

ORL-Auditor: Dataset Auditing in Offline Deep Reinforcement Learning

Linkang Du, Min Chen, Mingyang Sun, Shouling Ji, Peng Cheng, Jiming Chen, and Zhikun Zhang

NDSS 2024

Introduction of deep reinforcement learning (DRL)

 \triangleright Individuals gradually form expectations for stimuli in response to rewards or punishments provided by the environment (Reward r), resulting in habitual behaviors that yield maximum benefits (Actions a)

Introduction of deep reinforcement learning (DRL)

 \triangleright Individuals gradually form expectations for stimuli in response to rewards or punishments provided by the environment (Reward r), resulting in habitual behaviors that yield maximum benefits (Actions a)

At *t*-th time step:

Agent

√	Input observation	0
√	Input reward	r_{i}
\checkmark	Output action	a

Environment

√	Input action	a_t
√	Output observation	o_{t+1}
\checkmark	Output reward	r_{t+1}

The benefits of offline data

Offline Reinforcement Learning

1. Less computing resource

2. No damage to device

3. Full use of the history records

Possible misuse of offline data

Offline Reinforcement Learning

1. Data Traceability

2. Profit from data theft

2. Problem Statement

Dataset copyright auditing for offline DRL

 \triangleright Check whether the suspect model uses Dataset D_1 in its training process

2. Problem Statement

Assumptions about auditor

- ➤ Know the details of the dataset to be audited (the target dataset)
- ➤ Without any auxiliary dataset
- ➤ Black-box access to the suspect model

3. Related Work and Limitations

Watermarking [NeurIPS '20, NeurIPS '22]

Inject samples from a specific distribution prior to publishing the dataset

- ➤ Can not handle datasets that have already been published
- ➤Infeasible to be altered afterward

Dataset (Membership) inference [ICLR '21, NeurIPS '20, NeurIPS '22]

The models' decision boundaries or the behavioral difference between the surrogate models and the models trained on the target dataset

- ➤ Difficult to determine suitable auxiliary dataset to train the surrogate model
- > Hard to obtain the decision boundaries when outputs are continuous

3. Related Work and Limitations

Dataset (Membership) inference [ICLR '21, NeurIPS '20, NeurIPS '22]

➤ Difficult to determine suitable auxiliary dataset to train the surrogate model

The DRL model was trained by Dataset "0841"

3. Related Work and Limitations

Dataset (Membership) inference [ICLR '21, NeurIPS '20, NeurIPS '22]

- > Difficult to determine suitable auxiliary dataset to train the surrogate model
- > Hard to define the decision boundaries when outputs are continuous

Task	Offline	Accuracy				
Name	Model	Training	Test			
	BC	50.09 ± 0.68	48.41 ± 1.87			
Lunar	BCQ	49.84 ± 1.39	47.69 ± 1.45			
Lander	IQL	49.88 ± 0.76	47.34 ± 1.83			
	TD3PlusBC	50.08 ± 0.92	48.27 ± 1.81			
-	BC	50.00 ± 0.63	46.27 ± 2.42			
Bipedal	BCQ	49.97 ± 0.69	47.38 ± 2.41			
Walker	IQL	50.17 ± 0.95	47.19 ± 1.90			
	TD3PlusBC	49.87 ± 0.94	45.48 ± 1.46			
-	BC	50.44 ± 0.64	46.74 ± 2.37			
Ant	BCQ	50.22 ± 0.52	45.38 ± 2.16			
Ant	IQL	50.33 ± 0.35	45.89 ± 1.90			
	TD3PlusBC	50.13 ± 0.67	45.03 ± 1.55			

Intuitive explanation of ORL-Auditor

The middle surface is **the cumulative rewards of the state-action pairs from a dataset**. The auditor outputs a positive result if the cumulative rewards of a suspect model's state-action pairs are between the two outer surfaces

Workflow of ORL-Auditor

- > Step 1: Model Preparation
- ➤ Step 2: Cumulative Reward Collection
- ➤ Step 3: Auditing Process

- ✓ Auditing Basis Q(s, a)
- ✓ Auditing Boundary Δ

Workflow of ORL-Auditor

- ➤ Step 1: Model Preparation
- ➤ Step 2: Cumulative Reward Collection
- ➤ Step 3: Auditing Process

- ✓ Auditing Basis Q(s, a)
- ✓ Auditing Boundary Δ

Train the shadow DRL models (Δ) and the critic model based on the target dataset (Q)

Workflow of ORL-Auditor

- > Step 1: Model Preparation
- ➤ Step 2: Cumulative Reward Collection
- ➤ Step 3: Auditing Process

- ✓ Auditing Basis Q(s, a)
- ✓ Auditing Boundary Δ

Collect the predicted cumulative rewards for the state-action pairs of the shadow models (Δ) and the suspect model

Workflow of ORL-Auditor

- > Step 1: Model Preparation
- ➤ Step 2: Cumulative Reward Collection
- ➤ Step 3: Auditing Process

- \checkmark Auditing Basis Q(s, a)
- ✓ Auditing Boundary Δ

Utilize the element-wise mean of the predicted cumulative rewards of the shadow models as the used auditing basis (Instead of the Q(s, a) directly from the critic model)

Overview of the used environments

Task Name	State Shape	Action Shape	
Lunar Lander	Continuous(6-dim)	Continuous(2-dim)	
(Continuous)	Discrete(2-dim)	Commuous(2-um)	
Bipedal Walker	Continuous(24-dim)	Continuous(4-dim)	
Ant	Continuous(111-dim)	Continuous(8-dim)	

Main steps in dataset generation and offline DRL model preparation

Overall auditing performance

Task Name	Offline Model	L1 Norm		n L2 Norm Cosine Distance				erstein tance	
	Model –	TPR	TNR	TPR	TNR	TPR	TNR	TPR	TNR
	BC	99.01±0.46	100.00 ± 0.00	96.96±0.73	100.00 ± 0.00	96.93±0.77	100.00 ± 0.00	98.40±0.74	99.94±0.16
Lunar	BCQ	98.29 ± 1.14	100.00 ± 0.00	96.03 ± 1.15	100.00 ± 0.00	95.97 ± 1.07	99.99 ± 0.04	97.57 ± 1.17	99.91 ± 0.14
Lander	IQL	98.61 ± 1.51	99.91 ± 0.32	97.52 ± 2.51	99.97 ± 0.12	97.49 ± 2.56	99.92 ± 0.19	98.32 ± 1.79	97.10 ± 5.66
	TD3PlusBC	98.29 ± 2.04	99.48 ± 0.79	96.35 ± 3.01	99.89 ± 0.22	96.27 ± 3.16	99.91 ± 0.23	98.53 ± 1.25	95.59 ± 3.77
	BC	99.20±1.47	100.00 ± 0.00	98.40±2.70	100.00 ± 0.00	98.56 ± 2.68	100.00 ± 0.00	99.31±1.32	100.00 ± 0.00
Bipedal	BCQ	99.52 ± 0.77	100.00 ± 0.00	98.16 ± 2.89	100.00 ± 0.00	99.87 ± 0.15	100.00 ± 0.00	99.89 ± 0.13	100.00 ± 0.00
Walker	IQL	95.10 ± 7.41	100.00 ± 0.00	95.04 ± 5.45	100.00 ± 0.00	99.84 ± 0.32	100.00 ± 0.00	95.01 ± 6.72	100.00 ± 0.00
	TD3PlusBC	$99.36{\pm}1.28$	94.77 ± 19.42	97.15 ± 5.71	93.36 ± 21.46	96.96 ± 5.82	91.98 ± 21.75	98.08 ± 3.84	88.26 ± 25.34
Ant	BC	97.42±1.66	99.94 ± 0.11	96.48±1.66	99.90 ± 0.36	99.20±1.08	85.66 ± 28.23	98.00±1.19	99.92±0.14
	BCQ	97.17 ± 2.96	99.80 ± 0.43	95.68 ± 2.54	99.84 ± 0.43	99.66 ± 0.43	86.70 ± 26.89	98.67 ± 1.65	99.79 ± 0.46
	IQL	97.20 ± 2.33	99.66 ± 0.73	96.61 ± 2.50	99.69 ± 0.59	99.57 ± 0.79	86.25 ± 27.90	99.36 ± 0.42	99.63 ± 0.78
	TD3PlusBC	98.53 ± 1.80	99.18 ± 1.72	97.17±1.79	99.35 ± 1.74	99.72 ± 0.40	87.79 ± 26.43	99.25±1.24	99.14 \pm 1.81

- ➤ **Distance metrics:** Different auditing accuracy over four distance metrics
- \triangleright Hypothesis testing: The auditing accuracy as determined by Grubbs' test outperforms that of the 3σ principle

Visualization of cumulative rewards

- > Cumulative rewards: The cumulative rewards reflect the differences in models' state-action pairs
- > **Difference in trajectories:** The distribution of points varies on the different trajectories

Hyperparameter study (Shadow models' amount)

- > Benefits of more shadow models: The auditing accuracy increases with a larger amount of shadow models
- > Saturation point: There exists a saturation point for auditing accuracy with the expansion of shadow models

Hyperparameter study (Significance level)

- > For a complicated task, we recommend the auditor to select a large significance level
- For the suspect models with low performance, ORL-Auditor should adopt a large significance level

Hyperparameter study (Trajectory size)

- > Benefits of larger trajectory size: ORL-Auditor tends to achieve a higher accuracy with a larger trajectory size
- A small trajectory size achieves better results under some tasks, since the front states of some trajectories can sufficiently reflect behavioral preference of the model [Paine, et al. (2020)]

Robustness (Ensemble architecture [USENIX Security '22, PETS '23])

Task	Task Offline Name Model	L1 Norm		L2 Norm		Cosine Distance		Wasserstein Distance	
Name		TPR	TNR	TPR	TNR	TPR	TNR	TPR	TNR
	BC	100.00 ± 0.00	100.00 ± 0.00	99.20 ± 0.98	100.00 ± 0.00	99.20 ± 0.98	100.00 ± 0.00	99.60±0.80	99.90±0.44
Lunar	BCQ	99.60 ± 0.80	100.00 ± 0.00	98.00 ± 2.19	100.00 ± 0.00	98.00 ± 2.19	100.00 ± 0.00	99.60 ± 0.80	100.00 ± 0.00
Lander	IQL	100.00 ± 0.00	99.90 ± 0.44	99.20 ± 0.98	100.00 ± 0.00	99.60 ± 0.80	99.90 ± 0.44	99.60 ± 0.80	97.60 ± 4.27
	TD3PlusBC	100.00 ± 0.00	99.30 ± 0.95	99.60 ± 0.80	99.90 ± 0.44	99.60 ± 0.80	99.80 ± 0.60	99.60 ± 0.80	95.80 ± 3.57
	BC	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00
Bipedal	BCQ	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00				
Walker	IQL	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00				
	TD3PlusBC	100.00 ± 0.00	94.90 ± 19.07	100.00 ± 0.00	93.80 ± 21.63	100.00 ± 0.00	92.70 ± 21.62	100.00 ± 0.00	89.20 ± 23.94
Ant	BC	99.60 ± 0.80	100.00 ± 0.00	99.60 ± 0.80	99.90±0.44	99.60 ± 0.80	83.20±31.99	99.20±1.60	100.00 ± 0.00
	BCQ	100.00 ± 0.00	99.70 ± 0.71	99.60 ± 0.80	99.80 ± 0.60	100.00 ± 0.00	85.70 ± 28.31	100.00 ± 0.00	99.70 ± 0.71
	IQL	100.00 ± 0.00	99.80 ± 0.60	99.20 ± 0.98	99.70 ± 0.71	99.20 ± 0.98	86.80 ± 28.32	100.00 ± 0.00	99.80 ± 0.60
	TD3PlusBC	99.60 ± 0.80	99.30 ± 1.82	100.00 ± 0.00	99.40 ± 2.20	100.00 ± 0.00	87.80 ± 25.87	99.60 ± 0.80	98.50 ± 3.79
	BC	85.00±25.98	100.00 ± 0.00	84.50±25.71	100.00 ± 0.00	94.00±10.39	67.50 ± 43.20	87.00 ± 21.38	100.00 ± 0.00
Half	BCQ	91.00 ± 15.59	100.00 ± 0.00	89.00 ± 16.76	100.00 ± 0.00	95.00 ± 8.66	67.17 ± 42.30	93.00 ± 12.12	100.00 ± 0.00
Cheetah	IQL	90.00 ± 12.81	100.00 ± 0.00	86.50 ± 16.70	100.00 ± 0.00	94.50 ± 9.53	71.00 ± 41.37	91.50 ± 12.52	100.00 ± 0.00
	TD3PlusBC	61.50 ± 20.32	100.00 ± 0.00	77.00 ± 19.42	100.00 ± 0.00	95.00 ± 8.66	65.67 ± 41.28	52.00 ± 33.26	100.00 ± 0.00

- > ORL-Auditor maintains a high level of auditing accuracy
- > Integrating more distance metrics in the auditing process can enhance the robustness

Robustness (Action distortion)

- > ORL-Auditor can resist the potential action distortion from the suspect model
- > ORL-Auditor with a single distance metric faces limitations for a strong distortion

6. Conclusion

Highlights

- ➤ ORL-Auditor is the **first approach to conduct trajectory-level dataset auditing** for offline DRL models
- > We conclude some useful observations for adopting ORL-Auditor
- ➤ We apply ORL-Auditor to audit the models trained on the open-source datasets from Google and DeepMind, where all TPR and TNR results are superior to 95%

Limitations and Future Work

- The accuracy of ORL-Auditor decreases when the significance level downs to 0.001. Thus, it is interesting to enhance ORL-Auditor to satisfy stricter auditing demands in the future
- ➤ORL-Auditor based on a **single distance metric** may not be sufficiently robust to strong distortion

Overview of NeSC

NeSC is affiliated with the College of Control Science and Engineering, Zhejiang University (ZJU). Currently, NeSC has 24 members, including 9 professors and 15 researchers/associate researchers/engineers.

We are hiring, please refer to http://nesc.zju.edu.cn for more information.

Director

Prof. Youxian Sun sunyx@zju.edu.cn

Prof. Jiming Chencjm@zju.edu.cn lunarheart@zju.edu.cn

Current Research Areas

1. Unmanned Systems

Selected publications

ACM MM '22: 3D body reconstruction

ACM MM '22: Multiple Objects Tracking

CVPR '23: Neural radiance fields

CVPR '23: Adversarial attack

IEEE ICRA '23: Autonomous 3D reconstruction

IEEE ICRA '23: Grasping Learning

AAAI '24: 3D construction from video

IEEE ICRA '24: Grasping Learning

2. IoT & Sensing

Selected publications

PNAS '19: Multilayer networks

Nature Comm. '21: Interaction prediction

IEEE JSAC '22: Rate-splitting multiple access

IEEE JSAC '22: Semantic-preserved communication

IEEE TMC '22: Cloud-edge computing

IEEE COMST '22: Collaborative sensing

AAAI '23: Anomaly detection in time series

USENIX Security '23: Trajectory synthesis

3. Network and System Security

Selected publications

ACM CCS '18: Privacy-preserving marginal release

ACM CCS '21: Privacy-preserving range query

IEEE S&P '22: Copyright protection of DNNs

USENIX Security '23: Graph synthesis

ACM ACSAC '23: Semantics Analyzing in ICS

(Distinguished Paper Award)

NDSS '24: Kernel fuzzing

NDSS '24: Copyright protection of dataset

IEEE TIFS, IEEE TDSC, ...

•••

ORL-Auditor: Dataset Auditing in Offline Deep Reinforcement Learning

Get the full paper ©

Linkang Du, Min Chen, Mingyang Sun, Shouling Ji, Peng Cheng, Jiming Chen, and Zhikun Zhang