ORL-Auditor: Dataset Auditing in Offline Deep Reinforcement Learning Linkang Du, Min Chen, Mingyang Sun, Shouling Ji, Peng Cheng, Jiming Chen, and Zhikun Zhang NDSS 2024 ## Introduction of deep reinforcement learning (DRL) \triangleright Individuals gradually form expectations for stimuli in response to rewards or punishments provided by the environment (Reward r), resulting in habitual behaviors that yield maximum benefits (Actions a) ## Introduction of deep reinforcement learning (DRL) \triangleright Individuals gradually form expectations for stimuli in response to rewards or punishments provided by the environment (Reward r), resulting in habitual behaviors that yield maximum benefits (Actions a) #### At *t*-th time step: #### Agent | √ | Input observation | 0 | |--------------|-------------------|---------| | √ | Input reward | r_{i} | | \checkmark | Output action | a | #### **Environment** | √ | Input action | a_t | |--------------|--------------------|-----------| | √ | Output observation | o_{t+1} | | \checkmark | Output reward | r_{t+1} | #### The benefits of offline data **Offline** Reinforcement Learning 1. Less computing resource 2. No damage to device 3. Full use of the history records #### Possible misuse of offline data **Offline** Reinforcement Learning 1. Data Traceability 2. Profit from data theft #### 2. Problem Statement #### Dataset copyright auditing for offline DRL \triangleright Check whether the suspect model uses Dataset D_1 in its training process #### 2. Problem Statement #### **Assumptions about auditor** - ➤ Know the details of the dataset to be audited (the target dataset) - ➤ Without any auxiliary dataset - ➤ Black-box access to the suspect model #### 3. Related Work and Limitations ## Watermarking [NeurIPS '20, NeurIPS '22] Inject samples from a specific distribution prior to publishing the dataset - ➤ Can not handle datasets that have already been published - ➤Infeasible to be altered afterward ## Dataset (Membership) inference [ICLR '21, NeurIPS '20, NeurIPS '22] The models' decision boundaries or the behavioral difference between the surrogate models and the models trained on the target dataset - ➤ Difficult to determine suitable auxiliary dataset to train the surrogate model - > Hard to obtain the decision boundaries when outputs are continuous #### 3. Related Work and Limitations ## Dataset (Membership) inference [ICLR '21, NeurIPS '20, NeurIPS '22] ➤ Difficult to determine suitable auxiliary dataset to train the surrogate model The DRL model was trained by Dataset "0841" ## 3. Related Work and Limitations ## Dataset (Membership) inference [ICLR '21, NeurIPS '20, NeurIPS '22] - > Difficult to determine suitable auxiliary dataset to train the surrogate model - > Hard to define the decision boundaries when outputs are continuous | Task | Offline | Accuracy | | | | | |---------|-----------|------------------|------------------|--|--|--| | Name | Model | Training | Test | | | | | | BC | 50.09 ± 0.68 | 48.41 ± 1.87 | | | | | Lunar | BCQ | 49.84 ± 1.39 | 47.69 ± 1.45 | | | | | Lander | IQL | 49.88 ± 0.76 | 47.34 ± 1.83 | | | | | | TD3PlusBC | 50.08 ± 0.92 | 48.27 ± 1.81 | | | | | - | BC | 50.00 ± 0.63 | 46.27 ± 2.42 | | | | | Bipedal | BCQ | 49.97 ± 0.69 | 47.38 ± 2.41 | | | | | Walker | IQL | 50.17 ± 0.95 | 47.19 ± 1.90 | | | | | | TD3PlusBC | 49.87 ± 0.94 | 45.48 ± 1.46 | | | | | - | BC | 50.44 ± 0.64 | 46.74 ± 2.37 | | | | | Ant | BCQ | 50.22 ± 0.52 | 45.38 ± 2.16 | | | | | Ant | IQL | 50.33 ± 0.35 | 45.89 ± 1.90 | | | | | | TD3PlusBC | 50.13 ± 0.67 | 45.03 ± 1.55 | | | | #### Intuitive explanation of ORL-Auditor The middle surface is **the cumulative rewards of the state-action pairs from a dataset**. The auditor outputs a positive result if the cumulative rewards of a suspect model's state-action pairs are between the two outer surfaces #### **Workflow of ORL-Auditor** - > Step 1: Model Preparation - ➤ Step 2: Cumulative Reward Collection - ➤ Step 3: Auditing Process - ✓ Auditing Basis Q(s, a) - ✓ Auditing Boundary Δ #### **Workflow of ORL-Auditor** - ➤ Step 1: Model Preparation - ➤ Step 2: Cumulative Reward Collection - ➤ Step 3: Auditing Process - ✓ Auditing Basis Q(s, a) - ✓ Auditing Boundary Δ Train the shadow DRL models (Δ) and the critic model based on the target dataset (Q) #### **Workflow of ORL-Auditor** - > Step 1: Model Preparation - ➤ Step 2: Cumulative Reward Collection - ➤ Step 3: Auditing Process - ✓ Auditing Basis Q(s, a) - ✓ Auditing Boundary Δ Collect the predicted cumulative rewards for the state-action pairs of the shadow models (Δ) and the suspect model #### **Workflow of ORL-Auditor** - > Step 1: Model Preparation - ➤ Step 2: Cumulative Reward Collection - ➤ Step 3: Auditing Process - \checkmark Auditing Basis Q(s, a) - ✓ Auditing Boundary Δ Utilize the element-wise mean of the predicted cumulative rewards of the shadow models as the used auditing basis (Instead of the Q(s, a) directly from the critic model) ## **Overview of the used environments** | Task Name | State Shape | Action Shape | | |----------------|---------------------|-------------------|--| | Lunar Lander | Continuous(6-dim) | Continuous(2-dim) | | | (Continuous) | Discrete(2-dim) | Commuous(2-um) | | | Bipedal Walker | Continuous(24-dim) | Continuous(4-dim) | | | Ant | Continuous(111-dim) | Continuous(8-dim) | | ## Main steps in dataset generation and offline DRL model preparation ## **Overall auditing performance** | Task
Name | Offline
Model | L1 Norm | | n L2 Norm Cosine Distance | | | | erstein
tance | | |--------------|------------------|------------------|-------------------|---------------------------|-------------------|------------------|-------------------|------------------|-------------------| | | Model – | TPR | TNR | TPR | TNR | TPR | TNR | TPR | TNR | | | BC | 99.01±0.46 | 100.00 ± 0.00 | 96.96±0.73 | 100.00 ± 0.00 | 96.93±0.77 | 100.00 ± 0.00 | 98.40±0.74 | 99.94±0.16 | | Lunar | BCQ | 98.29 ± 1.14 | 100.00 ± 0.00 | 96.03 ± 1.15 | 100.00 ± 0.00 | 95.97 ± 1.07 | 99.99 ± 0.04 | 97.57 ± 1.17 | 99.91 ± 0.14 | | Lander | IQL | 98.61 ± 1.51 | 99.91 ± 0.32 | 97.52 ± 2.51 | 99.97 ± 0.12 | 97.49 ± 2.56 | 99.92 ± 0.19 | 98.32 ± 1.79 | 97.10 ± 5.66 | | | TD3PlusBC | 98.29 ± 2.04 | 99.48 ± 0.79 | 96.35 ± 3.01 | 99.89 ± 0.22 | 96.27 ± 3.16 | 99.91 ± 0.23 | 98.53 ± 1.25 | 95.59 ± 3.77 | | | BC | 99.20±1.47 | 100.00 ± 0.00 | 98.40±2.70 | 100.00 ± 0.00 | 98.56 ± 2.68 | 100.00 ± 0.00 | 99.31±1.32 | 100.00 ± 0.00 | | Bipedal | BCQ | 99.52 ± 0.77 | 100.00 ± 0.00 | 98.16 ± 2.89 | 100.00 ± 0.00 | 99.87 ± 0.15 | 100.00 ± 0.00 | 99.89 ± 0.13 | 100.00 ± 0.00 | | Walker | IQL | 95.10 ± 7.41 | 100.00 ± 0.00 | 95.04 ± 5.45 | 100.00 ± 0.00 | 99.84 ± 0.32 | 100.00 ± 0.00 | 95.01 ± 6.72 | 100.00 ± 0.00 | | | TD3PlusBC | $99.36{\pm}1.28$ | 94.77 ± 19.42 | 97.15 ± 5.71 | 93.36 ± 21.46 | 96.96 ± 5.82 | 91.98 ± 21.75 | 98.08 ± 3.84 | 88.26 ± 25.34 | | Ant | BC | 97.42±1.66 | 99.94 ± 0.11 | 96.48±1.66 | 99.90 ± 0.36 | 99.20±1.08 | 85.66 ± 28.23 | 98.00±1.19 | 99.92±0.14 | | | BCQ | 97.17 ± 2.96 | 99.80 ± 0.43 | 95.68 ± 2.54 | 99.84 ± 0.43 | 99.66 ± 0.43 | 86.70 ± 26.89 | 98.67 ± 1.65 | 99.79 ± 0.46 | | | IQL | 97.20 ± 2.33 | 99.66 ± 0.73 | 96.61 ± 2.50 | 99.69 ± 0.59 | 99.57 ± 0.79 | 86.25 ± 27.90 | 99.36 ± 0.42 | 99.63 ± 0.78 | | | TD3PlusBC | 98.53 ± 1.80 | 99.18 ± 1.72 | 97.17±1.79 | 99.35 ± 1.74 | 99.72 ± 0.40 | 87.79 ± 26.43 | 99.25±1.24 | 99.14 \pm 1.81 | - ➤ **Distance metrics:** Different auditing accuracy over four distance metrics - \triangleright Hypothesis testing: The auditing accuracy as determined by Grubbs' test outperforms that of the 3σ principle #### Visualization of cumulative rewards - > Cumulative rewards: The cumulative rewards reflect the differences in models' state-action pairs - > **Difference in trajectories:** The distribution of points varies on the different trajectories ## Hyperparameter study (Shadow models' amount) - > Benefits of more shadow models: The auditing accuracy increases with a larger amount of shadow models - > Saturation point: There exists a saturation point for auditing accuracy with the expansion of shadow models ## Hyperparameter study (Significance level) - > For a complicated task, we recommend the auditor to select a large significance level - For the suspect models with low performance, ORL-Auditor should adopt a large significance level ## Hyperparameter study (Trajectory size) - > Benefits of larger trajectory size: ORL-Auditor tends to achieve a higher accuracy with a larger trajectory size - A small trajectory size achieves better results under some tasks, since the front states of some trajectories can sufficiently reflect behavioral preference of the model [Paine, et al. (2020)] ## Robustness (Ensemble architecture [USENIX Security '22, PETS '23]) | Task | Task Offline
Name Model | L1 Norm | | L2 Norm | | Cosine
Distance | | Wasserstein
Distance | | |---------|----------------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------------|-------------------| | Name | | TPR | TNR | TPR | TNR | TPR | TNR | TPR | TNR | | | BC | 100.00 ± 0.00 | 100.00 ± 0.00 | 99.20 ± 0.98 | 100.00 ± 0.00 | 99.20 ± 0.98 | 100.00 ± 0.00 | 99.60±0.80 | 99.90±0.44 | | Lunar | BCQ | 99.60 ± 0.80 | 100.00 ± 0.00 | 98.00 ± 2.19 | 100.00 ± 0.00 | 98.00 ± 2.19 | 100.00 ± 0.00 | 99.60 ± 0.80 | 100.00 ± 0.00 | | Lander | IQL | 100.00 ± 0.00 | 99.90 ± 0.44 | 99.20 ± 0.98 | 100.00 ± 0.00 | 99.60 ± 0.80 | 99.90 ± 0.44 | 99.60 ± 0.80 | 97.60 ± 4.27 | | | TD3PlusBC | 100.00 ± 0.00 | 99.30 ± 0.95 | 99.60 ± 0.80 | 99.90 ± 0.44 | 99.60 ± 0.80 | 99.80 ± 0.60 | 99.60 ± 0.80 | 95.80 ± 3.57 | | | BC | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | | Bipedal | BCQ | 100.00 ± 0.00 | Walker | IQL | 100.00 ± 0.00 | | TD3PlusBC | 100.00 ± 0.00 | 94.90 ± 19.07 | 100.00 ± 0.00 | 93.80 ± 21.63 | 100.00 ± 0.00 | 92.70 ± 21.62 | 100.00 ± 0.00 | 89.20 ± 23.94 | | Ant | BC | 99.60 ± 0.80 | 100.00 ± 0.00 | 99.60 ± 0.80 | 99.90±0.44 | 99.60 ± 0.80 | 83.20±31.99 | 99.20±1.60 | 100.00 ± 0.00 | | | BCQ | 100.00 ± 0.00 | 99.70 ± 0.71 | 99.60 ± 0.80 | 99.80 ± 0.60 | 100.00 ± 0.00 | 85.70 ± 28.31 | 100.00 ± 0.00 | 99.70 ± 0.71 | | | IQL | 100.00 ± 0.00 | 99.80 ± 0.60 | 99.20 ± 0.98 | 99.70 ± 0.71 | 99.20 ± 0.98 | 86.80 ± 28.32 | 100.00 ± 0.00 | 99.80 ± 0.60 | | | TD3PlusBC | 99.60 ± 0.80 | 99.30 ± 1.82 | 100.00 ± 0.00 | 99.40 ± 2.20 | 100.00 ± 0.00 | 87.80 ± 25.87 | 99.60 ± 0.80 | 98.50 ± 3.79 | | | BC | 85.00±25.98 | 100.00 ± 0.00 | 84.50±25.71 | 100.00 ± 0.00 | 94.00±10.39 | 67.50 ± 43.20 | 87.00 ± 21.38 | 100.00 ± 0.00 | | Half | BCQ | 91.00 ± 15.59 | 100.00 ± 0.00 | 89.00 ± 16.76 | 100.00 ± 0.00 | 95.00 ± 8.66 | 67.17 ± 42.30 | 93.00 ± 12.12 | 100.00 ± 0.00 | | Cheetah | IQL | 90.00 ± 12.81 | 100.00 ± 0.00 | 86.50 ± 16.70 | 100.00 ± 0.00 | 94.50 ± 9.53 | 71.00 ± 41.37 | 91.50 ± 12.52 | 100.00 ± 0.00 | | | TD3PlusBC | 61.50 ± 20.32 | 100.00 ± 0.00 | 77.00 ± 19.42 | 100.00 ± 0.00 | 95.00 ± 8.66 | 65.67 ± 41.28 | 52.00 ± 33.26 | 100.00 ± 0.00 | - > ORL-Auditor maintains a high level of auditing accuracy - > Integrating more distance metrics in the auditing process can enhance the robustness ## **Robustness (Action distortion)** - > ORL-Auditor can resist the potential action distortion from the suspect model - > ORL-Auditor with a single distance metric faces limitations for a strong distortion #### 6. Conclusion ## **Highlights** - ➤ ORL-Auditor is the **first approach to conduct trajectory-level dataset auditing** for offline DRL models - > We conclude some useful observations for adopting ORL-Auditor - ➤ We apply ORL-Auditor to audit the models trained on the open-source datasets from Google and DeepMind, where all TPR and TNR results are superior to 95% #### **Limitations and Future Work** - The accuracy of ORL-Auditor decreases when the significance level downs to 0.001. Thus, it is interesting to enhance ORL-Auditor to satisfy stricter auditing demands in the future - ➤ORL-Auditor based on a **single distance metric** may not be sufficiently robust to strong distortion #### **Overview of NeSC** NeSC is affiliated with the College of Control Science and Engineering, Zhejiang University (ZJU). Currently, NeSC has 24 members, including 9 professors and 15 researchers/associate researchers/engineers. We are hiring, please refer to http://nesc.zju.edu.cn for more information. #### **Director** **Prof. Youxian Sun** sunyx@zju.edu.cn **Prof. Jiming Chen**cjm@zju.edu.cn lunarheart@zju.edu.cn # **Current Research Areas** #### 1. Unmanned Systems Selected publications ACM MM '22: 3D body reconstruction ACM MM '22: Multiple Objects Tracking CVPR '23: Neural radiance fields **CVPR '23**: Adversarial attack IEEE ICRA '23: Autonomous 3D reconstruction **IEEE ICRA '23**: Grasping Learning AAAI '24: 3D construction from video IEEE ICRA '24: Grasping Learning #### 2. IoT & Sensing Selected publications **PNAS '19**: Multilayer networks Nature Comm. '21: Interaction prediction **IEEE JSAC '22**: Rate-splitting multiple access IEEE JSAC '22: Semantic-preserved communication **IEEE TMC '22**: Cloud-edge computing **IEEE COMST '22**: Collaborative sensing AAAI '23: Anomaly detection in time series **USENIX Security '23**: Trajectory synthesis #### 3. Network and System Security Selected publications ACM CCS '18: Privacy-preserving marginal release ACM CCS '21: Privacy-preserving range query **IEEE S&P '22**: Copyright protection of DNNs **USENIX Security '23**: Graph synthesis ACM ACSAC '23: Semantics Analyzing in ICS (Distinguished Paper Award) NDSS '24: Kernel fuzzing NDSS '24: Copyright protection of dataset IEEE TIFS, IEEE TDSC, ... ••• # ORL-Auditor: Dataset Auditing in Offline Deep Reinforcement Learning Get the full paper © Linkang Du, Min Chen, Mingyang Sun, Shouling Ji, Peng Cheng, Jiming Chen, and Zhikun Zhang