Detecting Voice Cloning Attacks via Timbre Watermarking

Chang Liu¹ Jie Zhang² Tianwei Zhang² Xi Yang¹ Weiming Zhang¹ Nenghai Yu¹

¹University of Science and Technology of China

²Nanyang Technological University

hichangliu@mail.ustc.edu.cn

jie_zhang@ntu.edu.sg

zhangwm@ustc.edu.cn

Voice Cloning

Interview with Ai Musk and Al Jobs on YouTube: Is Ai a threat? Ai musk talks to Al Jobs, debating Al's threat to humanity.

Google and other companies utilize highquality, customized voice synthesis technology to offer voice assistant services.

From April 2023, a trend swept through major video platforms with once-dormant music icons making a collective comeback, releasing new songs at an astonishing pace—achieving in one month what previously took years.

High-quality customized voice cloning technology has been widely used in entertainment, commercial

Voice Cloning

Interview with Ai Musk and Al Jobs on YouTube: Is Ai a threat? Ai musk talks to Al Jobs, debating AI's threat to humanity.

Google and other companies utilize highquality, customized voice synthesis technology to offer voice assistant services.

From April 2023, a trend swept through major video platforms with once-dormant music icons making a collective comeback, releasing new songs at an astonishing pace—achieving in one month what previously took years.

How to protect Timbre Rights?

Passive Detection-based Strategy

Passive Detection-based Strategy

- Generalizability and credibility is limited
- can't trace the original timbre

Proactive Prevention-based Strategy

Proactive Prevention-based Strategy

Proactive Prevention-based Strategy

High quality TTS

- A significant level of perturbation is required to achieve a effective defense
- It can only defend against clone models based on timbre decoupling and lacks defensive capability in high-quality TTS scenarios
- Can't trace the original timbre

Proposed Idea

Voice Cloning

Traditional Audio Watermarking

Two types

Traditional Audio Watermarking

Two types

Goal 1: Time-dimension Independent

Goal 1: Time-dimension Independent (如) 中国神学技术大学 University of Science and Technology of China

Goal 1: Time-dimension Independent

Goal 1: Time-dimension Independent (如) 中国神学技术大学

short-time effect window overlapping effect

Goal 1: Time-dimension Independent

- Leveraging the short-time effect and the window overlapping effect of STFT
 - Embedding: Overlay the same watermark signal on the FFT coefficients at different moments in time.
 - Extraction: Take the average along the time axis, corresponding to the embedding strategy, to achieve time-axis-independent watermark embedding and extraction.

Goal 2: Voice Cloning Robustness

Waveform reconstruction distortion

Goal 2: Voice Cloning Robustness

Goal 2: Voice Cloning Robustness

Goal 3: Fidelity

Experimental Setting

■ Setup

- Voice cloning models: FastSpeech2, Tacotron2 and VITS with LJSpeech as training set
- Voice cloning API:
 - PaddleSpeech, Voice-Clone-App with 10 segments as training set
 - so-vits-svc with 1 singing song as training set
- Watermarking model training set: LibriSpeech training set
- Processing distortion testing set: LibriSpeech test set
- Voice cloning test: 500 text segments from the LJSpeech test set

■ Evaluation metrics

- Fidelity: Signal-to-Noise Ratio (SNR), Perceptual Evaluation of Speech Quality(PESQ), Speaker Encoder Cosine Similarity (SECS), Mean Opinion Score(MOS) with five ratings
- Robustness: Bit recovery accuracy (ACC)

Fidelity Testing

Black dots are means and white dots are medians

Subjective experiments show that the watermarked audio is almost indistinguishable from the original audio.

Green triangles represent the mean values and **red lines** indicate the median values.

Objective experiments indicate that the imperceptibility metrics of the watermarking scheme significantly surpass the baseline.

Robustness to Voice Cloning

Mo	Qua	ACC↑		
Acoustic Model	Vocoder	PESQ↑	SECS↑	ACC
	Hifi-GAN* [40]	1.0578	0.8957	1.0000
Fastspeech2* [8]	Hifi-GAN [40]	1.0712	0.8965	0.9933
	Griffin-Lim [38]	1.1129	0.7034	1.0000
	Hifi-GAN* [40]	1.1143	0.8598	1.0000
Tacotron2* [36]	Hifi-GAN [40]	1.1136	0.8626	0.9988
	Griffin-Lim [38]	1.1971	0.7125	1.0000
VITS [*]	1.0342	0.9085	1.0000	

^{*} denotes using a watermarked dataset to train the acoustic model or fine-tune the vocoder, otherwise using a watermark-free dataset

The proposed watermarking method demonstrates strong robustness across various scenarios involving different acoustic models and vocoder combinations.

Robustness to Voice Cloning

Totally fail

•	Method	syn PESQ↑	syn SECS↑	wm SNR↑	wm ACC↑
•	FSVC [23]	0.9949	0.9139	21.1282	0.5554 (×)
	RFDLM [21]	1.0303	0.9179	19.4668	0.5096 (x)
	The Proposed	1.0342	0.9085	28.1650	$1.0000 \ (\checkmark)$

In the case of similar fidelity, the existing watermarking schemes can not resist speech cloning

Robustness to Voice Cloning

Black dots are mean accuracy and white dots are median accuracy **Green triangles** represent the average SECS values of synthesized speech

It is possible to embed longer sequences of bits to address a wider range of scenarios

Green triangles represent the mean values and red lines indicate the median values.

Increasing the length of the embedded bits does not result in a noticeable degradation of audio quality.

Robustness to Real-world Black-box API

❖ PaddleSpeech (baidu aistudio)

❖ Voice-clone-App

Service	Language	Metric Speaker						
	English		P225	P226	P227	P228	P229	P230
		PESQ↑	2.5958	2.7235	2.3573	2.3235	2.7419	1.7095
		SECS↑	0.8611	0.8701	0.8552	0.8537	0.8592	0.8519
PaddleSpeech [71]		ACC↑	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
raddiespeech [/1]	Chinese		D4	D6	D7	D8	D11	D12
		PESQ↑	1.7642	1.9851	2.6490	2.0223	2.3808	1.2313
		SECS↑	0.7836	0.8034	0.7622	0.8219	0.7304	0.7103
		ACC↑	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
			P225	P226	P227	P228	P229	P230
Voice-Cloning-App [27]	English	PESQ↑	0.7809	1.5610	1.1913	1.1684	1.2601	1.2694
		SECS↑	0.7576	0.8564	0.7324	0.8781	0.8495	0.8799
		ACC↑	0.9000	0.9100	0.9000	0.9000	0.9500	0.9200

- It performs well across scenarios involving different languages in the real world.
- Low-quality synthetic speech does not significantly impact watermark extraction, still maintaining an extraction accuracy of over 90%.

Robustness to Processing Distortions

The watermark can achieve 100% extraction even when 90% of audio is cropped.

Robustness to Processing Distortions

Preprocessing	Parameter		ACC↑			
Freprocessing	Farameter	SNR↑ PESQ↑		SECS↑	ACC	
Decembling	16 kHz	34.8115	4.4967	1.0000	1.0000	
Resampling	8 kHz	17.1642	4.4961	0.9025	0.9940	
	20%	1.9382	4.4918	0.9575	1.0000	
Amulituda Caalina	40%	4.4368	4.4973	0.9596	1.0000	
Amplitude Scaling	60%	7.9589	4.4986	0.9772	1.0000	
	80%	13.9790	4.4991	0.9942	1.0000	
	8 kbps	9.0414	2.2115	0.7565	0.9186	
	16 kbps	13.1554	3.3484	0.9552	0.9992	
	24 kbps	15.2631	3.9259	0.9888	0.9999	
MD2 Compression	32 kbps	17.2272	4.0695	0.9962	1.0000	
MP3 Compression	40 kbps	18.7795	4.1902	0.9975	1.0000	
	48 kbps	20.8746	4.3122	0.9986	1.0000	
	56 kbps	22.8885	4.3813	0.9991	1.0000	
	64 kbps	23.9958	4.4136	0.9992	1.0000	
Recount	8 bps	22.9103	3.1708	0.9757	0.9995	
	5 Samples	14.8666	3.6664	0.9459	1.0000	
Madian Eiltanina	15 Samples	8.9079	2.5726	0.7875	0.9933	
Median Filtering	25 Samples	5.3999	2.1427	0.7338	0.9806	
	35 Samples	3.2550	1.8721	0.6861	0.9402	
Low Pass Filtering	2000 Hz	12.8558	3.8824	0.7280	0.9030	
High Pass Filtering	500 Hz	3.7635	3.7919	0.6551	1.0000	
	20 dB	20.0002	3.1287	0.9104	0.9962	
	25 dB	24.9989	3.5182	0.9670	0.9995	
Gaussian Noise	30 dB	29.9981	3.8662	0.9919	1.0000	
	35 dB	34.9941	4.1277	0.9981	1.0000	
	40 dB	39.9888	4.3038	0.9994	1.0000	

The watermarking scheme can resist various processing operations. Considering the worst-case, it can achieve an extraction accuracy of over 90%.

Robustness to Processing + Voice Cloning

Robustness to Processing + Voice Cloning

			Quality		
Preprocessing	Parameter	SNR↑	ACC↑		
	16 kHz	34.8115	PESQ↑ 4.4967	SECS↑ 1.0000	1.0000 =
Resampling	8 kHz	17.1642	4.4961	0.9025	0.9940
	20%	1.9382	4.4918	0.9575	1.0000
	40%	4.4368	4.4973	0.9596	1.0000
Amplitude Scaling	60%	7.9589	4.4986	0.9772	1.0000
	80%	13.9790	4.4991	0.9942	1.0000
	8 kbps	9.0414	2.2115	0.7565	0.9186
	16 kbps	13.1554	3.3484	0.9552	0.9992
	24 kbps	15.2631	3.9259	0.9888	0.9999
MD2 Comments	32 kbps	17.2272	4.0695	0.9962	1.0000
MP3 Compression	40 kbps	18.7795	4.1902	0.9975	1.0000
	48 kbps	20.8746	4.3122	0.9986	1.0000
	56 kbps	22.8885	4.3813	0.9991	1.0000
	64 kbps	23.9958	4.4136	0.9992	1.0000 =
Recount	8 bps	22.9103	3.1708	0.9757	0.9995
	5 Samples	14.8666	3.6664	0.9459	1.0000
Madian Filtonia	15 Samples	8.9079	2.5726	0.7875	0.9933
Median Filtering	25 Samples	5.3999	2.1427	0.7338	0.9806
	35 Samples	3.2550	1.8721	0.6861	0.9402
Low Pass Filtering	2000 Hz	12.8558	3.8824	0.7280	0.9030
High Pass Filtering	500 Hz	3.7635	3.7919	0.6551	1.0000
	20 dB	20.0002	3.1287	0.9104	0.9962
	25 dB	24.9989	3.5182	0.9670	0.9995
Gaussian Noise	30 dB	29.9981	3.8662	0.9919	1.0000
	35 dB	34.9941	4.1277	0.9981	1.0000
	40 dB	39.9888	4.3038	0.9994	1.0000

	Pre-processing	PESQ↑	SECS↑	ACC ↑
	→ Resampling 16K	1.0775	0.9122	1.0000
Regula	Mp3 Compression 64kbps	1.0347	0.9077	1.0000
	Combined	1.0776	0.9064	1.0000
	▶ Mp3 Compression 8kbps	0.8284	0.6675	0.8996
Harmfu	l Low Pass Filtering 2000 Hz	1.0836	0.6481	0.9482
1 /	Combined	1.0324	0.6567	0.9144
,*				

When combining watermark-erasuring preprocessing with voice cloning, the watermark still maintains high robustness.

Conclusion

- For the first time, we introduce the concept of "Timbre Rights" and propose a "Timbre Watermarking" scheme as an effective means of protection.
- To achieve "Timbre Watermarking", we propose a novel end-to-end voice cloning-resistant audio watermarking framework.
- Extensive experiments demonstrate that the proposed method can achieve robustness against traditional distortions and voice cloning distortion while guaranteeing the requirement of fidelity.

THANK YOU!

Demo and code website: https://timbrewatermarking.github.io

Contact with any questions: hichangliu@mail.ustc.edu.cn

Robust Watermarking

Fidelity: Modifications to the host signal are minimized to ensure they do not interfere with its regular usage.

Robustness: The watermark should be robust to various distortions on the watermarked signal.

