL ∥ thb) (2)

Here, sigRA() is a digital signature made by the RA. HBs
can be either fetched manually by a vehicle or periodically
distributed via broadcast to reach multiple vehicles at once.
Additionally, they can also be exchanged in a peer-to-peer
fashion when connectivity is limited (e.g., rural areas).

Processing a heartbeat. Vehicles should forward received
HBs to their TCs. Similar to V2V messages (cf. Req. 4), the
TC firstly verifies its digital signature to ensure that it is an
authentic message generated by the RA, and then checks its
freshness by ensuring that the timestamp thb is not lower than
its current time now minus the validity window Tv, as follows:

thb ≥ now − Tv (3)

Upon successful verification of the HB, the TC synchronizes
its time as below:

now := max(now , thb) (4)

Then, the TC performs self-revocation if any of its pseudonyms
(represented by the set Certs) appears in the PRL:

PRL ∩ Certs ̸= ∅ ⇒ self revoke() (5)

Self-revocation puts the TC in a revoked state, where all
subsequent signature requests made by the vehicle’s OBU
are denied. Credentials may also be deleted from memory. A
TC can only be restored upon successful authorization by the
infrastructure (e.g., via vehicle reset and re-enrollment).

Missing reception of heartbeats. Self-revocation is effective
as long as HBs are correctly delivered to all TCs. However,
attackers in the network, as well as compromised OBUs, might
prevent this from happening in order to keep TCs operational
for as long as possible (Sect. IV-C).

We note that a TC needs to process a HB in order to
synchronize its time. In other words, if no valid HBs were
processed for an extended period, the internal TC time now
would stand still at the last processed HB, according to Eq. (4).
This would lead to vehicle de-synchronization, in which the
revoked vehicle would not be able to generate fresh messages,
even though its TC is still operational (cf. Req. 3). In such case,
other vehicles would start discarding all messages coming from
the revoked vehicle as soon as Eq. (1) is not satisfied anymore.
Thus, our security objective is guaranteed even when a revoked
vehicle’s TC does not process HBs.

Automatic revocation. To make such de-synchronization per-
manent, a revoked vehicle should not be able to process
any more HBs without causing self-revocation. This can be
trivially achieved by permanently keeping pseudonyms in the
PRL. However, the PRL would become bigger and bigger,
making the distribution of HBs as slow and inefficient as
traditional CRLs (cf. Sect. III). To prevent this, we make TCs
automatically perform self-revocation should they detect de-
synchronization. We call this process automatic revocation,
which is triggered when the timestamp tmsg of any received
message (either a HB or a V2V message) is much bigger than
the current time now , according to the equation below:

tmsg > now + Tv ⇒ self revoke() (6)

thb trev texpd trcv RA time t

Tv Tv

last usable
HB generated

vehicle vi
is revoked

expiry date for
vi’s V2V messages

V2V message from vi
processed by vj

Fig. 2: Timeline diagram showing times from Sect. V-A and
their relations. When estimating the worst-case revocation
time, thb would coincide with trev and trcv would occur Tv

after texpd, i.e., trcv is 2Tv after trev.

That is, vehicles de-synchronized for more than Tv are auto-
matically revoked as soon as they process any fresh message.
This, however, may also cause benign (i.e., unrevoked) vehicles
to trigger revocation accidentally: If this happens, they can
simply be restored by the infrastructure, though this may cause
temporary service interruption and should be avoided when
possible. See Sect. VII-C for a deeper discussion of the issue.

Eq. (6) ensures that, at any time, either: 1) the TC is
in sync with the RA, being behind the current time t at
most Tv, or 2) the TC is behind t by more than Tv, and
any received message with tmsg ≥ t will cause automatic
revocation. Usually, only compromised vehicles that ignore
received messages remain in case (2) without being revoked
automatically. If an honest vehicle ends up being isolated from
the network like that, it is most likely due to targeted jamming
attacks or lacking network coverage. We discuss this issue
further in Sect. VIII-C but rule it out here. Therefore, in what
follows we assume for all honest vehicles in the network:

now ≥ t− Tv (7)

A. Properties

The design elaborated above guarantees two important
properties of revocation:

(i) If a pseudonym ps belonging to a vehicle vi is revoked
by the RA, then after a fixed time period Teff vi will be
effectively revoked;

(ii) Each pseudonym can be removed from the PRL after a
fixed time period Tprl since its insertion time.

Property (i) is crucial as it implies effective revocation,
guaranteeing that the REVOKE function always succeeds
within a fixed time period, even if HBs are dropped or delayed
(O1). Property (ii) ensures that the size of the PRL (and
consequently the HBs) does not keep growing over time,
guaranteeing scalability (O3). Below, we give an intuition of
properties (i) and (ii), while in Sect. VI we discuss our formal
verification work to prove their correctness. Fig. 2 illustrates
the general timeline assumed below.

Revocation time. Let us assume that, at a time trev, the RA
orders revocation for a pseudonym ps owned by a malicious
vehicle vi. That vehicle would drop all HBs generated after
trev to prevent TC i from locking its credentials. Given that
a TC only updates its internal time when processing a HB
(Eq. (4)), we observe that trev is the highest value that TC i

would store as internal value now . Thus, all V2V messages
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signed by TC i would have a timestamp tv2v ≤ trev. Putting
this information into Eq. (1) for a receiver vj , we obtain:

nowj ≤ trev + Tv (8)

Eq. (8) shows that TC j will discard all V2V messages signed
by TC i as soon as its internal time nowj exceeds trev + Tv.
Conversely, for a time period Tv since trev, TC j is still
accepting messages coming from vi. Assuming all honest
vehicles in the network are at most Tv behind the RA time
t (Eq. (7)) and using Eq. (8) in the inequation, we get:

t− Tv ≤ nowj ≤ trev + Tv (9)

Estimating the upper bound for t − trev, we can then define
the effective revocation time Teff as follows:

Teff = 2Tv (10)

Time in PRL. As 1) trev is the highest value for now i that
TC i can have after the revocation order for ps , and 2) Eq. (6)
ensures that HBs containing timestamp thb greater than now i+
Tv would trigger revocation in TC i, we can conclude that ps
can be removed from the PRL as soon as RA time t passes
trev + Tv. Thus, we can define the minimum period of time
Tprl that ps needs to remain in the PRL as follows:

Tprl = Tv (11)

B. Extensions

Trusted time source. A trusted time source in vehicles would
enhance V2V communication through precise and trusted
timestamping, making O2 redundant. In our design, if the TC
has access to a trusted time source its internal time can advance
automatically and Eq. (4) would be unnecessary. In such case,
however, the condition for automatic revocation would never
occur, because Eq. (6) cannot be satisfied. Thus, we can define
an additional condition by measuring the time that has passed
since the most recent HB max thb that has been received: If
such time is higher than Tv, the TC would trigger revocation:

now > max thb + Tv ⇒ self revoke() (12)

As we will discuss in Sect. VI and Appendix A, we demon-
strated that the properties defined in Sect. V-A still hold,
with the assumption that TC and RA clocks are perfectly
synchronized. In reality, however, there may be a bounded
clock drift ∆ that needs to be added to Eq. (10) and Eq. (11).

Security enhancements. Although Teff is a strict upper bound
on revocation time (cf. Sects. V-A and VI), it is still possible
to improve the average revocation time. We devised two tech-
niques to make it harder for attackers to postpone revocation,
both are evaluated in Sect. VII-A to show their effectiveness:

1) Encrypted HBs. we observe that the worst-case scenario
illustrated in Sect. V-A can be easily achieved if a
malicious OBU has complete access to the content of
a HB. Here, the OBU can arbitrary delay and drop HBs
in order to evade revocation and avoid de-synchronization
for as long as possible. By leveraging encryption, instead,
the attacker would be unable to look at the content of a
HB, and would be forced to make a guess on whether or
not to drop, delay, or relay to the TC a HB received from
network. HB encryption can be achieved by means of a

pre-shared symmetric key obtained during enrollment and
rotated periodically. In case such key is leaked, it would
only cause attackers to gain access to the content of HBs,
but they would still be unable to forge valid ones.

2) Active revocation. The PRL included in HBs can be used
to perform active revocation (cf. Sect. III). That is, a TC
could store the most recent PRL received via HB and
use it as a lightweight CRL in the message verification
phase (Req. 4). As the size of the PRL is generally
small (cf. Sect. VII-B), this allows to reduce the average
revocation time for malicious vehicles without causing
too much overhead in the message verification phase.

VI. FORMAL VERIFICATION

We formally verified the correctness of properties (i) and
(ii), defined in Sect. V-A, using TAMARIN prover [34], a sym-
bolic verification tool for security protocols based on multi-set
rewriting rules and first-order logic. This section summarizes
our work, while Appendix A contains additional details. The
complete models and instructions to execute the proofs locally
on TAMARIN version 1.6.1 are available online [39].

A. Introduction on TAMARIN

TAMARIN is a symbolic verification tool that supports
verification of security protocols, based on multi-set rewriting
rules and first-order logic. Cryptography constructs, such as
symmetric/asymmetric encryption, digital signatures and hash-
ing, are built into the tool together with a Dolev-Yao adversary.

A protocol in TAMARIN is modeled as a set of rules, each
of them defining a specific protocol step. The system’s state
is expressed as a multi-set of facts, i.e., predicates that store
state information. Each rule has a pre-condition, i.e., facts that
are consumed by the rule, and a post-condition, i.e., facts that
are produced after its execution. In addition, restrictions allow
to specify additional constraints on the rule’s execution.

Rules can also produce special facts called action facts,
which are not part of the system’s state but rather are used
to notify that a certain event has occurred (e.g., a HB has
been generated). Action facts are used to define properties on
the model, called lemmas in TAMARIN, using first-order logic.
To verify a lemma, TAMARIN uses a ”backwards reasoning”
approach where it starts from a later state and reasons back-
wards to derive information about earlier states. In particular,
TAMARIN starts with a state that contradicts the lemma, and
tries to construct an execution trace to check whether that state
is actually reachable or not via the defined rules. If a complete
execution trace that reaches that state can be constructed, then
the lemma is falsified, otherwise it is successfully verified.

B. Model

We modeled our revocation scheme considering both our
main design and our extension when TCs have access to a
trusted time source (Sect. V-B); The latter is discussed in
Appendix A. Our models consider an arbitrary Tv and include
three entities: 1) the RA, which generates HBs and revokes
pseudonyms, 2) the TC, which processes HBs received from
network and generates V2V messages, and 3) a generic third
entity, which receives and verifies V2V messages generated by
the TC. Since our focus is on verifying revocation properties
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restriction IsLatestTime:
"All t #i . IsLatestTime(t)@i ==>

not (
Ex t2 #j . TimeIncrement(t2)@j & j<i

& GreaterThan(t2, t)
)"

rule advance_time:
[ !Time(t) ]
--[

OnlyOnce(<’advance_time’, t>)
, TimeIncrement(t + ’1’)

]->
[ !Time(t + ’1’) ]

Fig. 3: Definition of the advance_time rule that increments
the time counter by one, together with the IsLatestTime
restriction that ensures the most recent value is used in a rule.

(cf. Sect. V-A), we did not focus on enrollment or credential
management. We did, however, implement basic cryptographic
functionalities for making and verifying digital signatures,
using the signing built-in. This is enforced on both HBs and
V2V messages. Additionally, we allow the TC to obtain and
use an arbitrary number of pseudonym credentials.

Notion of time. Given that our goal is to measure the time
since revocation, our model also requires a notion of progress.
This was not trivial to implement in TAMARIN, as it does
not provide any native support for time passing. Therefore,
we leveraged the multiset built-in to model time as a logical
counter that represents time steps, allowing our entities to
perform any number of operations within the same time step.
To increment the counter, we defined a rule that takes as pre-
condition the current value and increments it by one (Fig. 3).
The same built-in was also used to model the PRL.

Persistent facts. Time steps, timeouts, PRL and pseudonyms
have all been modeled using persistent facts, i.e., facts that
remain in memory persistently, even after being consumed
by a rule. In our experience, this was a better choice than
using linear facts which, once consumed, are deleted from
the system’s state. For example, persistent facts allow reusing
the same !Time(t) fact in multiple rules, which reduces
the number of possible states and thus the memory used by
TAMARIN. We also experienced some undesired side-effects
when using linear facts, such as infinite recursion due to the
fact that rules were both consuming and producing Time(t)
facts at the same time. However, the use of persistent facts
cause multiple !Time facts to be in the system’s state at
the same time. For example, after the rule advance_time
in Fig. 3 is executed for the first time, we would have
both !Time(’1’) and !Time(’1’+’1’) facts in memory.
This would potentially cause execution of rules using the old
!Time fact instead of the new one. Although this inconve-
nience does not compromise the overall accuracy of the model,
it does not represent a realistic scenario and it also causes a
higher number of possible states. Hence, we added a restriction
IsLatestTime(t) (cf. Fig. 3) in every rule to ensure that
the latest time is always used. For the PRL, we used sequence
numbers to restrict rules to use the most recent list.

Modeling Tv. We modeled Tv as a parameter initialized in the
setup phase (Init). Our goal was to model Tv as an arbitrary
value to prove our properties for any value greater than zero.

// property (i)
lemma effective_revocation [heuristic=o "oracle.py"]:
"All msg ps t #i . MessageAccepted(msg, ps, t)@i ==>

Ex tv #j . SystemInitialized(tv)@j & j<i
& not (

Ex ps2 t_rev #k . RevocationIssued(ps2, t_rev)@k
& GreaterThan(t, t_rev + tv)

)"

// property (ii)
lemma no_heartbeats_processed_after_tolerance [heuristic=o "

oracle.py"]:
"All prl t_hb t #i . HeartbeatProcessed(<prl,t_hb>, t)@i ==>

Ex tv #j . SystemInitialized(tv)@j & j<i
& not (

Ex ps t_rev #k . RevocationIssued(ps, t_rev)@k
& k<i
& GreaterThan(t_hb, t_rev + tv)

)"

Fig. 4: TAMARIN proof lemmas that prove properties (i) and
(ii) in Sect. V-A.

To do so, we defined a first rule called init_parameters,
which creates a linear fact TvTmp with initial value ’1’.
Then, we defined another rule called increment_Tv that
consumes such linear fact and produces a new one with value
incremented by one. Finally, the Init rule takes the current
value and finalizes it, creating a persistent fact !Parameters
used in other rules.

C. Lemmas

We defined three types of lemmas: 1) Sanity lemmas, to
ensure that all rules can be executed at least once, i.e., that we
defined the model correctly; 2) Functional lemmas, to ensure
that the model correctly implements our design in Sect. V; and
3) Proof lemmas, to verify the properties in Sect. V-A. Table I
provides the full list of lemmas and a short description.

Modeling systems that have an internal state and progress
over time makes it extremely challenging to verify lemmas
within a reasonable amount of time and memory. In order to
build an efficient proof for some of our lemmas, we gave as in-
put to TAMARIN a Python script called oracle, which provides
a custom ranking for goals. Indeed, TAMARIN proves a lemma
by attempting to solve the open goals of the constraint system,
which are sorted based on some heuristics. By providing an
oracle as input, goals can be ranked according to a custom
heuristic. This was essential for us, as for some of the lemmas
TAMARIN could not terminate with the default heuristics due
to an inefficient ranking of goals. For example, solving !Time
goals needs to be postponed as much as possible because,
in an unconstrained system, time can have an arbitrary value
and TAMARIN would get stuck in an infinite loop. By using a
specific ranking, instead, we could give priority to other goals
that add more and more constraints, allowing !Time goals to
be solved efficiently. Our oracles guarantee that the verification
only takes a few minutes in total. Table I indicates for which
lemmas a custom oracle was needed.

Figure 4 shows the proof lemmas used to prove our
properties. The lemma effective_revocation says that
there is no state where any V2V message signed by a re-
voked ps is verified by another entity whose internal time
is higher than trev + Tv. Hence, the attacker is permanently
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Lemma Type Oracle Steps Description

sign_possible S 5 Ensures that the TC can sign V2V messages
generate_hb_possible S 5 Ensures that the RA can generate and distribute HBs
issue_revocation_possible S 5 Ensures that the RA can revoke pseudonyms, adding them to the PRL
processing_hb_possible S Ë 7 Ensures that the TC can receive and process a HB
revocation_possible S Ë 10 Ensures that the TC can self-revoke when receiving a HB
process_message_possible S 7 Ensures that a third entity can process V2V messages signed by the TC
exists_par_tv_5 S 8 Used to verify that Tv is arbitrary
exists_par_tv_8 S 11 Used to verify that Tv is arbitrary
no_signing_after_revocation F 2 Ensures that the TC cannot make signatures after performing self-revocation
all_heartbeats_processed_within_tolerance F Ë 130 Ensures that the TC correctly discards outdated HBs, i.e., older than Tv

all_signatures_max_time_t_rev F Ë 156 Ensures that, if revocation is mandated at time trev , the TC cannot make valid
V2V messages with timestamp greater than trev

effective_revocation P Ë 1964 Verifies property (i) in Sect. V-A
no_heartbeats_processed_after_tolerance P Ë 100 Verifies property (ii) in Sect. V-A

TABLE I: Full list of lemmas proven with TAMARIN on our model. Type is either S (sanity), F (functional) or P (proof). Oracle
indicates whether an oracle was needed, while Steps shows the number of steps required by TAMARIN to prove the lemma.

de-synchronized from the network and Teff can be esti-
mated assuming Eq. (7), as shown in Sect. V-A. The lemma
no_heartbeats_processed_after_tolerance, in-
stead, proves that a revoked TC cannot process any HBs whose
timestamp is bigger than trev + Tv. There are two possible
reasons why this happens: 1) The TC has processed a HB
generated since trev, meaning that it is in a revoked state since
then; 2) The TC has not processed any HB generated since
trev, meaning that processing a HB with timestamp bigger than
trev + Tv would trigger automatic revocation. Either way, this
can be directly translated to our second property: Pseudonyms
belonging to the revoked TC can be safely removed from the
PRL after trev + Tv, i.e., Tprl = Tv (cf. Eq. (11)).

VII. EVALUATION

In this section, we evaluate our scheme and give additional
insights. Sect. VII-A focuses on property (i), showing exper-
imental results on revocation time obtained from simulating
different attackers and network conditions (O1). Sect. VII-B
demonstrates that, thanks to property (ii), the PRL is kept small
even with a high number of revocations, proving the scalability
of our approach (O3). Finally, Sect. VII-C discusses how Tv

should be chosen, based to the characteristics of the network
and the desired security and efficiency properties (O4).

A. Revocation Time

We implemented a full prototype that realizes the revoca-
tion scheme from Sect. V and we evaluated it on a simulated
V2X network running on Kubernetes [10]. The simulation
environment allows to approximate the average revocation time
for a range of network parameters in order to demonstrate the
effectiveness of our scheme. Additionally, we simulated net-
work malfunctions such as delays and packet losses, to show
that our approach is resilient against real-world conditions.
Code and configuration files are available online [39].

Implementation. Due to the lack of open-source V2X imple-
mentations, we implemented a custom V2X protocol based
on [28], in which a group symmetric key is shared among
all vehicles to sign and verify V2V messages. In addition,
TCs are able to autonomously generate their own pseudonyms
(similar to [46], [12]), which are random identifiers attached

to messages as metadata. Thus, all V2V messages are linked
to the (pseudonymous) identity that signed them, allowing for
the revocation of bad actors’ credentials. This protocol satisfies
all requirements of our revocation scheme (cf. Sect. IV-B), but
may not be practical for real-world use cases. Still, it allows
us to obtain realistic average revocation times for different
attacker models, numbers of vehicles, network conditions, and
validity windows Tv.

In our prototype, vehicles are grouped into one or more
edge areas, while a centralized infrastructure is responsible for
enrollment (via an Issuer) and revocation (via a RA). Besides,
on each edge area a Road-Side Unit (RSU) is responsible
for fetching the latest HB from the RA and broadcasting
it to all vehicles in the area. Furthermore, an edge area is
divided into groups to simulate proximity, so that a vehicle
broadcasts V2V messages only to its neighbors, i.e., other
vehicles currently located in the same group. Each vehicle has
two components: the untrusted host, or OBU, and the TC.
The latter is implemented as a passive device that exposes the
following API to the OBU: JOIN to enroll in the network,
CREATE to generate a new pseudonym, SIGN and VERIFY to
sign and verify V2V messages, and HEARTBEAT to process a
HB. In our prototype, JOIN enrolls a vehicle in the network,
after which the TC obtains: 1) the RA’s public key, needed to
authenticate the HBs, 2) the V2V group credential, needed to
sign and verify V2V messages, 3) a long-term identifier, and
4) the current timestamp used for synchronization.

V2V messages are randomly-generated data, signed and
verified using the symmetric group key. Revocation is triggered
by reporting pseudonyms to the RA, who eventually adds
them to the PRL via the REVOKE API. A reporter component
inspects the V2V traffic in each area and periodically reports
a random pseudonym.

Attackers. We implemented different behaviors for the OBU,
depending on how HBs are processed and relayed to the TC.
In particular, we simulated attackers trying to evade revocation
by dropping or delaying the HBs. Our goal was to show that
our properties actually hold in practice (Sect. V-A), but also
that the average revocation time can be significantly improved
with some extensions (Sect. V-B). To this end, we implemented
three main attacker levels:
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• honest: Simulates normal behavior as a baseline, i.e., the
OBU relays all HBs to the TC as soon as they are received
from the RSU;

• smart: The smart attacker delivers HBs normally as long
as none of its pseudonyms are in the PRL. However, it
attempts to evade revocation by dropping all HBs that
contain any of its pseudonyms;

• blind: Simulates a scenario where HBs are encrypted
(Sect. V-B), thus attackers have no access to their content
and do not know if and when their pseudonyms will get
revoked. Therefore, the blind attacker has to make a guess
on whether to deliver or drop a HB. We tried several
logics for this attacker, and the one with best results was
the attacker relaying only one HB every Tv, to allow clock
synchronization and prevent revocation to be triggered
automatically (Eq. (6)).

Experimental setup. We ran our simulations on a Kubernetes
[10] cluster with version 1.22.17. Up to 400 simulated vehicles
are scheduled on 8 worker nodes, each with Intel(R) Xeon
(R) CPU E5-2680 v4 @ 2.40GHz and two 10Gbps network
interfaces, and 168 GB of total available memory.

We evaluated several scenarios with different values for
Tv, with or without trusted time in TCs. In this paper we only
discuss a scenario without trusted time where Tv is equal to
30 seconds, resulting in a Teff and Tprl of 60 and 30 seconds,
respectively, according to Eqs. (10) and (11). Complete simu-
lation results are provided with our artifacts [39].

Each simulation ran for two hours and spawned 400
vehicles over a single edge area, divided into 20 groups. Of
the vehicles, 10% were malicious, using one of the attacker
levels described above. Each vehicle could have only two
concurrent pseudonyms, disabling pseudonym rotation to not
create bias on the revocation time. A new HB was generated
every second by the RA, and every second the RSU fetched
and distributed the latest HB to vehicles. In order to simulate
network malfunctions and denial of service attacks, the RSU
either dropped or delayed HBs, each with probability 0.4, such
that only 20% of the HBs were delivered to vehicles without
delay. Also, vehicles generated and distributed V2V messages
every second. To increase the number of VERIFY events,
messages from malicious vehicles had a 30% probability to
be replayed. A pseudonym was reported and revoked every 10
seconds to gather sufficient experimental data (more than 600
revocations).

Results. The box plots in Fig. 5 illustrate the distribution of
revocation times for each attacker level. An additional box
plot labeled smart-prl shows simulation results under a smart
attacker, where TCs use the PRL to perform active revocation,
as described in Sect. V-B. Each value represents the time
between the revocation of a pseudonym ps (REVOKE event)
and the last V2V message signed with ps that was verified
by a non-malicious TC (VERIFY event). Such time period
represents the effective revocation time for that particular
pseudonym (cf. Sect. IV-B).

It should be noted that we filtered out negative time values
from the results: such values represent a situation where the
last VERIFY event happened before the REVOKE event, for
example because the TC owner of the revoked pseudonym was
already in a revoked state due to the revocation of another of
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Fig. 5: Simulation results for Teff = 60s. The boxes show, for
each revoked pseudonym, the time between REVOKE and the
last VERIFY event, aggregating more than 600 revocations but
excluding negative values.

its pseudonyms, or simply because that pseudonym was not
used to sign messages in the time after REVOKE. Either way,
these values were not interesting for our evaluation.

Fig. 5 shows that pseudonyms belonging to honest vehicles
are revoked rather quickly. Still, as V2V messages have a
validity period of Tv and receiving vehicles’ internal time may
lag behind the RA within Tv, the effective revocation time
varied widely, with a median of 17 seconds.

The simulation with the smart attacker level resulted in a
median of 32 seconds and the majority of revocations between
24 and 40 seconds. This attacker is able to postpone revocation
by dropping HBs, yet not relaying fresh HBs eventually causes
de-synchronization in the TC. Therefore, in 99% of cases
revocation was effective within 2/3 of Teff , as honest vehicles
were able to stay synchronized with the infrastructure even
when simulating severe network malfunctions.

As for the blind attacker level, we experienced a higher
number of negative values in our results. This can be explained
by the fact that a blind OBU is not able to recognize which
HBs can be dropped or delayed, which ones are fresh and
which are old, and which ones can be delivered to the TC
without causing revocation. As a result, and considering the
network malfunctions we simulated, the TC is more likely
to get de-synchronized and thus automatically revoked, even
before revocation is mandated by the RA. This suggests that
encrypting HBs makes it more difficult for an attacker to
evade revocation. In the few cases where the vehicle was still
operating after the REVOKE event, instead, revocation rarely
took longer than Tv.

Finally, the smart-prl simulation showed a significant
improvement over the smart one, with values more evenly
distributed between 1.5 and 37.5 seconds and median of 20
seconds. However, these results were negatively affected by
our simulated network malfunctions. As with traditional CRLs,
the ability of a TC to discard messages coming from revoked
vehicles depends on how quickly HBs are received and pro-
cessed; Thus, with limited connectivity the effective revocation
time increases. Indeed, we experienced better results when
simulating scenarios with lower drop/delay rates for HBs.

10



Overall, our simulations showed the feasibility of our
revocation scheme in a simulated though practical scenario.
In the average case, revocation takes much less than Teff to be
effective, even when attackers attempt to evade it. Furthermore,
simulating network malfunctions did not incur permanent de-
synchronization of non-malicious vehicles, demonstrating the
resiliency of our approach under real-world conditions.

B. Size of PRL

The size of a heartbeat is not constant. Instead, it depends
on the size of the PRL, which varies over time according to
the number of pseudonyms revoked and the parameter Tprl

(Eq. (11)). If many pseudonyms are revoked at the same time,
the PRL will be large until Tprl time has passed and they are
evicted from the PRL again. To calculate the expected average
PRL size, we approximate adding and removing pseudonyms
from the list as a stochastic process and create a Markov model
based on these parameters. The stationary distribution of this
Markov chain then gives the probabilities for each given size
of the PRL after an arbitrary number of steps.

Below, we elaborate on the core formulas and the expected
values of the PRL size for a chosen set of parameters.
Appendix B contains a complete explanation of the utilized
probabilities, the Markov model, and a discussion of the
nuances of modelling the PRL size as a probabilistic process.

PRL as a Markov Model. The process of adding and removing
pseudonyms from the PRL can be seen as a finite state machine
where the states are the possible sizes of the list. Transitions
to a higher or lower state then happen on the addition or
removal of a pseudonym, w.r.t. a base revocation probability p
per pseudonym and time step. A discrete time Markov chain
describes the probability of moving from state i to state j for
each possible state [24]. As such, this Markov model represents
the probabilities for gaining and losing pseudonyms from the
PRL due to revocation or the removal of pseudonyms after
Tprl, respectively. Assuming that the PRL contains i out of
n possible pseudonyms at a time step, we can independently
model the probabilities of gaining and losing k pseudonyms as
two distinct binomial probabilities Gi,k and Li,k, respectively:

Gi,k =

(
n− i

k

)
· pk · (1− p)n−i−k (13)

Li,k =

(
i

k

)
· ( 1

Tprl
)k · (1− 1

Tprl
)i−k (14)

Observe that Gi,k = 0 if i+ k > n and Li,k = 0 if i < k. We
can then combine these binomial probabilities into a Markov
matrix with the following property:

pi,j =

i∑
l=Max(i−j,0)

Li,l ·Gi,l−i+j (15)

At its core, this Markov matrix contains all probabilities
of moving from list size i to list size j as a combination of
losing l ≤ i pseudonyms from the list and adding l− i+j ≤ j
new ones, where in each time step, a pseudonym is removed
from the list with probability 1

Tprl
and added with probability p.

While this is not reasonable to calculate the effective list size

after a specific number of steps, it suffices in a probabilistic
model to determine the expected, average list size.

Average size of the PRL. In Markov chains, a stationary
distribution is a state probability that maintains its distribution
even after taking a step in the Markov chain [24], represented
by the stationary vector of the Markov matrix. It is thus a
probabilistic equilibrium that, once reached, will be stable
forever. After startup, a Markov chain will eventually reach
its stationary distribution after enough steps have been taken.
We can calculate the equilibrium for our Markov chain for
parameters that are useful in the real world and for different
revocation probabilities. By accumulating the probabilities for
each given state, we can thus calculate the maximum list size
as a percentile of possible states.

We evaluate the impact of a growing share of attackers
on the PRL size in the context of two baseline scenarios. In
these scenarios, honest pseudonyms, i.e., pseudonyms in the
network that do not belong to attackers, may still experience
a seldom revocation due to erroneous behavior, e.g., due to a
faulty sensor. In the first baseline scenario, we consider a 1%
probability that a pseudonym gets revoked at least once within
a day, i.e., a 1% chance for an expected revocation every 86400
time steps of one second each. In the second scenario, we raise
this to the extreme case of a 99% probability of being revoked
at least once a day or 86400 time steps.

Fig. 6 depicts the 75th, 90th, and 99.99th percentiles of
the PRL sizes for these two scenarios. The plot uses the
parameters of n = 800 pseudonyms and Tprl = 30, to align
with the evaluation described in Sect. VII-A. Each honest
lifetime scenario is paired with a growing share of attackers in
the network. Attackers are modeled to have a 75% chance of
causing a pseudonym revocation every 30 minutes on average,
which simulates a strain on the PRL that is by magnitudes
larger than any honest pseudonym would normally incur.

In most situations, the PRL contains fewer than 10 and
12 pseudonyms for the two baseline scenarios, respectively.
Even with a share of 20% of network participants that cause
revocations heavily, the 99.99th percentile of PRL size still
stays below 17. This means that even for coordinated peak
revocation events, the PRL size will stay in very manageable
margins. For comparison, we estimated the expected number
of revocations over a day: they range from roughly 8 to 10500
for Scenario 1, and 3600 to 13500 for Scenario 2 – a worst
case average of one revocation every 6-8s.

C. Choice of Tv

The choice of Tv is crucial in our scheme. We evaluated
four reference values of 30, 150, 300 and 900 seconds and
visualize the results in Fig. 7. Below, we discuss the impact
of Tv across multiple dimensions.

Revocation time. The first dimension is related to the re-
vocation time, and is shown in the top-left plot of Fig. 7.
According to Eq. (10), the effective revocation time Teff is
linearly dependent on Tv. Therefore, the smaller Tv, the shorter
it takes to revoke, resulting in a safer system.

HB frequency. The frequency with which HBs are generated
and distributed by the RA is not fixed arbitrarily, but depends
on Tv. Here, it is essential to ensure that honest vehicles
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remain loosely synchronized with the infrastructure during
their operation. This means that, to avoid temporary service
interruption, TCs need to process at least one HB every
Tv (cf. Sect. V). Thus, the frequency of HBs is inversely
proportional to the value of Tv with a certain coefficient N ,
which accounts for network latencies and missing packets. The
top-right plot of Fig. 7 shows the frequency with coefficient
N = 30, i.e., a new HB is generated every Tv/30 seconds.
With larger Tv, the number of HBs per minute drastically
decreases, resulting in fewer resources used.

HB size. According to Eq. (2), the size of a HB is linearly
dependent on the size of the PRL, plus a constant value that
represents the sizes of timestamp thb and digital signature
sigRA(). Additionally, as discussed in Sect. VII-B, the size
of the PRL is directly impacted by the value of Tv. That is,
the higher Tv is chosen, the longer each pseudonym needs to
stay in the PRL, according to Eq. (11). This means that, on
average, HBs are bigger when Tv increases. The bottom-left
plot of Fig. 7 shows the HB size when varying Tv, considering
the 99.99 percentile of the PRL size in relation to Tv on the
worst case scenario, i.e., Scenario 2 with 800 pseudonyms and

20% of attackers in the network (cf. Fig. 6). We also assume
that a pseudonym identifier is 64 bytes, thb is 8 bytes, and we
overestimate the size of sigRA() to 512 bytes, which is higher
than most RSA and elliptic curve signatures [36].

Network bandwidth. Lastly, it is important to evaluate the
network bandwidth required for transmitting HBs. This can be
computed by multiplying the size of a HB by the frequency
with which HBs are distributed. Results show that the mini-
mum bandwidth needed to transmit HBs is rather small, i.e.,
around 12 KBit/s in the worst-case scenario and with large N .

Conclusions. The choice of Tv should be a good compromise
between security and usability. The smaller Tv is, the shorter
a revocation takes, but it also increases the resources used
and the risk of de-synchronization in honest vehicles. Besides,
a small Tv is feasible when the V2X network is reliable
and low-latency, e.g., in urban areas, but may not be always
practical, e.g., in rural areas. On the other hand, a large Tv

results in a more resilient and efficient V2X system at the
cost of a slower revocation. However, compared with passive
revocation (cf. Sect. VIII-A), even Teff values of 30 minutes
are a significant improvement on the revocation time, coming
at negligible cost, as shown in Fig. 7.

VIII. DISCUSSION

Our design advances the state of the art by providing sev-
eral advantages compared to related work (Sect. III), which we
analyze in Sect. VIII-A. We discuss compatibility with V2X
protocols such as ETSI, SCMS and DAA in Sect. VIII-B, and
we explain a few corner cases of our design in Sect. VIII-C.
Finally, we examine privacy implications in Sect. VIII-D.

A. Qualitative Comparison with Related Work

This section performs a qualitative analysis of network
overhead, verification overhead and revocation time of our
approach compared with related work.

Network overhead. As discussed in Sect. VII-C, the bandwidth
required to transmit HBs is as low as a few kilobits per second
in most cases, even considering targeted attacks that cause a
high number of revocations. This is a significant improvement
over active revocation schemes that leverage CRLs, since
these lists are ever growing and thus their size increases over
time. We even outperform schemes that combine active and
passive revocation to reduce the CRL size: For example, [41]
suggests periods in the CRL of 3-4 weeks for each pseudonym.
Compared to our evaluation (cf. Sect. VII-C), this is still three
to four orders of magnitude higher.

Furthermore, unlike passive revocation schemes that re-
quire frequent pseudonym changes [25], our design consumes
minimal resources at runtime. Since HBs can be broadcast
within an edge area, the number of messages transmitted by
the infrastructure for revocation only depends on the number of
edge areas and not on the number of vehicles. This makes the
system extremely scalable, as the RA only needs to distribute
relatively small-sized HBs at low frequency (cf. Sect. VII-C).

Verification overhead. Active revocation schemes incur some
latency during the verification of V2V messages to check the
revocation status of pseudonyms. Even though some improve-
ments exist to either reduce the CRL size or optimize the
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verification time, such schemes still cause a non-negligible
overhead (Sect. III). Our design, instead, does not require
any additional verification overhead except for processing
HBs, which are received more seldomly than V2V messages
(cf. Sect. VII-C). Thus, the overhead for the TC should be
comparable to passive revocation schemes. In Sect. V-B we
propose to use the PRL to perform active revocation, which is
considered an optional feature that can be enabled only when
the PRL is small enough, which we demonstrated to be true
in most cases (Sect. VII-B).

Revocation time. Compared to active revocation, our design
provides comparable results in the average revocation time, es-
pecially when leveraging the extensions discussed in Sect. V-B
and evaluated in Sect. VII-A. However, active revocation does
not have an upper bound on the effective revocation time, as
some vehicles may receive CRL updates with unpredictable
delay. Besides, our scheme outperforms passive revocation
since a rotation of pseudonyms by the infrastructure every few
minutes is infeasible [25], while schemes relying on pre-issued
certificates with activation codes have a huge gap between
revocation and actual removal of malicious actors from the
network [43], [41].

B. Compatibility with Existing Protocols

ETSI ITS. In line with our system model (cf. Sect. IV-B),
vehicles following ETSI TS 102 941 [20] obtain long-term
enrollment credentials from an Enrollment Authority, after
successful authentication of their canonical identity. These cre-
dentials are then used to obtain pseudonymous authorization
tickets from an Authorization Authority. Timestamps are used
for replay protection [19]. ETSI [20] further proposes passive
revocation of pseudonyms by centrally revoking long-term
credentials (cf. Sect. II). Our scheme is applicable here and
can largely improve on revocation time and network overhead.
This, however, requires TCs in all vehicles.

SCMS. Although similar to the ETSI architecture, the SCMS
scheme employs active revocation (cf. Sect. II). Our scheme
can entirely replace CRLs in SCMS to reduce the network
utilization and nullify the verification overhead that vehicles
incur when processing V2V messages, which may be high
due to the use of linkage values in the CRL [6]. Analogously
to ETSI, the design of SCMS would need to include TCs.

DAA. On the academic side, DAA-based protocols have been
proposed as an approach for pseudonym generation with strong
privacy properties (cf. Sect. II). Vehicles use a JOIN protocol
to enroll, authenticating themselves via attestation to receive a
long-term credential. To obtain pseudonym certificates, some
protocols require communication with an Authorization Au-
thority [25]; others allow TCs to derive pseudonyms au-
tonomously via an CREATE protocol [46], [12]. While many
DAA protocols do not explicitly discuss replay protection, we
argue that Eq. (1) is still a requirement of the V2X network,
and thus provided. Under this assumption, even DAA protocols
are compatible with our revocation scheme.

DAA protocols that already propose self-revocation can
benefit from our design by having stronger guarantees on
revocation time. However, protocols where TCs derive pseudo-
nyms directly [46], [12] might not satisfy Req. 6 because the
infrastructure cannot map pseudonyms to long-term identities,

and therefore revoked vehicles might be able to re-enroll the
network. While this has clear benefits in terms of privacy, it
raises security concerns (cf. Sect. VIII-D).

Applicability beyond V2X. Our revocation scheme can be
generalized to revoke any type of credential. Hence, it may
be applied to other use cases, e.g., in scenarios where 1) real-
time communication requirements hamper the use of classic
revocation checks, 2) users may generate pseudonymous cre-
dentials for enhanced privacy w.r.t. peers or the infrastructure,
or 3) revocation needs to be fast and reliable to avoid serious
damage by bad actors. V2X networks check all boxes but
we see benefits for, e.g., smart cities, direct mobile-to-mobile
communication, and other peer-to-peer applications.

C. Security Considerations

Vehicles powered off. Vehicles that are temporarily powered
off cannot process any HBs, meaning that potential revocations
may be missed without the TC noticing, and without being able
to execute automatic revocation. Thus, it is important to persist
the value of the last thb processed by a TC, such that vehicles
would remain synchronized when powered off for a short time.
For longer offline periods, instead, vehicles would need to re-
synchronize with the infrastructure and, simultaneously, check
their revocation status.

Self-identification of pseudonyms. The underlying assumption
of our revocation scheme is that, to perform self-revocation, a
TC is able to identify its own pseudonym certificates within the
PRL. However, it may not be always possible to do so when the
TC occasionally deletes some pseudonyms from memory, e.g.,
due to pseudonym rotation. A trivial solution to this problem
would be to never delete any pseudonyms, though this may not
be possible in resource-constrained environments (e.g., TPMs).
Previous work [21], [47] discusses a more efficient solution
that leverages cryptographic tokens, allowing TCs to safely
delete their pseudonyms.

Denial-of-Service Attacks. An attacker may cause vehicles to
get de-synchronized via network attacks, preventing them from
processing HBs. This could, e.g., be achieved by jamming all
wireless network activity close to a victim. While not being
practical at scale, jamming attacks would likely disconnect
the victim from the network regardless of the credential
management mechanisms employed, and may thus require re-
enrollment or other connection management steps. Therefore,
such attacks likely do not cause additional harm when our
approach is used.

D. Privacy Discussion

Privacy requirements in V2X include that adversaries can-
not link a pseudonymous signature to a canonical identity
or other pseudonyms, or observe the use of specific network
resources [46], [20], [48]. Aside from adversarial interactions,
data minimization towards the infrastructure is also a design
goal of V2X systems to minimize the overall attack surface [6].

Our design does not compromise the privacy provisions
of the underlying certificate management steps – enrollment,
pseudonym generation, etc. – because HBs only contain public
information and an adversary receiving PRLs only sees a list
of pseudonyms (similarly to traditional CRLs) but learns no
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further information about specific vehicles, nor can they link
pseudonyms to each other. Learning when specific pseudonyms
are considered compromised by the infrastructure is unavoid-
able, and breaking the underlying cryptographic primitives is
outside of our attacker model.

However, Req. 6 and technical standards in Europe [20]
and the US [6] highlight that revoked vehicles must no be
able to re-enroll. This compromises data minimization in the
V2X infrastructure since it necessitates mapping a pseudonym
back to the canonical identity or long-term credentials of the
vehicle and then deny-listing that identity. There are DAA-
based approaches that preserve unlinkability of pseudonyms
towards the infrastructure, as TCs generate pseudonyms au-
tonomously [46], [12]. However, this in turn raises security
concerns since re-enrollment of revoked vehicles becomes
feasible. Possible technical solutions to this conundrum depend
on the V2X protocol and its credential management scheme,
as well as the capabilities of the TC. Therefore they are out
of scope of this work.

IX. SUMMARY & CONCLUSIONS

Revocation of credentials and pseudonymous identities is
a critical aspect of security and trust management in V2X sys-
tems, necessary to prevent malicious actors from manipulating
V2X communication for personal gain or to harm people and
infrastructure. In this paper, we present and evaluate a self-
revocation scheme that addresses scalability and security issues
of existing approaches, and we formally prove that revocation
in our scheme cannot be bypassed and completes with a
configurable upper time bound. Furthermore, our approach
is compatible with recent standardization efforts in the ETSI
framework in Europe and the security credential management
system in the US, and also with privacy-preserving pseudonym
schemes that rely on Direct Anonymous Attestation. Com-
pared to other solutions, our design requires a very limited
communication bandwidth and we argue that the distributed
nature of our scheme reduces computational resource utiliza-
tion, specifically at the infrastructural layer. We show that
our approach scales well to large numbers of revocations
and allows for revocation times in the order of seconds,
outperforming even short-lived pseudonyms. We conclude that
approaches that leverage trusted computing technologies, such
as ours, come with improved scalability and performance
characteristics that warrant inclusion in future standardization
efforts in application scenarios that deal with large numbers of
participants and critical low-latency communications, beyond
V2X and ITS. Future work needs to investigate privacy-
preserving solutions to block malicious actors from re-joining
ITS networks after revocation, without incurring availability
issues for well-behaving actors when losing connectivity.
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APPENDIX A
TAMARIN MODELS

This appendix extends Sect. VI, providing more details
on how we translated our design to TAMARIN and how we
captured the properties of our design. Here, we also discuss
our variant where a trusted time source in the TC is available
(cf. Sect. V-B).

A. Mapping our Design to TAMARIN

To map our design to Tamarin, we used only six main rules:

• RA_generate_heartbeat: This rule takes as input
the current time and PRL and produces a new HB as
output, signed with the RA’s private key. The HB is
also sent out to the network channel, and an action fact
HeartbeatGenerated(HB) is produced. This rule
can only be executed once per PRL and time step to
reduce the number of states, since multiple execution with
the same parameters would generate the same HB, which
is not relevant in our model since TAMARIN already
allows replays of network messages.

• RA_issue_revocation: Taking as input the current
time, PRL, and a pseudonym’s public key, this rule
generates a new PRL by adding the pseudonym to the list
and incrementing the sequence number by one. We added
a restriction to revoke each pseudonym only once. After
execution, the action fact RevocationIssued(ps,
t) is generated.

• TC_get_pseudonym: This rule allows the TC to obtain
a new pseudonym credential. How exactly this credential
is obtained (e.g., via a communication to the infrastruc-
ture) is outside of our scope; What is important in our
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// property (i)
lemma effective_revocation [heuristic=o "oracle.py"]:
" All msg ps t #i . MessageAccepted(msg, ps, t)@i ==>

Ex tv #j . SystemInitialized(tv)@j & j<i
& not (

Ex ps2 t_rev #k . RevocationIssued(ps2, t_rev)@k
& k<i
& GreaterThan(t, t_rev + tv + tv)

)"

// property (ii)
lemma no_operations_after_timeout [heuristic=o "oracle.py"]:
"All t #i . NewOperation(t)@i ==>

Ex tv #j . SystemInitialized(tv)@j & j<i
& not (

Ex ps t_rev #k . RevocationIssued(ps, t_rev)@k
& k<i
& GreaterThan(t, t_rev + tv)

)"

Fig. 8: Properties of our design with a trusted time source in
TC translated to TAMARIN lemmas.

model is that the TC can obtain and use an arbitrary
number of pseudonyms. The only restriction of this rule
is to ensure that only non-revoked TCs can obtain new
pseudonyms (cf. Req. 2).

• TC_process_heartbeat: The TC processes a HB
taken as input from the channel. Restrictions ensure that
the received HB has a valid signature and timestamp. In
addition, the TC has to check whether to perform self-
revocation or not. To do so, we divided this rule in two
mutually-exclusive rules that produce different results: if
any of the TC pseudonyms is in the PRL, the action fact
Revoked(t) is produced, otherwise it is not. Either
way, a HeartbeatProcessed(HB,t) action fact are
produced, along with a new !Time(t_hb) persistent
fact to synchronize the TC time.

• TC_sign_message: The TC generates a new V2V
message signed with a pseudonym’s private key. It
takes the latest time as input, while restrictions ensure
that the TC has not been previously revoked (i.e., the
Revoked(t) action fact does not exist). The rule pro-
duces a signed timestamped message and sends it to
the out channel. A Signed(msg,ps) action fact is
produced as well.

• process_message: This rule models a generic third
entity that receives a V2V message from network and
verifies it. If the signature is valid and the message is
fresh, a MessageAccepted(msg,ps,t) action fact
is generated.

B. Trusted Time Source in TCs

The design that models a trusted time source in TC comes
with a major difference, i.e., that TC and RA use the same
!Time facts. That is, this means that their clock is perfectly
synchronized, and the TC does not need to process HBs to
advance its internal time.

Table II provides the full list of lemmas used in this variant,
most of which are analogous to the main model. The main
difference is that we added three reusable lemmas, i.e., lemmas
that TAMARIN can leverage to prove other lemmas. This was
helpful since we experienced that the two proof lemmas were
harder to verify efficiently than in our main model. By defining

additional lemmas marked as reuse, we could instead build
efficient proofs, allowing TAMARIN to terminate in only a few
minutes.

Fig. 8 shows the proof properties of this model. Two are
the main differences compared to the main model: First, the
effective_revocation lemma can now directly prove
our first property to calculate the exact value for Teff . Indeed,
we now assume that all TCs are perfectly synchronized with
the RA time, hence the revocation time is now absolute and
comes at trev+2Tv. Second, thanks to internal timeouts in TC,
we can have a stronger proof for the second property, saying
that not only does the TC not process HBs generated after
trev + Tv, but also that the TC cannot perform any operations
after that time because the automatic revocation timeout would
be triggered. To prove this, we defined an additional rule called
TC_do_operation, which models a generic operation per-
formed by the TC via the NewOperation(t) action fact.
This is then used in no_operations_after_timeout to
prove that there cannot be NewOperation(t) action facts
with a value for t bigger than trev + Tv.

APPENDIX B
CALCULATING EXPECTED SIZE OF THE PRL

This appendix covers the basics of the utilized probabilities
to then explain the Markov matrix. We also describe the
calculation of the stationary distribution as a means to calculate
the expected PRL size. Finally, we discuss the computation of
the probabilities and expected values used in Sect. VII-B.

A. Utilized Probabilities

Recall from Sect. VII-B that we model the processes of
gaining and losing pseudonyms from the PRL as two individual
probabilities, then we combine them in the next step into
a Markov chain. The two probabilities shown in Eq. (13)
and Eq. (14) are denoted as Gil and Lil respectively and
can be seen as probability matrices that at location il have
the probability for being in state i and gaining or losing l
pseudonyms from the list. The core assumption for these two
probabilities is that both adding and removing pseudonyms
from the revocation list can be seen as a binomial distribution
that only depends on: 1) the current size of the list, i.e., how
many certificates there are left to be revoked or removed from
the list, 2) the probability for each pseudonym to be revoked
at any given time, and 3) the time that a pseudonym stays
in the list. As such, this model assumes that pseudonyms are
renewed as soon as they are evicted from the PRL, i.e., the list
can never hold more than the total number of n pseudonyms,
which is a realistic assumption for large n as it is unlikely
that so many pseudonyms in the system would be revoked in
a short time during regular operation. Furthermore, in this way
we model the process of losing pseudonyms from the list as a
probabilistic process that has the expected value at Tprl. We,
however, can not model a precise eviction of the pseudonym
from the PRL after Tprl time steps. In our view this is an
acceptable tradeoff as on average and over the lifetime of the
PRL, the modeled behavior comes very close to the actual
behavior of evicting pseudonyms from the PRL after exactly
Tprl time steps.
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Lemma Type Oracle Steps Description

sign_possible S 6 Ensures that the TC can sign V2V messages
generate_hb_possible S 5 Ensures that the RA can generate and distribute HBs
issue_revocation_possible S 5 Ensures that the RA can revoke pseudonyms, adding them to the PRL
processing_hb_possible S 9 Ensures that the TC can receive and process a HB
revocation_possible S 13 Ensures that the TC can self-revoke when receiving a HB
process_message_possible S 7 Ensures that a third entity can process V2V messages signed by the TC
exists_par_tv_2 S 5 Used to verify that Tv is arbitrary
exists_par_tv_4 S 7 Used to verify that Tv is arbitrary
no_signing_after_timeout F 205 Ensures that the TC cannot make signatures after performing automatic

revocation
no_signing_after_revocation F 2 Ensures that the TC cannot make signatures after performing self-revocation
all_heartbeats_processed_within_tolerance F Ë 260 Ensures that outdated HB are correctly discarded by the TC
all_messages_accepted_signed_exists R Ë 62 Ensures that, for each V2V message verified by a third entity, the same

message was previously signed by the TC
all_messages_accepted_within_tolerance R Ë 282 Ensures that outdated V2V messages are correctly discarded by the third entity
no_messages_accepted_after_revocation R Ë 74 Ensures that, if revocation is mandated at time trev , all TC messages accepted

by a third entity cannot contain timestamp greater than trev + Tv

effective_revocation P Ë 4 Verifies property (i) in Sect. V-A
no_operations_after_timeout P Ë 76 Verifies property (ii) in Sect. V-A

TABLE II: Full list of lemmas proven with TAMARIN on our model with trusted time. Type is either S (sanity), F (functional),
R (reuse) or P (proof). Oracle indicates whether an oracle was needed, while Steps the number of steps required by TAMARIN
to prove the lemma.

B. Markov Model

We can now combine these two probabilities into a matrix
that at location pij has the probability of moving from state i
to state j. Starting with the simple example of n = 3 pseudo-
nyms, multiple entries of this matrix are straightforward:

• Starting at any state i and stepping into state j = 0
requires to not revoke any new pseudonyms and to lose all
existing pseudonyms from the list. This is the combination
of the two probabilities LiiGi0. For example, going from
state i = 2 to j = 0 requires to lose 2 pseudonyms
when there are 2 in the PRL, and requires to gain no
new pseudonyms when there are already 2, leading to the
two probabilities L22G20

• Starting at state i = 0 and stepping into a state j implies
that no pseudonyms can be lost from the PRL and j
pseudonyms have to be added.

• Similarly, starting in state i = 3 and stepping into any
state j implies that no pseudonyms can be gained, but
j − i pseudonyms are removed from the PRL.

The most interesting state transitions in this probability
matrix are the transitions that consist of multiple combinations
of events. One example is the transition from i = 2 to j = 1.
Here, we first have the obvious possibility that we reach the
state j = 1, i.e., one pseudonym in the PRL, by losing one
pseudonym and gaining none. However, we also have the
possibility to lose both pseudonyms in the PRL and gain one,
leading to still one remaining pseudonym in the PRL. This is
because the pseudonyms in the PRL and outside of the PRL are
independent and pseudonyms can still be revoked while others
are removed from the list. Thus, the state transition consists
of the following parts: p21 = L21G20 + L22G21.

The full state probability matrix for n = 3 pseudonyms
can be seen below. Note that a matrix for n pseudonyms is a
n+ 1× n+ 1 matrix to accommodate the state of the empty
PRL.
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Fig. 9: A graph of the Markov chain with the exemplary
parameters of n = 3, p = 0.1, and Tprl = 2.

P =

[
L00G00 L00G01 L00G02 L00G03

L11G10 L10G10+L11G11 L10G11+L11G12 L10G12

L22G20 L21G20+L22G21 L20G20+L21G21 L20G21

L33G30 L32G30 L31G30 L30G30

]

Such probability matrices are also called discrete time
Markov chains [24]. Fig. 9 depicts the transition graph for
the above Markov chain when we assume the parameters of
p = 0.1 and Tprl = 2. Based on this first small example,
we can approach a closed formula for an arbitrary number of
pseudonyms (n). This closed formula is shown in Eq. (15).
The core idea is that each entry depends on a combination
of gaining and losing pseudonyms based on the maximum of
i − j and 0 and ranges up to i. Then, any state combination
that is not possible will be 0 through the binomial coefficient.
However, this range is necessary to catch the complicated
combinations in the center of the matrix. Each combination is
then based on losing l pseudonyms from the list and gaining
l − i + j pseudonyms, which basically iterates through the
combinations with l as a stepping variable.
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Fig. 10: 99th percentile PRL sizes for fixed Tprl = 30 and
varying number of pseudonyms (n) under four scenarios.

C. Calculating the Expected PRL Size

In discrete time Markov chains, a probability state vector
π can be multiplied with the Markov matrix P to gain the
probabilities for π after a single transition in the model [24] as
follows: π′ = π ·P . This, however, is only sufficient to gain the
state probabilities after specific amounts of steps. In contrast to
this approach, Markov chains may approach a so-called state
equilibrium which is a stationary probability distribution that
does not change even after taking a step in the Markov chain.
The stationary distribution follows the equation π = π ·P [24].

To gain this stationary distribution, we solve the following
equation system:

π = πP

↔ π − πP = 0

↔ π(I − P ) = 0

↔ (I − P )TπT = 0

Lastly, since there may be several solutions to this linear
equation, we add the specific constraint to this equation system
that the sum of π is equal to 1. This is the case for each
probability vector in Markov models [24], and follows the
intuition that, from any state probability, the probability to
reach any other state is 1. To add this constraint, we add a
row of 1 to (I − P )T and append a 1 to the zero vector.
Solving this linear equation yields a stationary distribution
that is stable. Fig. 6 summarizes this stationary distribution by
showing the list sizes that occur to 75%, 90%, and to 99.99%.
The graph shows these percentiles under different scenarios,
i.e., with different shares of attackers in the network.

In the following, we expand this evaluation with Figures
10 and 11. Fig. 10 depicts only the 99th percentile for a fixed
Tprl and only focuses on the four extreme cases: For each
of the two baseline scenarios, 0% and 20% of attackers in the
network. The horizontal axis then depicts a growing number of
pseudonyms (and, therefore, vehicles) in the network. This is
to show that a larger number of vehicles does not exponentially
grow the expected size of the PRL. Instead, the 99th percentile
of the list size grows linearly with n. Similarly, Fig. 11 shows
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Fig. 11: 99th percentile PRL sizes for fixed n = 800 pseudo-
nyms and varying Tprl under four scenarios.

the same situation for a fixed number of pseudonyms at n =
800 but a varying window for Tprl. This second graph shows
that the PRL size also grows linearly with a linear increase in
the time that a pseudonym stays in the PRL.

D. Probabilities and Expected Revocations

Above, p is the probability of revocation in each time step.
As time steps are at the granularity of seconds, and our system
runs for a long time, it turns out that the per-step probabilities
leading to realistic revocation rates are very small. Instead, the
probabilities used in the PRL size evaluation were described
in terms of a compound probability q that a revocation occurs
at least once over a number of s steps. This probability can
be computed via the geometric series

q(p, s) =

s∑
i=1

p · (1− p)i−1 = 1− (1− p)s

which sums up the probabilities that the first revocation occurs
the first time in step i ∈ [1 : s]. Note that this is equal to 1
minus the probability that in all s steps no revocation occurs.
Solving for p we obtain

p(q, s) = 1− s
√
1− q .

We used this formula to compute the baseline per-step proba-
bilities underlying our scenarios for honest vehicle and attacker
separately. The final probabilities p for the Markov models
were then obtained by averaging the probabilities weighted
according to the share of attackers.

For estimating the expected numbers of revocations in our
scenarios we needed to calculate the expected value for n
pseudonyms over s steps. If each step was independent this
would simply be n · s · p, however, as explained above, in
our Markov model at most n pseudonyms can be revoked at
a time. We compensated for this fact by taking into account
the chance pprl that a given pseudonym is on the PRL at any
given time and computed the desired estimate Erev:

Erev = n · s · p · (1− pprl)

We set pprl to the median PRL size, as obtained by the Markov
model for each scenario, divided by n.

18



Software Tested version

Docker 23.0.2
Docker Compose 2.17.2

kubectl 1.28.2
Minikube 1.31.2 (running Kubernetes 1.27.4)

TABLE III: List of all software dependencies required to run
our artifacts, along with the version that we used in our setup.

APPENDIX C
ARTIFACT APPENDIX

This Appendix contains a complete description on the
artifacts presented in our paper, along with detailed instructions
for running the artifacts locally and reproducing our results.

A. Description & Requirements

This section provides all the information necessary to recre-
ate the experimental setup to run our artifacts. All experiments
can run on a commodity desktop machine. For experiment
(E2), we provide a scaled-down configuration that can still
provide meaningful results. See Sect. C-E for more details.

1) How to access: The artifacts are publicly available on
Github2. While the main branch contains the latest version of
the code, the ndss-24-artifacts tag contains the exact
version of the code that was submitted for review in the artifact
evaluation. The latter is also available on Zenodo [39].

2) Hardware dependencies: Our artifacts can be run on a
commodity desktop machine with a x86-64 CPU. To ensure
that all artifacts run correctly, it is recommended to use a
machine with at least 8 cores and 16 GB of RAM.

3) Software dependencies: A recent Linux operating sys-
tem is required, preferably one between Ubuntu ≥ 20.04 and
Debian ≥ 10. Our artifacts have been tested on Ubuntu 22.04
LTS (Jammy). Additional dependencies are listed in Tab. III.

4) Benchmarks: None.

B. Artifact Installation & Configuration

We first require that our repository is downloaded to a
local folder, e.g., via git clone. To install all required
dependencies, we then provide an install.sh script that
can be used by Ubuntu and Debian users to install up-to-date
versions of the packages listed in Tab. III. Alternatively, such
dependencies can be installed manually via official channels.
Note that we require running the installation script and subse-
quent experiments using a non-root user with sudo privileges.

All artifacts leverage Docker containers for ease of use.
However, except for experiment (E2), all experiments can be
run locally. Additionally, most experiments have customizable
parameters. In this Appendix, we provide instructions for
running all experiments with Docker using a fixed set of
parameters, but our repository contains extensive instructions
for customizing each experiment.

2https://github.com/EricssonResearch/v2x-self-revocation

C. Experiment Workflow

Our artifacts contain three independent experiments. The
first consists in the formal verification of our design using
the Tamarin prover. The second experiment simulates a V2X
scenario on Kubernetes, where our scheme is evaluated under
different conditions. The third experiment performs a statistical
evaluation on the size of PRL to assess the scalability of our
approach.

The proposed workflow runs the three experiments sequen-
tially. Our repository contains scripts and a Makefile that can
be used to automate all experiments. For brevity, this Appendix
only illustrates the make commands to run at each step, while
extensive documentation is provided in our repository.

D. Major Claims

• (C1): Our scheme guarantees revocation within a deter-
ministic upper bound Teff , even in case of delayed or
dropped revocation requests. This is proven by experiment
(E1), whose results are reported in Sect. VI, Appendix A
and Tabs. I and II.

• (C2): Our scheme is resilient to severe network mal-
functions and delays that may occur in a real-world
scenario. Even in these harsh conditions, revocation times
are not only within the upper bound proven in C1, but
also significantly shorter on average. This is proven by
experiment (E2), whose results are reported in Sect. VII-A
and Fig. 5. Additional experiments are described in our
Github repository.

• (C3): Our scheme scales well with the number of vehicles
and attackers in the network. Additionally, even when
choosing a small Teff , the required network and compu-
tational resources are still low. This is proven by exper-
iment (E3), whose results are reported in Sect. VII-B,
Appendix B and Figs. 6, 7, 10 and 11.

E. Evaluation

This section includes all the operational steps and experi-
ments which must be performed to evaluate our artifacts and
validate our results. In total, all experiments require between
30 and 60 human-minutes and around 8 compute-hours. We
assume that the machine is configured correctly with required
dependencies, as described in Sects. C-A and C-B. The same
instructions, along with additional details, are provided in the
top-level README file of our repository.

1) Experiment (E1) - Claim (C1): [Tamarin proofs] [2
human-minutes + 10 compute-minutes]: The experiment con-
sists in using the open-source Tamarin prover tool (version
1.6.13) to verify our revocation design. Tamarin receives as in-
put our model specification along with the properties (lemmas)
we want to verify, and attempts to verify such properties. Our
artifacts include two separate models, one that illustrates the
main design in Sect. V and another that illustrates a variation of
our design where TC have a trusted time that is synchronized
with the RA (Sect. V-B). See Sect. VI and Appendix A for
more information.

[Preparation] In a new shell, go to the proofs folder.

3The recently-released version of Tamarin 1.8.0 is not able to verify our
models efficiently. We are currently investigating this issue.
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[Execution] Firstly, prove the main design, which is called
centralized-time. The command to run, along with the
expected output, is provided below.

# Prove the ‘centralized-time‘ model (5 minutes)
# Expected output:
# - Tamarin prints a "summary of summaries" at the end
# - In the summary, all lemmas are marked as "verified"
# - a ‘output_centralized.spthy‘ file under ‘./out‘
make prove MODEL=centralized-time OUT_FILE=

output_centralized.spthy

Secondly, prove the variation of our design with trusted
time, which is called distributed-time. The command
to run, along with the expected output, is provided below.

# Prove the ‘distributed-time‘ model (5 minutes)
# Expected output:
# - Tamarin prints a "summary of summaries" at the end
# - In the summary, all lemmas are marked as "verified"
# - a ‘output_distributed.spthy‘ file under ‘./out‘
make prove MODEL=distributed-time OUT_FILE=

output_distributed.spthy

[Results] Upon completion, Tamarin prints to standard out-
put a summary where each lemma is marked either as verified,
falsified, or analysis incomplete. In our case, the experiment
can be considered successful if all lemmas are marked as ver-
ified. The output files output {centralized,distributed}.spthy,
contain the full proofs computed by Tamarin.

2) Experiment (E2) - Claim (C2): [Simulations] [20-30
human-minutes + 4.5-5 compute-hours]: The experiment con-
sists in simulating a V2X edge area with a number of
vehicles that interact with each other, some of them being
malicious. The goal of this simulation is collecting data on
revocation times for malicious vehicles, and analyzing their
distribution compared to different scenarios and attacker levels.
See Sect. VII-A for more information. The simulation runs
on a Kubernetes cluster: Our experiments have been carried
out on a large cluster with 8 nodes, spawning 400 vehicles
and with a total simulation time of around 32 hours. For
the artifact evaluation, however, we propose a scaled-down
configuration that can run locally on a Minikube instance and
spawns 50 vehicles, with a total simulation time of around
4 hours. We believe that this configuration is still acceptable
since it only affects the quantity of gathered data (i.e., number
of revocations and revocation times). The output plots will
therefore be comparable to the figures in our paper, although
less data will produce less outliers. Besides, given that there
is a certain degree of randomicity (due to simulated network
conditions), it is impossible to reproduce exactly the same
results that are shown in the paper: Each simulation, therefore,
will produce slightly different box plots.

[Preparation] In a new shell, go to the simulation
folder. Run the commands below in sequence to set up a new
Minikube cluster and build our application.

# Create a new Minikube instance (1-5 minutes)
# Expected output:
# - A success message from Minikube
# - kubectl works correctly: try running ‘kubectl get nodes‘
make run_minikube

# Build application from source (3 minutes)
# Expected output: No error messages
make build_minikube

[Execution] To run all simulations at once, run the com-
mand below. Our scripts will autonomously manage each
simulation and collect all data.
# Run all simulations (4.5-5 hours)
# Expected output:
# - a ‘simulations‘ folder created. ‘simulations/scenarios‘

contain one file for each run (16 in total)
# - (after 1 minute since start) the log file ‘simulations/

out.log‘ does not show errors and is "SLEEPING"
# - (after 2-3 minutes since start) ‘kubectl -n v2x get pods

‘ shows all pods in "Running" state
# - (after 4.5-5 hours since start) the log file ‘

simulations/out.log‘ shows "ALL DONE" as last message
# - (after 4.5-5 hours since start) the ‘simulations/results

‘ folder contains one file for each run (16 in total)
make run_simulations_background CONF=conf/ae.yaml

[Results] Assuming that all simulations have been success-
ful, the plots can be generated by running make plot_all.
The results can be then found in the simulations/figs folder.
Scenario A1 corresponds to Fig. 5, while the other scenarios
are described in our Github repository.

3) Experiment (E3) - Claim (C3): [Size of the PRL] [10-
20 human-minutes + 2.5-3.5 compute-hours]: The experiment
consists in creating a statistical model for the size of the PRL,
where the process of adding and removing pseudonyms can be
approximated to a Markov model. Then, based on this model,
we plot the expected PRL sizes in terms of percentiles of all
possible states, using different parameters such as the number
of pseudonyms, the time each pseudonym needs to stay in
the PRL (Tprl) and the share of attackers in the network. See
Sect. VII-B and Appendix B for more information.

[Preparation] In a new shell, go to the prl folder.

[Execution] All the data and plots can be computed with
one single command: make all. Alternatively, each plot can
be computed separately according to the instructions below.
# probabilities and expected revocations (1-5 seconds)
# Expected output: results printed to standard output
make probabilities

# Fig. 15: transition graph (1-5 seconds)
# Expected output:
# - no errors printed to standard output
# - ‘tikz-graph.tex‘ plot under ‘./plots‘
make tikz

# Fig 6: Series over different probabilities (15-20 min)
# Expected output:
# - no errors printed to standard output
# - plots ‘p-plot_n800_e30.{tex,png}‘ under ‘./plots‘
make p-plot

# Fig. 16: Series over different number of pseudonyms (25-35
min.)

# Expected output:
# - no errors printed to standard output
# - plots ‘n-plot_e30.{tex,png}‘ under ‘./plots‘
make n-plot

# Fig. 17: Series over different T_prl (90-140 minutes)
# Expected output:
# - no errors printed to standard output
# - plots ‘t-plot_n800.{tex,png}‘ under ‘./plots‘
make t-plot

# Fig. 7: Generate distribution for Tv (15-20 minutes)
# Expected output:
# - no errors printed to standard output
# - plots ‘tv-distribution.{tex,png}‘ under ‘./plots‘
make tv-distribution

[Results] Assuming that all commands have succeeded, all
plots can be found in the plots folder.
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