
NODLINK: An Online System for Fine-Grained APT
Attack Detection and Investigation

Shaofei Li†, Feng Dong‡, Xusheng Xiao§, Haoyu Wang‡, Fei Shao¶, Jiedong Chen∥, Yao Guo†,
Xiangqun Chen†, and Ding Li†∗

†Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University
‡Huazhong University of Science and Technology∗∗, §Arizona State University

¶Case Western Reserve University, ∥Sangfor Technologies Inc.
†{lishaofei, ding li, yaoguo, cherry}@pku.edu.cn, ‡{dongfeng, haoyuwang}@hust.edu.cn

§xusheng.xiao@asu.edu, ¶fxs128@case.edu, ∥chenjiedong1027@gmail.com

Abstract—Advanced Persistent Threats (APT) attacks have
plagued modern enterprises, causing significant financial losses.
To counter these attacks, researchers propose techniques that
capture the complex and stealthy scenarios of APT attacks by
using provenance graphs to model system entities and their
dependencies. Particularly, to accelerate attack detection and
reduce financial losses, online provenance-based detection systems
that detect and investigate APT attacks under the constraints of
timeliness and limited resources are in dire need. Unfortunately,
existing online systems usually sacrifice detection granularity to
reduce computational complexity and produce provenance graphs
with more than 100,000 nodes, posing challenges for security
admins to interpret the detection results. In this paper, we design
and implement NODLINK, the first online detection system that
maintains high detection accuracy without sacrificing detection
granularity. Our insight is that the APT attack detection process
in online provenance-based detection systems can be modeled
as a Steiner Tree Problem (STP), which has efficient online
approximation algorithms that recover concise attack-related
provenance graphs with a theoretically bounded error. To utilize
the frameworks of the STP approximation algorithm for APT
attack detection, we propose a novel design of in-memory cache,
an efficient attack screening method, and a new STP approxima-
tion algorithm that is more efficient than the conventional one
in APT attack detection while maintaining the same complexity.
We evaluate NODLINK in a production environment. The open-
world experiment shows that NODLINK outperforms two state-of-
the-art (SOTA) online provenance analysis systems by achieving
magnitudes higher detection and investigation accuracy while
having the same or higher throughput.

I. INTRODUCTION

Advanced Persistent Threat (APT) attacks have become a
major threat to modern enterprises [8], [57]. Existing Endpoint
Detection and Response (EDR) systems adopted by these
enterprises to defend against cyber attacks have difficulties

* is the corresponding author.
∗∗ Hubei Key Laboratory of Distributed System Security, Hubei Engi-

neering Research Center on Big Data Security, School of Cyber Science and
Engineering, Huazhong University of Science and Technology.

in countering APT attacks due to the lack of capability to
recover the complex causality relationships between the steps
of APT attacks [17], [50], [76], [66], [64], [43]. Therefore,
practitioners and researchers [73], [13], [25], [59], [30], [69],
[75] now analyze the system auditing events in provenance
data to recover APT attack scenarios. Unfortunately, most of
the existing provenance analysis systems only support post-
mortem analysis for alerts of EDR systems, which can delay
the accurate detection of APT attacks for a week [68] and
cause significant financial losses. As shown in a recent study,
it costs an enterprise about $32,000 each day when an attacker
persists in the network [28].

To this end, researchers have built online provenance-
based detection systems that detect and investigate APT attacks
simultaneously [45], [74], [37], [46], [40]. Unlike post-mortem
analysis systems, online provenance-based detection systems
can detect and recover the logic of an APT attack within sec-
onds of its occurrence, allowing security admins to respond in
time and reduce potential losses. Furthermore, by conducting
a comprehensive analysis on the whole APT attack campaign
instead of individual system events, online provenance-based
detection systems have substantially fewer false positives than
conventional EDR systems, further improving the effectiveness
and efficiency of APT attack investigation [41], [42].

Despite these promising early results, building an accurate
online detection system is still conceptually challenging due
to the constraint of limited resources and the high expectation
of timeliness. Recent research has shown that the operating
cost is the primary bottleneck for the industry to adopt an
EDR system [21]. Thus, it is important to reduce the running
cost of provenance-based detection system. Meanwhile, people
still expect a provenance-based detection system to detect APT
attacks in a timely online manner. Unfortunately, achieving
high detection accuracy under the constraints of timeliness and
limited resources is particularly challenging as provenance data
is a highly structured graph (called provenance graph) [41],
[92]. Existing graph processing algorithms, such as graph neu-
ral networks [38] or iterative message passing algorithms [41],
cannot be directly applied due to their low efficiency.

To address these challenges, recent online provenance-
based detection systems over-approximate the highly struc-
tured provenance graph with low-dimensional data struc-
tures [37] or manually crafted rules [45], [74], [46], [40].

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.23204
www.ndss-symposium.org

While these systems reduce the computational complexity by
sacrificing detection granularity, they make the detection result
hard to interpret. For instance, given an APT attack captured
in the provenance data, one of the SOTA online detection
systems, UNICORN [37], may generate a provenance graph
with more than 100,000 nodes. However, only fewer than 100
nodes are related to the APT attack. Thus, identifying the
attack steps represented by such a small number of nodes out
of the provenance graph is like “searching for a needle in a
haystack,” which is extremely difficult for the security admins.

Generally, the workflow of provenance-based APT detec-
tion [45], [74], [46], [40], [92], [13], [97], [38], [85] contains
three steps: ① attack candidate detection, which selects Indica-
tors of Compromise (IOC) or anomalous events; ② provenance
graph construction, which builds graphs with nodes represent-
ing system entities and edges representing entity interactions
(e.g., read/write files) to uncover the interactions between the
IOCs or anomalies; ③ comprehensive detection, which detects
APT attacks based on the provenance graphs built in step ②.
Among the three steps, the quality of the provenance graph
built in step ② is the key to accurate and fine-grained detection.
Unfortunately, building an optimally concise and accurate
provenance graph that discloses the interactions between the
IOCs or anomalies is challenging [25], [41]. The heuristics
used by existing approaches either overly approximate the
provenance graph [98], miss critical information [37], or are
too heavy for online detection systems [92], [38]. Therefore,
they cannot achieve conciseness, efficiency, and accuracy at
the same time.

In this paper, we propose the FIRST online detection
system that achieves fine-grained detection while maintaining
detection accuracy under the constraints of timeliness and lim-
ited resources. Existing approaches fail to achieve conciseness,
efficiency, and accuracy for APT detection simultaneously
due to their fundamental limitation: lack of formal models
of multiple goals of APT detection. Thus, to address this
fundamental limitation, we propose to model the provenance
graph construction (step ② of provenance detection) as an
STP (Steiner Tree Problem) [49], [51], which is effective in
modeling multiple goals and has efficient online approximation
solutions with theoretical bounded errors. Consider IOCs or
anomalies as a set of predefined nodes in STP (i.e., terminals),
and assign each interaction among system entities with the
same non-negative weight. Then building a provenance graph
can be modeled as an online STP, which searches for a sub-
graph that links all anomalies with minimal numbers of edges.
By doing so, we can design an approximation algorithm that
ensures a subgraph with minimal edges within a theoretically
bounded error range in polynomial time.

Although it sounds promising, solving the problem of APT
attack detection based on STP faces three main challenges.
The first one is how to detect long-term attacks. STP requires
knowing the whole provenance graph in advance. However,
keeping all provenance data in memory is impossible due to
data size and storing it in an on-disk database is not practical
either due to the I/O bottleneck. A straightforward approach
of using a time window that only holds the most recent data
is not always effective as attackers can take longer than the
window allows. To solve this problem, we propose a novel
in-memory cache design with a scoring method to prioritize

events that may cause APT attacks and capture long-running
attacks within the time window of STP. The second chal-
lenge is how to efficiently identify terminals in STP. Existing
detection methods depend on intensive random walking and
message passing on the provenance graph [38], [41], [92],
which is not suitable for an online system. To solve this
problem, we design an IDF-weighted three-layered Variational
AutoEncoder (VAE) that requires minimal computation. The
last challenge is that the current approximation algorithms for
STP are still not efficient enough for APT attack detection.
Existing approaches [51], [99], [77], [34] require finding the
shortest path between two nodes, which is too expensive
for online APT attack detection. To solve this problem, we
develop an importance-oriented greedy algorithm for online
STP optimization that achieves low computing complexity
with a bounded competitive ratio.

We implement NODLINK as a working system and deploy
it to a beta version of the commercial Security Operations
Center (SOC) of a security company, Sangfor. We evalu-
ate NODLINK with an open-world setting in the production
environments of customers of Sangfor, including hospitals,
universities, and factories. This is the first open-world eval-
uation on provenance-based APT detection systems. During
two-day testing, NODLINK successfully detected seven real
attacks that happened in the customer’s production environ-
ment. It outperforms the SOTA APT attack detection systems,
HOLMES [74] and UNICORN [37], in terms of the accuracy
of detecting attacks from the provenance data and the accuracy
of revealing attack steps from the detected attacks. Particularly,
HOLMES fails to detect any attacks due to its incomplete
rule set while UNICORN generates seven times more false
positives on the graph level and three orders of MAGNITUDE
more false positives on the node level. Besides the open-world
experiment, we also evaluate NODLINK with public datasets
and in-lab-made datasets that simulate the internal environ-
ments of Sangfor. The conclusion is also consistent with the
open-world experiments: NODLINK consistently outperforms
HOLMES and UNICORN by generating magnitudes fewer
false positives.

In summary, our main contribution is proposing a formal
and rigorous mathematical framework based on STP to model
APT detection. This model enables efficient and accurate de-
tection of APT attacks with valid approximation bounds. This
is the first paper with theoretical analysis of APT detection
error, to our best knowledge. Further, we did not simply apply
the STP model since it is not efficient enough for online APT
detection (See Section V.C HopSet Construction). Instead, we
propose a novel SPT framework that is more efficient while
maintaining the approximation error. We also provide new
theoretical analysis of the error of our HopSet Construction
in Section V.E. See Section V.C for why STP is not efficient
enough. We summarize our major contributions as follows:

• We model the APT detection as the online STP, which
provides a new vision in online APT detection.
• We design and implement an online APT detection system,

NODLINK, that achieves fine-grained detection with timeli-
ness and limited resources based on STP.
• We evaluate NODLINK in real production environments.

To the best of our knowledge, this is the first open-world
evaluation of provenance-based APT attack detection.

2

TABLE I: System events of provenance analysis

Events Operation Types
Process↔File read, write, create, chmod, rename

Process↔Process fork, clone, execve, pipe
Process↔IP sendto, recvfrom, recvmsg, sendmsg

• We release an open-source version of NODLINK along with
a new public provenance dataset for attack detection that
simulates the internal environment of Sangfor at https://gith
ub.com/Nodlink/Simulated-Data.

II. BACKGROUND

In this section, we introduce the background of provenance
analysis and provenance-based detection systems, and describe
the metrics to measure their performance.

A. Provenance Analysis

Provenance analysis systems collect system auditing events
of system calls from kernels using system monitoring tools,
such as Sysdig [87] and Linux Audit [83], and build a prove-
nance graph based on the collected events to show activities
between system entities. A provenance graph is a directed
graph. Its nodes are system entities, such as processes, files,
and IP addresses. The edges of a provenance graph are control
and data flows between system entities. For instance, there is
an edge from process p1 to process p2 if p1 forks p2. Similarly,
an edge links process p1 and file f1 if p1 writes data to f1.
Currently, several pieces of research are developed to build
and analyze provenance graphs. These approaches span from
system monitoring tools [55], [80], data storage [26], [47],
[62], [89], [101], and attack detection and investigation [45],
[74], [46], [37], [73], [13]. Following the existing work [25],
[92], [74], [46], [45], [13], [105], we focus on the system
events that are critical to attack steps, which we list in Table I.

Despite the effectiveness of provenance analysis systems,
their data logging can generate a colossal amount of records,
which introduces significant pressure in log processing, and
thus most existing provenance analysis systems only support
post-mortem analysis for alerts of EDR systems. To address
this problem, provenance-based detection system has received
extensive research in recent years [45], [74], [46], [70], [37],
[92], [105], [52]. It takes the system auditing events as input
and outputs alerts in the form of provenance graphs when it
detects attacks. Compared with the conventional EDR systems
that process each event individually, provenance-based detec-
tion systems leverage the structure and dependency informa-
tion of the provenance graph to design detection algorithms.
However, existing solutions still suffer from challenges and
limitations, as we will discuss below.

We illustrate the challenges and limitations in detecting and
investigating a real-world APT attack (APT29 [2]). Figure 1
shows the provenance graph of APT29. In APT29, an attacker
compromises the Chrome browser on the victim’s machine
and leverages PowerShell to run malicious scripts. Then the
malicious PowerShell script tries to obtain the root privilege
on the victim’s machine and, at the same time, executes the
Mimikatz tool to get user credentials for lateral movement. The

attacker then further attacks another host in the same network
once he has the credentials of a different user.

Challenges: The challenges come from the high volume of
data and the imbalanced ratio between attack and benign
events. For instance, the provenance graph that contains the
APT29 in Figure 1 has more than 20K events. However, there
are only about 200 events that are attack-relevant (shown using
red dash-dotted boxes) and more than 99% of the events are
attack-irrelevant events introduced by benign system activities
(shown using green solid boxes) [41], [68]. Furthermore,
benign events may look similar to attack-related events in the
provenance data, which further increases the difficulty in de-
tecting attacks precisely. For instance, in Figure 1, the attacker
leverages PowerShell to run malicious scripts. However, the
system administrator may also use PowerShell to maintain
the system. Simple solutions, such as a blacklist of process
names, do not work because they cannot distinguish whether
the attacker or the system administrator uses PowerShell.

Limitations of Existing Techniques: Existing provenance-
based detection systems can be categorized into two groups:
rule-based and learning-based systems. Numerous instances
within both groups have demonstrated the capability to achieve
practical graph-level accuracy [45], [74], [46], [37], [73],
[13], [42]. However, existing systems cannot achieve sufficient
node-level precision and node-level recall simultaneously.

Rule-based systems suffer low node-level accuracy due to
the incomplete rule set. For instance, one of the SOTA rule-
based systems, HOLMES [74], cannot detect the attack steps
in the blue dotted boxes in Figure 1. The reason is that the
rules of HOLMES are initiated from external untrusted IPs,
while the mail process does not have a direct connection to
the external IP addresses. Thus, the output graph of HOLMES
for the attack in Figure 1 is fragmented. It fails to link the
attack steps on HOST2 to the attack steps on HOST1, posing
challenges for root cause analysis. Besides, rule-based systems
generate many false positives on the node level since the rules
cannot model all features of a dynamic system well.

On the flip side, learning-based systems have low node-
level precision due to over-approximation. To support on-
line detection, existing learning-based approaches project
the provenance graph into low-dimensional data structures
to reduce the computational complexity, leading to over-
approximation. For instance, the SOTA learning-based online
detection approach, UNICORN [37], converts the provenance
graph into a hashing vector. Thus, UNICORN cannot pinpoint
the attack-relevant nodes in Figure 1 (shown in red dash-
dotted boxes) from the benign data (shown in green dash-
dotted boxes), leading to a low node-level precision (<1%).

B. Online Steiner Tree Problem

Online STP is a combinatorial optimization problem [51]
determined to be an NP-Complete problem with bounded ap-
proximation [56], [31], [61], [88], [71], [20], [95], [33]. Given
an undirected graph G = (V,E) with non-negative edges
weights we for each edge e ∈ E and a sequence of online
revealed vertices (called terminals) T = {t1, t2, . . . , tk}, it
outputs a subgraph Si of G that spans {t1, t2, . . . , ti}. The
objective is to minimize the total cost of c(

⋃k
i=1 Si).

3

./chromeRemote
Service.ps

Chrome.exe

powershell
Mimikatz.exe7z.exe

lsass.dmp certutil

HOST2

HOST1

office365Admin.ps

HOST4

HOST3

…

…

192.x.x.x
mail

Compromised
Tomcat Backdoor

powershell

mail.ps

Anomalous NodesAttack-relevant Events
(Attack Graph)

Related But Benign Events HOLMES Failed to Detect

File Explorer

20K+ benign but related events

200+ attack events

Suspicious Graph

Fig. 1: Example provenance graph of APT29. NODLINK is able to pinpoint the attack in a concise alert provenance graph
with about 200 nodes. The main part of the alert provenance graph is marked by the red dotted line. Critical attack steps are
highlighted in red-shaded rectangles.

The general framework of online STP optimization algo-
rithm is presented in Algorithm 1. For each new terminal ti that
arrives, we select the set Si of unselected edges that connects ti
to the current solution of the algorithm. This set Si is chosen to
be the cheapest, which has the minimal weighted edges, among
all possible sets that connect ti to the existing terminals. To
find this set, it uses a greedy approach: it computes the shortest
path Pj between ti and each previous terminal tj where j < i,
and then it picks the cheapest one as Si. We add Si to the
solution and repeat this process until all terminals have arrived.
The final solution is the union of all sets Si.

Competitive Ratio: The competitive ratio is a common mea-
sure for evaluating online STP. It is the worst-case cost of the
online algorithm’s solution, denoted by c(∪ki Si), with the cost
of an optimal solution that has full knowledge of the input,
denoted by c(O∗). Formally, the competitive ratio is defined
as c(∪k

i Si)
c(O∗) [19].

Algorithm 1 can achieve a competitive ratio of
O(log(k)) [51], where k is the number of terminals. According
to theoretical analysis, the competitive ratio of any online
Steiner tree algorithm is O(log(k)) [51]. Therefore, the simple
greedy algorithm is optimal for online Steiner Tree building.

III. THREAT MODEL

Our threat model is similar to the previous work on
learning-based provenance-based attack detection [41], [37].
We assume attacks have distinct features, which can be de-
tected by statistical patterns or manually created rules. We
assume that the system-level auditing frameworks are secure,
which means that they can faithfully record system activities
with sufficient details. In addition, we assume the storage and

Algorithm 1: Greedy Algorithm for Online STP
Input : the Undirected Weighted Graph G, Terminal

Stream TS
Output: Selected Edge Set S

1 T ← ∅
2 S ← ∅
3 while ti arrives from TS do
4 PATH ← ∅
5 for tj ∈ T do
6 Pj ← shortest path(ti, tj , G)
7 PATH ← PATH.add(Pj)
8 Si ← get min cost(PATH)
9 S ← S ∪ Si

10 T ← T.add(ti)
11 return S

transmission of system logs are secure. Although there are
several attack vectors that may compromise the collection,
storage, and transmission of system logs [72], [80], they are
beyond the scope of this work. We do not consider the attacks
performed using implicit flows (e.g., side channels) that do not
go through kernel-layer auditing and thus cannot be captured
by the underlying provenance tracker. Although we allow
attacks in the training data, we assume that the majority of
the training data are not contaminated by attacks.

IV. OVERVIEW OF NODLINK

Generally, NODLINK is an online APT attack detection
system. It accepts an event stream of system provenance events
collected from the agents installed on the monitored hosts. The
outputs of NODLINK are concise alert provenance graphs that

4

contain critical attack steps. An example of alert provenance
graph is shown in Figure 1 (marked by the red dotted box with
about 200 events).

Algorithm 2 shows the high-level workflow of NODLINK,
which is similar to existing detection systems [45], [74], [46],
[70], [37], [92], [105], [52]. Our NODLINK algorithm detects
anomalies every ∆ (∆ = 10 in our implementation) seconds
through four phases: (1) In Memory Cache Building(line
6), (2) Terminal Identification(line 7), (3) Hopset Construc-
tion(line 8), and (4) Comprehensive Detection(line 9). We
fetch events and store them in a cache, allowing NODLINK
to track the causalities of events of long-running attacks in
memory without suffering from the performance bottleneck
introduced by slow I/O. Suspicious processes are identified
and assigned anomaly scores based on local features, such as
the command lines, process names, and accessed files. Hopsets
are constructed for each terminal to connect topologically
close event-level anomalies. Finally, we merge hopsets with
the cache and report any subgraph with deviating anomaly
scores as an alert to reduce false positives.

The key novelty of our approach is in Phase 3 of Hopset
Construction. Existing approaches either use heavy graph
learning algorithms [92], [106] or heuristics that are error
prone [74]. In our approach, we propose an online-STP-based
approach that ensures conciseness, accuracy, and efficiency.
To model the APT attack detection on provenance graph as
STP, we regard the attack-related processes as terminals and
convert the directed graph to an undirected graph with equal
non-negative weight w of each edge, w = 1 for simplification.
It helps us to model terminals that do not have a direct causal
relationship but have dependencies on the same node. Thus the
object of APT detection is to identify the terminal set T first
and find the edge set S that can connect all the attack-related
nodes with the minimal total weight c(S) =

∑
(u,v)∈S wuv ,

which is a standard STP formula. Then, our system raises an
alert if the aggregated anomaly score of the nodes in the Steiner
tree is larger than a threshold.

In addition, we also design a novel in-memory cache that
addresses long-running attacks while ensuring efficiency. For
online APT detection, a time window is required to buffer
newly coming events. However, the attacker may abuse a
naive time window by taking long-running attacks. To this
end, we design the time window as an in-memory cache that
keeps updated and anomalous nodes in memory and evicts
other nodes to the disk(line 4). While building the Steiner
Trees, once our system encounters a node evicted to the disk,
it loads it back to the memory. This design ensures that
NODLINK can handle long-running attacks while maintaining
the performance of the online algorithm.

We have also adapted the standard online STP algorithm
for APT attack detection. In Algorithm 1, the step of finding
the shortest path between the newly arrived terminal and
having seen terminals at line 6 is too time-consuming for an
online detection system. Therefore we design an importance-
oriented greedy algorithm that reduces the time complexity
from O(N2) to O(N), where N is the number of nodes, for the
step of Hopset Construction. We further provide the theoretical
analysis in Section V-E.

Algorithm 2: Algorithm of NODLINK Solving the
APT Detection as STP

Input : Event Stream E, Time Window ∆
Output: Attack Graph AG

1 C ← ∅
2 time← 0
3 Et ← ∅
4 while catching e from E do
5 if time ≥ ∆ then
6 G← cache building(Et)
7 T ← terminal identification(G)
8 C ← hopset construction(G,T)
9 AG← comprehensive detection(C)

10 if AG ̸= ∅ then
11 Raise Alerts AG
12 Et ← ∅
13 time← 0
14 else
15 Et.add(e)
16 time← time.increase()

V. DESIGN DETAILS

In this section, we present the design details of the com-
ponents of NODLINK.

A. In-memory Cache

We design the time window of NODLINK as an in-memory
cache to address the long-running attacks and maintain the ef-
ficiency of the online STP optimization algorithm. It maintains
the latest anomalous nodes in memory and evicts the outdated
and benign nodes to disk.

In our design, the in-memory cache contains the edges of
the provenance graph in the form of < srcid, dstid, attr >,
where srcid and dstid are the IDs of the source and destination
of an edge, respectively, and attr is the attribute of the edge,
which includes the operation types and time stamps. The
types of edges and their available operation types are listed in
Table I. NODLINK also stores necessary attributes for nodes in
the directed graph, which are processes, files, and IP addresses.
For processes, NODLINK stores their command lines, process
names, pids, and uids. For files and IPs, NODLINK stores their
paths and IPs with ports, respectively.

Cache Updates: Generally, the in-memory cache buffers
subgraphs that (1) have higher anomaly scores and (2) are
actively evolving. The in-memory cache updates every time
window with length ∆ with the solutions of STP in the current
time window. NODLINK utilizes the in-memory cache for
global STP solution and false positive reduction, which we
will discuss in Section V-D in detail.

NODLINK organizes the subgraphs in the cache as hopset
and gives each hopset a hopset anomaly score (HAS). On the
high level, a hopset is a subset of the provenance graph that
contains the local context information of a set of event-level
anomalies. HAS indicates the degree of abnormality for each
hopset. We will discuss the details of hopset and HAS in the
following sections.

We define the energy of a hopset, h, as E = ϵage ∗has(h),
where ϵ is a decaying factor, age is the number of time win-

5

dows passed since the last update to the hopset. age = 0 if the
given hopset has been updated in the last time window (e.g.,
new events are added to the graph). Otherwise, NODLINK
increases age by one for every time window passes. When
the cache is full, NODLINK evicts the hopset with the lowest
energy to the Neo4j [6] database.

Retrieving Nodes From the Disk: To detect long-term
attacks, NODLINK designs the storage policy of the graph
database and retrieves the subgraphs from the database when
encountering the evicted nodes. When evicting the hopset to
the disk, NODLINK stores all the relationships and attributes
of nodes and edges, including the anomaly score, and removes
them out. NODLINK assigns a unique uuid for each node using
md5 value. For processes, NODLINK calculates the md5 of
pid + tid + command line. For files, NODLINK calculates the
md5 of /full/path/filename. For IPs, NODLINK calculates the
md5 of src ip:port:dst ip:port. Thus NODLINK can retrieve
the attributes of the evicted node and hopset.

Since each node has a unique uuid, we can check if the
node is evicted to disk by looking it up in the cache. Because
the nodes in the cache are organized by a hashtable, it takes
O(1) time for the lookup operation. If the node is not in
the cache, NODLINK queries the attributes of the node and
the hopset that contains it. Then NODLINK merges them and
recalculates the HAS. In this way, NODLINK can detect the
entire APT attack campaigns.

B. Terminal Identification

In Terminal Identification, NODLINK scans the in-memory
cache and identifies suspicious process nodes as terminals
based on their node-level features. Note that although the
output of NODLINK only contains anomalous processes, it
does consider anomalous files and IP addresses. NODLINK
merges the anomalous files and IP addresses to the processes
that access them. The logic behind this design decision is
that malicious files and IPs cannot be effective before being
accessed by a process. Therefore, focusing on anomalous
processes can reduce the duplicated alerts on files and IPs
without losing node-level accuracy. NODLINK analyzes three
types of node-level features: the command line that starts a
process (command line), the files accessed by a process (files),
and IP addresses accessed by a process (network). Terminal
Identification consists of two steps: First, it embeds process
nodes into numerical vectors based on node-level features.
Second, it uses a machine learning model to detect anomalies.

1) Embedding: During Terminal Identification, NODLINK
first projects node-level features of a process to numerical
vectors. On a high level, the embedding of a process is a
weighted sum of the embedding vectors of the three node-
level features. NODLINK chooses to embed node-level features
with Natural Language Processing (NLP) technique to handle
unseen patterns in node-level features. The embedding process
has two steps. NODLINK first embeds command lines, file
names, and IP addresses, respectively. Then it combines the
embedding of them as the final embedding of a process.

In the first step, NODLINK converts the command lines, file
paths, and IP addresses into a sentence of natural language and
then uses the document embedding tools in NLP to convert the
sentence into a vector. The insight behind this design is that

command lines contain natural language terms that represent
the semantics of a process. For instance, in the command
“date -d 4857 second ago +%s”, “date”, “second”, and “ago”,
are natural language terms that indicate the functionality of
the process. NODLINK converts non-alphanumeric symbols
into spaces to convert node-level features into sentences.
For example, NODLINK converts file “/etc/tmp/log.txt” into
a sentence “etc tmp log txt” and converts the quadruple of
IP “<126.7.8.7, 80, 162.0.0.1, 8080>” into a sentence “126 7
8 7 80 162 0 0 1 8080” by considering “.” as spaces. After
the conversion, NODLINK uses FastText [18] to convert the
sentence to a numerical vector. We choose FastText because
of its efficiency [18]. We can also use other more sophisticated
sentence embedding techniques. However, since NODLINK has
achieved magnitudes higher node-level accuracy than baselines
in our evaluation, we leave the design of such a better sentence
embedding technique as our future work.

The main challenge for embedding node-level features is
that they may contain strings that are not a part of natu-
ral languages. For example, “/var/spool/8b7dc29d0e” contains
the hash string “8b7dc29d0e”. Existing NLP-based document
embedding techniques cannot process these special tokens.
Therefore, NODLINK removes the non-natural-linguistic by
deleting tokens that do not have valid meanings with the NLP
technique Nostril [48].

The second step for embedding is to sum the numerical
vectors of the three node-level features. Formally, the embed-
ding vector of a process is defined as:

Vp = wc ∗ Vc +
∑

wfi ∗ Vfi +
∑

wni ∗ Vni

, where Vc, Vfi, Vni are the embedding vectors of the command
line, files and network connections, respectively, wc, wfi, and
wni are the weights.

Formally, the weight wfi of a file is defined as w =
log(P

Pfi
), where P is the number of all the processes and Pf

is the number of the processes that operate the filefi. We use
a similar method to calculate the weights wni for IP addresses.
The logic behind this design is to address files and IP addresses
commonly shared by different processes [68]. For example, all
processes load the libc file. Thus, the libc is not useful for
modeling the local features of a process. Then, we design the
weight to degrade the impact of the files or IP addresses like
the libc file to improve the accuracy for process modeling.
Lastly, The weight of the command line wc is the average of
the weights of all files and IPs to ensure that wc is on the same
order of magnitude of files and IP addresses.

Note that NODLINK may achieve better process embedding
by leveraging more complex graph embedding techniques [38],
[90], [78]. However, since these techniques require passing
messages across the whole provenance graph, they are too
heavy for an online detection system.

2) Anomaly Detection: To detect terminals, NODLINK
leverages a VAE model [60] to calculate the anomaly score for
each process node in the provenance graph and then identifies
the nodes with higher anomaly scores as terminals. VAE model
is widely used as a lightweight anomaly detection model in
other tasks [100], [65], [109]. We choose to use the VAE model
because it is efficient for an online detection system [107].

6

The VAE model used by NODLINK is a standard one for
anomaly detection [11]. The input of the model is Vp, the em-
bedding vector of a process node p. The output is an anomaly
score. The high-level process for NODLINK is as follows. First,
for a process node, NODLINK feeds its embedding vector Vp to
the VAE model and gets the reconstruction of the input vector
as V ′

p . Then, NODLINK compares V ′
p to Vp. If V ′

p differs from
Vp significantly, the input node p is more likely an anomalous
node. NODLINK numerically measures the difference between
V ′
p and Vp with the normalized MSELoss, following other

VAE-based anomaly detectors [108], [81]. To follow the com-
mon terms in machine learning, we use the reconstruction error
RE to represent the value of the MSELoss between V ′

p and
Vp. Based on existing related work in machine learning [14],
RE measures the rareness of a process. In other words, a high
RE means the input process node is more likely an anomaly
according to historical data.

A straightforward method to calculate the anomaly score
for a process node is to use the reconstruction error directly.
However, this method may generate false positives for unstable
processes [68], which are the processes that often access
random files or IP addresses. For instance, a web browser
tends to access random IP addresses. Directly using the re-
construction error will constantly identify processes like web
browsers as terminals, leading to false positives. To address
the problem of unstable processes, we introduce a stability
score SV to balance the reconstruction error for unstable
processes. For NODLINK, we define SV as the cluster number
of embedding vectors of the processes with the same name as
p in the historical data, following related work [41]. Formally,
NODLINK calculates its anomaly score with the equation:

AS(p) = log(
RE(p)

SV (p)
)

, where p is the embedding vector of a process, RE is the
reconstruction error given by the VAE model, and SV is the
stability score of the process p. RE is divided by SV to reduce
the impact of unstable processes.

To detect terminals, NODLINK marks a process node as
anomalous if its AS is higher than the 90th percentile of AS
in historical data. This threshold is a widely used threshold for
VAE-based anomaly detection [79], [109], [14]. In the design
of NODLINK, we do not use other values for the threshold to
ensure that our approach can be generalized.

Offline Model-Training: Although NODLINK is an online
detection framework, it needs to train the FastText model,
the VAE model, the SV model, and the threshold to raise
anomalies from the historical data offline. NODLINK trains
the FastText model on the command lines, file paths, and IP
addresses in the historical data. Then, NODLINK uses trained
embedding vectors to further train the VAE model. NODLINK
calculates SV offline by periodically running the DBSCAN
algorithm [58] on the historical data. It first classifies the
process embedding vectors into distinct groups. Then, the
process name and its number of clusters are stored in an in-
memory hash table for online anomaly score calculation.

C. Hopset Construction

After detecting terminals in Terminal Identification,
NODLINK runs Hopset Construction to solve the STP in

the current time window. The hopset in a certain time win-
dow is the neighbor context for each terminal, which in-
cludes bounded neighbor nodes and the paths to these nodes.
NODLINK utilizes the greedy algorithm, which we called
Importance-Score-Guided Search (ISG) algorithm, to construct
the hopset based on the local information, such as AS and node
degree. Hopset Construction outputs an approximated solution
of STP with low complexity and bounded competitive ratio,
described in Section V-E.

Holistically, Hopset Construction follows the algorithm
framework in Algorithm 1 to build the Steiner trees. However,
in Algorithm 1, finding the shortest paths at line 6 has a
complexity of O(N2) using Dijkstra’s algorithm [44], where N
is the number of nodes. This is still too expensive for an online
detection solution. To this end, we designed an importance-
score-guided search that has a complexity of O(N).

The workflow of Hopset Construction is as follows. As-
suming that there are n nodes in terminals, Hopset Construc-
tion first starts n searching procedures, each for one of the
terminals. The search process is greedy by an importance
score of IV . Each greedy searching procedure generates a
hopset, and the number of nodes is bounded. NODLINK stops
exploring new nodes if it has already discovered θ nodes.
This early stopping is motivated by the assumption of attack
polymerism [41], [38], [92], [25], [106], [46], [40], which says
that attack actions are topologically close in the provenance
graph because attackers need to create the execution chain of
attack actions step by step through a sequence of footholds.

Our tool merges overlapping hopsets during greedy search-
ing to efficiently connect terminals within bounded node
exploring instead of utilizing the shortest path algorithm with
high complexity used in the classic greedy algorithm [51].
This approximated solution reduces false positives in anomaly
detection by identifying topologically close attack-related
anomalies. Hopset Construction assigns a HAS to each hopset
for future investigation, focusing on more important nodes
based on anomaly score and distance from terminals. This
deprioritizes far nodes to exclude false positives and leverage
the attack polymerism of APT attacks, which states that attack-
related event-level anomalies are topologically close in the
provenance graph because attackers conduct attack activities
through a few footholds, such as backdoors or reverse shells.

The key component of Hopset Construction is the design of
the importance score, which allows NODLINK to focus limited
computational resources on more important nodes. Our design
of IV considers two major factors. The first is the anomaly
score AS. The second is the distance from the closest node in
terminals. The intuition behind the distance is to leverage the
attack polymerism of APT attacks [38], [46], [41], which says
that the influence of an attack step candidate decreases with
distance. Thus, NODLINK deprioritizes the nodes that are far
from terminals to further exclude false positives in terminals.
Formally, IV of a node n is defined as:

IV (n) = αi(β ∗AS(n) + γ ∗ FANOUT (n)) (1)

In Equation 1, αi reflects the distance between n and
terminals. It decreases IV when n is far from terminals.

7

Specifically, 0 < α < 1 is a distance decaying factor, and i is
the number of hops between n and its nearest terminals. AS(n)
is the anomaly score of the node, as defined in Section V-B2

In Equation 1, we also introduce a supplementary fac-
tor FANOUT (n) for a node n, which is defined as
FANOUT (n) = out degree(n)/(in degree(n) + 1). We
introduce this term because we observe that some processes
have the tendency to generate a multitude of “leaf” nodes
that do not propagate data and control flow dependencies.
These “leaf” nodes are not interesting for APT attack detection
and investigation [68]. Thus, we use the FANOUT term to
deprioritize them. We combine FANOUT and AS with two
weights β and γ. Note that in the design of NODLINK, AS is
the main factor, while FANOUT is the supplementary factor.
Thus, NODLINK only requires β >> γ.

Graph Anomaly Score Calculation: The last step of Hopset
Construction is to assign the anomaly score HAS to each
hopset. We define the HAS for a hopset as the sum of
all anomaly scores of all nodes in the hopset, or formally,
has(Hi) =

∑
n∈Hi

AS(n). Note that since NODLINK has
already excluded nonimportant nodes based on IV , nodes in
hopset are likely to be attack-relevant. Thus, the sum of AS
only includes the nodes that are highly likely to be attack-
relevant. This design helps improve the node-level accuracy
and graph-level accuracy, defined in Section VI-B, by avoiding
attack-irrelevant events.

D. Comprehensive Detection

To conduct comprehensive detection, NODLINK first up-
dates the cache hopsets in the memory with the hopsets that are
constructed in the current time window. NODLINK merges the
hopsets of current time window with the hopsets in the cache if
they have the same nodes. However, if we merge the hopsets
directly, in the worst situation, a long-running process was
identified as terminal and was updated θ different neighbors in
each time window, which can result in dependency explosion.
To prevent it, we limit the hopset of each terminal within θ
nodes and replace the nodes with lower IV values with the
ones with higher IV values while merging.

After hopset merging, NODLINK assigns HAS to the
updated hopsets, as described in Section V-A. In this way,
we can connect the STP solutions of each time window to
global solution so that we can reconstruct the long-term attack
campaign. Then NODLINK leverages the Grubbs’s test [10]
to detect hopsets with abnormally high HAS. Grubbs’s test
detects whether the largest value of a set of samples is an out-
lier. We choose Grubbs’s test because it is non-parameterized
and robust to polluted training datasets. NODLINK runs the
Grubbs’s test on the in-memory cache for multiple rounds
until no outliers are flagged. Finally, the detected outliers are
identified as attack campaigns and alerts will be raised.

E. Theoretical Analysis

Complexity: In Terminal Identification, NODLINK embeds
a process to a numerical vector considering the node-level
features that the process directly accesses. Thus NODLINK
needs to explore the node-level features through edges with
the complexity O(E). In Hopset Construction, NODLINK
constructs hopset for each terminal by greedy exploring θ

nodes. Therefore the complexity of the detection is O(θN),
where N is the number of nodes in the provenance graph.

Competitive Ratio: In Section V-C, we replace the shortest
path exploration at line 6 of Algorithm 1 with the importance-
score-guided search. This replacement may result in a larger
Steiner tree in the detection, compromising the conciseness.
Therefore, in this section, we analyze the new competitive
ratio, which is the ratio between the size of the Steiner tree
generated by our algorithm to the theoretically optimal solu-
tion. Recall that a standard online STP optimization algorithm
has the competitive ratio of O(log(k)), where k is the number
of terminals. Therefore, we only need to compare our approach
to the standard online STP optimization algorithm.

Formally, in our problem, in time window i, NODLINK gets
a solution of STP Si, the hopsets in our algorithm. Our object
is to minimize the total weight c(∪ki Si), where k is the number
of time windows that we have experienced. Assume S∗ is the
standard STP solution with cost c(S∗) = STANDARD(G)
and O∗ is the standard STP solution with cost c(O∗) =
OPT (G) [39]. So the competitive ratio can be derived as:

c(∪ki Si)

c(S∗)
∗ c(S∗)

c(O∗)
=

c(∪ki Si)

c(S∗)
log(k)

For c(∪k
i Si)

c(S∗) , we have the following derivation:

c(∪ki Si)

c(S∗)
≤

∑k
i c(Si)

c(S∗)
≤ |T |θ

c(S∗)
≤ |T |θ
|T | − 1

≤ 2θ (2)

As we defined in Section IV, we assign each edge the
weight of 1, so the total weight of the solution is the number
of edges. For the first step in Equation 2, the same edges
can be merged so we have c(∪ki Si) ≤

∑k
i c(Si). In each time

window, NODLINK explores at most θ nodes for each terminal.
Thus, there are at most θ edges. And we guarantee the hopset
of each terminal within θ nodes so the total number of edges
is less than |T |θ, where |T | is the number of terminals. Thus
we have

∑k
i c(Si) ≤ |T |θ for the second step in Equation 2.

And for the weight of optimal solution c(S∗), it needs at least
|T | − 1 edges for connection, so we have c(S∗) ≥ |T | − 1 in
the third step. Then obviously, |T |θ

|T |−1 ≤ 2 because |T | ≥ 2 in
most of the cases in APT detection.

To sum up, NODLINK can get a 2θ log(k) = O(log(k))
bounded competitive ratio since θ is a constant. In other words,
our importance-score-guided search does not change the worst-
case competitive ratio of the original online STP algorithm.

VI. EVALUATION

NODLINK has three design goals: (1) achieving high node-
level accuracy, (2) achieving high graph-level accuracy, and (3)
achieving high throughput. Therefore we focus on answering
the following research questions.

• RQ 1: Can NODLINK achieve higher graph-level accuracy
than SOTA solutions?
• RQ 2: Can NODLINK achieve higher node-level accuracy

than SOTA solutions?
• RQ 3: Can NODLINK achieve higher detection efficiency

than SOTA solutions?

8

TABLE II: Summary of our evaluation datasets

Dataset #APT Duration #Host Event Rate #Activities*

Close
World

DARPA-CADETS 3 247h 1 16.87 eps 21
DARPA-THEIA 1 247h 1 11.25 eps 97
DARPA-TRACE 2 264h 1 75.76 eps 93
Industrial Arena 3 336h 22 40.74 eps 197
In-lab Arena 5 144h 5 48.23 eps 202

Open
World - 7 120h 300+ 39.35 eps 568

* #Activities is the number of malicious activities in the dataset.

• RQ 4: What is the impact of our optimization on efficiency?
• RQ 5: Can NODLINK effectively detect and recover the

scenarios of real attacks in a production environment?
• RQ 6: How do the hyperparameters affect the performance

of NODLINK?

A. Experiment Protocol

We implement NODLINK in Python with 5K+ Lines of
Code (LoC) and integrate it into Sangfor’s EDR solution.
NODLINK leverages the agents of the industrial EDR to collect
provenance data from monitored hosts. The collected data have
the same format as other detection systems [37], [74].

We choose HOLMES [74] and UNICORN [37], two of
the representative online provenance-based APT attack detec-
tion systems, and ProvDetector [92], one of the well-known
offline provenance-based for detecting stealthy malware, as
the baselines for comparison. HOLMES is one of the SOTA
rule-based systems. We use HOLMES as a baseline because
it provides complete detection rules in its paper so that we
can re-implement it. In addition, there are two other rule-
based systems, MORSE [46] and RapSheet [40], that are as
effective as HOLMES. However, both alternatives rely on rules
from commercial EDRs or enterprise-specific policies that are
not reported in the paper. Thus, we decide not to implement
MORSE and RapSheet to avoid possible bias. UNICORN
is the SOTA learning-based detection system. We directly
use the published source code of UNICORN and use its
default parameters, but modify its data parser to accept our
data format. In order to more comprehensively evaluate the
performance of NODLINK, we also choose one of the SOTA
offline systems, ProvDetector. We implement ProvDetector
and release the code in the same GitHub repository. Our
experiments are carried out on a server running Ubuntu 20.04
64-bit OS with 32-core Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz, 64GB memory.

The main challenge in evaluating an APT detection system
is to avoid the problem of “close-world data”, which means
building the solution based on a known dataset that leads to
overfitting. Existing solutions [38], [41], [92], [74], [73], [46],
[40], including HOLMES [74] and UNICORN [37] are facing
this problem. To avoid the “close-world” problem, we conduct
an open-world experiment by deploying NODLINK to realistic
production environments, with the parameters obtained from
the close-world experiment. The high-level summarization of
our datasets is in Table II.

B. Metrics

Formally, we define graph-level accuracy as two metrics:
graph-level precision and graph-level recall.

Graph-level accuracy. We define graph-level precision as:
GTP

GTP+GFP , where GTP and GFP are graph-level true pos-
itives and false positives, respectively. We say a provenance
graph is GTP if it contains attack steps and is reported as an
alert. For instance, the provenance graph in Figure 1 is a GTP .
Otherwise, we consider it as GFP . We define graph-level
recall as GTP

GTP+GFN , where GFN is the number of graph-
level false negatives. We say a provenance graph is GFN if
it contains attack steps but is not identified as an alert.

Node-level accuracy. Node-level accuracy measures the gran-
ularity of an online detection system. It includes metrics:
node-level precision and node-level recall. Specifically, node-
level precision is defined as NTP

NTP+NFP , where NTP and
NFP are the numbers of node-level true positives and false
positives, respectively. We say a node in a provenance graph
is NTP if it is attack-relevant and is included in an alert.
Otherwise, we consider it as NFP . We define node-level recall
as NTP

NTP+NFN , where NFN is the number of node-level false
negatives. We say an event in a provenance graph is NFN if
it is attack-relevant but is not included in an alert.

C. Close-World Experiment

In the close-world evaluation, we build five datasets. The
first three are CADETS, THEIA, and TRACE from the
DARPA TC Engagement 3 (E3) database [1]. We choose
these three datasets because they are widely used in evaluating
provenance-based detection systems [37], [46]. Besides the
three datasets from DARPA TC, we also build two datasets,
industrial Arena and In-lab Arena, that represent the realistic
production environment of a security company, Sangfor. The
Industrial Arena dataset includes the provenance data of a
14-day internal security evaluation engagement of Sangfor. It
contains 22 working machines of its employees and three APT
attacks simulated by a professional red team. The three attacks
include the well-known APT29[2] attack, the APT32[3] attack,
and a new one that exploits the latest Log4j2 (CVE-2021-
44228)[9] vulnerability.

In addition to the Industrial Arena dataset, we also built
a smaller testbed that simulated the internal environment of
Sangfor and made the collected data publicly available1. The
data were collected from five hosts: one Ubuntu 20.04 server,
two Windows Server 2012 R2 Datacenter, one Windows Server
2019 Datacenter, and one Windows 10 desktop host. We
deployed Apache and PostgreSQL on Windows Servers and
Nginx and PostgreSQL on Ubuntu 20.04 to simulate servers
in Sangfor. The Windows 10 desktop was used to simulate the
PCs used by the employees. On Windows Server 2012 and
Ubuntu 20.04, we carried out the two real attacks from Sangfor.
The attacker exploits the Apache Struts2-046 (CVE-2017-
5638) vulnerability [63] for remote code execution and then
penetrates the database on Ubuntu 20.04 by exploiting weak
passwords. On Windows Server 2012, the attacker exploits the
“phpstudy” backdoor and uses “PAExec.exe” to control other
Windows servers remotely. On Windows 10, we carried out
APT29 [2], FIN6 [5] and SideWinder [7] using the Atomic Red
Team [4] and techniques based on MITRE’s ATT&CK [12].
We have also provided detailed attack steps in the documents
of our repository.

1https://github.com/Nodlink/Simulated-Data

9

For each dataset, we partition its benign data into a training
set (80% of the graphs) and a test dataset (20% of the graphs).
We then trained the detection model on the benign training set
and evaluated the performance of NODLINK on the test set
and the attack data.

To build the ground truth for the three datasets from
DARPA TC, we first labeled the attack according to the
documents provided by DARPA. We leverage the red team
in Sangfor to label the attack steps they have made for the
Industrial Arena Dataset and the In-lab Arena Dataset.

D. Open-World Experiment

In open-world evaluation, we integrate NODLINK and
baselines to a beta version of EDR of Sangfor and deploy
them to monitor the systems of realistic customers. Before our
experiment, we have no prior knowledge about the data of
customers. Thus, we can avoid over-fitting the test data. We
fine-tune the hyperparameters based on the DARPA dataset in
“close-world data” for NODLINK and baselines, and deploy the
fine-tuned models to the “open-world data” directly. The open-
world evaluation evaluates how well can NODLINK detect real
attacks in production environments.

Our open-world evaluation includes 300+ servers and
working machines of employees of 10 industrial customers
from Sangfor, including schools, research institutes, factories,
and healthcare providers. The servers include both Linux
and Windows servers that host databases and back-end web
services, while the working machines are Windows desktops
used by employees in their daily work. Overall, there are 50+
Linux machines and 250+ Windows machines. We monitor
the customers for five days. We use the first three days to
train the detection model for NODLINK and UNICORN, and
use the last two days for testing.

Ground Truth Building: It is particularly challenging to build
the ground truth for the open-world evaluation. Due to the
large number of monitored hosts and the open environment,
we cannot manually examine all system events to identify
which event is attack-relevant. To this end, we first leverage
the conventional EDR with 1000+ rules customized for the
customers of Sangfor to label the possible attack-relevant
events. However, this conventional EDR is overly conservative.
It reports about 135,700 alerts for the two-day testing period. A
professional security team of Sangfor manually examined the
alerts and identified about 2,000 true alerts, which we consider
attack-relevant events. Note that, unlike the NODLINK and
the two baselines, conventional EDR cannot automatically
reconstruct the attack campaigns from attack-relevant events.
Therefore, the same security team manually reconstructs seven
APT attack campaigns from the attack-relevant events. We put
a detailed description of the attacks in Section VI-I.

Hyper-parameter Setting: We empirically set the five hyper-
parameters, α, β, and γ, θ, and ϵ, of NODLINK with DARPA
datasets (CADETS, THEIA, and TRACE). We set α as 0.9,
(β,γ) as (100,1), θ = 10, and ϵ = 0.8. We will discuss our
rationale for choosing these values in Section VI-J.

E. RQ 1: Graph-Level Accuracy

We report the graph-level precision and graph-level recall
of NODLINK and the three baselines in Table III.

TABLE III: Ground truth and detection results of the datasets.
The precision and recall of UNICORN for CADETS and
THEIA are from the original paper [37]. ProvDetector fails to
report any alerts on the DARPA-CADETS dataset and cannot
conduct detection on DARPA-TRACE dataset due to memory
limitation. HOLMES fails to report any alerts on the open-
world dataset.

Dataset ProvDetector HOLMES UNICORN NODLINK

P R P R P R P R
DARPA-CADETS NA NA 0.03 1.00 1.00 1.00 1.00 1.00
DARPA-THEIA 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DARPA-TRACE NA NA 0.15 1.00 0.28 1.00 0.67 1.00
Industrial Arena 0.75 1.00 0.04 1.00 0.67 1.00 1.00 1.00
In-lab Arena 0.65 1.00 0.04 1.00 0.50 1.00 1.00 1.00
Open-World 0.11 1.00 NA NA 0.15 1.00 0.35 1.00

Close-World Result: As shown in Table III, although these
systems can detect all attacks, they report more false positives
than NODLINK. Specifically, ProvDetector, UNICORN and
HOLMES generate 783, 14 and 416 GFPs. On the contrary,
NODLINK only reports one false positive in these datasets.

ProvDetector fails to detect the attack in DARPA-CADETS
and cannot conduct detection on DARPA-TRACE due to
memory limitation. It also has the lowest graph-level precision
on DARPA-THEIA because it cannot handle browser activities
that explode dependencies. For example, ProvDetector mistak-
enly reports false alerts when Firefox connects to new IP ad-
dresses. UNICORN has lower graph-level precision because it
over-approximates the provenance graph. UNICORN projects
a provenance graph to a numerical vector for detection. This
step downgrades its graph-level precision. HOLMES has more
GFPs because its rules are overly conservative. For example,
the command-line utility rule of HOLMES marks a process
as anomalous if the process runs command-line utilities after
accessing an untrusted IP address. This rule generates a lot of
false positives for long-running processes such as Nginx: once
an Nginx process receives a connection from the untrusted
IP, all shell command executions forked by the Nginx process
are marked as anomalies. Although building more complex
rules can improve the precision of HOLMES, it is tedious
to consider the heterogeneity of systems and the number of
different types of system activities.

Open-World Results: We also show the result of the open-
world experiment in Table III. Overall, the result is consistent
with that of the close-world experiment. NODLINK has a lower
node-level precision in the open-world experiment because the
signal-noise ratio is much lower in the open-world experiment.
NODLINK outperforms the baselines. Particularly, HOLMES
FAILS to detect any attacks in the open-world experiment
because its rule set lacks rules to detect webshells and process
hijacking attacks. Unfortunately, the attacks in the open-world
experiment all leverage webshells and related attacks that
hijack running processes to stay stealthy. Thus, HOLMES fails
to capture any of them.

F. RQ 2: Node-Level Accuracy

We evaluate the node-level accuracy of NODLINK and
compare it to our two baselines. We show the results of node-
level precision and node-level recall in Table IV and Table V.

10

TABLE IV: Node-level precision of NODLINK and baselines.
PI, HI and UI mean the improvement of NODLINK over
ProvDetector, HOLMES and UNICORN respectively.

Node-level Precision

ProvDetector HOLMES UNICORN NodLink
(PI,HI,UI)

DARPA-CADETS NA 2.84× 10−3 1.25× 10−4 0.14
(-,47,1082)

DARPA-THEIA 0.01 3.61× 10−3 1.86× 10−4 0.23
(23,62,1218)

DARPA-TRACE NA 1.35× 10−3 3.20× 10−5 0.25
(-,184,7817)

Industrial Arena 0.14 5.10× 10−3 1.39× 10−3 0.21
(2,41,152)

In-lab Arena 0.16 8.76× 10−3 1.95× 10−3 0.17
(1,19,87)

Open-World 0.13 NA 3.61× 10−4 0.14
(1,NA,390)

TABLE V: Node-level recall of NODLINK and baselines.
Higher is better. A value of 1 means that all attack actions
have been captured, while 0 means all attack steps are missed.

Node-level Recall
ProvDetector HOLMES NODLINK

DARPA-CADETS NA 0.95 1.00
DARPA-THEIA 1.00 0.98 1.00
DARPA-TRACE NA 0.74 0.98
Industrial Arena 0.20 0.23 0.96
In-lab Arena 0.98 0.32 0.92
Open-World 1.00 NA 1.00

Close-World Results: The node-level precision of NODLINK
is comparable with offline solution, ProvDetector. For online
solutions, NODLINK is one to two orders of magnitude higher
than HOLMES and two to three orders of magnitude higher
than UNICORN.

For node-level recall, NODLINK captures most of the attack
steps in its reported provenance graph. On average, NODLINK
covers 98% of the attack-relevant events. The missed steps are
about reconnaissance, such as running “whoami”, “ipconfig”,
“tasklist” and “systeminfo” to collect information about a
system. NODLINK has captured all steps that are related to run-
ning attack payloads and lateral movement in our experiment.
HOLMES has a lower node-level recall because it lacks rules
to detect several attack steps. For example, it cannot detect
attack steps that are initiated by internal files.

We cannot measure the node-level recall for UNICORN
because it simply reports all events in a provenance graph
regardless of whether an event is relevant or irrelevant to an
attack. Thus, although UNICORN captures all attack steps
in its reported provenance graphs, it has magnitudes lower
node-level precision than others. In addition, UNICORN is
incompatible with other investigation techniques because all
investigation techniques need suspicious nodes or edges of
IOCs to initiate the investigation. UNICORN does not produce
an IOC as a starting point for investigation techniques. Instead,
it generates a provenance graph that includes attacks. There-
fore, we cannot combine UNICORN with post-processing
steps to increase its node-level precision.

Open-World Results: We also report the results of the open-
world evaluation in Table IV and Table V. We skip the data
of HOLMES as it fails to detect any attacks in the open-
world experiment. Generally, the results are consistent with
the results of close-world experiments. NODLINK achieves
the same node-level recall as UNICORN with two orders of
magnitude higher node-level precision.

G. RQ 3: Efficiency

We evaluate how efficiently NODLINK can detect APT
attacks in a timely manner by measuring its throughput, which
is defined as how many system events can be processed per
second. Before running the empirical experiments, we first
report our theoretical analysis of the complexity of our base-
lines. ProvDetector first extracts all the paths in the provenance
graph and calculates the regularity score for each event. Then it
converts the detection to finding K longest paths on a directed
acyclic graph, which is solved by Epstein’s algorithm [24]
with time complexity O(E + N logN). HOLMES processes
provenance graphs through a policy matching engine. There-
fore, its time complexity is O(E), where E is the number
of edges. UNICORN constructs graph histograms with the
complexity O(R ∗E) and uses HistoSketch [102] to generate
graph sketches in real time, where R is the number of hops, and
the E is the number of edges, as it is claimed in its paper [37].
Remember that the complexity of NODLINK is O(θN). Thus,
our analysis expects that NODLINK and HOLMES are much
faster than ProvDetector and UNICORN.

Figure 2 shows the empirical results. The y-axis is the num-
ber of events processed per second in each dataset. Overall,
the throughput of NODLINK is comparable to the throughput
of HOLMES. NODLINK has a higher throughput in DARPA-
THEIA and DARPA-TRACE, while HOLMES has a higher
throughput for the In-lab Arena dataset and the open-world
experiment. HOLMES operates in two stages: (1) match Tac-
tics, Techniques, and Procedures (TTPs) from provenance data,
(2) link TTPs to High-level Scenario Graph (HSG). However,
HOLMES fails to match some crucial steps in the in-lab arena
and open-world datasets, as illustrated in Table V. This failure
at the first stage eliminates the need for the second step,
resulting in a higher throughput performance of HOLMES in
these two datasets. ProvDetector shows the poorest throughput
because it needs to calculate the regularity score for each event
and find K longest paths. As listed in Table II, an open-
world host generates an average of 40 events per second. In
industrial settings, a central-based detection system is expected
to handle hundreds to thousands of hosts in a cluster [21]. With
an assumption of 500 hosts, the system must process 20,000
events per second. Therefore, the throughput of UNICORN and
ProvDetector falls short of industrial requirements. Overall, our
evaluation shows that NODLINK has a comparable or higher
throughput than existing detection systems.

H. RQ 4: Ablation Study on Efficiency

NODLINK designs in-memory cache and the ISG to im-
prove efficiency. In this section, we conduct an ablation
study on their impact respectively on efficiency using DARPA
datasets. To evaluate the cache design, we disable the cache
and store all the provenance data and cached graphs in
the graph database Neo4j. To evaluate the ISG algorithm,

11

CADETS THEIA TRACE Industrial
Arena

In-lab
Arena

Open
World

Dataset

103

104

Th
ro

ug
hp

ut
/e

ps
ProvDetector
UNICORN
HOLMES
NodLink

Fig. 2: Throughput of NODLINK and the three baselines on
different datasets. ProvDetector failed to run on DARPA-
TRACE, so we cannot get the throughput.

TABLE VI: Ablation study on the efficiency of NODLINK.
“w/o Cache” disables the in-memory cache. “w/Kou” replaces
ISG with Kou algorithm. “w/Mehlhorn” replaces ISG with
Mehlhorn algorithm. We regard the throughput of NODLINK
as standard.

NODLINK
w/o Cache

NODLINK
w/Kou

NODLINK
w/Mehlhorn

NODLINK
w/ISG

DARPA-CADETS ×82.54 ×8406.86 ×3.08 1
DARPA-THEIA ×102.36 - ×47.79 1
DARPA-TRACE ×159.06 - ×111.21 1

we use the conventional Steiner Tree approximation algo-
rithms, Kou [61], with O(|T ||V |2) time complexity, and
Mehlhorn [104] with O(|E| + |V | log(|V |)) time complexity,
in each time window as the baseline. We show the results in
Table VI. We set the throughput of NODLINK as the baseline
and calculate the ratio between them. Overall, the design of
the in-memory cache and the ISG search algorithm improves
the detection efficiency greatly.

As shown in Table VI, when disabling the in-memory
cache design, the efficiency is 82.54 - 159.06 times slower
than the original design. When replacing our algorithm with
Kou, the efficiency is 8406.86 times slower on the DARPA-
CADETS. We failed to get the exact time of Kou due to
the long processing time for the other two datasets. When
replacing our algorithm with Mehlhorn, the efficiency is 3.08
- 111.21 times slower. We can find that the efficiency of these
algorithms decreases as the dataset size increases, which is a
consequence of their high complexity.

I. RQ 5: Attacks Detected In Production

In this section, we show how NODLINK detects real attacks
in the open-world experiment with seven case studies. Overall,
HOLMES fails to detect all these attacks because it lacks the
rule to detect the code injection of webshell. NODLINK and
UNICORN can successfully detect them. However, NODLINK

w3wp.exe

GotoHTTP_x64.exe

Wlw.exe

fscan.exewevtutil

regdit.exe

devmgmt.
msc

ping

csc.exe

RES6B15.tmp
App_Web_5rt
zcu10.pdb

gotohttp.ini
gotohttp.lst

explorer.exe…

…

① Hijacked IIS Server

④ CS Backdoor

⑤ Intranet Blasting⑥ Log Cleanup

② Trojan Execution
③ Remote Tools

Code Injection

UNICORN: 100K nodes

NodLink: 260+ nodes

Fig. 3: An attack that first injects a web shell to the Windows
IIS Web server and leaves a Cobalt Strike (CS) backdoor for
lateral movement. Then it uploads the remote invocation tool
for persistence and privilege escalation.

has a much higher node-level precision, which can always be
magnitudes larger than UNICORN.

Attack 1: In this attack, the attacker first hijacks the Windows
IIS Web Server “w3wp.exe” through web shell injection. Then
the attacker uses “csc.exe” to execute a trojan. In addition, the
attacker also uploads the remote tools “GotoHTTP x64.exe”
to edit the registry and manages the devices for persistence and
privilege escalation. Finally, he leaves a backdoor “Wlw.exe”
to carry out intranet blasting with “fscan.exe” and uses “wev-
tutil” to clear footprints.

NODLINK and UNICORN have successfully detected this
attack. However, NODLINK has a much higher node-level
accuracy. Figure 3 shows the provenance graph for the attack.
The part boxed by the red dashed lines is the provenance
graph generated by NODLINK (with about 260 nodes) and the
part boxed by green dashed lines is generated by UNICORN
(with more than 100K nodes). The node-level precision of
NODLINK in this case is 0.27, which is magnitudes larger
than UNICORN. Besides, NODLINK can also identify the core
attack steps, such as running the webshell (“w3wp.exe”), the
trojan “csc.exe”, and other attack tools, as terminals, which
are marked as red-solid boxes. In Figure 3, we can observe
that the provenance graph of UNICORN has many attack-
irrelevant events caused by the file explorer of Windows
(“explorer.exe”). These events are problematic for attack inves-
tigation. HOLMES fails to detect this attack because it lacks
the rule to detect the code injection of webshell.

Our two baselines HOLMES and UNICORN cannot per-
form well on this attack scenario. For HOLMES, the code
injection in the initial compromise stage, labeled with blue
dotted boxes in Figure 3, cannot be matched up with the rules
listed in HOLMES. Therefore it misses the whole attack. For
UNICORN, although it can detect the attack, it reports the
whole provenance graph with more than 100,000 nodes, which
contains a large number of irrelevant events, such as the file
manager application “explorer.exe”. Thus, it is very difficult
for security admins to analyze the result of UNICORN.

Attack 2: As shown in Figure 4, the attacker first hijacks the
SQL Server on one host from an internal IP, then uses “certutil”
to download a backdoor “FgB.exe”, and leverages “wmic” to

12

sqlservr.exe

certutil.exe

FgB.exe

wmic

wmic.log

① Hijacked SQL Server

② Backdoor Download

Code Injection

UNICORN: 5K nodes

NodLink: 50+ nodes

FgB.exe

④ Remote Desktop Control

reg

③ Persistence

net user /add

…

Fig. 4: An attack that hijacks the SQL server and downloads
a backdoor for lateral movement. Then it adds the user to
administrators and sets up the remote desktop control.

set up the remote desktop control. Finally, the attacker adds a
hidden user to the administrators for persistence, accesses the
data stored in the database, and sends them to another internal
IP for data exfiltration.

The part boxed by the red dashed lines is the provenance
graph generated by NODLINK (with about 50 nodes) and the
part boxed by green dashed lines is generated by UNICORN
(with more than 5K nodes). The node-level precision of
NODLINK in this case is 0.34. Besides, NODLINK can also
identify the core attack steps, such as hijacked SQL Server
(“sqlservr.exe”), the backdoor “FgB.exe”, and other Living-
Off-The-Land (LotL) attack tools, as terminals, which are
marked as red-solid boxes. In Figure 4, we can observe that
the provenance graph of UNICORN has many attack-irrelevant
events that are generated by the normal behaviors of the SQL
Server process (“sqlservr.exe”).

Attack 3: As shown in Figure 5, in this attack, the adversary
injects a web shell to a Tomcat server “Tomcat8.exe” and
leaves several backdoors. Then he uses “frpc.exe” and “ping-
tunnel” for lateral movement, runs a reverse proxy “1.exe” to
keep C&C and scans for sensitive information.

The part boxed by the red dashed lines is the provenance
graph generated by NODLINK (with about 350 nodes) and the
part boxed by green dashed lines is generated by UNICORN
(with more than 33K nodes). The node-level precision of
NODLINK in this case is 0.22. Besides, NODLINK can also
identify the core attack steps, such as hijacked Tomcat (“Tom-
cat8.exe”), process that leaves a backdoor, the reverse proxy
“1.exe”, and other steps for lateral movement, as terminals,
which are marked as red-solid boxes. In Figure 5, we can
observe that the provenance graph of UNICORN has many
attack-irrelevant events that are generated by the file explorer
of Windows (“explorer.exe”).

Attack 4: As shown in Figure 6, the attacker hijacks the
SQL Server with backdoor “111.jsp” and uses “certutil.exe”
to download “scvhost.exe”, the CS Trojan with a deceptive
process name that is similar to the Host Process for Windows
Services “svchost.exe”, on the server, and successfully com-
municates to the outside. Then he sets up a reverse proxy,
collects the sensitive information and uses “fscan.exe” which is
renamed as “tomcat log.exe” to scan the intranet. It generates
a “result.txt” file to record multiple intranet vulnerabilities.

Tomcat8.exe

pingtunnel.exe

1.exe

① Hijacked Tomcat

④ Lateral Movement

Code Injection

UNICORN: 33K nodes
NodLink: 350+ nodes② Leave Backdoor

frpc.exe –c c.ini

echo <executable
code> > 402.jsp

404.jsp

402.jsp

explorer.exe

…

③ Reverse Proxy
ipconfig

tasklist

netstat

⑤ Collection

Fig. 5: An attack that injects executable code to Tomcat and
leaves a backdoor. Then it uploads the reverse proxy tool,
carries out lateral movement and collects system information
along with the whole procedure.

sqlservr.exe

fpc.exe
① Hijacked SQL Server

Code Injection

UNICORN: 10K nodes
NodLink: 80+ nodes② Leave Backdoor

echo <executable
code> >111.jsp

…

ping whoami netstat

⑤ Collection

certutil.exe scvhost.exe

tomcat_log.exe

⑥ Intranet Blasting

result.txt

③ Trojan Download

④ Reverse Proxy

Fig. 6: An attack that first injects a web shell to SQL Server
and leaves a backdoor. Then it downloads Trojan for reverse
proxy and intranet blasting. During the whole procedure, it
collects the system information.

The red dashed box contains the provenance graph from
NODLINK (with about 80 nodes), while the green dashed
box holds the UNICORN-generated part (over 10K nodes).
The node-level precision of NODLINK in this case is 0.75.
NODLINK can also identify the core attack steps, such as
hijacked SQL Server (“sqlservr.exe”), process that leaves a
backdoor, the Trojan process “scvhost.exe”, and other steps
for lateral movement and reverse proxy, as terminals, which
are marked as red-solid boxes. In Figure 6, we can observe that
the provenance graph of UNICORN has many attack-irrelevant
events that are generated by the normal behaviors of the SQL
Server process (“sqlservr.exe”).

Attack 5: As shown in Figure 7, the attacker uses
“wmiprvse.exe”, Windows Management Instrumentation
(WMI) that provides management information and control
in an enterprise environment, to run remote commands
on the host through the domain account and execute the
“Tomcat.exe” to copy itself to “Proxy.exe” and sets up reverse
proxy tools “sqlc.exe”. Then the adversary creates scheduled
tasks “WinUpdate” for permission maintenance.

The part boxed by the red dashed lines is the provenance
graph generated by NODLINK (with about 900 nodes) and
the part boxed by green dashed lines is generated by UNI-
CORN (with more than 63K nodes). The node-level precision

13

wmiprvse.exe

Proxy.exe

① Hijacked Windows WMI

Code Injection

UNICORN: 63K nodes
NodLink: 900+ nodes

…

Tomcat.exe

sqlc.exe

⑤ Scheduled Task

sqlc.ini

WinUpdate

③ Reverse Proxy

④ Self-replication

② Remote Execution

Fig. 7: An attack that hijacks the WMI process and executes
Tomcat remotely. Then it sets up reverse proxy and copies
itself to create scheduled task for permission maintenance.

rundll32.exe

cmd.exe

① Hijacked Windows Process

Code Injection

UNICORN: 25K nodes
NodLink: 400+ nodes

fscan.exe

③ Intranet Blasting
② Reverse Proxy

fpc.exe telnet system.hive

reg

④ Privilege Escalation

Fig. 8: An attack that injects to Windows DLL Applications.
Then it modifies the registry and executes the reverse proxy
and intranet blasting tools.

of NODLINK in this case is 0.22. Besides, NODLINK can
also identify the core attack steps, such as hijacked WMI
(“wmiprvse.exe”), the remote execution “Tomcat.exe”, and
other steps for reverse proxy and scheduled task, as terminals,
which are marked as red-solid boxes. In Figure 7, we can
observe that the provenance graph of UNICORN has many
attack-irrelevant events that are generated by the normal be-
haviors of the SQL Server process (“sqlservr.exe”).

Attack 6: As shown in Figure 8, the server is attacked
by malicious code memory injection into the system process
“rundll32.exe” to set up malicious external connection. Then
the malicious intranet proxy tool “frp” and intranet scanning
tool “fscan” are subsequently implanted for reverse proxy and
intranet blasting. He also uses “reg” to modify the registry for
privilege escalation.

The part boxed by the red dashed lines is the provenance
graph generated by NODLINK (with about 400 nodes) and the
part boxed by green dashed lines is generated by UNICORN
(with more than 25K nodes). The node-level precision of
NODLINK in this case is 0.20. Besides, NODLINK can also
identify the core attack steps, such as hijacked “rundll32.exe”,
which loads and runs 32-bit Dynamic-Link Libraries (DLLs),
the process for intranet blasting “fscan.exe”, and other steps
for reverse proxy and privilege escalation, as terminals, which
are marked as red-solid boxes. In Figure 8, we can observe that
the provenance graph of UNICORN has many attack-irrelevant
events that are generated by the normal behaviors of “rundll32”
that executes the normal DLLs.

Tomcat.exe

① Hijacked Tomcat

Code Injection

UNICORN: 268K nodes
NodLink: 1800+ nodes

…

ping

whoami
netstat

④ Collection20220831010
1351.jsp

Godzilla.jsp

explorer.exe

dt.exe

…

② Reverse Proxy

③ File Upload

Fig. 9: An attack that first injects Tomcat Server and uploads
lots of malicious files, including backdoors. Then it sets up
reverse proxy and collects the system information.

Attack 7: As shown in Figure 9, the attacker tries to connect
to the webshell backdoor of the server “Tomcat.exe” and
uploads a large number of files. In the temporary directory,
88 files uploaded by the attacker are found, 4 of which are
Godzilla webshell and 1 is the dog-tunnel proxy tool. The rest
are vulnerability test files. Then the attacker sets up “dt.exe”
as reverse proxy.

The part boxed by the red dashed lines is the provenance
graph generated by NODLINK (with about 1800 nodes) and the
part boxed by green dashed lines is generated by UNICORN
(with more than 289K nodes). NODLINK can identify the
core attack steps, such as hijacked Tomcat (“Tomcat.exe”),
the reverse proxy “dt.exe”, and the file explorer that lists
a large number of malicious files, as terminals, which are
marked as red-solid boxes. In Figure 9, we can observe that
the provenance graph of UNICORN has many attack-irrelevant
events that are generated by the normal behaviors of the file
explorer (“explorer.exe”).

J. RQ 6: Hyperparameters

We choose the default hyperparameters using the optimal
experiment results on DARPA dataset. Overall, NODLINK is
robust to changes in parameters because we choose to use
non-parameterized learning techniques.

α, β and γ in Hopset Construction. In Hopset Construction,
α affects node distance’s impact on anomaly score. α values
of 0.5-0.9 performed equally well on graph-level accuracy
and node-level accuracy. β should be much larger than γ to
prioritize nodes with close AS. We tested (100,1), (500,1), and
(1000,1) for β and γ and got similar results on graph-level
accuracy and node-level accuracy.

θ in Hopset Construction. We use node-level precision and
node-level recall to measure the impact of our tool under
different θ values. θ determines the search scope for each
terminal, affecting graph-level and node-level accuracy. node-
level precision decreases and node-level recall increases with
higher θ values. Setting θ to 10 ensures complete reporting of
attack scenarios while maintaining acceptable precision. The
detailed result is in Figure 10(a).

Decaying Factor ϵ. For the optimal value of the decaying
factor ϵ, we measured the number of false positives and
true positives by varying the value of the ϵ, as shown in
Figure 10(b). In our experiment, NODLINK can detect all the
attacks in all the settings from 0.5-0.9, which means that the

14

 0

 0.1

 0.2

 0.3

 0.4

 2 4 6 8 10 12 14 16 18 20
 0

 0.2

 0.4

 0.6

 0.8

 1
N
o
d
e
-l
e
v
e
l
P
re
c
is
io
n

N
o
d
e
-l
e
v
e
l
R
e
c
a
ll

Value

CADETS-P
CADETS-R

THEIA-P
THEIA-R

TRACE-P
TRACE-R

(a) θ in Hopset Construction

 0

 1

 2

 3

 4

 0.5 0.6 0.7 0.8 0.9

#
 o
f
F
a
ls
e

 P
o
s
iti
v
e
s

Value

CADETS THEIA TRACE

(b) Decaying factor ϵ

Fig. 10: Performance of NODLINK on different parameters.

graph-level recall is 1. The results also show that, when the
decaying factor ϵ is less than 0.8, more false positives are
reported. Because ϵ can affect how long a graph is kept in the
cache. The smaller the value, the higher the probability that
the graph will be evicted from the cache. Therefore, ϵ = 0.8
in our experiments.

VII. RELATED WORK

King et al. [59] first introduced provenance graphs and
backtracking, leading to numerous techniques for system au-
diting [16], [91], [42], [89], [35], [26], [53], [67], network de-
bugging [15], [96], and access control [82]. Besides the online
detection systems summarized in Section VI-A, SLEUTH [45]
is the first provenance-based online APT detection system.
Various offline post-mortem attack investigation systems [59],
[68], [41], [38], [30], [69], [92], [36], [75] exist, using heavy
graph learning algorithms. However, these can delay detection,
leading to financial losses [28]. Compared to these systems,
NODLINK is the first online system that achieves high detec-
tion accuracy without losing detection granularity. There are
also studies on conventional intrusion detection systems [29],
[93], [94], [27], [86], [23], [22], [54]. However, these systems
are orthogonal to NODLINK since they cannot support APT
attack investigation. We can borrow the idea of the recent
progress in conventional intrusion detection systems to im-
prove the accuracy of anomaly identification in Section V-B in
the future. Researchers have studied approximation algorithms

for STP that offer near-optimum solutions with polynomial
running time [61], [32], [84], [103]. However, their complexity
is too high for online APT detection.

NODLINK is also related to conventional Host-based In-
trusion Detection techniques (HIDS). Log2vec [66] embeds
the logs into vectors by graph embedding with a random
walk on the heterogeneous graph. Deeplog [23] models the
sequence and context feature of logs using the Long-Short-
Term-Memory (LSTM). These techniques are less effective in
detecting APT attacks because they cannot link attack steps
and reconstruct APT attack campaigns.

VIII. DISCUSSIONS

Evasion: NODLINK maintains security parity with other
score-propagation-based techniques like MORSE [46], Prio-
Tracker [68], and NoDoze [41], offering efficient and accurate
anomaly score calculation for provenance subgraphs. Despite
its robustness, two potential attacks against NODLINK are
identified. First, attackers could use benign decoy events to
reduce an attack path’s anomaly score, exploiting the decaying
factor used in score propagation. However, this theoretical
threat is less problematic in practice, as creating benign nodes
often results in new anomalies and creates detectably anoma-
lous path shapes. Secondly, attackers could attempt to evade
detection by extending the time interval between each attack
step, leading to anomalous nodes being purged from the cache.
NODLINK counters this through a node retrieval mechanism
that reinstates evicted nodes from the disk, as described in
Section V-A, safeguarding against long-term attack evasion.

Robustness: NODLINK is resilient to a training dataset con-
taining minor attacks, thanks to Grubbs’s test identifying and
the robustness of VAE. We assessed NODLINK’s robustness
against polluted training data using five close-world datasets,
to which we added one day of attack data. Results showed
NODLINK’s graph and node-level accuracy remained unaf-
fected by the presence of a few attack-related data in the
training set. This supports our design choice to employ VAE
and non-parameterized anomaly detection techniques.

Other OS: NODLINK supports provenance data collected from
different operating systems. At present, the experimental data
of NODLINK is collected from Ubuntu and Windows hosts,
but it also supports other systems such as openEuler.

IX. CONCLUSION

Online provenance-based detection systems are preferred
over post-mortem ones for detecting APT attacks in a timely
manner. However, existing systems sacrifice detection gran-
ularity for accuracy due to limited resources and timeliness.
We observe that existing systems fail to achieve fine-grained
detection because they waste most of the limited resources on
obviously benign events. To this end, we propose NODLINK,
an online provenance-based detection system that can achieve
fine-grained detection while meeting the constraints of limited
resources and timeliness. The key idea of NODLINK is to
model the APT attack detection problem as an STP, which has
efficient online approximation algorithms with theoretically
bounded errors. Our experiments in a production environment
show that NODLINK can achieve magnitudes higher detection
and investigation accuracy with the same or higher throughput
compared with two SOTA online provenance analysis systems.

15

ACKNOWLEDGMENTS

This work was partly supported by the National Nat-
ural Science Foundation of China (62172009, 62302181,
62072046), Huawei Research Fund, CCF-Huawei Popu-
lus Grove Fund, National Key R&D Program of China
(2021YFB2701000), the Key R&D Program of Hubei Province
(2023BAB017, 2023BAB079). Xusheng Xiao’s work is par-
tially supported by the National Science Foundation under the
grant CNS-2028748.

REFERENCES

[1] “DARPA,” 2018, https://github.com/darpa-i2o/Transparent-
Computing.

[2] “APT29,” 2021, https://attack.mitre.org/groups/G0016/.

[3] “APT32,” 2021, https://attack.mitre.org/groups/G0050/.

[4] “Atomic Red Team,” 2021, https://github.com/redcanaryco/atomic-red-
team.

[5] “FIN6,” 2021, https://attack.mitre.org/groups/G0037/.

[6] “Neo4j,” 2021, https://neo4j.com/.

[7] “SideWinder,” 2021, https://attack.mitre.org/groups/G0121/.

[8] “APT trends report Q1 2022,” 2022, https://securelist.com/apt-trends-
report-q1-2022/106351/.

[9] “CVE-2021-44228,” 2022, https://nvd.nist.gov/vuln/detail/CVE-2021-
44228.

[10] “Grubbs’s test,” 2022, https://en.wikipedia.org/wiki/Grubbs%27s test.

[11] “How to do anomaly detection using machine learning in
python?” 2022, https://www.projectpro.io/article/anomaly-detection-
using-machine-learning-in-python-with-example/555.

[12] “MITRE ATT&CK,” 2022, https://attack.mitre.org/.

[13] A. Alsaheel, Y. Nan, S. Ma, L. Yu, G. Walkup, Z. B. Celik, X. Zhang,
and D. Xu, “ATLAS: A sequence-based learning approach for attack
investigation,” in Proceedings of the USENIX Security Symposium
(USENIX Security), 2021, pp. 3005–3022.

[14] J. An and S. Cho, “Variational autoencoder based anomaly detection
using reconstruction probability,” Special Lecture on IE, vol. 2, no. 1,
pp. 1–18, 2015.

[15] A. Bates, K. Butler, A. Haeberlen, M. Sherr, and W. Zhou, “Let SDN
be your eyes: Secure forensics in data center networks,” in Proceedings
of the NDSS workshop on security of emerging network technologies
(SENT), 2014, pp. 1–7.

[16] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer, “Trustworthy
Whole-System provenance for the linux kernel,” in Proceedings of the
USENIX Security Symposium (USENIX Security), 2015, pp. 319–334.

[17] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, “A survey
on heuristic malware detection techniques,” in The 5th Conference on
Information and Knowledge Technology, 2013, pp. 113–120.

[18] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word
Vectors with Subword Information,” Transactions of the Association
for Computational Linguistics, vol. 5, pp. 135–146, 2017.

[19] A. Borodin and R. El-Yaniv, Online computation and competitive
analysis. Cambridge University Press, 2005.

[20] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanita, “An improved LP-
based approximation for steiner tree,” in Proceedings of the ACM
Symposium on Theory of computing (STOC), 2010, pp. 583–592.

[21] F. Dong, S. Li, P. Jiang, D. Li, H. Wang, L. Huang, X. Xiao, J. Chen,
X. Luo, Y. Guo, and X. Chen, “Are we there yet? an industrial
viewpoint on provenance-based endpoint detection and response tools,”
in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2023.

[22] F. Dong, L. Wang, X. Nie, F. Shao, H. Wang, D. Li, X. Luo,
and X. Xiao, “DISTDET: A Cost-Effective distributed cyber threat
detection system,” in Proceedings of the USENIX Security Symposium
(USENIX Security), 2023, pp. 6575–6592.

[23] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly
detection and diagnosis from system logs through deep learning,”
in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017, p. 1285–1298.

[24] D. Eppstein, “Finding the k shortest paths,” in Proceedings 35th
Annual Symposium on Foundations of Computer Science, 1994, pp.
154–165.

[25] P. Fang, P. Gao, C. Liu, E. Ayday, K. Jee, T. Wang, Y. F. Ye, Z. Liu,
and X. Xiao, “Back-Propagating system dependency impact for attack
investigation,” in Proceedings of the USENIX Security Symposium
(USENIX Security), 2022, pp. 2461–2478.

[26] P. Fei, Z. Li, Z. Wang, X. Yu, D. Li, and K. Jee, “SEAL: Storage-
efficient causality analysis on enterprise logs with query-friendly
compression,” in Proceedings of the USENIX Security Symposium
(USENIX Security), 2021, pp. 2987–3004.

[27] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong, “Anomaly
detection using call stack information,” in Proceedings of the IEEE
Symposium on Security and Privacy (IEEE S&P), 2003, pp. 62–75.

[28] FireEye, “Incident investigation,” 2019,
https://www.fireeye.com/products/incident-investigation.html.

[29] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff, “A sense of
self for Unix processes,” in Proceedings of the IEEE Symposium on
Security and Privacy (IEEE S&P), 1996, pp. 120–128.

[30] P. Gao, X. Xiao, Z. Li, F. Xu, S. R. Kulkarni, and P. Mittal, “AIQL:
Enabling efficient attack investigation from system monitoring data,”
in Proceedings of the USENIX Annual Technical Conference (USENIX
ATC), 2018, pp. 113–126.

[31] M. R. Garey, R. L. Graham, and D. S. Johnson, “The complexity of
computing steiner minimal trees,” Society for Industrial and Applied
Mathematics (SIAM) Journal on Applied Mathematics, vol. 32, no. 4,
pp. 835–859, 1977.

[32] E. N. Gilbert and H. O. Pollak, “Steiner minimal trees,” Society
for Industrial and Applied Mathematics (SIAM) Journal on Applied
Mathematics, vol. 16, no. 1, pp. 1–29, 1968.

[33] M. X. Goemans and D. P. Williamson, “A general approximation
technique for constrained forest problems,” Society for Industrial and
Applied Mathematics (SIAM) Journal on Computing, vol. 24, no. 2,
pp. 296–317, 1995.

[34] A. Gu, A. Gupta, and A. Kumar, “The power of deferral: Maintaining a
constant-competitive steiner tree online,” in Proceedings of the Annual
ACM Symposium on Theory of Computing (STOC), 2013, p. 525–534.

[35] J. Gui, D. Li, Z. Chen, J. Rhee, X. Xiao, M. Zhang, K. Jee, Z. Li,
and H. Chen, “APTrace: A responsive system for agile enterprise level
causality analysis,” in Proceedings of the International Conference on
Data Engineering (ICDE), 2020, pp. 1701–1712.

[36] Z. Guo, D. Zhou, H. Lin, M. Yang, F. Long, C. Deng, C. Liu, and
L. Zhou, “G2: A graph processing system for diagnosing distributed
systems,” in Proceedings of the USENIX Annual Technical Conference
(USENIX ATC), 2011.

[37] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “Unicorn:
Runtime provenance-based detector for advanced persistent threats,”
in Proceedings of the Network and Distributed System Security Sym-
posium (NDSS), 2022.

[38] X. Han, X. Yu, T. Pasquier, D. Li, J. Rhee, J. Mickens, M. Seltzer,
and H. Chen, “SIGL: Securing software installations through deep
graph learning,” in Proceedings of the USENIX Security Symposium
(USENIX Security), 2021, pp. 2345–2362.

[39] N. Harvey, “CPSC 536N: Randomized algorithms,” 2011,
https://www.cs.ubc.ca/ nickhar/W12/Lecture25Notes.pdf.

[40] W. U. Hassan, A. Bates, and D. Marino, “Tactical provenance analysis
for endpoint detection and response systems,” in Proceedings of the
IEEE Symposium on Security and Privacy (IEEE S&P), 2020, pp.
1172–1189.

[41] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“Nodoze: Combatting threat alert fatigue with automated provenance
triage,” in Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2019.

[42] W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, D. Wang, Z. Chen,
Z. Li, J. Rhee, J. Gui, and A. Bates, “This is why we can’t cache nice
things: Lightning-fast threat hunting using suspicion-based hierarchical

16

storage,” in Proceedings of the Annual Computer Security Applications
Conference (ACSAC), 2020, p. 165–178.

[43] J. D. Herath, P. Yang, and G. Yan, “Real-Time evasion attacks against
deep learning-based anomaly detection from distributed system logs,”
in Proceedings of the ACM Conference on Data and Application
Security and Privacy (CODASPY), 2021, p. 29–40.

[44] J. E. Hopcroft, J. D. Ullman, and A. V. Aho, Data structures and
algorithms. Addison-wesley Boston, MA, USA, 1983, vol. 175.

[45] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo,
R. Sekar, S. D. Stoller, and V. N. Venkatakrishnan, “SLEUTH:
real-time attack scenario reconstruction from COTS audit data,” in
Proceedings of the USENIX Security Symposium (USENIX Security),
2017, pp. 487–504.

[46] M. N. Hossain, S. Sheikhi, and R. Sekar, “Combating dependence
explosion in forensic analysis using alternative tag propagation seman-
tics,” in Proceedings of the IEEE Symposium on Security and Privacy
(IEEE S&P), 2020, pp. 1139–1155.

[47] M. N. Hossain, J. Wang, R. Sekar, and S. D. Stoller, “Dependence-
Preserving data compaction for scalable forensic analysis,” in Proceed-
ings of the USENIX Security Symposium (USENIX Security), 2018, pp.
1723–1740.

[48] M. Hucka, “Nostril: A nonsense string evaluator written in Python,”
Journal of Open Source Software, vol. 3, no. 25, p. 596, 2018.

[49] F. K. Hwang and D. S. Richards, “Steiner tree problems,” Networks,
vol. 22, no. 1, pp. 55–89, 1992.

[50] N. Idika and A. P. Mathur, “A survey of malware detection techniques,”
Purdue University, vol. 48, no. 2, pp. 32–46, 2007.

[51] M. Imase and B. M. Waxman, “Dynamic steiner tree problem,” Society
for Industrial and Applied Mathematics (SIAM) Journal on Discrete
Mathematics, vol. 4, pp. 369–384, 1991.

[52] M. Inam, Y. Chen, A. Goyal, J. Liu, J. Mink, N. Michael, S. Gaur,
A. Bates, and W. U. Hassan, “SoK: History is a vast early warning
system: Auditing the provenance of system intrusions,” in Proceedings
of the IEEE Symposium on Security and Privacy (IEEE S&P), 2023,
pp. 307–325.

[53] P. Jiang, R. Huang, D. Li, Y. Guo, X. Chen, J. Luan, Y. Ren, and X. Hu,
“Auditing frameworks need resource isolation: A systematic study on
the super producer threat to system auditing and its mitigation,” in
Proceedings of the USENIX Security Symposium (USENIX Security),
2023, pp. 355–372.

[54] P. Jiang, J. Xiao, D. Li, H. Yu, Y. Bai, Y. Guo, and X. Chen, “De-
tecting malicious websites from the perspective of system provenance
analysis,” IEEE Transactions on Dependable and Secure Computing
(TDSC), 2023.

[55] V. Karande, E. Bauman, Z. Lin, and L. Khan, “SGX-Log: Securing
system logs with SGX,” in Proceedings of the ACM on Asia Confer-
ence on Computer and Communications Security (ASIA CCS), 2017,
p. 19–30.

[56] R. M. Karp, Reducibility among combinatorial problems. Springer,
2010.

[57] Kaspersky, “Targeted cyberattacks logbook,” 2022,
https://apt.securelist.com/.

[58] K. Khan, S. U. Rehman, K. Aziz, S. Fong, and S. Sarasvady, “DB-
SCAN: Past, present and future,” in The fifth international conference
on the applications of digital information and web technologies
(ICADIWT 2014), 2014, pp. 232–238.

[59] S. T. King and P. M. Chen, “Backtracking intrusions,” in Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles
(SOSP), 2003, p. 223–236.

[60] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in
Proceedings of the International Conference on Learning Representa-
tions, (ICLR), 2014.

[61] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for steiner
trees,” Acta informatica, vol. 15, pp. 141–145, 1981.

[62] K. H. Lee, X. Zhang, and D. Xu, “LogGC: Garbage collecting audit
log,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2013, p. 1005–1016.

[63] L. Lenart, “S2-046,” 2017, https://wiki.apache.org/confluence/display/
WW/S2-046.

[64] Z. Li, R. Yang, Q. A. Chen, and Y. Chen, “Poster: Mimic the
whole attack chain: A first look at evasion against provenance graph
based detection,” in Proceedings of the Annual Computer Security
Applications Conference (ACSAC), 2020.

[65] S. Lin, R. Clark, R. Birke, S. Schönborn, N. Trigoni, and S. Roberts,
“Anomaly detection for time series using VAE-LSTM hybrid model,”
in ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020, pp. 4322–4326.

[66] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng, “Log2vec:
A heterogeneous graph embedding based approach for detecting
cyber threats within enterprise,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2019,
p. 1777–1794.

[67] X. Liu, C. Yang, D. Li, Y. Zhou, S. Li, J. Chen, and Z. Chen,
“Adonis: Practical and efficient control flow recovery through os-level
traces,” ACM Transactions on Software Engineering and Methodology
(TOSEM), 2023.

[68] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a timely causality analysis for enterprise security.” in Pro-
ceedings of the Network and Distributed System Security Symposium
(NDSS), 2018.

[69] S. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Zhang, G. Ciocarlie, A. Gehani,
V. Yegneswaran, D. Xu, and S. Jha, “Kernel-Supported Cost-Effective
audit logging for causality tracking,” in Proceedings of the USENIX
Annual Technical Conference (USENIX ATC), 2018, pp. 241–254.

[70] E. Manzoor, S. M. Milajerdi, and L. Akoglu, “Fast memory-efficient
anomaly detection in streaming heterogeneous graphs,” in Proceed-
ings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2016, p. 1035–1044.

[71] K. Mehlhorn, “A faster approximation algorithm for the steiner prob-
lem in graphs,” Information Processing Letters, vol. 27, no. 3, pp.
125–128, 1988.

[72] N. Michael, J. Mink, J. Liu, S. Gaur, W. U. Hassan, and A. Bates,
“On the forensic validity of approximated audit logs,” in Proceedings
of the Annual Computer Security Applications Conference (ACSAC),
2020, pp. 189–202.

[73] S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. Venkatakrishnan,
“POIROT: Aligning attack behavior with kernel audit records for cyber
threat hunting,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2019, p. 1795–1812.

[74] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakr-
ishnan, “HOLMES: real-time APT detection through correlation of
suspicious information flows,” in Proceedings of the IEEE Symposium
on Security and Privacy (IEEE S&P), 2019, pp. 1137–1152.

[75] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko,
D. Maclean, D. Margo, M. Seltzer, and R. Smogor, “Layering in
provenance systems,” in Proceedings of the USENIX Annual Technical
Conference (USENIX ATC), 2009, p. 10.

[76] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous system
call detection,” ACM Trans. Inf. Syst. Secur., vol. 9, no. 1, p. 61–93,
2006.

[77] J. Naor, D. Panigrahi, and M. Singh, “Online node-weighted steiner
tree and related problems,” in 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, 2011, pp. 210–219.

[78] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in Proceedings of the International
Conference on Machine Learning (ICML), 2016, pp. 2014–2023.

[79] Z. Niu, K. Yu, and X. Wu, “LSTM-Based vae-gan for time-series
anomaly detection,” Sensors, vol. 20, no. 13, 2020.

[80] R. Paccagnella, K. Liao, D. Tian, and A. Bates, “Logging to the
danger zone: Race condition attacks and defenses on system audit
frameworks,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2020, pp. 1551–1574.

[81] A. Papachristodoulou, C. Kyrkou, and T. Theocharides, “DriveG-
uard: Robustification of automated driving systems with deep spatio-
temporal convolutional autoencoder,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV) Work-
shops, 2021, pp. 107–116.

17

[82] J. Park, D. Nguyen, and R. Sandhu, “A provenance-based access
control model,” in Proceedings of the Annual International Conference
on Privacy, Security and Trust (PST), 2012, pp. 137–144.

[83] Redhat, “The linux audit framework,” 2017, https://github.com/linux-
audit/.

[84] G. Robins and A. Zelikovsky, “Tighter bounds for graph steiner
tree approximation,” Society for Industrial and Applied Mathematics
(SIAM) Journal on Discrete Mathematics, vol. 19, no. 1, pp. 122–134,
2005.

[85] K. Satvat, R. Gjomemo, and V. Venkatakrishnan, “Extractor: Extract-
ing attack behavior from threat reports,” in Proceedings of the IEEE
European Symposium on Security and Privacy (EuroS&P), 2021, pp.
598–615.

[86] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast automaton-
based method for detecting anomalous program behaviors,” in Pro-
ceedings of the IEEE Symposium on Security and Privacy (IEEE S&P),
2001, pp. 144–155.

[87] Sysdig, “Sysdig,” 2017, https://sysdig.com/.
[88] H. Takahashi, “An approximate solution for steiner problem in graphs,”

Math. Japonica, vol. 24, no. 6, pp. 573–577, 1980.
[89] Y. Tang, D. Li, Z. Li, M. Zhang, K. Jee, X. Xiao, Z. Wu, J. Rhee,

F. Xu, and Q. Li, “NodeMerge: Template based efficient data reduction
for big-data causality analysis,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2018,
p. 1324–1337.

[90] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2019.

[91] Q. Wang, W. U. Hassan, A. Bates, and C. A. Gunter, “Fear and
logging in the internet of things,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2018.

[92] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee, Z. Chen,
W. Cheng, C. A. Gunter et al., “You are what you do: Hunting stealthy
malware via data provenance analysis.” in Proceedings of the Network
and Distributed System Security Symposium (NDSS), 2020.

[93] A. Wespi, M. Dacier, and H. Debar, “Intrusion detection using
variable-length audit trail patterns,” in Proceedings of the International
Workshop on Recent Advances in Intrusion Detection (RAID), 2000,
p. 110–129.

[94] A. Wespi, H. Debar, M. Dacier, and M. Nassehi, “Fixed- vs. variable-
length patterns for detecting suspicious process behavior,” J. Comput.
Secur., vol. 8, no. 2,3, p. 159–181, 2000.

[95] J. Westbrook and D. C. K. Yan, “Greedy algorithms for the on-
line steiner tree and generalized steiner problems,” in Proceedings of
the Workshop on Algorithms and Data Structures (WADS), 1993, p.
622–633.

[96] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, “Automated
network repair with meta provenance,” in Proceedings of the ACM
Workshop on Hot Topics in Networks (HotNets), 2015, pp. 1–7.

[97] Y. Xie, D. Feng, Y. Hu, Y. Li, S. Sample, and D. Long, “Pagoda:
A hybrid approach to enable efficient real-time provenance based
intrusion detection in big data environments,” IEEE Transactions on
Dependable and Secure Computing (TDSC), vol. 17, no. 6, pp. 1283–
1296, 2020.

[98] Y. Xie, Y. Wu, D. Feng, and D. Long, “P-Gaussian: Provenance-Based
gaussian distribution for detecting intrusion behavior variants using
high efficient and real time memory databases,” IEEE Transactions
on Dependable and Secure Computing (TDSC), vol. 18, no. 6, pp.
2658–2674, 2021.

[99] C. Xu and B. Moseley, “Learning-Augmented algorithms for online
steiner tree,” in Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), vol. 36, no. 8, 2022, pp. 8744–8752.

[100] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in Proceedings of the
World Wide Web Conference (WWW), 2018, pp. 187–196.

[101] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang,
and G. Jiang, “High fidelity data reduction for big data security
dependency analyses,” in Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2016, p. 504–516.

[102] D. Yang, B. Li, L. Rettig, and P. Cudré-Mauroux, “HistoSketch:
Fast similarity-preserving sketching of streaming histograms with
concept drift,” in 2017 IEEE International Conference on Data Mining
(ICDM), 2017, pp. 545–554.

[103] A. Zelikovsky, “Better approximation bounds for the network and
euclidean steiner tree problems,” Tech. Rep., 1996.

[104] A. Z. Zelikovsky, “A faster approximation algorithm for the steiner tree
problem in graphs,” Information Processing Letters, vol. 46, no. 2, pp.
79–83, 1993.

[105] J. Zeng, Z. L. Chua, Y. Chen, K. Ji, Z. Liang, and J. Mao, “Watson:
Abstracting behaviors from audit logs via aggregation of contextual
semantics,” in Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2021.

[106] J. Zengy, X. Wang, J. Liu, Y. Chen, Z. Liang, T.-S. Chua, and Z. L.
Chua, “ShadeWatcher: Recommendation-guided cyber threat analysis
using system audit records,” in Proceedings of the IEEE Symposium
on Security and Privacy (IEEE S&P), 2022, pp. 489–506.

[107] S.-s. Zhang, J.-w. Liu, X. Zuo, R.-k. Lu, and S.-m. Lian, “Online deep
learning based on auto-encoder,” Applied Intelligence, vol. 51, no. 8,
pp. 5420–5439, 2021.

[108] Y. Zhang, Z. Lu, and S. Wang, “Unsupervised feature selection via
transformed auto-encoder,” Knowledge-Based Systems, vol. 215, p.
106748, 2021.

[109] Y. Zhou, X. Liang, W. Zhang, L. Zhang, and X. Song, “VAE-based
deep svdd for anomaly detection,” Neurocomputing, vol. 453, pp. 131–
140, 2021.

18

