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Abstract—Nowadays, it is common to release audio content to
the public, for social sharing or commercial purposes. However,
with the rise of voice cloning technology, attackers have the
potential to easily impersonate a specific person by utilizing his
publicly released audio without any permission. Therefore, it
becomes significant to detect any potential misuse of the released
audio content and protect its timbre from being impersonated.

To this end, we introduce a novel concept, “Timbre Water-
marking”, which embeds watermark information into the target
individual’s speech, eventually defeating the voice cloning attacks.
However, there are two challenges: 1) robustness: the attacker can
remove the watermark with common speech preprocessing before
launching voice cloning attacks; 2) generalization: there are a
variety of voice cloning approaches for the attacker to choose,
making it hard to build a general defense against all of them.

To address these challenges, we design an end-to-end voice
cloning-resistant detection framework. The core idea of our solu-
tion is to embed the watermark into the frequency domain, which
is inherently robust against common data processing methods.
A repeated embedding strategy is adopted to further enhance
the robustness. To acquire generalization across different voice
cloning attacks, we modulate their shared process and integrate
it into our framework as a distortion layer. Experiments demon-
strate that the proposed timbre watermarking can defend against
different voice cloning attacks, exhibit strong resistance against
various adaptive attacks (e.g., reconstruction-based removal at-
tacks, watermark overwriting attacks), and achieve practicality
in real-world services such as PaddleSpeech, Voice-Cloning-App,
and so-vits-sve. In addition, ablation studies are also conducted
to verify the effectiveness of our design. Some audio samples are
available at https://timbrewatermarking.github.io/samples.

I. INTRODUCTION

“The voice is an instrument that you can learn to
play and use in a way that is uniquely yours.”

— Kristin Linklater

We are already in the era of the Ear Economy, where audio
content has become increasingly popular in today’s digital
landscape. Many individuals enjoy sharing their voice artworks
(e.g., music recordings, audio books, soundtracks) on public
platforms, such as Spotify [1], Audible [2], Himalaya [3],
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Fig. 1: The process of embedding and extracting “Timbre
Watermarking” for detecting voice cloning attacks.

SoundCloud [4], etc. Those services have significantly changed
the way people consume content for entertainment and gaining
knowledge.

Unfortunately, the rise of the voice cloning technology [5],
[6], [7], [8] exposes new security challenges to the audio
content sharing services. Recent advances in voice cloning
leverage deep learning to accurately synthesize human voices
indistinguishable from the target ones [9], [10]. This tech-
nology has been widely applied in different scenarios: in the
entertainment industry, it can be used to create synthetic voices
for characters in movies and video games; in healthcare, it
can generate voices for patients who have lost their ability to
speak due to illness or injury. However, an adversary can also
exploit this technology to generate voices of other persons’
timbre (i.e., patterns, intonations, and other characteristics of
human speech) for illegal or unauthorized purposes. This is
dubbed voice cloning attack, which can cause various severe
consequences, such as financial losses, reputation damage, and
copyright infringement. For instance, a clip on YouTube shows
that Biden announced a plan of launching a unclear attack
against Russia, which was created by voice cloning and could
cause public panic [11].

Therefore, unauthorized synthesis of valuable timbre shall
be not acceptable, and it is crucial to establish safeguards
against the potential misuse of voice cloning technology.
Several attempts have been made to tackle this issue. However,
they all suffer from some limitations. First, passive detection
methods [12], [13], [14], [15] have been developed to identify
whether a voice is produced using voice cloning. However,
advanced voice cloning techniques make these methods obso-
lete, and create a perpetual arms race between voice synthesis
and detection techniques [16]. Second, another line of defense
strategies are introduced to proactively prevent voice cloning.
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Specifically, Huang er al. [17] proposed to add adversarial
noise to the target voice, causing the attacker to create syn-
thetic voices with totally different timbre from the target one.
However, this solution has two practical issues: (1) it needs
to add significant amounts of noise to achieve the protection,
which can obscure the original voice and affect its fidelity; (2)
it needs domain knowledge about the specific voice cloning
approach adopted by the attacker, and cannot be generalized
to other attack approaches.

To address the limitations of existing solutions, motivated
by the recent deep model watermarking technology [18], [19],
we introduce a novel concept called “Timbre Watermarking”
to protect the released timbre against voice cloning. As shown
in Fig. 1, we proactively embed watermark information (e.g.,
ownership) into the target voice before releasing it to the
public. To ensure its normal usage, the watermarked voice
is indistinguishable from the original one and users will not
notice its existence. An attacker may collect such watermarked
voice without permission, and then apply a voice cloning
method to generate synthetic voice with the same timbre but
different content or semantic information. By extracting the
watermark information from the synthetic voice, we are able
to detect the fake speech and track its original timber reliably.

Current audio watermarking methods have demonstrated
success in preserving fidelity while guaranteeing normal ro-
bustness (e.g., against desynchronization/recapturing attacks
[20], [21]). However, they cannot be applied for timbre water-
marking, due to their incapability of handling voice cloning
attacks (explained in Sec. II-C). Here, we conclude two
challenges in realizing timbre watermarking: (1) Generaliza-
tion. We do not know how the attacker would launch the
voice cloning attacks, including data collection, generative
model, cloning strategies, etc. It is difficult to embed a timbre
watermark that can resist all types of possible voice cloning
strategies. (2) Robustness. The attacker may attempt to remove
the potential watermarks by preprocessing the voice. For
instance, he can crop the voice to randomize the speech length
and complicate the resynchronization for watermark extraction;
he can also compress the audio signals to damage the hidden
watermark. Although a number of prior works have proposed
methods to watermark audio works [22], [21], [23], [24],
[25], as they are not targeting the voice cloning attacks, they
are not robust and can be easily removed by the attacker.
In Sec. VI-A we experimentally validate the limitations of
these existing watermark solutions: the indeterminate length
and scale of the synthesized speech will totally fail their
resynchronization process before extracting, which usually
depends on the synchronization codes, shifting mechanisms,
or time scaling-invariant features.

In this paper, we propose a novel end-to-end timbre wa-
termarking framework to defeat voice cloning attacks. Fig. 4
shows the overview of our methodology. Specifically, (1) to
enhance the robustness, we propose to embed the watermark
information into the transform domain. We adopt the Short-
Time Fourier Transform (STFT) scheme to transfer the audio
wave and embed the watermark into its frequency domain
(vertical direction), which is inherently robust against voice
processing operations along the time domain (horizontal di-
rection). To further strengthen the watermark robustness, we
repeat the embedding strategy along the horizontal direc-

tion, eliminating the dependency on the time domain again.
Symmetrically, during the extraction stage, we average the
extracted watermark along the horizontal direction. (2) To en-
hance the generalization, we investigate existing popular voice
cloning strategies and find some common-used processing
operations, such as scale modification, normalization, phase
information discarding, and waveform reconstruction. Then,
we insert these processes as a distortion layer between the
watermark embedding and extraction modules and train them
together in an end-to-end way. This distortion layer provides
other modules the awareness of different processing operations
when verifying the watermarks. After training, we discard the
distortion layer and leverage the other modules for watermark
embedding and extraction, respectively.

Extensive experiments demonstrate that our proposed
methodology does not degrade the quality of the original
timbre while guaranteeing the generalization and robustness
against different existing and adaptive voice cloning attacks.
Besides, we verify its effectiveness with some real-world
commercial services, including PaddleSpeech [26], Voice-
Cloning-App [27], and so-vits-svc [28]. We also conduct some
ablation studies to evaluate our design, and provide some
discussions and potential insights. We believe our proposed
“Timbre Watermarking” can shed light on the field of illegal
voice cloning detection and timbre protection.

In summary, the primary contributions of our work are
concluded as follows:

e We point out that timbre rights are at significant risk of being
compromised by voice cloning attacks and introduce a novel
concept of “Timbre Watermarking” as a viable defense.

e To achieve “Timbre Watermarking”, we propose an end-to-
end voice cloning-resistant audio watermarking framework.
Innovatively, we repeatedly embed watermark information
in the frequency domain to resist common audio processing
and modulate the shared process of different voice cloning
attacks as a distortion layer to obtain generalization.

e Extensive experiments demonstrate the generalization and
robustness of our proposed method against different voice
cloning attacks including the adaptive ones. In addition, our
method is applicable in real-world services, e.g., Paddle-
Speech, Voice-Cloning-App, and so-vits-svc.

II. BACKGROUND AND RELATED WORKS

In this section, we first describe the common methods
for voice cloning, followed by some countermeasures against
voice cloning attacks. Finally, we provide some traditional
audio watermarking methods and point out their limitations.

A. Voice Cloning

Voice cloning refers to the process of creating a synthetic
voice that closely resembles the voice/timbre of a target person.
This is mainly achieved by two mainstream techniques, namely
voice conversion [5], [6] and text-to-speech (TTS) generation
[71, [8]. Specifically, voice conversion is a technique that
modifies the speech signal of an arbitrary speaker to make
it sound like the target speaker’s voice while preserving the
linguistic content of the original message. Comparably, TTS
is a more flexible method to generate the desired speech of any
given text without the need of the original speech for transfer.



""Hello world" T9+Xt
Text Processing :
"HHAHL OW.WERLD." v

; e Tacotron2
Acoustic Model ¢ Fastspeech2

Ll = L=

¢ Griffin-Lim
@ Vocoder * Hifi-GAN

Fig. 2: The pipeline of the common TTS system.

Speech

Therefore, this paper mainly focuses on the TTS-based voice
cloning attacks. Nevertheless, our proposed method is also
applicable to voice conversion techniques: in Sec. V-F we
showcase the effectiveness of our solution over real-world
services, some of which are based on voice conversion. Fig. 2
presents the pipeline of a common TTS system, which can be
divided into the following three components.

Text Processing. In order to generate high-quality speech
output, the text needs to be preprocessed to extract linguis-
tic and acoustic features. Text processing for TTS mainly
includes text normalization [29] and linguistic analysis [9].
Text normalization aims to convert the text into a standard
form that can be processed by the TTS system. This process
consists of different operations, such as removing punctuation
and special characters, converting numbers to their spoken
form, and expanding abbreviations and acronyms. Linguistic
analysis segments the text into units such as sentences, phrases,
and words. It then processes the normalized text by converting
it into a sequence of phonemes, which are the basic units of
sound in a language, and tokenizes these phonemes using the
model-specific tokenizer. The resulting tokenized phonemes
are then fed into the models to generate synthesized speech.
Additionally, advanced speech synthesis systems often perform
prosody prediction, encompassing rhythm, stress, and intona-
tion of speech. This prediction enables TTS models to pro-
duce speech with natural pitch, duration, and energy patterns.
Some TTS models integrate syntactic and semantic analysis to
comprehend the text’s structure and meaning, facilitating more
precise and contextually relevant speech synthesis [30].

Acoustic Model. An acoustic model is a key component of
TTS systems, responsible for converting linguistic information
into acoustic features (e.g., spectrograms), which determine the
sound of the synthesized speech. Compared with traditional
simple statistical models [31], [32], [33], [34], DNN-based
acoustic models [35], [7], [36], [8] give a superior perfor-
mance. Wang et al. [7] proposed the first DNN-based acoustic
model Tacotron, which uses a Recurrent Neural Network
(RNN) to simulate the dynamic nature of speech signals and
employs an attention mechanism to adjust the output based
on different inputs. However, Tacotron has some distortion
and noise issues. Afterward, Shen et al. [36] presented the
enhanced Tacotron 2, which adopts a position-sensitive atten-
tion module to improve the synthesis quality. Nevertheless,
both Tacotron and Tacotron 2 are computationally-intensive. To
address the efficiency issue, Ping et al. [35] introduced a fully-
convolutional sequence-to-sequence architecture rather than
RNN. FastSpeech [37] uses an encoder-decoder transformer

structure to rapidly generate mel-spectrogram in parallel for
TTS and leverages an unsupervised approach to greatly sim-
plify the model training process and reduce the demand for a
large amount of audio data. FastSpeech 2 [8] further expands
on this unsupervised training method by incorporating an
acoustic prior to improve the output quality. In this paper, we
adopt Tacotron 2 [36] and FastSpeech 2 [8] as the default
acoustic model for voice cloning attacks, but our solution is
general to other models as well.

Vocoder. With the above-obtained spectrograms, a vocoder is
used to synthesize speech signals based on an analysis of their
constituent frequency bands and pitch information. A well-
known vocoder is Griffin-Lim [38], which reconstructs the
original signal from Short-Time Fourier Transform (STFT).
Although this algorithm is computationally inexpensive and
effective at reconstructing speech signals, it will introduce
perceptible background noise and distortions in the synthetic
speech. It is also sensitive to the choice of parameters, which
requires manual fine-tuning to achieve optimal results. Besides
this traditional algorithm, there are also some deep learning
algorithms used for generating high-quality audio signals, such
as WaveGAN [39] and HiFiGAN [40]. By using a combination
of convolutional and deconvolutional layers, WaveGAN is able
to generate realistic audio signals that mimic real recordings,
but it may sometimes produce distorted or unstable output
when the generated signals are too complex or too long. By
comparison, HiFiGAN uses a more advanced training process
that includes the use of feature-matching loss functions and
a multi-scale discriminative model. This allows to generate
high-fidelity audio signals that sound more natural and accurate
than those generated using earlier GAN-based methods. In this
paper, we adopt Griffin-Lim [38] and HiFiGAN [40] as the
default vocoder. Besides, we also consider the widely-used
VITS [30], which directly transfers the text input to speech
output in an end-to-end manner.

B. Countermeasures against Voice Cloning Attacks

Existing strategies of resisting voice cloning attacks can be
roughly classified into two categories.

Passive Detection-based Strategy. Passive detection seeks
to identify whether the suspect speech from authentic humans
or artificially generated. This is normally achieved via the
analysis of specific features. For example, Gao et al. [13]
introduced an audio-based CAPTCHA system to differentiate
human voices from synthetic ones using metrics such as
short-term energy, average amplitude, and zero-crossing rate.
DeepSonar [15] leverages layer-wise neuron activation patterns
to effectively discern authentic voices from Al-synthesized
ones. However, both the above methods cannot generalize
to unseen data distributions. To remedy this issue, Ahmed
et al. [12] proposed Void, an efficient solution for voice
spoofing detection based on liveness detection, which analyzes
the spectral power differences between live-human voices and
spoofing voices. In addition to feature-based methods, there
are also some approaches to achieve good detection capability
with the help of deep learning [14], [41]. To solve the problem
of diverse statistical distributions of different synthesizing
methods, Zhang et al. [42] proposed a one-class learning
anti-spoofing system (One-Class) to effectively detect unseen
synthetic voice spoofing attacks.
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While these passive detection methods can identify syn-
thetic speech in specific scenarios (e.g.particular datasets and
contexts), their generalizability and credibility are limited [16].
Most importantly, they can only detect synthetic speech, but
not trace the original timbre. We showcase the corresponding
comparison in Appx. Al.

Proactive Prevention-based Strategy. This line of solutions
focus on disrupting the voice cloning process rather than
detecting the synthesized speech post facto. Huang et al. [17]
proposed to corrupt speech samples by adding adversarial per-
turbations to prevent unauthorized speech synthesis. However,
it will degrade the quality of the target speech. Besides, it can
only be applicable for voice conversion tasks at the inference
stage, rather than the complex training process of TTS tasks.
Nevertheless, we compare our watermarked speech with their
perturbated one to demonstrate our superior performance on
speech quality in Sec. V-B.

C. Audio Watermarking

Audio watermarking technologies strive to achieve a dual
set of performance criteria: fidelity and robustness. For fidelity,
current audio watermarking methods predominantly utilize
frequency domain analysis to extract salient features from the
carrier audio. The embedding of the watermark is subsequently
executed by altering these frequency domain features. It is
generally accepted that modification of the higher frequency
components leads to enhanced fidelity in the watermarking
process [43]. Concurrently, making subtle adjustments to
less prominent audio features contributes to the watermark’s
imperceptibility [22], [20]. Besides, some schemes try to
use psychoacoustic modeling to set thresholds for watermark
modifications to avoid being perceived by human ears [44],
[45], [46]. For robustness, some research has demonstrated
resilience against common and unavoidable signal processing
distortions [47]. More recently, the focus has shifted toward
exploring robustness under intricate conditions, such as re-
recording [21], [24], desynchronization distortion [23], [20],
cropping distortion [48], etc. In a nutshell, existing audio

watermarking can already well balance the trade-off between
fidelity and normal robustness.

As mentioned above, the collected speech may be modified
before voice cloning attacks via some preprocessing oper-
ations, such as cropping and time scaling. This can cause
desynchronization to fail the subsequent watermark extraction.
Fig. 3 illustrates some countermeasures based on traditional
audio watermarking schemes: a) leveraging synchronization
codes or shift mechanisms with sliding windows for resyn-
chronization [21], [48]; b) employing time scaling invariant
features to withstand scale transformations [23], [20]. Based
on these two ideas, Zhao et al. [23] designed FSVC, an audio
feature that is insensitive to time-domain scale transformation
based on frequency-domain signal processing. It is combined
with audio averaging segmentation to achieve resistance to
desynchronization caused by global-scale transformation. Liu
et al. [21] designed RFDLM, a robust feature against scaling.
It is combined with synchronization codes to achieve robust-
ness to desynchronization attacks. However, none of these
audio watermarking methods exhibit satisfactory robustness
against both cropping and time scaling, let alone the more
complex voice cloning process. In Sec. VI-A we evaluate two
audio watermarking methods (i.e., FSVC [23] and RFDLM
[21]), and show that they fotally fail to detect voice cloning
attacks. Concurrently, deep learning-based end-to-end audio
watermarking has recently emerged [24], [25], [49], yet it en-
counters considerable limitations. Existing methods prioritize
robustness; however, in the given scenario, the audio possesses
a fixed length, rendering it challenging to counteract distortions
arising from desynchronization.

Different from the above methods, our solution integrates
time-independent features into the audio watermarking algo-
rithm, making it feasible to maintain the integrity of the water-
mark information even in the face of cropping and time scaling.
We provide a qualitative analysis of the impact of distortion
operations on the watermarked speech and demonstrate that
our method can effectively resist voice cloning attacks. In
a nutshell, our method pursues a novel robustness property
against voice cloning attacks, which is achieved by simulating
this attack and inserting it between the training of watermark
embedding and extraction. For enhanced fidelity, we also
introduce an extra discriminator for adversarial training.

III. THREAT MODEL

We consider a scenario which involves three parties: 1)
users shares their audio data on a public platform; 2) the
platform provider seeks to protect the shared audio from
potential misuse; 3) the attacker collects the target audio from
the platform and attempts to generate synthetic audio with the
same timbre using advanced voice cloning techniques.

A. Users’ Ability and Goal

In order to access the platform, users must first register
the service with their authorship information. They hope that
their audio data will not be used maliciously. They have the
right to request the platform to deploy protection over the
uploaded audio, and perform synthetic audio verification when
suspiciously cloned audio is identified.



B. Platform Provider’s Ability and Goal

The platform provider applies a novel watermark embed-
ding algorithm £M(+) to embed a watermark w (e.g., author-
ship information) into users’ speech samples s before releasing
them, to safeguard their voice timbre, i.e., s = EM(s,w).
The platform provider needs to guarantee the speech fidelity,
namely, making s, similar to the pristine s as much as
possible. Let S,, = {s1,,82,,---,8n, | represent a set of
watermarked speech samples from the target speaker 1" with
watermark w. The platform provider also has a watermark ex-
traction algorithm EX'(-) to extract the pre-defined watermark
w from s, ie, w' = EX(s,) — w. Given a suspicious
audio s+, the platform provider can apply £X(-) to check if
any watermark can be extracted from it, as evidence of voice
cloning attacks.

C. Attacker’s Ability and Goal

Let S = {s1,82,..,8,} be a set of speech sam-
ples from a target speaker 7'. The attacker collects S and
pre-processes it to construct a text-speech dataset D =
{(z1,91), (x2,Y2), -, (Tm, Ym )}, Where x; is a text transcrip-
tion and y; is the corresponding speech sample. With D, the
attacker can train his TTS model M in a supervised way. As
mentioned in Sec. II-A, a TTS model M usually consists of
two components, namely, the Acoustic model M and the
Vocoder M. After that, for an arbitrary text transcription Z,
M can synthesize the corresponding speech 3 as:

§=M(&) = My (M4 (Z)).

With our proposed Timbre Watermark, the attacker can
only obtain a watermarked dataset from the platform, i.e.,
Dy = {(z1,91,), (%2, 92,); - > (Tm; Ym,, ) }» Where y;,, de-
notes a watermarked speech sample. Then he uses D,, to train
his acoustic model M . Based on the attacker’s capability of
training the subsequent vocoder My,, we define the following
three attack scenarios:

e Professional Voice Cloning Attack. In this scenario, the
attacker is an expert on TTS tasks, and has the capability
of fine-tuning a general vocoder My, on D,, to acquire his
superior vocoder My, . This vocoder My can convert
the synthesized mel-spectrograms into counterfeit speech
closely resembling the target speaker’s timbre. The attack
scenario can be formulated as follows:

v =Mw" (&) = My, (Ma,, (#)).

e Regular Voice Cloning Attack. In this scenario, the attacker
only trains his own acoustic model M 4, and then appends
an off-the-shelf pre-trained vocoder My to conduct voice
cloning attacks, i.e.,

Yot =My (&) = My (Ma,, ().

o Low-quality Voice Cloning Attack. In certain instances, the
attacker may lack the resources necessary to obtain and
utilize high-quality pre-trained vocoders for speech syn-
thesis, or the capability of fine-tuning vocoders to target
their victims specifically. Consequently, he might resort to
traditional, non-deep learning techniques for synthesizing
speech waveforms, such as the Griffin-Lim algorithm GL(-)
[38]. The attack scenario can be described as follows:

Yo" =Mu"(2) = GL(Ma, (2)).

D. Adaptive Attacks

Besides the above common voice cloning attacks, we also
consider the possible adaptive attacks, where the attacker has
the knowledge of our timbre watermarking strategy, and tries
to remove the watermarks while preserving the quality of
the cloned audio. We implement and evaluate the following
adaptive attacks in Sec. V-E:

1) Attackers without access to the watermarking model.
The attacker is not allowed to access the watermarking model
and can only launch some data-level attacks as follows:

e Before conducting the voice cloning attack, the attacker pre-
processes the collected audio with some harmful operations,
such as severe compression and low pass filter.

e The attacker can launch the watermark evading attack with
VAE reconstruction like [50] before the voice cloning attack.

e The attacker can collect some pristine data of the target
speaker, and synthesize the audio with the mixed dataset.

2) Attackers with access to the watermarking model.
When an attacker can access the target model, he has more
means to break the watermark as follows:

e With access to the watermark encoder, the attacker can oper-
ate a watermark overwriting attack, i.e., further embedding
another watermark on the collected watermarked data before
the voice cloning attack.

e The attacker can execute the watermark evading attack by
deploying a watermark erasing VAE before voice cloning.

e With access to the watermark extractor, the attacker attempts
to explore the location of the embedded watermark, and then
directly remove this region before applying voice cloning.

e The attacker can also deploy a classifier to detect the
presence of a watermark. This classifier is then used against
a speech synthesis model during training (i.e., domain-
adversarial training), which causes the synthesis model to
synthesize audio without the watermark.

3) Combining multiple attack strategies. We consider
integrating diverse attack schemes, encompassing regular pre-
processing, harmful preprocessing, domain-specific advanced
training, VAE reconstruction, and watermark overwriting.

IV. METHODOLOGY

Fig. 4 shows the overview of our new framework. It
consists of three components: a watermark embedding module,
a watermark extraction module, and an intervening distor-
tion layer to bolster the robustness against distortions. These
components are jointly trained. Below we provide a detailed
description of each component.

A. Watermark Embedding

As shown in the left part of Fig. 4, similar to many audio-
based information hiding methods [51], [52], [53], we adopt
the widely-used linear spectrogram [54] of speech audios as
the carrier to embed watermark information. Meanwhile, this
step allows us to add the same watermark in the frequency
domain at different time periods for time-independence, due
to the short time window property brought about by the time-
frequency localization of STFT. Specifically, given a single-
channel raw speech audio a of the flexible length N, we first
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apply the Short-Time Fourier Transform operation (STFT(-))
on it to produce a spectrogram s and the corresponding phase
information p:

s,p = STFT(a). (1)

Since the magnitude spectrogram contains most of the infor-
mation, we use the magnitude spectrogram s as the carrier for
easy training, while the phase spectrogram is only used for
signal recovery [51], [52]. Then, we feed s into the Carrier
Encoder EN, to obtain the encoded carrier features f.:

fe = ENc(s). (@3]

Simultaneously, we feed the n-bit watermark information w
into the Watermark Encoder EN,, to obtain the encoded
watermark features f,:

fw = ENyw(w). (3)

Next, we concatenate f. and f,, to obtain the final input f
for the subsequent Watermark Embedder EM. Considering
that the length of speech samples is flexible, we propose to
repeat f,, along the time axis to achieve time-independence
, i.e., Repeat(f,,,t), whose shape size is consistent to f.. We
point out that such a repeated strategy can make the watermark
information inherently robust to distortions in the time domain.
Motivated by DenseNet [55], we also introduce a skip concate-
nation to increase the nonlinearity and characterization ability
of the model and preserve the information of the original
carrier s to the maximum extent. All this preprocessing can
be written as follows:

f+ = Concatenate( f., s, Repeat(f.,,T)), ()]

where f, € RCwXWXH ¢ c REXTXH and f. ¢
R(Cwt1+Co)XTXH - Afterward, f, is fed into EM to obtain
the watermark embedded spectrogram s,,:

sw=EM(f). 5)

Finally, we reconstruct the watermarked audio a,, by applying
Inverse Short-Time Fourier Transform (ISTFT(-)) to the
decoded spectrogram s,, and original phase information p:

ayy = ISTFT(sy,p). 6)

To ensure the audio quality fidelity, we introduce the
watermark embedding loss L., i.e.,

M

1 2
Lo= 57> ((aw)i —ai)?, (7)

i=1

where M is the length of the audio in the time dimension.
To further improve the fidelity and minimize the domain gap
between a and a,,, inspired by the training strategy in GAN
[56] to ensure the realism of the generated data, an adversarial
loss Lgq» is also added to make an extra discriminator D
cannot distinguish a,, from the pristine a, as shown in Fig. 4,
ie.,

Lodgy = —log(c(D(aw)))- 8)

Meanwhile, D is constrained by £; = —log(c(D(a))) —
log(1 —o(D(ay))), where o(-) denotes the sigmoid function.

B. Watermark Extracting

Given a watermarked speech a,,, the decoder needs to
recover watermark w’ as consistent as the original watermark
w. Specifically, we first follow Eq. (1) to conduct STFT on
a,, to obtain the phase information p,, and spectrogram s,,,
which are then fed into the Watermark Extractor EX to obtain
the extracted watermark features f :

foy = EX(su). ©))

Then, we use the Watermark Decoder DE to decode the
watermark information w’ from the time domain (horizontal
direction) averaged watermark features f/,, i.e.,

w’ = DE(Average(f})). (10)

This average operation corresponds to the previous repeat
operation in Eq. (4), and together they realize the time-
independence of watermarking. To ensure the accuracy of
watermark extraction, we introduce a watermark extraction loss
Ly, lLe.,

N
1
L= ;(wg —w;)?, (11)
where N is the length of the watermark sequence.

C. Distortion Layer

To enhance the robustness against voice cloning attacks,
we further insert a distortion layer between the watermark
embedding stage and watermark extracting stage. Given a
watermarked audio signal a,,, we can obtain the distorted audio
ay, after the distortion layer DP, i.e., a, = DP(a,,), which
is then fed into the watermark extracting stage. Note that the
distortion layer is only appended in the training stage, and will
be discarded in the actual embedding and extraction stages.
Below we detail each component of the distortion layer.



ISTFT Distortion. When performing ISTFT, if the amplitude
spectrogram is modified in some way to embed the watermark
while the phase spectrogram remains unchanged, then the final
signal obtained will be a complex matrix, and we will only
keep the real part as the final signal, which incurs some
loss. This differential distortion is already included in the
embedding process as shown in Eq. (6).

Normalization Distortion. During speech synthesis training,
the timbre information is unrelated to the overall energy,
or amplitude, of the audio signal. Consequently, the speech
synthesis model often normalizes the amplitude of the audio
as part of the preprocessing, i.e.,

QA

n
a! = ————. 12
Y max(|ay|) (12)
This normalization operation, however, may result in the po-
tential erasure of the watermark information embedded within

the audio signal. Thus, we append it into the distortion layer.

Transformation Distortion.  For speech synthesis, mel-
spectrogram is mainly used as supervisory signals. Specifically,
during model training, the audio needs to be mel-transformed
to extract this feature from the speech signal. Therefore, in
the distortion layer, we perform the mel-transform operation
on the watermarked audio to derive a mel-spectrogram, i.e.,

ms, = Mel(ayy,). (13)

Wave Reconstruction Distortion.  During the synthesis
process, the vocoder is employed to reconstruct a waveform
from a mel-spectrogram while omitting the phase information.
This transformation is irreversible and lossy, which can affect
the intermediate audio features, particularly the spectrogram,
and potentially lead to the loss of embedded watermark infor-
mation. Consequently, the resulting distribution deviates from
its original one. To address this issue, we employ the vocoder
for waveform reconstruction.

Specifically, we adopt the conventional rule-based Griffin-
Lim [38] GL(:) as the vocoder, i.e.,

'w = GL(risy). (14)

This operation introduces more severe distortions compared
to learnable vocoders, and we assume it can enhance the
transferable robustness (Table I supports our assumption).

Pipeline of the Distortion Layer. The pipeline of the
distortion layer DP can be written as follows:
DP(a,) =

GL(Mel( )- (15)

max(|aw 1)

Given the distorted watermarked speech a,,, the decoder
needs to recover the watermark w’ as consistent as the original
watermark w. To recover the watermark information w’ from
a,, we first apply STFT on a,, to obtain the phase information
Pw and spectrogram s,,, which are then fed into the Watermark
Extractor EX to obtain the extracted watermark features f/,:

7 — EX(s). (16)

Similarly, we can get the recovered watermark w’ from f;/v
using the Watermark Decoder DE, i.e.,

w' = DE(Average(f!)). (17

Here, we introduce fw to ensure the accuracy of watermark
extraction after the distortion layer, i.e.,

1 m
w2
D. End-to-end Protection

Model Training. We jointly train the above three modules
in our framework. The whole loss function £ is formulated as:

L= )\e . »Ce + )\adv . Eadv + >\w . (ﬁw + ‘CAUJ); (19)

where A, A4, and )\, are hyper-parameters to balance the
three terms. It is worth mentioning that we simultaneously
optimize for watermark extraction accuracy from both distorted
watermarked audio and undistorted watermarked audio, ensur-
ing generalization. At the same time, we train D to minimize
the loss L.

= w;)?. (18)

Watermark Embedding. As shown in Fig. 1, before re-
leasing the original audio, the platform provider embeds the
pre-defined watermark information (e.g., a bit string) into it by
the well-trained EN., ENy,, and EM.

Watermark Extraction and Attack Detection. Given a
suspicious audio, we adopt the well-trained Extractor EX and
DE to extract the watermark from it. Then, we use bit recovery
accuracy to evaluate the similarity between the extracted and
ground-truth watermark. If the accuracy is larger than the pre-
defined threshold, we can finally claim that this suspicious au-
dio is synthesized from the protected ones without permission,
and the voice cloning attack is detected.

V. EXPERIMENTS

We present comprehensive evaluations to validate the ef-
fectiveness of our framework. We first describe our experi-
ment setup in Sec. V-A. Then we demonstrate the proposed
framework can satisfy different requirements, including fi-
delity (Sec. V-B), generalization (Sec. V-C), robustness against
potential distortions (Sec. V-D) as well as adaptive attacks
(Sec. V-E). In Sec. V-F we conduct evaluations on three
real-world services to show the practicality of our solution.
Sec. V-G gives the ablation study to verify our design.

A. Experiment Setup

Implementation Details. For all of EN., EM, and
EX, we adopt simple fully 2D convolutional networks. These
networks maintain the dimensions of feature maps at each
layer and employ a skip gated block as their fundamental unit,
which integrates the Gated Convolutional Neural Network [57]
with a skip connection [58] for processing. For Watermark
Encoder EN,,, we leverage a fully connected layer that
utilizes the LeakyReL U activation function [59] for enhanced
performance. Meanwhile, the Watermark Decoder, denoted as
DE, operates as a pure linear layer within the network archi-
tecture. The Discriminator D has a comprehensive architecture



consisting of STFT, three ReluBlocks, an average pooling
layer, and a linear layer. The ultimate output of this structure is
the prediction result for the input audio. The implementation of
the models is available through the source code in our website.
Additionally, to jointly train the three modules in our platform,
we use the Adam optimizer [60] with 5; = 0.9, B2 = 0.98,
€ = 1079, and a learning rate of 2¢~5 for optimization. We set
Ae =1 and A\, = Mg = 0.01 in Eq.(19). For STFT, we adopt
a filter length of 1024, a hop length of 256, and a window
function applied to each frame with a length of 1024.

Datasets. For the voice cloning model, we employ LISpeech
[61] (Clip length varies from 1 to 10 seconds), a well-
established benchmark dataset for speech synthesis. It in-
cludes many well-aligned text-speech pairs. For watermark-
ing model training, we employ the standard training set
train_cleanl100 of LibriSpeech [62], where the length of
audio samples varies, typically around 10 seconds in duration.
We also conduct testing based on its standard testing set
with 2620 audio samples. All audio samples are resampled
to the sampling rate of 22.05 kHz, for both LJSpeech and
LibriSpeech datasets. There is no overlap between the training
data of the watermarking model and voice cloning models.

Metrics. For fidelity evaluation, i.e., the quality of water-
marked audio, we adopt three objective metrics: Signal-to-
Noise Ratio (SNR), Perceptual Evaluation of Speech Quality
(PESQ) [63], and Speaker Encoder Cosine Similarity (SECS)
[64], and an additional subjective metric: Mean Opinion Score
(MOS). In detail, SNR is only used to measure the magnitude
of quality loss resulting from watermarking and audio pro-
cessing, while PESQ provides a better assessment of speech
quality (i.e., imperceptibility) than SNR by considering the
specifics of the human auditory system. SECS leverages the
speaker similarity to evaluate the fidelity, and a higher value
indicates a stronger similarity. We follow prior works [64],
[65] to compute this metric using the speaker encoder of the
Resemblyzer [66] package. In practice, SECS is often used for
voice authentication, and the audio is determined to bypass
authentication when SECS > 0.9 [67]. In MOS evaluations,
we invite 10 participants to rate the naturalness and quality of
the target speech with five ratings (1: Bad, 2: Poor, 3. Fair, 4:
Good, 5: Excellent).

For the effectiveness of watermark extraction, we use the
bit recovery accuracy (ACC), calculated from all audios in the
standard test set of LibriSpeech (each audio is embedded with
a random watermark). Furthermore, we evaluate the robustness
against voice cloning attacks by examining ACC derived from
500 synthesized speech samples (an identical watermark),
which correspond to 500 text segments from the LJSpeech
test set. The default watermark length is 10 bits.

B. Fidelity

We first compare the fidelity of the protected audio between
our method and the adversarial perturbation-based method
[17]. Tt is worth noting that this method [17] is not effective
in defeating different voice cloning attacks, so the comparison
here is just for fidelity evaluation. We directly use their released
speech examples on the web page! for comparison.

Thttps://yistlin.github.io/attack- ve-demo/
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Fig. 5: Objective fidelity comparison with the baseline [17].
Green triangles represent the mean values and red lines indi-
cate the median values.
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Fig. 6: Subjective fidelity comparison (MOS) with the baseline
[17]. Black dots are means and white dots are medians.

Fig. 5 shows the SNR, PESQ and SECS metrics of the
two methods, respectively. For all cases, our method has
a superior fidelity to Huang’s method [17]. Specifically for
SECS, where a lower value indicates better speaker similarity,
our method outperforms [17] by a large margin. We also
conduct a subjective fidelity comparison: we select 20 distinct
segments of both watermarked and non-watermarked audio
samples, as well as the adversarial audio specimens delineated
in [17]. Fig. 6 shows the speech quality ratings from 10
participants. The conclusion is consistent with the objective
evaluation. The corresponding audio samples for the above
comparison are available on our project website.

C. Generalization

We showcase the general effectiveness of our method
against different voice cloning attacks described in Sec. III-C:
professional, regular and low-quality voice cloning attacks. All
the speech data of the target speaker are watermarked. To
ensure the reliability of our experiments, we randomly generate
two different 10-bit watermarks for repeated testing and report
the average the results, as shown in Table 1.

Professional Voice Cloning Attack. The attacker trains the
acoustic model of voice cloning specifically for the targeted
speaker and fine-tunes the vocoder to convert the synthesized
mel-spectrograms into the speech that closely resembles the
target speaker’s voice. To simulate such an attack, we adopt
Fastspeech2 [8] and Tacotron2 [36] as the acoustic model,
while using Hifi-GAN* [40] fine-tuned on watermarked data
(1K segments of 1-10s speech are employed) as the subsequent
vocoder. For end-to-end single-stage models VITS [30], we
directly train the model using the watermarked dataset.

As shown in the red regions of Table I, our method achieves
100% watermark extraction accuracy across different profes-
sional voice cloning attacks. In contrast, Table II provides the
watermark extraction accuracy across the corresponding voice
cloning attack on the watermark-free dataset, which behaves
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TABLE I: Generalization across different voice cloning at-
tacks. * denotes using a watermarked dataset to train the
acoustic model or fine-tune the vocoder, otherwise using a
watermark-free dataset. Red, blue, and gray areas represent
professional, regular, and low-quality attacks, respectively. The
quality of the related synthesized speech is also provided.

Model Quality

Acoustic Model Vocoder PESQT SECST Acct
Hifi-GAN* [40] 1.0578 0.8957 1.0000

Fastspeech2* [8] Hifi-GAN [40] 1.0712 0.8965 0.9933
Griffin-Lim [38] 1.1129 0.7034 1.0000

Hifi-GAN* [40] 1.1143 0.8598 1.0000

Tacotron2* [36] Hifi-GAN [40] 1.1136 0.8626 0.9988
Griffin-Lim [38] 1.1971 0.7125 1.0000

VITS* [30] 1.0342 0.9085 1.0000

TABLE II: Extraction results with all models trained on
watermark-free data.

Model Quality
Acoustic Model Vocoder PESQT SECST Accr
Fastspeech? [8] Hifi-GAN [40] 1.0416 0.9031 0.5270
Griffin-Lim [38] 1.0756 0.7158 0.5208
Tacotron2 [36] Hifi-GAN [40] 1.1294 0.9028 0.5744
] Griffin-Lim [38] 1.1916 0.7126 0.5559
VITS [30] 0.8788 0.9231 0.4773

like random guessing (~ 50% ACC). Such comparison high-
lights the effectiveness of our timbre watermarking solution.
In the two tables we also show the quality of synthesized
speech, which is calculated between the synthesized speech
and the corresponding watermark-free speech of the target
speaker. We find that watermarking has negligible impact on
the synthesized speech.

Regular Voice Cloning Attack. The attacker directly
uses a pre-trained vocoder to convert the synthesized mel-
spectrogram into the synthesized speech. Here, we take Hifi-
GAN [40] as an example, which is pre-trained on watermark-
free speech. From the blue regions of Table I, we observe that
our method still achieves a high ACC (over 99%). In other
words, the unwatermarked vocoder Hifi-GAN has less influ-
ence on the watermark information, which is still preserved in
the subsequent synthesized speech.

Low-quality Voice Cloning Attack. The attacker trains an
acoustic model on the target speaker’s speech data to synthe-
size mel-spectrograms, which are then transferred into speech
waveforms using the Griffin-Lim vocoder. In this case, the mel-
spectrograms synthesized by the acoustic model contain the
watermark information, and the Griffin-Lim algorithm does not
include any trainable parameters. Therefore, it does not tend
to transfer watermarked mel-spectrograms to non-watermarked
waveforms, as the watermark-free pre-trained vocoder Hifi-
GAN does. As shown in the grey regions of Table I, the
watermark extraction ACC can still reach 100%, which is even
slightly better than the regular voice cloning attack.

D. Robustness

We evaluate the robustness of our approach against unseen
distortions including cropping and other preprocessing oper-
ations. Robustness against cropping is particularly important
because it is an unavoidable and intensive preprocessing oper-
ation in data collection before voice cloning attacks. Fig. 7
shows the ACC curve with different cropping ratio, when

TABLE III: The impact of different preprocessing operations
on the speech quality and robustness of our method.

Preprocessing Parameter SNRT %lgggT SECST ACC?T
Resampling 16 kHz 348115 4.4967 1.0000 1.0000
8 kHz 17.1642 4.4961 0.9025 0.9940
20% 1.9382 44918 0.9575 1.0000
Amplitude Scaling 40% 4.4368 4.4973 0.9596 1.0000
60% 7.9589 4.4986 0.9772 1.0000
80% 13.9790 4.4991 0.9942 1.0000
8 kbps 9.0414 22115 0.7565 0.9186
16 kbps 13.1554 3.3484 0.9552 0.9992
24 kbps 15.2631 3.9259 0.9888 0.9999
MP3 Compression 32 kbps 17.2272 4.0695 0.9962 1.0000
40 kbps 18.7795 4.1902 0.9975 1.0000
48 kbps 20.8746 4.3122 0.9986 1.0000
56 kbps 22.8885 4.3813 0.9991 1.0000
64 kbps 23.9958 4.4136 0.9992 1.0000
Recount 8 bps 22.9103 3.1708 0.9757 0.9995
5 Samples 14.8666 3.6664 0.9459 1.0000
Median Filtering 15 Samples 8.9079 2.5726 0.7875 0.9933
25 Samples 5.3999 2.1427 0.7338 0.9806
35 Samples 3.2550 1.8721 0.6861 0.9402
Low Pass Filtering 2000 Hz 12.8558 3.8824 0.7280 0.9030
High Pass Filtering 500 Hz 3.7635 3.7919 0.6551 1.0000
20 dB 20.0002 3.1287 0.9104 0.9962
25 dB 24.9989 35182 0.9670 0.9995
Gaussian Noise 30 dB 29.9981 3.8662 0.9919 1.0000
35 dB 34.9941 4.1277 0.9981 1.0000
40 dB 39.9888 4.3038 0.9994 1.0000
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Fig. 7: Robustness against different cropping strategies.

the watermarked audio is cropped from the front, middle
and behind. Fig. 15 in the Appendix shows an example of
cropping audio. We observe that even when 90% of the
audio is cropped, the watermark can still be extracted with
100% accuracy. It is worth mentioning that different from the
synchronization-preserving cropping used in [22] and [24], we
directly crop off the audio to make it lose synchronization in
the time dimension. Thus, the above results also indicate that
our watermarking scheme can resist desynchronization attacks
as it is intrinsically robust to distortions in the time domain. We
further test whether our scheme can withstand other common
audio processing distortions. As shown in Table III, the audio
watermarked by our method can resist various preprocessing
operations, and we obtain above 90% ACC in all cases.

E. Resistance Against Adaptive Attacks

We consider different adaptive attacks in Sec. III-D, and
validate the corresponding resistance of our solution.

Preprocessing Before Voice Cloning Attack. In this scenario,
the attacker wants to apply some preprocessing operations on
the training audio before voice cloning attacks. According to
the influence on the audio quality, we further categorize the
attacks into two parts: regular preprocessing that does not lead



TABLE IV: Robustness against voice cloning attacks with
regular and harmful preprocessing.

Pre-processing PESQT SECST ACCT
Resampling 16K 1.0775 0.9122 1.0000
Regular Mp3 Compression 64kbps 1.0347 0.9077 1.0000
Combined 1.0776 0.9064 1.0000
Mp3 Compression 8kbps 0.8284 0.6675 0.8996
Harmful =~ Low Pass Filtering 2000 Hz 1.0836 0.6481 0.9482
Combined 1.0324 0.6567 0.9144
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Fig. 8: The performance of our method against voice cloning
attacks with different watermark ratios. Black dots and white
dots indicate mean accuracy and median accuracy, respectively.
Green triangles represent the average SECS values of synthe-
sized speech.

100%

to significant quality degradation, and harmful preprocessing
that has a severe impact on the audio quality. For example, in
Table III, Resampling 16K and MP3 compression 64k (high-
lighted in gray) are regular processing operations, while MP3
compression 8k and Low-pass Filtering 2000 Hz (highlighted
in red) belong to harmful preprocessing operations.

We further consider two cases: a) the attacker adopts
some common regular preprocessing operations before voice
cloning, trying to occasionally bypass the watermark detection;
b) the attacker leverages harmful preprocessing to intentionally
degrade watermarked data before voice cloning. We present the
corresponding results for the above cases in Table IV (VITS
[30] is utilized as the default voice cloning attack model). It is
noted that “Combined” signifies the application of a randomly
selected preprocessing approach to each individual audio data
sample. In particular, regular preprocessing does not influence
the quality of the synthesized speech (above 0.90 SECS), and
our watermark extraction accuracy reaches 100% for all. For
harmful preprocessing, our proposed method can still achieve
nearly 90% ACC, even though the quality of the synthesized
speech is destroyed significantly (nearly 0.65 SECS). Some
synthesized samples can be found on our project website.

Voice Cloning Attack with Partial Unwatermarked Data.
The attacker may have access to some unwatermarked speech
data of the target speaker. To explore the effectiveness of our
approach in such a scenario, we train speech synthesis models
on datasets with different watermark ratios. To expedite the
experimental process, we use the end-to-end speech synthesis
model, VITS [30], as the default attack model. Fig. 8 shows
the corresponding watermark extraction accuracy. We observe
that with a higher ratio of watermarked speech dataset, the
synthesized speech contains more complete watermark infor-
mation. A 75% ratio of watermarked speech data is sufficient
to achieve an extraction accuracy of over 95% (96.38%) in
synthesized speech, while only a 25 % ratio of watermarked
speech data can still retain 66.36% of watermark information,
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TABLE V: Robustness against watermark overwriting attacks.
# indicates that the attacker extracts the watermark by his own
extractor. * indicates that the attacker trains his own embedding
and extraction models guided by the proposed method.

Method PESQT SECST wml-ACCT wm2-ACCJ wm2-ACC#]
FSVC [23] 1.0334 09115 1.0000 (v') 0.4000 (x) 0.5544 (x)
RFDLM [21] 1.0727 0.9102 1.0000 (v')  0.4000 (x) 0.4986 (x)
The Proposed 0.9891 0.8968 0.4000 (x)  1.0000 (v)  1.0000 (v')
The Proposed* 0.9951 0.8789 0.9346 (v') 0.4646 (x) 1.0000 (v')

which is still effective in detecting such adaptive attack.

Watermark Overwriting Attack. With the collected water-
marked audio data, the attacker can further embed his own
watermark before conducting the voice cloning attack. In
our threat model, voice cloning attacks are detected by the
platform’s extractor. Nevertheless, we also show the results
based on the attacker’s extractor. Specifically, we embed the
original watermark (wml) using our proposed method. To
further embed the attacker’s watermark (wm2), we first adopt
existing audio watermarking schemes FSVC [23] and RFDLM
[21]. As shown in Table V, the original watermark can still be
extracted as the evidence of voice cloning attacks, while the
attacker fails to extract his watermark. This is because FSVC
[23] and RFDLM [21] are fragile to voice cloning attacks,
which do not interrupt our watermark signal during the attacks.

In addition, we further assume that the attacker can utilize
our proposed method for watermark overwriting. If the attacker
is an insider malicious user, he can directly utilize the well-
trained embedding and extraction models by our method.
Otherwise, he can train his own model with the proposed
strategy, which is denoted as “the proposed *” in Table V. The
results show that our method will fail to resist the overwriting
attack only when an inner attacker exists. To address this issue,
we further design a weighted embedding process, which is
controlled by the subsequent watermark decoder, and add the
watermark overwriting distortion in the original distortion layer
to fine-tune the model. As shown in Table X, the new strategy
will not degrade the audio quality and achieve a 100% ACC
against overwriting attacks. More details are in Appx. B3.

Audio Reconstruction-based Removal Attacks. We try to
compromise the watermark by audio reconstruction, i.e., the
adaptive attacker may try to train a reconstruction model with
many watermarked-unwatermarked data pairs. For the audio
reconstruction model, we adopt the state-of-the-art popular
MelVAE?. For data pairs, we use 10, 000 audios from Lib-
rispeech [62] as non-watermarked audio, and embed random
watermarks into them by the proposed method to obtain the
corresponding watermarked audio. Then, we train MelVAE
with such data pairs in a supervised manner, aiming to
transform watermarked audio into non-watermarked one. We
observe that such an audio reconstruction model can only
produce speech with poor quality (some samples are shown
on our web page). Nevertheless, the accuracy of watermark
extraction can still reach 74.90%.

Besides, we consider an existing audio watermark removal
attack using a Variational Autoencoder (VAE) pre-trained
on a clean audio dataset [50] and test our method under
such an attack. Specifically, we use the VAE of the audio

2https://github.com/moiseshorta/MelSpec VAE
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Fig. 10: The performance of our method against different
frequency masking ratios. Black dots and white dots indicate
mean ACC and median ACC, respectively. The green triangles
represents the average SECS values of synthesized speech,
while the green line indicates the bypass authentication line.

generation model [68] for the reconstruction operation. Note
that, as described by the authors, this VAE was trained on
AudioSet (AS) [69], AudioCaps (AC) [70], Freesound (FS)?,
and BBC Sound Effect library (SFX)*, and exhibits good
audio generation quality. Based on the experimental results in
Fig. 17, we can see that while VAE reconstruction indeed has
some effect on the watermark, it is almost unable to erase it
(Average ACC:100% — 99.98%). Fig. 20 shows two examples
of the effect of VAE reconstruction on the audio signal. The
reconstructed speech samples and the samples cloned based
on them are accessible on our web page.

Identifying Watermark Location and then Removing It. As
illustrated in Fig. 9-a, we apply a 10% frequency band masking
operation to different frequency locations (from bottom to top)
of the watermarked speech spectrogram.

In Fig. 9-b, we present the watermark extraction accuracy
obtained directly from both the masked spectrogram (Spec-
ACC) and after re-extracting the spectrogram from the ISTFT-
transformed audio signal (Wave-ACC). Based on experimental
results, we find that masking at the medium-to-low frequency
range (i.e., Position 2 and 3) has the most significant impact on
the watermark extraction ability, and conjecture the watermark
is primarily embedded in the medium-to-low frequency range.

Therefore, we conduct an adaptive attack: masking such
frequency range as preprocessing before voice cloning, and
then adopting VITS [30] to launch the attack. The results
prove that this adaptive attack still cannot defeat our method:
watermark extraction accuracy from synthesized speeches is

3https://freesound.org/
“4https://sound-effects.bberewind.co.uk/search
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100% (masking position2) and 92.14% (masking position3).
Fig. 9-c shows the impact of masking at different locations on
the audio quality (SNR, PESQ, SECS). We find that masking
at lower frequencies has a more severe effect on the audio
quality, and masking at Positions 2 and 3 has a particularly
significant impact. As the masked frequency range increases,
the audio quality improves. To remove watermarks strongly, we
try masking more frequency bands of the spectrogram (from
high to low frequencies). We gradually increase the percentage
of the mask from the top of the spectrogram, since masking
low frequencies introduces a very serious quality loss. As
shown in Fig. 10, as the mask ratio increases from 10% to
90%, although the ACC degrades from 100% to near 70%,
the audio quality is also destroyed by a large margin (SECS
from 1.0 to 0.1). For a more comprehensive evaluation, we
further adopt 5% and 20% masking ratios. The corresponding
results are shown in Fig. 18 of Appx. C, which are consistent
with the results with a 10% masking ratio.

Voice Cloning Attack with Public Extractor. Because the
extractor is publicly released by the platform, the attacker
can attempt to generate audios to bypass it. In practice, the
extractor may be packaged as an API, and the attacker only
knows whether the generated audio deceives the extractor. To
simulate this scenario, the attacker can first train a binary
classifier to distinguish the watermarked and unwatermarked
data. With the well-trained classifier, he is able to train his
TTS model constrained by a domain adversarial loss, which
forces the model to output unwatermarked data. We find such
a strategy (i.e., domain-adversarial training) will degrade the
performance of the TTS model (SECS from 0.9014 to 0.8844),
while our method can still achieve 100% extraction accuracy.

Combing Multiple Attack Strategies. We further consider
combining different attack strategies to destroy the proposed
method. This entails the integration of diverse attack schemes,
encompassing regular preprocessing, harmful preprocessing,
domain-adversarial training, VAE reconstruction and water-
mark overwriting. In a ntushell, more severe attack strategies
will further destroy the utility of voice cloning, while the pro-
posed method is still somewhat effective. For example, taking
resampling 16 kHz as pre-processing and MP3 compression 16
kbps as post-processing, compared with only pre-processing,
ACC suffers a slight degradation (ACC:100% — 99.94%)
but the quality degrades by a large margin (SECS: 1.000 —
0.8575). The specific experimental results can be found on the
paper’s website.


https://freesound.org/
https://sound-effects.bbcrewind.co.uk/search

TABLE VI: The performance of our proposed method against voice cloning attacks on commercial platforms.

Service Language Metric Speaker
P225  P226  P227  P228 P29 P230
Enlish | PESQT T23958 27235 23573 23235 27419 1709
S SECST 08611 0.8701 08552 0.8537 08592  0.8519
ACCT 10000 1.0000 1.0000  1.0000 1.0000  1.0000
PaddleSpecch [71] D4 D6 D7 DS DIT D12
Chinese | PESQT 17642 TO8ST 26490 20223 23808 12313
* SECST  0.7836  0.8034 07622 0.8219 07304  0.7103
ACCT 10000 1.0000 1.0000  1.0000 1.0000  1.0000
P225  P226  P227  P228  P229  P230
) ) ) PESQT ~0.7809 15610 1.1913 1.1684 12601  1.2694
Voice-Cloning-App [27] | English | ¢pegr 7576 08564 07324 08781  0.8495  0.8799
ACCT 09000 09100 09000 09000 09500  0.9200
F. Practicality in Real-world Services it B — i
2 =
. . its ° o commb—m——{ T }—H
In practice, the attacker may directly leverage real-world s 10bis B T
. . . . . its Lo — Y B
services to conduct voice cloning attacks in an efficient and " 35 20 35 30
convenient way. Specifically, he can collect a small number of oo
. its co0 T °
the target speaker’s voice samples and upload them to real- o 100bits onm T
. . . . . its 000 a[
world services to implement customized voice cloning based 4 Wit | @ commmom
. . . . its o 0o oI
on their instructions. When the collected voice samples have Sbits o o =
been watermarked by our method, we are able to extract the 320 3436 3840 42 44
watermark information from the synthetic voice. We test both 200bis o o mme
A A . ) its B T — , B
real-world TTS service and voice conversion service. § §Obits | o © o am cocmammm———{TT}—
it o owmoomm
“ 10bits o o oo croummeE—Tl
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Real-world TTS Servicee.  We employ two widely-used
speech synthesis tools, PaddleSpeech [71] and Voice-Cloning-
App [27], to conduct voice cloning attacks in a black-box way.
For PaddleSpeech, we use the tool through the Baidu Paddle
Al Studio platform [26]. The attacker can easily fine-tune the
speech synthesis model and customize the cloned voice of
the target speaker with just a few clicks. For Voice-Cloning-
App [27], we use the released executable software provided by
the author, following the software’s documentation for voice
cloning. For both services, the attacker only needs 10 segments
of the target speaker’s speech within 10 seconds. Additionally,
we follow the work [16] by using 10 segments of texts as input
for the synthesized speech (listed in Table XII and Table XIII
in the Appendix). We extract watermarks from the synthesized
speech and verify the extraction accuracy as well as the quality
of the synthesized speech. For comprehensive evaluation, we
test multiple speakers (p225 ~ p230, the first six speakers)
from the VCTK dataset [72]. To explore the efficacy of our
approach in different languages, we also select the first six
speakers (D4, D6, D7, D8, D11, D12) from the THCHS30 [73]
test set and test the more challenging Chinese voice cloning
scenario using the PaddleSpeech tool, an open source tool that
additionally supports Chinese besides English.

Table VI presents the evaluation results. Specifically, for
PaddleSpeech [71], the quality of the synthesized voice is con-
siderably superior. We can achieve an exceptional watermark
extraction accuracy (ACC = 100%). For Voice-Cloning-App
[27], although the quality of the synthesized voice is inferior,
the watermark extraction accuracy is still maintained at a
satisfactory level (ACC >= 90%), which further substantiates
the outstanding effectiveness of the proposed watermarking
methodology. The synthesized speech samples from these
services can be found on our project website.

Real-world Voice Conversion Service.  Very recently, the
voice conversion service so-vits-svc [28] becomes increasingly
popular for singing song synthesis. Thus, we also try our
method in such a scenario and validate its effectiveness. Specif-
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0.88 0.90 0.92 0.94 0.96 0.98
Fig. 11: The fidelity of our method with different embedded
watermark bits. Green triangles represent the mean values and
red lines indicate the median values.
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Fig. 12: Watermark extraction accuracy of our method with
different embedded watermark bits. Black dots and white dots
indicate mean accuracy and median accuracy, respectively,
while green triangles represent the average SECS values of
synthesized speech.

ically, we use the first 30 singing voices (around 5s per voice)
from the Opencpop dataset [74], embed watermarks in them,
and then use these voices to train so-vits-svc according to the
instruction document. After that, we use the trained model to
perform voice conversion on a song. Here, we use the original
song “Right Here Waiting” from Richard Marx [75], and use
Ultimate Vocal Remover [76] to remove the background music.
Then, we divide it into 24 segments (10s per segment) and
perform the voice conversion for each segment. The vocal data
are available on our website. The final extraction accuracy of
each segment of the synthesized vocals is 100%, which further
proves the effectiveness of our method in real speech cloning
scenarios.

G. Ablation Study

Influence of Watermark Bits. To investigate the impact
of the watermark length, we attempt to embed bit strings of



TABLE VII: Robustness comparison between Distortion-Blind Watermarking Model (DBWM) and Full Model against different
voice cloning attacks. The red, blue, and gray areas represent professional, regular, and low-quality voice cloning attacks,
respectively. The quality of synthesized speech is also provided.

. Fastspeech2* [8] Tacotron2* [36]

Model Metric | pic GAN [40]  Griffin-Lim [38] | Hifi-GAN [40]  GriffinLim (38] | VITS* 1301
PESQT 10238 107635 12018 13184 1.0299
DBWM | SECSt 0.8996 0.7152 0.8858 0.7025 0.9173
ACCH 0.6508 0.6136 0.6854 0.6108 1.0000
PESQT 10770 11224 11350 12342 1.0561
Full Model | SECSt 0.8958 0.7075 0.8440 0.7083 09014
ACCT 0.9978 1.0000 0.9998 1.0000 1.0000

DBWM o @ ooommmny { [ TABLE VIII: Comparison with traditional audio watermarking

Z
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0.94
Fig. 13: Fidelity comparison between Full Model and the
Distortion-Blind Watermarking Model (DBWM). Green tri-
angles represent the mean values and red lines indicate the
median values.

0.95 0.96 0.97 0.98 0.99 1.00

varying lengths (5 bits, 10 bits, 30 bits, 60 bits, 100 bits,
200 bits) in the carrier audio and utilize VITS [30] as the
default voice cloning attack model. Fig. 11 shows the impact
of different watermark bits on the quality of the watermarked
speech. As we can see, embedding more bits leads to a
decrease in fidelity, but this trend is not significant, especially
for the impact on timbre (SECS). This means that we can
flexibly choose the embedding capacity for different scenarios.
Fig. 12 further shows the watermark extraction accuracy ACC
under the voice cloning attacks. As the number of embedded
bits increases, ACC still keeps near 100%, except when the
embedded watermark bits is extremely large, i.e., 200 bits,
where ACC is also higher than 95%.

Importance of Distortion Layer. To investigate the effec-
tiveness of the modeled distortion layer, we remove it from
our framework (as shown in Fig. 4) and only jointly train
watermark embedding and extraction to obtain a Distortion-
Blind Watermarking Model (DBWM). As illustrated in Fig. 13,
DBWM exhibits better fidelity compared to the complete wa-
termarking model (i.e., “Full Model”). Table VII also indicates
that the robustness of DBWM will significantly decrease in
the scenarios of regular and low-quality voice cloning attacks.
This demonstrates that our framework without the distortion
layer can achieve certain robustness against specific voice
cloning attacks, and the appended distortion layer during
training can further enhance the generalized robustness against
more attacks. More results are displayed in Appx. B2 with a
consistent conclusion. In Appx. C, we also provide ablation
studies on the skip concatenation and the masking ratio.

13

methods against voice cloning attacks. ‘syn’ indicates metrics
related to synthesized speech quality, while ‘wm’ represents
metrics related to watermark embedding and extraction.

Method syn PESQ?T syn SECST wm SNRT wm ACC?T

FSVC [23] 0.9949 0.9139 21.1282 0.5554 (x)

RFDLM [21] 1.0303 0.9179 19.4668 0.5096 (%)

The Proposed 1.0342 0.9085 28.1650 1.0000 (v')
VI. DISCUSSION

A. Comparison with Existing Audio Watermarking Methods

To comprehensively showcase the efficacy of the proposed
scheme, we conducted a comparative analysis with existing
watermarking schemes. We use RFDLM [21], FSVC [23],
and the proposed method to embed watermarks on the speech
respectively, and then extract the watermarks from the synthe-
sized speech based on the TTS model trained on this speech
data respectively (VITS [30] is utilized as the default voice
cloning attack model). As shown in Table VIII, the existing
audio watermarking schemes cannot resist the TTS model
learning process and the watermarks cannot be retained in the
synthesized speech, while the proposed scheme is better at
retaining the watermark information.

B. Embedding Different Watermarks for Verison Information

In practice, the watermark may contain not only static
information like names but also dynamic information like
versions. In such a scenario, the collected audio by the attacker
may have different watermarks, but we still want to extract
the ownership information from the synthesized audio. To
achieve it, we split the watermark bit string into two parts,
where the former part includes static information and the latter
part includes dynamic information. We watermark the original
audio with two watermarks, whose former parts are the same
while the latter parts are randomly different. Then, we adopt
VITS for voice cloning attacks. As expected, we can extract the
former static information with a 100% ACC. Similarly, we can
easily replace version information with platform information
to address the issue of multiple platforms. In Appx. A, we
provide more discussion on comparison with passive detection
and the extension to the physical world.

VII. CONCLUSION

In the era of the Ear Economy, it is necessary to establish
safeguards against the potential misuse of voice cloning tech-
nology. To this end, we propose a novel concept of “Timbre
Watermarking”, based on which we design an end-to-end
voice cloning detection framework. In this framework, we



tailor the watermark encoding with a repeated embedding
strategy to obtain the inherent robustness against distortions
in the time domain. In addition, we investigate different
voice cloning attacks and find their shared process, i.e.,
normalization distortion, transformation distortion, and wave
reconstruction distortion. Then, we incorporate them as a
distortion layer into our framework to acquire generalization
across different voice cloning attacks. Extensive experiments
demonstrate that the proposed “Timbre Watermarking” can
achieve high robustness against common speech preprocessing
distortions such as cropping, while also withstanding various
voice cloning attacks and maintaining usability in real-world
services such as PaddleSpeech, Voice-Cloning-App, and so-
vits-svc. Moreover, we conduct ablation studies to explore the
influence of watermark bits and the distortion layer. We expect
our framework can shed some light on the future research of
voice cloning detection and timbre protection.
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APPENDIX
A. More Discussion

1) Comparison with Passive Detection: As mentioned above,
passive detection usually cannot generalize to unseen synthesis meth-
ods. Two classic detection methods have been proposed to address the
generalization limitation of data distribution and synthesis methods,
namely, Void [12] and One-Class [42]. We compare our method with
these two detection approaches in terms of generalization against dif-
ferent voice cloning attacks. We follow the released unofficial code’
and official code® to reproduce these passive detection solutions.

Specifically, we measure the detection performance of these
methods against different voice cloning attacks, where each attack
generates 500 synthesized audios, respectively. For a fair comparison,
we first divide the suspicious audio into 5 segments and set the
accuracy threshold to 90% for verification. We claim the detection
is successful when all segments pass the verification. As shown in
Fig. 14, our method performs well in all cases, while two passive
detection methods have poor performance (AUC' < 0.5) when facing
synthesized audios generated by VITS [30].

2) Extension to the Physical World: In all the above experi-
ments on voice cloning attacks, we consider that we can obtain suspi-
cious synthesized speech in the digital world, even if the speech may
be processed by some operations like MP3 compression. However,
in some scenarios, we cannot directly obtain the digital version of
the suspicious speech. Instead, we can only record the target speech
for subsequent verification, which can be further distorted after the
digital-physical-digital transformation. Fortunately, there are some
works on audio watermarking and adversarial examples [77], [78],
[24], which have demonstrated their effectiveness against such air-
channel transmission distortion. A feasible way is to integrate them
into the distortion layer to enhance robustness. We will explore this
direction in future work.

B. More Exploration on Robustness

1) Robustness Against Cropping with Different Watermark
Bits: We further investigate the robustness of cropping processing to
various watermark bit embedding quantities. As illustrated in Fig. 19,
there exists a trade-off between robustness and embedding capacity.
Besides, an example of a 50% cropping with different strategies are
shown in Fig. 15.

2) Robustness of DBWM_: We further investigate the robustness
of DBWM in relation to common audio processing. As illustrated
in Table IX, without the distortion layer during training, the per-
formance degrades in many cases. In addition, we also investigate
where watermarks are embedded by DBWM. We conduct identical
spectrogram masking experiments, as illustrated in Fig. 16. The
results reveal that DBWM predominantly embeds information within
higher frequencies.

Shttps://github.com/chislab/void-voice-liveness-detection
Shttps://github.com/yzyouzhang/AIR- ASVspoof
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TABLE IX: The impact of different preprocessing on speech
quality and the corresponding robustness of Distortion-Blind
Watermarking Model (DBWM).

Preprocessing Parameter SNRF gg;lé}% SECST ACC?t
Resampling 16 kHz 34.6674 4.4990 1.0000 0.9989

8 kHz 16.6762 4.4986 0.9010 0.9169

20% 1.9382 4.4905 0.9590 1.0000

Amplitude Scaling 40% 4.4368 4.4968 0.9609 1.0000
60% 7.9589 4.4983 0.9778 1.0000

80% 13.9790 4.4989 0.9944 1.0000

8 kbps 8.8171 2.1475 0.7591 0.6696

16 kbps 12.8881 3.3003 0.9566 0.9337

24 kbps 15.0170 3.8745 0.9890 0.9629

MP3 Compression 32 kbps 17.0359 4.0114 0.9960 0.9967
40 kbps 18.5867 4.1404 0.9975 0.9999

48 kbps 20.6921 4.2821 0.9986 1.0000

56 kbps 22.6389 4.3578 0.9990 1.0000

64 kbps 23.7704 4.3913 0.9992 1.0000

Recount 8 bps 22.8747 3.1435 0.9749 0.9041

5 Samples 14.3953 3.6013 0.9439 0.9714

Median Filtering 15 Samples 8.6434 2.5087 0.7834 0.8750
25 Samples 5.2720 2.0886 0.7311 0.8183

35 Samples 3.1933 1.8187 0.6862 0.7701

Low Pass Filtering 2000 Hz 12.4479 3.8828 0.7252 0.7924
High Pass Filtering 500 Hz 3.7917 3.8119 0.6578 1.0000
20 dB 20.0001 3.0382 0.9090 0.7937

25 dB 24.9994 3.4303 0.9667 0.8965

Gaussian Noise 30 dB 29.9977 3.7862 0.9920 0.9577
35 dB 34.9934 4.0553 0.9981 0.9874

40 dB 39.9871 4.2515 0.9993 0.9966

TABLE X: The comparison of robustness against watermark
overwriting attacks between the default strategy and the
overwriting-resilient strategy.

Method PESQT SECS?T wml-ACCT wm2-ACCJ.
Default 0.9891 0.8968 0.4000 (x) 1.0000 (v')
Overwriting-resilient 1.0269 0.9145 1.0000 (v) 0.4000 (x)

3) Countermeasurea Against Watermark Overwriting At-
tacks: As shown in Table V, an adaptive attacker with access to the
watermark encoder API can successfully conduct a self-overwriting
attack using the original model. To address it, we design a mechanism
to resist watermark overwriting of insider malicious users. We design
a weighted embedding process, which is controlled by the subsequent
watermark decoder, and add the watermark overwriting distortion in
the original distortion layer to fine-tune the model. The final enhanced
model can resist the re-watermark attack (ACC: 100%). The model
structure is shown in Fig. 21, which is composed of 4 steps: (D
Extract the weight factor S from the audio to be watermarked; Q)
Use factor S to weight the watermark features in the watermark
embedding network; 3) Input the watermarked audio and a randomly
generated second watermark into the watermark embedding network;
@ Input the watermark overwritten audio into the distortion layer and
proceed to subsequent watermark extraction and network parameter
optimization. We adopt VITS as the Voice cloning model. The
watermark extraction accuracy (ACC) and the quality of all 500
synthesized speech are shown in Table X. Experimental results show
that the overwriting-resilient strategy can resist watermark overwriting
attacks even by internal attackers.

C. More Ablation Studies

The Influence of Different Masking Ratios.  See Fig. 18.

D. Details of Network Architectures

Table XI shows the structure of the attacker’s watermark over-
writing model, where ReluBlock contains a convolutional layer, an
InstanceNorm, and the LeakyReLU activation function.
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Fig. 14: Comparison with state-of-the-art passive detection methods (Void [12] and One-Class [42]). ROC curve against different
voice cloning attacks are displayed.
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TABLE XI: The detailed structure of each sub-network
of the attacker’s model for watermark overwriting, where
“wm_length” represents the length of the watermark bits.

Groups Input channel/dim Output channel/dim

Watermark Encoder Linear + LeakyReLU wm_length 513

ReluBlock 1 64

1.00{ o o ReluBlock 64 64

3.0 0.95 ) ReluBlock 64 64

Carrier Encoder

0.98 25 090 = s ReluBlock 64 64

: ReluBlock 64 64

0.96 2.0 0.85 ReluBlock 64 64

15 ' ReluBlock 66 64

0.94 ReluBlock 64 64

0.80 elu
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ReluBlock 1 64
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Fig. 17: The performance of our method against voice cloning ReluBlock 64 64
attacks with (a) / without (b) VAE reconstruction preprocess- ReluBlock 64 1
ing. Black dots and white dots indicate mean value and median Watermark Decoder R;l‘:gf;ck > 13 116
value, respectively. Discriminat ReluBlock 16 kY
1seriminator ReluBlock 32 64

Linear 64 1
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TABLE XII: English phrases used for real-world services in
Sec. V-F.

./.zm A

r
U ..ny,,h ,.

“j.q\f\w H'ui"v\ﬁ Aia it

T There is, according to legend, a boiling pot of gold at one end.
2. People look, but no one ever finds it.

3. Throughout the centuries people have explained the rainbow in various ways.
4
3

Some have accepted it as a miracle without physical explanation.
To the Hebrews it was a token that there would be no more universal floods.

Since then physicists have found that it is not reflection, but refraction by the raindrops which causes
the rainbows.

6.
VAE reconstructed Cloned after VAE reconstruction 7. Many complicated ideas about the rainbow have been formed.
8 The difference in the rainbow depends considerably upon the size of the drops, and the width of the

colored band increases as the size of the drops increases.
If the red of the second bow falls upon the green of the first, the result is to give a bow with an

Fig. 20: The influence of VAE reconstruction on watermarked > abnormally wide yellow band, since red and green light when mixed form yellow.
SpeeCh and Cloned Speech. 10. This is a very common type of bow, one showing mainly red and yellow, with little or no green or blue.

E. Phrases for Synthesis ";;KCBI{II?FXHI: Chinese phrases used for PaddleSpeech [26] in

Table XII and Table XIII list the English and Chinese phrases, —

respectively, used for synthetic speech generation in real-life scenarios ! e e T R ) B
: . : P2 7 R T PL R R I R 0 % I e 5T A R

using voice cloning tools. 3. TR TE AT B R N R VO DA T R W BB I L) BOO L

4. R F AT A A T KR AR 5 A 5 X — B A H P T PIm A D) Ak

5. T BT BIA & T ) B LA Bl A T % R

6.

:

8

TR fE e 7k LA W &

—F T KPR [ TERE (1 7RD) 208 SR F5 W1 o K 2R1e GHE T UK TEm i
B AE AR BT 5500 H = F AR & JL e tE R E WE
EEE LR DA{X%*E«XJE@;FUEEH}\ PR E R

9 5T — T4 5 CAT FEOL %Tﬁ %@4—’; *Eﬁ VLS T B &L T—7 KE —aM
) WO+5r 19 K i L
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