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Abstract—Cryptocurrency exchange platforms such as Coin-
base, enable users to purchase and sell cryptocurrencies conve-
niently just like trading stocks/commodities. However, because
of the nature of blockchain, when a user withdraws coins (i.e.,
transfers coins to an external on-chain account), all future trans-
actions can be learned by the platform. This is in sharp contrast
to conventional stock exchange where all external activities of
users are always hidden from the platform. Since the platform
knows highly sensitive user private information such as passport
number, bank information etc, linking all (on-chain) transactions
raises a serious privacy concern about the potential disastrous
data breach in those cryptocurrency exchange platforms.

In this paper, we propose a cryptocurrency exchange that
restores user anonymity for the first time. To our surprise, the
seemingly well-studied privacy/anonymity problem has several
new challenges in this setting. Since the public blockchain and
internal transaction activities naturally provide many non-trivial
leakages to the platform, internal privacy is not only useful in
the usual sense but also becomes necessary for regaining the
basic anonymity of user transactions. We also ensure that the
user cannot double spend, and the user has to properly report
accumulated profit for tax purposes, even in the private setting.
We give a careful modeling and efficient construction of the
system that achieves constant computation and communication
overhead (with only simple cryptographic tools and rigorous
security analysis); we also implement our system and evaluate
its practical performance.

I. INTRODUCTION

Just like stocks and other commodities, people buy or sell
cryptocurrencies on exchange platforms, mostly, on centralized
platforms such as Coinbase, which are essentially marketplaces
for cryptocurrencies. There, customers can pay fiat money like
U.S dollars to get some coin, e.g, Bitcoin, or transfer their coin
in the platform to an external account (withdrawal) '. Despite
the promise of decentralized exchange, those centralized trad-
ing platforms still play a major role for usability and even
regulatory reasons. For example, the annual trading volume of
Binance was up to 9580 billion USD in 2021 [2], and Coinbase
also had 1640 billion USD in 2021 [3].

1Or transfer coins into accounts in the platform from an external account
(deposit), then sell for fiat money; and exchange one coin, e.g., BTC, to get
some other coin, e.g., ETH. See Fig.1, and Sec.III-A for details.
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Like conventional stock exchanges, these exchange plat-
forms must comply with regulations including Know Your
Customer (KYC). They require businesses to verify the identity
of their clients. Essentially, when a client/user registers an
account at the exchange platform, he is normally required to
provide a real-world identification document, such as passport,
or a stamped envelope with address, for the platform to verify.
Also for trading purposes, bank information is also given.

Serious privacy threats. Despite provided convenience, those
centralized cryptocurrency exchange platforms cause much
more serious concern about potential privacy breaches.

As we have witnessed, many data breach instances exist
[4]. A more worrisome issue in the exchange setting is that
exchange can be seen as a bridge between the real world
and the cryptocurrency world, which amplify the impacts of
potential privacy breach (in exchange, of user records including
identities and accounts). Users may deposit coins into the
platform from, or withdraw coins (transfer out of the platform)
to, their personal accounts on a blockchain.

Since most of the blockchains are transparent (except very
few chains such as Monero [32], Zcash [8]) and publicly ac-
cessible (e.g., Bitcoin, Ethereum), the platform can essentially
extract all transaction history knowing the real identity of a
user. In the former case, the platform immediately links the
real identity to his incoming addresses, and traces back all
previous transactions on-chain; while even worse in the latter
case, the platform, knowing the real identity of a user, and
knows exactly which account/address of the cryptocurrency
the user requested to withdraw (transfer to), and all future
transactions. For instance, the platform could easily deduce
that a user Alice bought a Tesla car with Bitcoin, as she
withdrew them from the platform and then transferred them
to Tesla’s Bitcoin account (which could be public knowledge).

It follows that existing centralized cryptocurrency ex-
change immediately “destroys” the pseudonym protection of
blockchains, and the platform could obtain a large amount
of information that is not supposed to be learned, e.g., the
purchase/transaction histories of clients outside of the plat-
form. This is even worse than conventional stock/commodity
exchange where privacy may be breached within the system,
but user information outside of the system is not revealed.

We would like to design a cryptocurrency exchange system
that could at least restore the user’s anonymity/privacy so that
it is unlinkable between external transaction records and the
user’s real identity.



Insufficiency of external anonymity mechanisms. The first
potential method is keeping the existing exchange unchanged
and cutting the link between the exchange and the external
blockchain by making on-chain payments/transfers (for coin
deposits and withdrawals) on every blockchain anonymous, so
that nobody can link the payer and the payee. Unfortunately,
all those external anonymity solutions are insufficient.

First, fully anonymous on-chain payments such as Zcash
only support their own native coins, while in most exchange
platforms, Bitcoin, Ethereum, and many other crypto tokens
are the main objects of exchange, and cannot be supported.

More exotic solutions like anonymous and private layer-
2 payment solutions [26], [25], [35], [31], [24] and smart
contract based private payment solutions [15], [21] also exist.
One may wonder whether we can let the platform be the payer
in those solutions during coin withdrawal. However, existing
solutions mainly consider k-anonymity (where k is the number
of active users in an epoch) against the hub in [28], [25], [35]
or the leader in [31] or only outsiders in [24], not against the
payer himself. In our case, the platform is the payer and knows
exactly the payee’s address during a coin withdrawal.

Recent works of [36], [25] even considered an anonymous
(k-anonymity) payment hub against payers, assuming a fixed
denomination. Besides that & is usually small, withdraw trans-
actions in the exchange platform can hardly be of a fixed
amount. When two users withdraw different amounts of coins,
the platform can trivially tell them apart.

Unexplored anonymity within the exchange platform. The
above analysis hints that relying on an external anonymity
mechanism alone is insufficient, we need to further strengthen
the anonymity protection within the platform. Anonymity
issues are classical topics that have been extensively studied in
different settings, including in cryptocurrencies; yet, we will
demonstrate that a large body of those works are not applicable
to our setting of exchange system.

First, not only anonymous payment hub solutions cannot
be directly applicable, but even the techniques (e.g., viewing
the exchange platform as the hub instead, while each user
can be both a payer and payee) are not sufficient either for
the “internal” anonymity. The key difference, again, lies in
the functionality difference between payment hubs (and other
payment-related solutions in general) and exchange platforms.

Usually, in an anonymous payment hub, payer-payee ex-
change some information first, and then each runs some form
of (blockchain facilitated) fair exchange protocol with the hub.
For anonymity, they would require a bunch of payers and
payees to have some on-chain setup first with the hub, and &
active payments, so that the link between each pair of payer-
payee can be hidden among those k transactions; otherwise,
each individual incoming transaction can be recognized by the
hub. But in an exchange platform, there is no other entity for
such setup, each individual request would be independent of
the view of the platform: when users A and B purchase some
BTCs from the exchange platform, these purchase requests can
trivially be distinguished by the platform (i.e., k = 1).

Another issue (not covered in the payment solutions)
in anonymous exchange is that every exchange transaction
between a user and the platform contains two highly correlated

parts: the transaction from user to platform and that from
platform to user. The amounts are based on the exchange rate,
e.g., A pays 1 BTC, for 15 ETHs. While in (anonymous)
payment solutions, any two transactions can be completely
independent, e.g., A pays 10 BTCs to B (e.g. platform here),
while B pays 1 ETH to A.

There are also some works on private Decentralized EX-
change (DEX for short) [14], [10], [17] where users exchange
cryptocurrencies with each other. The privacy model in DEX
is different from that of our centralized setting. It keeps the
transaction information secret except for the trading parties.
Again, in our setting, the platform is one of the trading parties
who can learn the information of the other trivially.

Atomic swap across different ledgers supports the ex-
change between different cryptocurrencies. While atomic swap
pays much effort into ensuring fairness, the only privacy-
preserving atomic swap work [20] reduces the confidentiality
and anonymity properties to the underlying blockchains. If
the swap protocol involves cryptocurrencies on transparent
blockchains, like Bitcoin and Ethereum, these two transactions
can be linked easily via their amounts. There is only one
private fiat-to-Bitcoin exchange [39]. During withdrawals, the
client chooses one UTXO and mixes it among k transactions.
To prevent linkability by the transaction amount, it requires
each withdrawal to be fixed for 1 BTC. And if two clients
choose the same BTC, only one of them would get paid.

It follows that the natural question of anonymous cryp-
tocurrency exchange is still open.

Further challenges. Besides the issues mentioned above not
covered in existing studies, the anonymous cryptocurrency ex-
change setting has several other features that bring about more
challenges: since the exchange system is always connected
with external blockchain (e.g., via the deposit and withdrawal
of coins), it automatically leaks highly non-trivial information
(e.g., 3 BTCs has been deposited, and 2.9 BTCs has been
withdrawn/transferred out 2 minutes later) such that how to
best deal with them requires care.

The right anonymity/privacy goal. From a first look, we
may just handle the withdrawal operation and define a basic,
direct anonymity notion, that breaks the link between the
receiving account and user identity and leaves other operations
unchanged for efficiency. A bit more formally, given two
different users and a specified withdraw transaction, we can
require that it is infeasible to distinguish which one conducts
the withdrawal if both of them are eligible. However, if we
examine the anonymity set of the withdrawal, it only consists
of users who have enough amount of the specified coin, which
could be few. For example, for some unpopular assets, maybe
only a very small number of users own such kinds of coins;
or one user may hold a significantly larger amount of the coin
than others. When a large-volume withdrawal of such a token
takes place, it is easy for the platform to identify the user.

We then turn to consider stronger anonymity. One may
suggest gradually strengthening anonymity by allowing fewer
unnecessary leakages (keeping some internal transaction data
private such as amount) and leaving seemingly safe informa-
tion such as coin names as now (to avoid potentially complex
solutions for protecting such info). Unfortunately, many of
the remaining transaction metadata, together with the inherent



leakages such as 3 BTCs withdrawn by someone to an external
address, can still reduce the anonymity set. It is hard to have a
reasonably stronger anonymity without full internal transaction
privacy (excluding the inherent leakage during withdraw/de-
posit), as it is unclear what is the actual consequence of each
specific leakage. For these reasons, we choose a definition that
insists the system does not leak anything more than necessary
to the exchange platform (essentially requiring privacy). We
will explain more in Sec. IV-A.

Preserving major compliance functionalities. We also need
to preserve all the critical functionalities that are currently
provided by centralized exchanges, including compliance such
as verifying users’ identities (KYC), generating tax reports for
users and checking sufficient reserve for the platform?.

There are many types of assets/coins in an exchange
system, and their prices fluctuate over time. Users gain a
profit by capitalizing on the price difference between buying
and selling. It is often mandatory for users to pay taxes on
their accumulated profits over time. At each year’s end, users
obtain a tax report from the platform so that they can report
their annual profit, e.g., to the Internal Revenue Service for
tax filing. For example, based on the suggested tax policy
of Coinbase [7], transactions that result in a tax are called
taxable events. Taxable events as capital gains include selling
cryptocurrency for cash, converting one cryptocurrency to
another, and spending cryptocurrency on goods and services
(e.g., withdrawing cryptocurrency).

In the current transparent exchange system, the platform
records the whole transaction history for each account and
can easily extract their taxable events. The platform can also
check the reserve easily as it knows the asset details of each
account. This ensures that the platform possesses sufficient
assets to meet the withdrawal requests of users.

However, in the anonymous setting (which now also re-
quires privacy), the platform has no idea about the asset details
of each account. It cannot prove solvency in the same way
as before. Furthermore, the platform knows neither the actual
profit nor the relationship between these transactions with
any user. Without careful designs to calculate accumulated
profit (without violating privacy/anonymity), some users could
always claim they made no profit.

Striving for practical performance. Privacy-preserving con-
structions normally use zero-knowledge proofs. Although the
deposit and withdrawal assets are public, the exchange details
(e.g., 1 BTC for 15 ETHs) should be hidden and proven in
zero knowledge that the transaction is valid and the prices
are recorded correctly. In theory, zkSNARK [12] may enable
succinct proof size and verification time. But the proof gen-
eration incurs heavy computation for users. X-protocols may
also be useful, but hiding the exchanged asset types in all n
types of assets usually requires communication/computation
cost growing at least linear in n. For a practical design, we
need to reduce the communication and computation overhead
to be as small as possible (e.g., ideally constant cost).

There are some related works in accountable privacy (e.g., PGC [16], UTT
[37], Platypus [38], [9], etc), but they only focus on the payment with a single
type of asset and enforce limits on one transaction amount or account balance
or sum of all sent or received values. Note that their compliance requirements
cannot cover reporting tax that needs profit computation using the specific
buying price without linking to that transaction.

A. Our contributions

Modeling. We for the first time formally define the private
and compliable cryptocurrency exchange. We give a basic
version of anonymity first as a warm-up, which only cares
about the withdrawal operation. As we briefly discussed above,
hiding only part of transaction data may not give a reasonably
strong anonymity. In the end, we define the security model
insisting that the exchange leaks essentially no information
to the platform. In this way, we obtain the best possible
anonymity (given that public withdrawal is always there). We
also carefully define soundness properties such as overdraft
prevention, and compliance. For details, we refer to Sec. IV.

Constructions. We first give a very simple construction satis-
fying the basic withdraw anonymity and showcase its limita-
tions. We then design the first private and compliable exchange
system which is provably secure in the full private model.
Users are hidden in a large anonymity set, and they cannot
withdraw more assets than they own, or report false compliance
information. To obtain full anonymity, the user’s information
is concealed as much as possible in each transaction, including
user identities and the exchanged assets details. Soundness
properties are ensured via efficient NIZK proofs specially
designed for our purposes. Note that proving the correctness
of an exchange request usually leads to a proof whose size
is linear to the total number of asset types; instead, we
propose an efficient construction with constant cost in both
communication and computation which is independent with
the number of asset types and users in the system.

Performance evaluations. We implement and evaluate our
Pisces system to test the cost breakdown in each operation and
compare it with those in plain exchange (without anonymity).
Considering the presence of TLS communication, our overhead
is minimal. We also compare with other relevant systems® for
further evidence. See Sec. VI for details.

II. TECHNICAL OVERVIEW

We first provide a high-level overview of the technique.
Typically, there are two main parties involved: the platform
and the user. However, in certain cases such as tax filing, there
may also be an external authority involved.

Workflow of exchange system. First, the user provides the
real identity to the platform during registration. Then the
user interacts with the platform to deposit, exchange (e.g.,
1 BTC for 15 ETHs), and withdraw assets. For compliance,
the user generates his compliance report, gets it certified by
the platform, and reports to an authority. The platform also
generates information to check its own solvency.

We use Fig. 1 to visualize these (simplified) procedures.
Each interactive protocol can be expressed by @ @ ® steps.
The user sends a compliance report to the authority who
verifies it in step @. The platform checks in step ® whether
its internal state satisfies the platform compliance rule.

3There is a concept of updatable anonymous credential [13], that share
similar theoretical structure of proving properties of attributes in anonymous
credential; however, their main application to incentive systems supports only
limited functionalities and the achieved anonymity is weak. We have to design
more complicated compliance functions.
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Fig. 1: Overview of exchange system: @ Transaction request;
@ Transaction processing: platform verifies the transaction
and process it; @ Transaction completion: user completes the
transaction; @ Compliance verification: authority verifies the
compliance report of the user; ® Compliance check: platform
checks internal state with the platform compliance rule

Constructions. Based on the workflow above, we illustrate the
design idea of our efficient system Pisces step by step.

Basic anonymity. As a warm-up, to just break the link between
an outgoing transaction (withdraw) and the history within the
platform, we can introduce a preparation step. There, users ask
for one-time anonymous credentials (as tokens) with amounts
hidden to the platform (simply via a “partially” blind signature)
that later can be used to do withdrawal. Users also submit
a committed record containing asset details of the token for
compliance purposes. Now, the user balance becomes hidden,
and users should prove that the sum of all hidden amounts is
valid depending on his previous balance via zero-knowledge
range proof. When withdrawing, users could directly reveal
such a one-time credential (a valid signature on a random
identifier/nonce and transaction, etc.), which easily prevents
double-spending. Since now user balance is also hidden, all
future operations including exchange, withdraw preparation
will involve (efficient) zero-knowledge proofs of validity.

Full anonymity. Additional protection on the exchanges and
deposits is needed. Especially, the exchanges should not only
be anonymous but also keep asset type and amount private.
Each exchange transaction requires the value of exchange-in
and exchange-out to be equal. To calculate the value, users
need to show the used prices (now committed) correspond
to two of the prices among all available assets. Further
zero-knowledge proofs on membership and equality will be
leveraged. But doing them efficiently requires care and will be
explained soon in practical considerations.

Supporting compliance. The above full anonymity construction
is oversimplified, as we have not considered compliance issues.
For example, since each user can have multiple credentials, he
could give one credential with, say 10 Bitcoins, as a gift to any
person, who may not even registered with the platform. Then
the gift receiver could use the credential to do the anonymous
trading with the platform without revealing his real-world
identity, which is not compliant even with the basic KYC
regulation. Moreover, we would support common compliance
goals without hurting anonymity/privacy. In particular, we use
tax filing as an example of client-compliance.

First, all transactions from the same user should be bound
together (without revealing the content) to derive accumulated
profit; we thus let each user maintain one long-term registra-
tion credential that contains two attributes “cost” and “gain”
to record the buying cost, and selling gain for exchange-

out and withdraw transactions (the taxable transactions in
e.g., Coinbase). Such a credential is issued when the user
registers to the system and will be updated properly after each
transaction. To conveniently update it, transaction metadata
would also be recorded in a secure way, e.g., each coin type,
buying/selling price and amount, etc. (as in current exchange
platforms such as Coinbase). Each transaction corresponds to
two one-time asset credentials w.r.t the exchanged assets which
contain the corresponding trading prices and amounts.

When users request to exchange or withdraw, they need to
provide proof of ownership for a valid asset credential with
sufficient amounts, a valid registration credential, evidence of
fair exchange, and accurate records of updated costs and gains.
However, when generating the compliance report, revealing
this information directly to the platform would compromise
user privacy. For instance, if a user has a substantial profit,
it increases the likelihood of being linked to previous large-
scale withdrawals. To address it, we employ a workaround by
having the platform blindly sign (thus providing validity proof)
to generate the report without revealing sensitive information.

Practical considerations. With above considerations, the users
and platform have to engage in multiple non-interactive zero-
knowledge proofs, some of which may be heavy if not done
properly. Particularly, for each exchange transaction (e.g., user
wants to buy 1 BTC using 15 ETHs), the user takes his ETH
asset certificate, proves in zero-knowledge that the asset type
belongs to [n] via a membership proof (as asset type needs
to be kept private); and proves the used prices (committed
in the new asset certificates) are exactly the current prices
of the exchange-in and exchange-out assets, which also need
membership proofs. To facilitate such a proof, one idea is to let
the user to commit to a vector ¢ with n dimension, and prove
that ¢ is a vector of bits and contains only one entry (corre-
sponding to his asset certificate) as 1. Then homomorphically
evaluating the linear combinations may get commitments of
pricexamount of BTC, and ETH respectively, the user can
further prove the resulting committed values are equal. The
proof size is already at least O(n), and computation cost even
more. Recent work of one-out-of-many proof or many-of-many
proof may reduce the proof size to logarithmic in n but the
computation cost of proof generation and verification is still
(super)linear in n [27], [21].

Instead, we let the platform generate signatures on each
asset name and the price and make them public, called price
credential. To capture the price fluctuation and avoid users
using out-of-date price credentials, each price credential con-
tains the timestamp of the latest price update. In the exchange
transaction, the user proves that the new exchanged asset
record contains the name and price and she knows the valid
signature on them and the latest timestamp. It can be verified
by the platform’s single public key, and we can bring down
the communication and computation cost to be constant. For
details, please refer to Sec. V.

Extensions and open questions. For client compliance, there
are many other regulation rules such as limiting the transac-
tion frequency, transaction amounts, all sending or receiving
amounts, and scrutinizing the receiver addresses in case of
financing terrorism. Our techniques can be extended very
easily to also support those. See Sec. V-A for more discussions.



Solvency issues. There are also many platform-compliance
requirements. One notable one is the solvency problem that the
platform should be able to check it has sufficient reserve. For
example, Provisions [18] presents a privacy-centric approach
to validating solvency within a financial exchange without
the need to disclose sensitive information such as its Bitcoin
addresses, total holdings, etc. But in our setting, transaction
details are hidden in privacy-preserving exchanges, which
may increase the risk of solvency issues, and users may
exchange/withdraw a large amount of certain cryptocurrency
privately that exceeds the platform’s reserve, thus causing a
potential “bank run”. According to the Basel Accords [1] for
the banking industry (we also use it as the platform-compliance
rule in Sec. V), it usually requires the banks to (i) provide
sufficient liquidity (e.g., keep enough asset to cover the total
withdraws of last month), and (ii) keep a sufficient minimal
reserve (e.g., 10% of the total assets held by all users in the
platform, in the form of a major currency such as USD [5];
in our setting, Bitcoin). We show that our Pisces system
with full anonymity also satisfies the first platform-compliance
requirement. As the platform is still aware of the total amount
of incoming/outgoing Bitcoins (and any other cryptocurrency
tokens), the needed information could still be derived.

To maintain a minimal reserve, there might be some
practical mitigation, e.g., actively monitoring the total with-
drawal amount/pattern for each coin, limiting the exchange and
withdrawal amount/frequency, etc, or involving a third-party
auditor (similar to the tax authority to keep the aggregated
information to manage risks). Those can be supported by
extending our design. But a more rigorous solution remains
open. Also, there could be even more strict and complicated
rules that may require the platform to keep sufficient reserve
and liquidity for every single type of coins [11]; or require the
platform to generate publicly verifiable proofs of solvency.

We remark that with our basic anonymity requirement,
the platform knows all the holdings of each account (except
the link between the inside and external on-chain accounts),
and thus can still derive all needed information for both
requirements and the stricter rules.

However, a more systematic investigation of solvency is-
sues in a fully anonymous setting (e.g., allowing the platform
to gain extra side information for solvency purposes) may
again have a further impact on the anonymity.

As a first step in studying privacy in exchange systems
with efficient compliance support, there are many interesting
questions and challenges to explore (e.g., supporting broader
compliance rules). For a more systematic investigation, we
leave them as interesting open problems.

III. PRELIMINARY

Notations. Throughout this paper, we denote with A € N
the security parameter, and by poly(\) any function which
bounded by a polynomial in A. An algorithm A is said to
be PPT if it is modeled as a probabilistic Turing machine
that runs in time polynomial in A. Informally, we say that
a function is negligible if it vanishes faster than the inverse
of any polynomial. A function f : N — R is negligible if for
every positive integer c, there exists an integer x( such that
|f(z)| < 1/x¢ for all z > xg. It is denoted by negl. For a finite

set S, x < S means that x is chosen uniformly from S. If n is
an integer, [n] denotes the set of positive integers 1,2,...,n.
We use ¥ to denote a vector. We write (A B) to denote
interactive algorithms A, B engage in an interactive protocol,
take their respective inputs, and share some transcripts.

We briefly introduce some cryptographic primitives here
and defer details to the full version [30] due to the page limits.

Commitments. A commitment scheme allows one to commit
to a chosen value secretly, with the ability to only open to
the same committed value later. A commitment scheme Il
consists of the following PPT algorithms:

Setup(1?) — pp: generates the public parameter pp.
Com(pp,m;r) — com: generates the commitment for the
message m using the randomness r. For ease of notation, we
omit pp in the input.

We require a commitment scheme to be hiding and bind-
ing. A commitment is additively homomorphic if it satis-
fies that for any messages mi, mo and randomnesses 1, 7o:
Com(my;r1) + Com(mg;re) = Com(my + ma;r1 + 12).

Blind signatures. A blind signature scheme Il,s for signing
committed n messages has the following algorithms:

KeyGen(pp) — (pk, sk): takes public parameter pp as input,
outputs a key pair (pk,sk). pp,pk are implicit inputs of
others.Com(m,r) — ¢ given messages m € M™ and
randomness 7, computes a commitment c.

(BlindSign, BlindRcv): it is an interactive protocol between the
signer and user, with inputs (sk,c) and (7, r) respectively.
User outputs a signature o.

Vrfy(m, o) — b: it checks (77, ) pair and outputs 0/1.

We require a blind signature scheme to be correct and have
the properties of unforgeability and blindness.

Zero-knowledge argument of knowledge (ZKAoK). The
prover proves knowledge of w such that (x,w) is in some
NP relation R. Here x is the statement and w is the witness.
The zero-knowledge argument of knowledge [29] can be
simulated perfectly and there exists an expected polynomial-
time extractor £ that, given black-box access to a successful
prover, computes a witness w with probability 1. It is denoted
by ZKAoK[(w); (z,w) € R].

A. Syntax

An exchange system involves three entities: the platform
P, the user U and an authority A. The system consists of the
following PPT algorithms: Setup, PKeyGen, Verify, Check as
well as interactive protocols: (Join, Issue), (Deposit, Credit),
(Exchange, Update), (Withdraw, Deduct), (File,Sign). To
present the syntax, we prepare some data structures.

Transaction requests reqs. For each transaction, U’s input
includes a transaction request to specify details. We denote it as
a data structure and consider five kinds of requests as follows.
To keep the syntax general and simple, we add an optional
attribute aux to each request. aux could contain several sub-
attributes required by the operation but not included in the
listed attributes, be different for different operations, and be
specified by the detail construction.



- Tegjo; := (info, auzx) denotes join request, where reg;o;.info
is user’s information for joining the system.

- Teqqep = (name, amt, auz) denotes deposit request, where
Teqdep-NAME is asset name, reqdep.amt is asset amount.

- T€Qeze = (NAMEiy, AMliy, NAMEH s, AMioyt ), auxr  denotes
exchange request, where rege,..name;, is exchange-in
asset name, rege;..amt;, is exchange-in asset amount,
Te(egc-NAMELy: 1S €Xchange-out asset name, reqeyc. Moyt
is exchange-out asset amount.

- T€Quit := (name, amt, aux) is withdraw request, where
requwit-name is asset name, req.;:.amt is asset amount.

- reqp; = (uid, cp, aux) denotes file request, where regyp;. uid
is user identifier, regg;.cp is compliance information.

Transaction records Rd., and Rd,s. Each record is an
information credential pair, where the information contains
several attributes. It is generated or updated during transactions
and kept privately by users. We denote record Rd as a data
structure and consider two kinds of records: the registration
record Rd,., and the asset record Rd;.

- Rdyeq = (non, uid, cp, cred) denotes a registration record,
including three attributes and the credential Rd,.,.cred
on the three attributes. Rdy.,.non is the random nonce
to uniquely identify it. Rd,.uid is the owner’s unique
identifier. Rd,4.cp is the compliance information. Each user
holds only one valid Rd,.,, which is initialized in join
transaction, updated in exchange and withdraw transaction
via revoking the old one and generating a new one.

- Rdgs := (non, wid, name, amt, acp, cred) denotes an as-
set record, including five attributes and a credential
Rdgsi.cred on the five attributes. Similar to Rdy.g,
Rd,s;.non is the random nonce and Rd,;.uid is the owner’s
identifier. Rd,s;.name is the asset name, Rd,s;.amt is the
amount of asset, and Rd,s;.acp is asset-related compliance
information. Notably, in a private yet compliable setting,
assets cannot be accumulated trivially in terms of quantity
since they are tied to different asset kinds and compliance-
related information such as selling prices. Thus each user
could hold multiple asset records.

Concrete algorithms.

e Setup: The public parameters epp for the exchange system
is set. epp includes the public parameters for cryptographic
primitives. For simplicity of syntax, we let epp also include
some publicly available information, such as the external
blockchain, all coin prices in the exchange system, some
metadata like the time, etc.

o PKeyGen: P runs the key generation algorithm to generate a
key pair (pk, sk) and makes pk public to users. It initializes
its internal state st as ().

e (Join, Issue): It is a register protocol. U runs the interactive
algorithm Join(epp, pk, req;o;), and P runs the interactive
algorithm Issue(epp, pk, sk, st), where st denotes the in-
ternal state of P. After the interaction, P outputs a signal
bit b indicating whether the operation succeeds or not, and
updates its internal state to st’. If b = 1, the user outputs the
unique user identifier uid and the registration record Rd,g.

e (Deposit, Credit): It is a deposit transaction for users to
deposit assets to P. P runs Credit(epp, pk, sk, st) and U
runs Deposit(epp, pk, uid, Rdreg, reqqep). The asset name
and amount are specified in regqe,. After the interaction,
P outputs a signal bit b indicating whether the operation

succeeds or not, and updates its internal state to st’. If b = 1,
U gets a new asset record Rd2% for the deposited asset.

e (Exchange, Update): It is an exchange transaction for users
to exchange assets with P. The names and amounts of
exchange-in and exchange-out assets are specified by reqez..
U runs Exchange(epp, pk, wid, Rdyey, Rdgst, €qesc), and P
runs Update(epp, pk, sk, st). After the interaction, P outputs
a signal bit b, indicating whether the operation succeeds
or not, and updates its internal state to st’. If b = 1, U
outputs three records: the updated ones Rd,,, and Rdy,,
and a newly generated asset record Rd2% for exchange-out
asset with name reqeqc.NaAMEHy;.

o (Withdraw, Deduct): It is a withdraw transaction for users
to withdraw a kind of asset from P to the blockchain. The
name and amount of withdrawn asset are specified in req;;.
U runs Withdraw(epp, pk, uid, Rdyeg, Rdast, Tequwit), and P
runs Deduct(epp, pk, sk, st). After the interaction, P outputs
a signal bit b, indicating whether the operation succeeds or
not, and updates its internal state to st’. If b = 1, U outputs
two updated records Rdy,,, Rdg,.

o (File,Sign): It is a two-party protocol in which U files
compliance information periodically and requests P to
sign it. U runs File(epp, pk, wid, Rd,cq, reqm;) and P runs
Sign(epp, pk, sk, st). After the interaction, P outputs a sin-
gle bit b, indicating whether the operation succeeds or not,
and updates its internal state to st’. If b = 1, U outputs
an updated record Rd,,, and a compliance document doc
certified by P. Similar to transaction record Rd, doc :=
(uid, cp, mt, sig) is also a data structure including three
attributes and a signature doc.sig on them, where doc.uid
is the user identifier, doc.cp is the reported compliance
information, and doc.mt is the metadata such as time.

e Verify: The authority runs Verify(epp, pk, doc) to check the
validity of the submitted compliance document, including
the consistency of metadata in epp and doc.mt, and the valid
signature. It outputs a bit b with b = 1 indicating a passing
check, and vice versa.

e Check: P runs Check(epp, st) for self-checking the internal
state’s compliance with platform rules specified in epp. The
output is a single bit b, with b = 1 indicating a passing
check and vice versa.

IV. SECURITY MODELS

In this section, we formally define security models to cap-
ture the desired security properties of a private yet compliable
exchange system. Along the way, we show the motivation,
importance, and ideas of defining such properties.

To the best of our knowledge, this is the first security
modeling of the centralized exchange system. Security mod-
eling of this work is involved in four aspects. (1) we put less
trust in the platform than in existing plain exchange systems
where the platform is always assumed to be honest. While
our model gives the platform more power in some security
definitions, especially for anonymity, the platform can be
completely malicious; (2) When modeling privacy/anonymity,
naive attempts for a “direct” anonymity (without privacy on
other parts of transactions, or trying to strive a best balance
between efficiency and hiding only part of the transactions)
may not work well because of potential consequences of
each seemingly benign leakage (within the exchange system).



We will elaborate on it in Sec. IV-A; (3) Besides desired
anonymity, we also define soundness properties of overdraft
prevention and client compliance security that require care too;
(4) For platform compliance, we require that the honest plat-
form can always self-check whether its internal state satisfies
the platform compliance rule.

We first give a high-level description of the security re-
quirements of the system.

Correctness. The honest user gets the correct balance amount
in his account from deposit, exchange, and withdrawal, also
gets the correct number of real assets from withdrawal, and
gets a valid signature on his compliance information that can
be verified by the authority.

Anonymity. Given a withdraw/deposit transaction, the mali-
cious platform should not link it to any specific user, except
that the user has to expose the identity, such as depositing
/withdrawing fiat money from/to the bank. We start discussing
it from the basic anonymity that only focuses on the withdraw
or deposit transactions. Although the basic anonymity scheme
could be simple and does not bring extra challenges to compli-
ance (especially platform compliance), we show that the basic
anonymity, especially for withdraw, may not be sufficient,
since the platform could narrow down the anonymity set based
on other transactions. Thus we further explore the best possible
(full) anonymity and model it.

Overdraft prevention. It ensures users cannot possess or spend
more assets than they actually own in the system. It pre-
vents malicious users from conducting fraudulent deposits,
exchanges, or withdrawals.

Compliance. It requires that both users and the platform to
comply with the regulations expressed as functions, and we
call the corresponding compliance F-client-compliance and
G-platform-compliance. All entities are required to provide
compliance information according to respective compliance
rules, and none of them can deceive the authority with incorrect
information as long as the user does not collude with the
platform. For example, F could be a tax report function on
accumulated profit, and G could be a solvency-related function
on the coin reserve and liquidity. Tax-report-client-compliance
ensures that the user cannot cheat with a value less than
his latest accumulated profit this year. Solvency-platform-
compliance ensures that the platform maintains appropriate
liquidity based on the monthly assets inflow and outflow.

A. Preparations for the models

Note that the bank accounts leak the user’s identity when
depositing or withdrawing fiat money which is unavoidable.
So we consider privacy only during cryptocurrency trading.
Besides, the deanonymization attack in the network layer is
out of the scope of our work. The attacker links multiple
transactions by IP address, but users can protect themselves
using an anonymous network like Tor [22], [6].

We provide oracles to capture the adversary’s capability. To
model the capabilities of the malicious platform, we provide
. 1 1 1 1 1
oracles: QJgilj’ ODeposit’ _OExchange’ OWithdraw’ OFiIe' To model
the capabilities of malicious users, we define the oracles:
2 2 2 2 2 2
OPKgyGen’ Olssue’ OCredit’ OUpdate’ ODeduct’ OSign' We alsp
provide Oppiic for every party to model access to some public

ongoing information, such as a secure blockchain system, the
prices of all assets, currencies, stocks, cryptocurrencies, and a
global clock, etc.

Reference-record map MAP : (uid,ref) — Rd: When A
acts as a malicious platform, it is allowed to induce honest
users to conduct transactions by querying oracles. However,
some oracles require specifying records as input, which are
private to honest users and unavailable to A. To enable A to
identify different records without knowing what they are, we
let A specify the reference string ref* for each record and
Oracles keep the map MAP from key tuple (uid, ref) to value
Rd for A’s later queries. For notational convenience, we let
MAP(uid, ref) denote the record Rd. In the queries, ref ., is

the reference for the registration record, ref ;r‘st is the reference
for the spending asset record, and refSs is the reference for
the buying asset record.

e Opypiic: When queried, it returns the public information pub,
such as the registration information, bank account, asset
prices and related wallet addresses, etc. For all queries to
other oracles, they inherently invoke Oppjic at first. We do
not repeat these moves in the oracle descriptions.

o O} (regjoi, ref reg) it interacts with A by running
the  protocol  (Join,lssue),  where oracle runs
Join(epp, pk, regjo;) — (uid, Rdyeg). If Join algorithm
outputs L, then oracle outputs L. Otherwise, oracle adds
(uid, ref g, Rdreg) to MAP and outputs uid to A.

® Obeposit (Ui, T€qaep, Tef g, Tef 35t ): OTacle first gets record
Rd,cy =MAP(uid, ref ;) from MAP per references. Then
it interacts with A by running (Deposit, Credit) protocol,
where oracle runs Deposit(epp, pk, uid, Rdyeg, T€qdep) —

(Rd,.,, RdZ%). If Deposit algorithm outputs L, then or-

acle outputs L; otherwise, oracle updates the map by

setting MAP(uid, ref ;) ¢ Rdj., and adds a new tuple
(uid, refouer, RAS™) to MAP. A gets interaction transcripts
but no more output from oracle.

. Oéxchange(uid, T€qezes Tef vegs T€f asts refour): oracle first gets
records Rd,., = MAP(uid, ref o), Rdast = MAP(uid,
ref ) from MAP per references. Then it interacts with
A by running (Exchange, Update) protocol, where or-
acle runs Exchange(epp, pk,uwid, Rdreq, Rdast, T€qezc) —

(Rd}oy, Rdjy, RAJY). Tf Exchange algorithm outputs L,
then oracle outputs _L; otherwise, oracle updates the map by
setting MAP(uid, ref o) < Rdj,, and MAP(uid, ref 1)
Rd',, and adds a new tuple (uid, refSey, Rd2%) to MAP. A
gets interaction transcripts but no more output from oracle.

® OWitndraw (Wid, T€quit, TEf regs T6f st ): OTacle first gets records
Rdey = MAP(uid, ref o), Rdass = MAP(uid, ref ;)
from MAP per references. Then it interacts with A
by running (Withdraw, Deduct) protocol, where ora-
cle runs Withdraw(epp, pk, uid, Rdyeq, Rdost, T€Guwit) —

(Rdy,,, Rdg;). If Exchange algorithm outputs 1, then ora-

cle outputs _L; otherwise, oracle updates the map by setting

MAP(uid, ref o)  Rd,.,, MAP(uid, ref ) < Rdgg,. A
gets interaction transcripts but no more output from oracle.

o Of(uid, reqpy, ref op):  oracle  first — get  records

Rd,c; =MAP(uid, ref ;) from MAP per references. Then

“Note that the reference string ref used by A is different from the
identifier(nonce) of the record which is privately chosen by the honest user
or oracle randomly.



it interacts with .4 by running (File, Sign) protocol, where

oracle runs File(epp, pk, uid, Rd,y, reqm) — (Rdy,,, doc).
If File algorithm outputs L, then oracle outputs
1; otherwise, oracle updates the map by setting

MAP(uid, ref o) < Rd,.,. A gets interaction transcripts
but no more outputs from oracle.

. O%Keyc .n: It can only be invoked once. When triggered, run
(pk, sk) < PKeyGen(epp). It initializes the internal state
as st < (. It outputs pk.

e OF . A runs Join algorithm and interacts with the OZ .
oracle. OF_ . runs Issue algorithm, takes (epp,pk,sk) as
input, and receives user’s transcript ts as external input.
It outputs a signal bit b indicating whether the operation
succeeds or not. If b = 0, it outputs L.

. Oapdate: A runs Exchange algorithm and interacts with
the OF 4, Oracle. OF ;... runs Update algorithm, takes
(epp, pk, sk) as input, and receives user’s transcript ¢s as
external input. It outputs a signal bit b indicating whether
the operation succeeds or not. If b = 0, it outputs L.

o OF gy’ it is similar to OF ., except that here they run the
(Deposit, Credit) protocol and A gets { Rdst, }-

o O3 . it is similar to Oapdate except that here they run
(Withdraw, Deduct) and A gets {Rdj,,, Rd;; }.

o O%,: it is similar to Ofj 4. except that here they run the
(File, Sign) protocol and A gets doc.

2

B. Basic anonymity

Basic anonymity guarantees that even a malicious platform
cannot link the wallet address with any honest user. It consists
of basic withdraw anonymity and deposit anonymity.

Basic withdraw anonymity. We define the model in Fig. 2,
the adversary A interacts with any honest user by query-

ing the anonymity oracle set: Oanony = {O}oin, Oéeposit,
1 1 1 )
OExchange:Owithdraw OFile: Opublic } oracles. The adversary sub-

mits (uidy, uidy, refl,, ref ., requs) as the challenge. It also
outputs some internal state information sz.

Expanofwit (.A, )\)

epp < Setup(G(1*))

(pk, st) < Alepp)

(uido, uids, refgst, refist, T€Guwit, St) Aoy (st)

if MAP(uido, ref,) = L or MaP(uidy, refl,) = L

ast ast

. - ( 1
return 0 //no record mapped by references ref,.,, ref ..
. . 0

if regq,;,.amt # MAP(uido, ref . ).amt or

req,,;-amt # MAP(uidy, ref L,).amt or

req,,.name # MAP(uido, ref.,).name or

1
ast

req,;-name 7 MAP(uidy, ref
else b+« {0,1}
Interacts with A by running

).name return 0

Withdraw(epp, pk, uidy,, MAP(uidp, refla’st) s T€Quwit)

b« A%mon (st)

. . . -0 .1
/I * requires no query with references ref ., ref

ast

return (b == b)

Fig. 2: Basic withdraw anonymity experiment

Definition 1 (Basic withdraw anonymity). We say that an
exchange system provides basic withdraw anonymity if for all
PPT A and ), in the experiment shown in Fig. 2, it holds that

|Pr[Exp™ Vit (A,\) = 1] — 1/2| < negl(\)

Warm-up construction. To achieve the basic withdraw
anonymity, an intuitive idea is cutting the link to the user’s real
identity within the withdraw operation, and leaving all other
operations plain. Our warm-up construction follows this simple
idea by partitioning the withdraw operation into two separate
steps: first, users log in their plain account and request for a
one-time anonymous credential (just use blind signatures) on
the coin they plan to withdraw; second, they could show an
anonymous credential without login to get the asset withdrawn
on-chain. If the withdrawn amount is arbitrary and different
users withdraw different amounts of assets, the special amount
helps the platform identify a specific withdrawal. To handle
this problem, our method is hiding the withdrawn amount in
the first step where the user request the anonymous credential
with a committed amount. We introduce a brief idea here and
defer the detailed description to the full version [30]

For example, Alice has 50 BTCs in her account and Bob
has 100 BTCs. Alice wants to withdraw 5 BTCs and Bob wants
to withdraw 2 BTCs. Firstly, they commit on these values and
prove they have enough balance and request the platform to
issue credentials. Once the proof gets verified, the platform
signs blindly and stores these commitments in their accounts.
Alice unblinds the signature and shows it to the platform
later for withdrawing 5 BTCs. The platform cannot distinguish
it is Alice or Bob since both of them have enough BTCs
and have requested. Afterwards, if they want to withdraw or
exchange, they should prove that they have enough balance
after deducting all committed amounts from the plain balance.

Basic deposit anonymity. This property prevents the platform
from linking the user’s past on-chain transactions to his identity
via deposit operations. Modeling it can be regarded as a
symmetric work of basic withdraw anonymity except that all
deposit requests are achievable naturally for any user.

To add deposit anonymity, one more one-time anonymous
credential can be employed. Its workflow is an inverse version
of anonymous withdraw. When depositing assets, the user, as
an anonymous guest, initializes the process by requesting the
platform to issue a one-time use anonymous credential, which
contains the asset name and amount. Then he requires the
platform to credit the asset balance to his account using that
credential without showing the asset details.

Limitations of basic withdraw anonymity. The above construc-
tions are efficient and satisfy the basic anonymity model, but
we observe that the anonymity is limited.

It is well-known that the anonymity strength depends on
the size of the anonymity set. The greater the anonymity set
is, the higher the level of anonymity a user can achieve. When
considering the anonymity set for a withdrawal transaction,
it comprises users who can withdraw from the view of the
platform. In the above scheme, anonymous credentials are
requested from real-name accounts. The anonymity set consists
of users who have requested credentials for the same asset
and their account balance exceeds the withdrawn amount. The
following example narrows down the set size to one.



Example 1: Alice deposits 50 BTCs, Bob deposits 100 XRPs
and 100 BTCs, and Clare deposits 1000 BTCs. Only Alice
and Bob request anonymous credentials for BTCs. Later, a
withdrawal of 51 BTCs occurs, it can thus be linked to Bob
as he is in possession of a sufficient amount of BTCs.

C. Full anonymity

As we mentioned above, the anonymity set of basic
anonymity could be quite small. So we explore the stronger
anonymity of the withdrawal. We first attempt to get perfect
anonymity with all users in the anonymity set. Unfortunately,
it is impossible due to some unavoidable leakage. We will
elaborate it later. For other kinds of leakage, we check that
whether it is even worth to prevent, as any protective measure
comes with cost. After some attempts, it turns out that any
other leakage could be used to reduce the anonymity set. We
explain that with some examples. Finally, we define the full
anonymity via interactive indistinguishability. It achieves best
possible anonymity by constraining the information leakage to
the minimum.

Stronger anonymity is needed. Basic withdraw anonymity
only ensures the anonymity set includes those eligible users
who own enough of the withdrawn asset and are capable to
withdraw. It is acceptable for some popular assets that a lot
of people own and the withdrawn amount is small such that
the anonymity set is large enough. But it rules out many
interesting scenarios involving rare assets owned by a few
or substantial quantities held by a minority. Thus we aim to
explore a stronger model that provides a larger anonymity set.

Perfect anonymity is impossible. In the ideal case, the
anonymity set of each withdraw transaction consists of all reg-
istered users in the system which is called perfect anonymity.
Unfortunately, this cannot be real since the platform can always
exclude some users using public information. For example,
given a withdrawal of 100 Bitcoins and a newly enrolled user
Alice, she is in no way the user of this withdrawal if there is
no such big amount deposit in the system after her registration.

Due to the special setting of exchange platform, some
information is unavoidably public to the platform, which we
call unavoidable leakage, like transaction types (deposit or
exchange or withdraw), users’ registration information (due to
KYC requirement), deposited and withdrawn asset details (the
asset name and amount, bank accounts, and wallet addresses),
and even some out-of-band information like the users’ behav-
ioral preference.

To achieve the best possible anonymity, where the users
can only be excluded from the anonymity set given the un-
avoidable leakage, it seems that only the unavoidable leakage
is acceptable. But a series of natural questions are: why do we
need to hide so many? Can we leak a little bit more, like the
privacy (identity, coin name, and amount) of the exchange?
Does it hurt the best possible anonymity?

Necessity of privacy and towards best possible anonymity. To
answer the above questions, we identify the avoidable leakage
information which can be concealed using some cryptographic
tools. Concretely, we assort the avoidable leakage into five
classes according to the transaction: the identity in depositing
coins, the identity in exchange, the contents in exchange

including the coin name and amount, and the identity in
withdrawing coins, and the compliance information in filing
operation. We hide each of them and leak the other part to
test whether the anonymity set is affected.

It is easy to see the identity in withdrawal cannot be leaked.
For the three leakages occurring in the deposit and exchange,
we show an example of the exchange system with a series
of transactions and check the anonymity set if any avoidable
leakage is allowed.

Example 2: In a cryptocurrency exchange system, there are
a bunch of users registered and doing transactions, then
David and Ella joined. After that somebody (David) deposits
10 BTCs. Then there is an exchange transaction: somebody
(Alice, a registered user) exchanges some coins (2 BTCs to
20 ETHs). Then a withdrawal happens: somebody withdraws
5 XRPs. Check its anonymity set:
1. If the identity of deposit is leaked, then the platform knows
that David deposits 10 BTCs, and Ella is excluded from the
anonymity set and David is included.

2. If the identity of exchange is leaked, the platform knows that

David and Ella cannot withdraw 5 XRPs, then both David
and Ella are excluded from the anonymity set.

3. If the content of exchange is disclosed, the platform knows

it is a BTC-to-ETH exchange and excludes David and Ella.

As for the compliance information in the filing operation,
someone may consider just leaking the summary of compliance
information is fine. But in this case, many users might have
not generated any transactions in a given tax year, which can
be inferred from their zero profit. Excluding these sleeping
users reduces the anonymity set. Therefore, the privacy of
compliance information should also be protected. The identity
of the filing operation could be leaked by the regulatory
authority to the platform which is an unavoidable leakage.

In a nutshell, protecting privacy is necessary. We need to
go toward the best possible anonymity.

When modeling the best possible anonymity, we want to
prevent any avoidable leakage. However, since public infor-
mation could have various and complicated relationships with
the events in the exchange system, it is tricky to exactly
quantify the potential influence, which may be leveraged by the
adversary to win trivially. Instead, we define the full anonymity
via interaction indistinguishability.

Interaction indistinguishability. This property requires that the
interaction between the user and platform leak nothing except
the public information. To include the interaction of all kinds
of transactions, we design the experiment as follows. In a high
level, the adversary A acts as the malicious platform and the
experiment simulates two worlds with the same initialization.
A can add honest users to both worlds and interact with
them by submitting different query pairs. The queries are
sent to the worlds via a challenger C who forwards query
pair to two worlds depending on a random bit . To model
the unavoidable leakage, the queries should contain the same
public information. After a series of interactions, A still cannot
distinguish which world is based on which one of the query
pair. It means that for any kind of transaction the interaction
does not leak more than the unavoidable leakage. Otherwise,
A can send different queries for the transaction and distinguish
the two worlds successfully.



The two1 worldls are sirr%ulated via1 two sets of oracles:
Ot = {O05ins Obeposics OExehange OWithdraw: Ot Ot i}
with separated internal map MAP® for a € {0,1}. C chooses
one bit b randomly at the beginning. A sends queries to
the challenger C which are in pair (Q°, Q') to interact with
oracles. For each query pair, C checks that they could be
different but must contain the same public information which
represents the unavoidable leakage as we discussed before (see
Def. 2). Then C forwards Q" to the oracle in O\, and forwards

Q'~? to the oracle in Ojyp.

With these queries as input, these oracles interact with
A with different states, and we denote it in terms of
(A(st), Ofp(Q")) and (A(st'), Ojyp(Q'~")). But it cannot
distinguish which are induced by which queries. Therefore, the
interaction leaks nothing but public information. We formally
define the interactive indistinguishability in Fig. 3.

Definition 2 (Publicly consistent queries). A submits a pub-
licly consistent query pair (Q°,Q%Y), which satisfy all the
following conditions:

e First of all, both queries would succeed, and are for the
same type of oracle.

e For queries to Oj,., with the same the request info regjo;
and they get the same user identifier uid as output.

e For queries to OF,., both with the same user identifier uid.

e For queries to (’)%)epwt and Oliraraw the users can be
different but the name and amount of the assets and the
on-chain addresses are the same in both queries. For fiat
money deposit/withdraw, the users and bank accounts are
the same.

EprND(A, C,\)
epp < Setup(G(1%))
(pk, st) < Alepp)
C randomly chooses b < {0,1}
Run AC(O'(')VD’O'IND)(st) for N steps: // N=poly(\)
In each step:
(Q°, Q" st° st') « A(st)
if (QO, Ql) are not publicly consistent, then return 0;
else C forwards Qb to OPND, Qlfb to O|1ND,
Run (A(st”), Oinp(Q")) and (A(st"), Opp(Q'"))

// Tt simulates A induces honest users’

behaviors
Finally, A halts, and outputs b
return (b == b)

Fig. 3: Interaction indistinguishability experiment

Definition 3 (Interaction indistinguishability). The interaction
indistinguishability is described in Fig. 3. We say that an
exchange system provides interaction indistinguishability if for
all PPT A and X it holds that

[Pr[Exp™P (A, \) = 1] — 1/2| < negl()

Remark 1 (Relation with basic anonymity). The interaction
indistinguishability implies the basic anonymity if the exchange
identity, and exchange content are also public and identical in
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both queries. Only the withdraw identity is concealed like in
the basic withdraw anonymity experiment.

Remark 2 (Best possible anonymity). We claim that the
interaction indistinguishability achieves the best of possible
anonymity. The interaction indistinguishability covers all kinds
of transactions with specific public information. When we
specify that the public information exclusively comprises the
unavoidable leakage as defined in Def. 2, we can ensure
that the platform learns nothing about the user from their
interactions, except for the unavoidable leakage. Recall the
Example 2, we can see any avoidable leakage in these cases
excludes some users. If all avoidable leakages are prevented,
the anonymity set expands to encompass a broader range of
users, now including both David and Ella.

D. Soundness definitions

Extractor. In overdraft prevention and client-compliance exper-
iments, adversary A who acts as a malicious user, gets some
valid records after querying oracles and keeps them secret.
It means that after some successful anonymous transactions,
the experiment does not know how many assets the users
actually own and their correct compliance information. So it is
hard to decide whether A breaks the overdraft prevention or
compliance properties. To deal with this dilemma, in those
security experiments, we introduce an extractor £ that can
output the user identity and detailed information for each
transaction. Note that both overdraft prevention and compli-
ance are soundness properties. We mimic the classic proof-of-
knowledge style of definition, and the extractor can rewind .4
to the former state and A reuses its randomness r 4, similar to
the proof of knowledge extractor [29]. Then the experiment is
able to check if any overdraft or compliance cheating happens.

1) Overdraft prevention: Overdraft prevention requires that
users cannot spend more than they own within the platform.
Concretely it ensures no malicious users could exchange or
withdraw more assets than they actually own. Using the
transaction details extracted by the extractor £, the experiment
can check whether an overdraft happens: (1) the user gets
credited more assets than his deposit or exchange-in; (2) the
user gets deducted less asset than his withdrawal or exchange-
out; (3) the remainder amount of asset is negative; (4) the
exchange is unfair; (5) the user steals others’ asset.

We formally define overdraft prevention via the following
experiment. A acts as malicious users and interacts with
extractor £ via querying oracles: Ooq = {Ofer O s
OB ctucts Oupdate, OSlgn’ Opublic }- A can query at most N =
poly(X) times, then it halts. £ extracts a set of successful
transaction histories {h;} for t € [N], where each transaction
history hy = (uid,Rdyeg, Rdast, R}, Rd}g,, RAJS , tsy, pub;)
includes user id wid, the input records (Rdyeq, Rdgs:), the
output records (Rdy,,, Rd,,, Rd24"), the transaction transcript
ts;, and the related public information pub;, where some
records could be empty for some transactions. For example,
Rd2% is empty in withdraw transaction. Especially, transaction
transcript #s; := (name,amt,...) is a tuple of attributes
including the asset name ts;.name and amount ts;.amt, etc.
Public information pub; := (prin,drout,-..) is a tuple of
attributes including input-asset price pub;.pr;,, output-asset
price pub;.proqt, etc. Please note, there could be some other



metadata per the implementation need, so we cannot specify all
the attributes and some attributes could be empty for different
transactions. Finally, the experiment sequentially checks each
transaction history to figure out whether any one of the above
overdraft cases happens. Especially, in deposit and withdraw
transactions, ts; contains the deposited or withdrawn asset
information: ts;.name = i, ts;.amt = k; denotes that the user
deposits or withdraws the asset ¢ with amount &;. To facilitate
the check, the experiment maintains a list RdSet for tracking
asset records that have not been spent till the checkpoint, which
is initialized as empty.

Exp®?(A,&,0)

epp  Setup(G(11)), (1™, st) < A(epp), for some n € N
(pk, sk) < PKeyGen(epp,1™)

Run A% (epp, pk, st)

if any oracle aborts then return 0;

else continue until 4 halts
Run {h;} « E*(epp)
/I € could control the randomness of A
Set RdSet < ()
For t =1 to N,check h; :
(uid,Rdyeq, Rdast, Rd)oy, Ry, Rdget , tst, puby)
For Deposit transaction :
if RASY .name # ts;.name or RASY .amt # ts,.amt

then return 1

Parse h;

/I the name or amount of credited asset record is wrong
else let RdSet < {Rd,,,, Rdg: } URdSet
For Exchange transaction :
if any of the followings happens, then return 1 :
— {Rdyeq, Rdost } € RdSet;// invalid records
— Rd..amt < 0 // deducted amount exceeds asset amount
— (Rdgst.amt — Rd;st.amt) - puby.prin #
Rdgst.amt - pubs.prout
/I the deducted value is not equal to the credited value
else RdSet «+ RdSet \ { Rdyeg, Rdast} U {Rd}o,, Rd}er, Ry
For Withdraw transaction :
if any of the followings happens, then return 1 :
— {Rdyeg, Rdast} € RdSet;
— Rdgst.name # ts,.name
— Rd.,,.amt < 0 or Rdss.amt — Rd.,.amt < ts;.amt
/I withdraws more asset than the deducted amount;
else let RdSet < RdSet \ {Rdyeg, Rdasi} U {Rdyq, Ryt }
return 0

Fig. 4: Overdraft prevention experiment.

Definition 4 (Overdraft Prevention). As shown in Fig. 4, we
say that an exchange system can prevent overdraft if for all
PPT A and )\ there exists € such that it holds that

Pr[Exp®d(A, &, \) = 1] < negl()\)

2) Compliance: This property requires both clients and the
platform to comply with the regulation rules. Here we represent
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these rules using compliance functions, and formalize both
client compliance and platform compliance.

In the client compliance experiment, A acts as malicious
users and interacts with extractor £ via querying oracles:
Oclie—comp = {O|2ssue’ O(%redit’ O%educt’ OlQdeate’ Ogign’ OPUb”C}'
A outputs a certified document doc® with four attributes
(uid, cp, mt, sig). € extracts a set of successful trans-
action histories {h;} as in overdraft prevention experi-
ment. A wins, if doc™ passes the authority verification, i.e.,
Verify(epp, pk,doc™) — 1, but there exists extracted trans-
action history that does not follow basic client-compliance
rules (we will specify in the following), or the submitted valid
document doc* is inconsistent with the extracted transaction
histories {h;}. Concretely, each transaction in {h;} satisfy
that: (1) the user has already registered (KYC rule); (2) all
records in one transaction belong to the same user (AML rule
to avoid secretly transferring assets to other accounts); (3) the
compliance-related information in each asset record, such as
buying and selling price, is correct (general compliance rule).
To facilitate the check, the experiment maintains a list RU of
all registered users, which is initialized as empty.

If all transaction histories in {h;} pass the above check,
consistency checks between doc™ and {h;} per function F' will
also be done. Specifically, in one transaction, the compliance
information cp, is collected from {h;} (e.g., the asset prices
and amount) and is added to the user’s the compliance infor-
mation set {cp}yiq. Then F' is applied to {cp}doe=.uid to get
the final result cp .~ ;4. See Fig. 5 for details.

Definition 5 (Client Compliance). The client compliance ex-
periment is shown in Fig. 5. We say that an exchange system is
client-compliant w.r.t. a compliance function F if for all PPT
A and \ there exists £ such that

Pr[Explie=comP (A £ F \) = 1] < negl()\)

For platform compliance, it is similar with the correctness,
and we require that the internal state of the honest platform
is always satisfied with the platform compliance rule. For
example, the platform can self-check whether it owns sufficient
cash and assets to cover fund outflows for the previous 30 days
according to the regulation rule [1].

V. PRIVATE AND COMPLIABLE EXCHANGE SYSTEM

In this section, we present the generic construction of the
private and compliable exchange system Ilpjsces that achieves
full anonymity, overdraft prevention, and compliance, and we
provide formal security analysis. Before that, we give concrete
compliance rules that our system aims to comply with for
both clients and the platform. Following that, we introduce
the concept of price credentials and illustrate the high-level
idea about the construction.

Concrete compliance rules. For F-client-compliance, we take
the tax report as an example of F, called tax-report-client-
compliance. It requires clients to report the investment profit
yearly (total gain minus total cost). The taxable profit is calcu-
lated when clients sell their assets via exchange or withdraw
transactions. Concretely, cost = pr; - k; and gain = pr; - k;,
where k; is the exchange-out or withdrawn asset amount, pr;
is the buying price and pr; is the selling price of the asset.



Expcliefcomp( A E,F\) signature on these values from the latest timestamp’s price
X — credential. The user also ensures that the exchange is fair based

epp « Setup(G(17)), (1 ’Si)  Alepp),for some n € N on these prices and amounts. This approach enables the user

(pk, sk) < PKeyGen(epp,1"),RU < 0 to prove with just a single credential. It significantly reduces

Run doc™ := (uid, cp, mt, sig)/ L + AOC“E*WmP(epp, pk, st) communication and computation costs to a constant level.

if oracle aborts or Verify(epp, pk, doc*) = 0 then return 0

High-level idea. Before giving the formal algorithms, let us

Run {h} < £ (epp) // & controls the randomness of A illustrate the high-level construction idea with five concrete
For t =1 to N, check h; : transaction examples as follows. The platform only knows
Parse hy = (uid, Ryey, Russ, Rdleg, R, RS, ts,, puby) some public information, like all registered users and their

bank accounts, the name and amount of deposited and with-

For Join transaction : ) .
drawn assets, as shown in Fig. 6.

let RU < {uid} URU, {cp}uia =0

For Deposit transaction : Alice Bob Alice Alice Alice
if any of the followings happens, then return 1 : | deposi | [ deposit | [eaiue] Ll =]
1000 USD 10BTC  800USD © 0.5 BTC 0.3 BTC All Cost: 480
— single transaction involves different user identifiers; (price 1) (price 1000) _ (price 1600) lprice 2000) __All Gain: 600

— uid ¢ RU:

v
// also check them in exchange and withdraw transactions Alice deposits deposits exchanges withdraws Alice files
- 1000 USD 10 BTC o 0.3 BTC All Cost:

Registered
users:
Alice, Bob,
Clare,
David, ...

price 1000 Cost: CEETEED All Gain:
Cost:

¢ .
— Rdgs .acp # pubi.prout /I price was wrong <
ain:

ain: 600

For Exchange transaction :

if Rd,,,. Rdgst. RdJY. bi-PTow . .
if Rlog-acp 7 -acp o Rdysy.acp 7 pubt.prou Fig. 6: Platform’s view in the exchange system
then return 1

else collect cp, from hy, add cp, to {cp}tuid
For Withdraw transaction : e When deposits 1000 USD, the bank account reveals Alice’s
if Rd.y.acp # Rday.acp then return 1 identity. Then Alice gets an asset credential or signature
generated by the platform. To prevent double-spending and
ensure regulatory compliance, the signed message must
contain additional attributes beyond asset details. These

else collect cp, from hy,add cp, to {cp}uia
if {cp}docs .uia = 0, then return 0

else compute cp o« yig = F({cp}aoc.uid) attributes include a unique asset identifier, Alice’s user
/I F is a function specified by the compliance rule identifier. They should be hidden from the platform to
if doc™.cp # Pyoer wiq then return 1 keep the user anonymous. Alice is required to prove in

zero-knowledge that the blinded user identifier is equal to
that in her registration credential. To meet tax-report-client-
Fig. 5: F-Client-Compliance experiment. compliance, the profit of selling assets in exchange and
withdraw transactions need to be computed. This necessi-
tates including the exact cost of the assets when they were
purchased in deposit and exchange transactions. To this end,
Then he reports the accumulated cost cp; = Y pr; - k; and we introduce the buying price as an additional attribute in
gain ¢py, = > P, - k; to the authority. asset credentials.
e When Bob deposits 10 BTC, the only difference from a fiat
deposit is that the platform does not know Bob’s identity.
e When Alice exchanges 800 USD for 0.5 BTC, she uses a
1000 USD asset credential to request two new credentials for
the remaining 200 USD and 0.5 BTC, keeping their details
hidden. The platform grants her request under specific con-
ditions, including demonstrating in zero-knowledge that she
has enough USD, ensuring the credentials share the same
user identifier, confirming the non-negative remaining USD
amount, matching the BTC’s price with the latest credential,
and verifying the total exchange value equivalence.
We give each asset one separate asset credential for practi-

else return 0

For G-platform-compliance, we refer to the liquidity cov-
erage ratio (LCR) requirement of Basel Accords [1], a series
of banking regulations established by representatives from
major global financial centers. LCR mandates that banks hold
sufficient cash and liquid assets to cover fund outflows for 30
days. The platform always knows clearly the inflows/outflows
for each coin including fiat money transfers (as the platform
receives or transfers them out) by checking its internal state.
It can prepare enough amount of coins for all kinds of assets.
Thus this LCR-platform-compliance is compatible with our
fully anonymous setting.

About price credential and price fluctuation. To achieve ef- cality especially with compliance. Intuitively, if all assets are
ficient private exchange with compliance, we introduce price in one credential their attributes would increase linearly with
credentials denoted as pz := (time, name, pr, sig), where the the asset names. Compliance makes it more complicated,
signature pz.sig is signed by the platform on the current because every asset transaction would have to be recorded as
time pz.time, the coin name px.name, and the correspond- an attribute in the credential. This means that the credential
ing current price pz.pr. To tackle price fluctuation without attributes would keep growing. It is practical to separate each
leaking coin information, the platform keeps signing the latest transaction asset, but it is hard to collect all transactions to
prices for all coins at the same timestamp. In the exchange calculate the total profit. We solve it by accumulating profit
transaction, the user proves that the newly exchanged asset for each transaction involving exchanged-out or withdrawn
record contains the name and price, and they know a valid assets, and recording it on user’s exclusive registration cre-
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dential as two attributes: accumulated cost and accumulated
gain. Concretely, Alice shows her registration credential, and
requests the platform to issue a new registration credential
on a new index, updated cost and gain which are consistent
with real cost (amount times buying price) and gain (amount
times selling price).

e When withdraws 0.3 BTC, it is similar to the exchange
operation, except for the exchanged-in asset. Alice also
verifies the receipt of the withdrawn BTC on the blockchain.

e When files all cost 480 and all gain 600, Alice shows a
valid registration credential with her identity, and requests
an updated registration credential with a new index, reset
cost and gain as zeros, and a file credential used to show to
the regulatory authority. The file credential contains Alice’s
real identity, the correct cost 480 and gain 600, and some
regulatory auxiliary information. Since the cost and gain
are hidden from the platform to avoid information leakage,
Alice should prove the committed cost and gain are equal to
the ones in her registration credential, and the platform signs
blindly. Alice unblinds it and submits the message signature
pair to the authority for tax report.

A. An efficient Pisces construction

In this section, we give an efficient Pisces construction
IIpisces from additive homomorphic commitment, blind signa-
ture and zero-knowledge proof>. Let Com be an additively
homomorphic commitment scheme, II,s = (KeyGen, Com,
(BlindSign, BlindRcv), Vrfy) be a blind signature scheme using
Com to blind messages, and ZKAoK is the underlying proof
system. The platform maintains the registered user set USet
and the identifier set |ID which are initially empty. Formal
construction is in Fig. 7. The concrete instantiation is presented
in Sec. VL

Extended compliance support. Our construction also easily
supports other regulation policies. We just give sketches here
due to the page limitation. For example, AML requires that
users cannot exchange or withdraw too many times in a
time period. It can be achieved by adding a counter in the
registration record. In each exchange or withdraw transaction,
the user proves that the counter in his latest registration record
is smaller than some value and the counter will be incremented
by one in the newly issued record. Other rules are similar, such
as transaction amounts, and (total) value of exchanged assets.

We can also enforce tax filing by prohibiting users who
have not filed tax last year from exchanging and withdrawing.
It can be achieved by adding a year number in the registration
record indicating the year when the user filed tax last time.
In each exchange or withdraw transaction, the user shows the
year number in his latest registration record and this number
is credited by one when the user has filed his tax.

B. Security analysis

Theorem 1 (Interaction indistinguishability). If 11y, has blind-
ness, the underlying ZKAoK is zero-knowledge, and the com-
mitment is hiding, then the Pisces construction Ilpisces has
interaction indistinguishability.

SNote that these primitives are also used to construct updatable anonymous
credentials and an incentive system in [13] which does not support the
exchange functionality and compliance rule required in our setting.
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Proof: We prove this theorem by a sequence of hybrid
experiments (Gyeal, G1, Gsim)- Greal is the original IND ex-
periment. G; modifies G, by simulating the ZKAoK proof.
Gsim modifies G; by replacing the original commitments
with commitments on random strings. Since the underlying
ZKAoK is zero-knowledge, G; can be distinguished from G,y
with only negligible probability. Due to that the commitment
scheme is hiding and the blind signature has blindness, Gg;my,
can be distinguished from G; with only negligible probability.
Thus Ggi, can be distinguished from G, with only negligible
probability. Furthermore, in Gy, A’s view is fully simulated,
independent of b, A’s advantage in Gg, is 0. So A wins in
Greal With at most negligible probability. We describe Gy, Ggim
as follows.

G;: This experiment modifies G,e,1 by simulating the ZKAoK
proof. It works as follows: at the beginning, C chooses b <
{0,1} and generates pp < Setup(1*) and zero-knowledge
trapdoor td < Sim(1*). C sends pp to A and initializes two
sets of oracles O\ and O} . In the following oracle queries,
the proofs are generated by C using td: m < Sim(td, z). Gy
proceeds in steps, and each time A queries an oracle, it sends C
a pair of queries (Q°, Q1). C first checks that they are publicly
consistent according to Def. 2, then simulates different oracles.

- For Oj,;, oracle, Q° (reql);, refreg) and Q!
(req]»l(,i7refr1eg) . To answer them, C behaves as in Gyeal
except for the following modification. The ZKAoK proofs
70 7! are simulated using #d. C replies A with (com®, 7°)
and (com'~ 71). If A accepts the proofs, it runs 60 «+
BlindSign(pp, pk, com®) and 6 < BlindSign(pp, pk, com')
and sends them to C and continues.

- For Ob o oracle, Q° = (uid”, req,,, ref g, ref 2" ) and
Q' = (uid",reql,,, vef 1eg, Tefoe"). To answer them, C
behaves as in G, except the following modification: It
simulates the ZKAoK proofs 7% 7! using td. C replies
A with ({com®}2_;,7%) and ({coml=b}2_, 7!). If A
accepts the proofs, it runs the BlindSign algorithm and sends
the respective blinded signatures to C and continues.

- For Of, hange Oracle, Q° (uid07rqu€c,ref?eg,ref;";t),

ref::tto) and Q! = (uidl,rquxc,refrleg,ref:g,refg:fl). To

answer them, C behaves as in Gy, except that it simu-
lates the ZKAoK proofs m°, 7! using td. C replies A with

({comb}T_,,7°) and ({coml=}7_, ='). If A accepts the
proofs, it runs the BlindSign algorithm and sends the blinded
signatures to C and continues. _

- For Olyinaraw Oracle, Q0 = (uid’, reqd,, refry, ref iy ) and

Q' (uidl,req}vi,, ref,leg,refinl). To answer them, C be-

ast
haves as in G, except that it simulates the ZKAoK proofs
70 7! using td. C replies A with ({com®}2_, 7) and
({com =0} _, 7!). If A accepts the proofs, it runs the
BlindSign algorithm and sends the blinded signatures to C
and continues.
- For O}, oracle, Q° reg
(m’dl7 reqj%,7 refrleg). To answer them, C behaves as in Gpeq)
except that it simulates the ZKAoK proofs 70, ! using 1d.
C replies A with ({com?}3_, 7%) and ({com’=b}2_, 71).

If A accepts the proofs, it runs the BlindSign algorithm and
sends the blinded signatures to C and continues.

(uido,rqul,refo ), and Q!

Note that from G,ca to Gi, the only difference is that
the ZKAoK proofs are simulated. Due to that the ZKAoK



Setup(1%) — epp
epp is the system public parameter containing both static pa-
rameters such as the blind signature public parameter pp, the
total assets kinds n, the maximum balance number vy,ax = p — 1
for some super-poly p, and dynamic parameters such as current
price pr; and the price credential px(i) of each asset i € [n].
PKeyGen(epp) — (pk, sk)
P: (pk, sk) «— KeyGen(1%, pp)
(Join(epp,pk.regjoi), Issue(epp,pk,sk)) — (uid, Ryeg, b):
U outputs Rdyeg, P outputs b

U: uid, rid, r < Zp, sends (regjoi, uid, com, 7r) to P
regjoi = (info), com = Com(uid, rid, cp;, cp,; 1), 7 proves:
—com contains uid, rid, r and (cp;, cp,) = (0,0).
P:if uid € USet or the proof  is invalid, outputs b = 0. Otherwise,
adds uid to USet, replies with Gyeg:

Greg < BlindSig(pp. pk, sk, com)
U: outputs Rdyeg = (uid, rid, cp;, cpy, Oreg)

Oreg < BlindRev(pp, pk, Greg, 1)

(Deposit(epp,pk,uid, Rdreg, reqgep), Credit(epp, pk, sk)) — (Rd3u;, b):

ast?
Rdyeg = (uid, rid, cpy, cpy, Oreg)
U outputs Rd%%/,
U: aid ry, ry <% Zp, sends (reqdep, comy, comy, ) to P, where
reqdep = (i, ki), comy = Com(uid, rid, cpy, cpy; 1),
comy = Com(uid, aid, i, k;, pri; r2), 7= proves that:
— he owns a valid signature oz W.r.t. comy;
— comy contains uid, aid, i, k;, pri, where uid is the same as that
in com; and i, k; are the same as those in reqgey.
P: if does not receive asset or the proof r is invalid, outputs b = 0.
Otherwise, replies with 645 and outputs b = 1.
Gast < BlindSig(pp, pk, sk, comy)
U: outputs Rdg;‘tt = (uid, aid, i, ki, pri, oast)
oast < BlindRev(pp, pk, 64st. 12)

P outputs b

(Exchange (epp, pk, uid, Rdreg, Rdast, req,,.), Update(epp, pk, sk)) —

(Rd,reg’ Rd,ast’ Rdgls‘tt’ b): o
epp contains price credentials: px(i) = (mt, i, pr;, ;)
px(j) = (mt, j, pr;,a;), mt is the timestamp as metadata
reqexc = (i, ki, j, kj)

U: rid, aid’, aid®“, {ru}z=1 s Zp, sends (rid, aid, {comu}zzl, )

to P, where

comy = Com(uid, rid, cpy, cpy; 1),

comy = Com(uid, aid, i, v;, pri; ra),

comz = Com(uid, rid’, cp), cpy; r3),

comy = Com(uid, aid, i, 0!, pri;ra),

coms = Com(uid, aid®*, j, vj, p_rj;rs),

comg = Com(mt, i, pr;;1e),

com7 = Com(mt, j, p_rj; r7), 7 proves that:

— he owns valid platform’s signatures w.r.t. comy, coma, comg, comz;

— the revealed rid and aid are identifiers in com; and comy;

— there are identifiers aid’, rid’, aid®* in coms, comy, coms;

— the i-th asset in comy is enough, i.e., k; > 0 and v; —k; = U; > 0;

— comgy, comy and comg share the same asset kind i;

— comy and comy share the same price pr;;

- coms and comy share the same kind j and price pr;

~ coms contains cp| = cpy +k; - pri, cpf = cpy + ki - pr;

— fairness: coms contains number vj = k;j > 0 and price pr;
satisfying pr; - ki = pr; - kj, which also implies k; > 0;

- {comu}iz1 share the same uid.

P: if rid or aid € ID or x is invalid, outputs b = 0. Otherwise,
replies with blind signatures Greg, Gast, 6“1’;? on coms, comy, COMs
respectively, adds rid, aid to 1D outputs b = 1.

. t
U: outputs Rd},e, Rdyg, RAgg,
, o
Rdreg = (uid, rid’, cp;, cpé, a;eg),
Rd),, = (uid, aid , i, vl’.,pri, )

RA% = (uid, aid™, j.k;. pr;. 004).

Oreas Ongts L‘[’i’f are unblinded signatures of Geg, Gast (”7‘,”,7
g > % £ as
o (Withdraw(epp, pk, uid, Rdyeg, Rdast, requwit), Deduct (epp, pk, sk)) —
’ ’ )
(Rd,eg, Rd . b):

4

U: rid’, aid’, {ru}g[:1 s Zp, sends (reqwit, rid, aid, {comy }_,,

to P, where reqywir = (i, ki),
comy = Com(uid, rid, cp;, cpy; 1),
comy = Com(uid, aid, i, v;, pri; r2),
coms = Com(uid, rid’, cp;, cpé; r3),
comy = Com(uid, aid’, i, Ulf,pr,-; ra), 7 proves that:
— he owns valid platform’s signatures w.r.t. com1, comy;
— rid and aid are identifiers in com and comsy;
— there are new identifiers rid’, aid’ in coms, comy respectively;
— all these commitments share the same uid;
— the i-th asset in com; is enough, i.e.,0; > 0O andv; —k; = Ulf > 0;
— comy and comy share the same asset kind i (as that in regyyit)
and price pri;
- comjs contains cp| = cpy + ki - pri, cpl = cp, + ki - pry, pr; is
the current price of asset i.
P:if rid or aid € ID or = is invalid, outputs b = 0. Otherwise,
replies with blind signatures Gyeg, 645t W..t. coms, comy, adds
rid, aid to 1D, outputs b = 1.
U: outputs Rdy,,, Rdy,, where
Rd;eg = (uid, rid’, cp}, cp}, a;eg), Rd},, = (uid, aid’, i, 0], pri, o).
o (File(epp, pk, uid, Rdyeg, reqﬁl),Sign(epp,pk, sk))y — (Rd;eg, doc, b):
Rdyeg = (uid, rid, cpy, cpy, Oreg), reqp = (uid, cp1, cpa)
U: rid’, {ru}i=l s Zp, sends (uid, rid, {comu}zzl,
comy = Com(uid, rid, cp;, cpy;r1),
comz = Com(uid, rid’, cp}, cply;r2),
coms = Com(uid, cpy, cp,, mt;r3), 7 proves that:
— he owns a valid platform’s signature w.r.t. comy;
the revealed rid is the identifier in comy;
— comi, comy, coms share the same uid;
— comgy contains an identifier rid* and (cp’{, cp;) =(0,0);
- comgs contains cp;, cp, which are the same as those in comy;
— comg contains the timestamp metadata m¢ and the uid in reqgp.
P:if rid € ID or uid ¢ USet or x is invalid, outputs b = 0.
Otherwise, replies with blind signatures Gz on comz, G¢p on
coms, adds rid to ID, outputs b = 1.

7)

1) to P, where

U: outputs Rd;eg, doc, where
Rd},, = (uid, rid’, cp}, cp), 07ee), doc = (uid, cpy, cpy, mt, ocp).
67,1’:‘ o¢p are unblinded signatures of Gyeg, G¢p

o Verify(epp, pk, doc) — b:
Authortiy: gets the current timestamp mt’ from epp. If mt = mt’
and Vrfy(pk, (uid, cpy, cpy, mt),0) — 1, then it outputs b = 1
indicating the verification succeeds. Otherwise, outputs b = 0.

e Check(epp, st) — b:

P: monitors the fund outflows and checks if it owns enough asset
for the LCR-platform-compliance.

doc = (uid, cpy, cpy, mt, o)

Fig. 7: Our efficient construction Ilpjsces Of Pisces




scheme is zero-knowledge, we have that |Pr[Gea(A, ) =
1] — Pr[Gy (A, )) = 1]] < negl(A).

Gsim: This experiment modifies Gy by replacing the original
commitments with commitments on random strings. Ggip,
proceeds in steps, and each time A invokes an oracle, it sends C
a pair of queries (Q°, Q1). C first checks that they are publicly
consistent, then simulates different oracles as follows.

For O}oin oracle, to answer queries Q°, @', C behaves as
in G; except that it produces commitment com®, com* on
random strings 70, .
For Oéeposit oracle, to answer QO,Ql, C behaves as in
Gy except that it produces commitments {com?}2_, and
{com!}?_, on random strings.

For Of, ange Oracle, to answer Q°,Q', C behaves as in
Gy except that it produces commitments {com?}”_, and
{com>}7_, on random strings.

For Oliharaw Oracle, to answer Q°, Q1, C behaves as in
Gy except that it produces commitments {com?}4_, and
{coml}2_, on random strings.

For O, oracle, to answer Q°,Q!, C behaves as in
Gy except that it produces commitments {com?}3_, and
{coml}3_, on random strings.

In each case of Ggim, A’s view is independent of b. Thus,

A just outputs a random guess b in Gy, SO its advantage is
0: Pr[Ggim(A,\) =1]—-1/2=0

Note that from G; to Ggi,, we change that the commit-
ments are on the random strings. Due to the hiding property
of the commitment scheme and the blindness of II,s (which
is also based on the hiding property of the commitment), we
have that |Pr[G; (A, \) = 1] —Pr[Ggim (A, A) = 1]| < negl()).
In summary, we have that

[Pr[Exp™P (A, \) = 1] — 1/2| = [Pr[Grear (A, \) = 1] — 1/2]
<|Pr[Grea(A, A) = 1] — Pr[G1 (A, \) = 1]

+ |Pr[G1(A, \) = 1] — Pr[Ggim (A, A) = 1]

+ |Pr[Ggim (A, A) = 1] — 1/2| < negl()) -
Theorem 2 (Overdraft prevention). If the underlying ZKAoK
has argument of knowledge, the commitment is binding and
Ilys is unforgeable, then lpisces has overdraft prevention.

Proof: In the overdraft prevention experiment, the
adversary A wins if it withdraws more asset than it
has deposited or exchanged. Given the transaction his-
tories hy = (uid,Rdyeg, Rdast, Rdy.,, R}, RAge!, tse, puby)
extracted by &€ for t € [N]. If A wins, there exists at least
one transaction with problems indicating that either the input
or output records within it are flawed such that one of the
following events happens:

1. The input record is not generated from previous transactions,

i.e., Rd ¢ RdSet;

2. The user steals other honest users’ assets;

3. The generation of asset record is wrong in one of the
following cases:
Deposit: Rd%" .name # ts,.name or Rd°% .amt # ts,.amt,
Exchange: Rd.,.name # Rd,si.name or Rd..,.amt < 0
or (Rdusi.amt — Rd! ,.amt) - pub,.pri, # Rd2%.amt -
pubt‘prout;
Withdraw: Rd,s;.name # ts;.name or Rd! ,.amt < 0 or
Rd,si.amt — R/ ,.amt < ts,.amt.

ast*
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For events 1 and 2, the input records are problematic which
are forged or stole by A. A may forge the asset records or
reuse records with a different identifier. In order to use others’
asset, A must guess the aid correctly. For event 3, the new
generated asset records are problematic, A gets these records
by cheating the issuer. The security of our scheme can be
reduced to the underlying cryptographic building blocks. This
includes standard primitives like commitment, blind signature,
and non-interactive ZKAoK. We elaborate it case by case.

(1) Suppose that Pr[Event 1 happens] is non-negligible. In this
case, it leads to at least one of the following contradictions:
The record Rd is valid but was not generated via querying
oracles, which breaks the unforgeability of IIyg;

The asset record Rd is reused with another identifier. In
this case, since the used identifier would be detected, the
revealed identifiers must be different aid # aid’. It means
one commitment produces two different openings which
contradicts the binding property of the commitment.

(2) Suppose that Pr[Event 2 happens] is non-negligible. Here
the input records are valid records generated from previous
transaction but belong to other honest users. If A uses this
asset record, it must know the respective aid which is kept
privately by the honest user. It contradicts that A can only
guess it correctly with negligible probability.

(3) Suppose that Pr[Event 3 happens] is non-negligible. In this
case, A gets asset records with wrong attributes from a trans-
action. It leads to at least one of the following contradictions:
e For deposit transaction, .4 gets an asset record which is
different from the deposit request. It happens only if one
commitment produces two different openings which contra-
dicts the binding property or A uses the incorrect witness
to generate a valid proof, which breaks the argument of
knowledge of underlying ZKAoK.

For exchange transaction, .4 gets new exchange-out asset
record which is different from the old one or gets exchange-
in asset with more amount by breaking the fair exchange
rule. It leads to at least one of the following contradictions:

for the commitments of records, A generates a valid proof
with incorrect witness, which breaks the argument of
knowledge of underlying ZKAoK;

A opens the commitment to different values and gener-
ates the proof. It means one commitment produces two
different openings which contradicts the binding property
of the commitment scheme;

the price credentials are forged by .A, thus the platform’s
signatures. It contradicts to the unforgeability of Iljs.
For withdraw transaction, the user should prove that it owns
enough asset for the withdraw request by committing on the
old asset and new asset. Then he proves that the opening
of the asset name is the same as that in the request and
the deducted amount is the same as the withdrawal amount
and the new amount is non-negative. Now the new asset
record does not meet at least one of these requirements.
It happens only if one commitment produces two different
openings which contradicts the binding property or A uses
the incorrect witness to generate a valid proof, which breaks
the argument of knowledge of underlying ZKAoK.

Theorem 3 (Compliance). If the underlying ZKAoK has
argument of knowledge, the commitment is binding, and 11}
is unforgeable, then Ilpisces has tax-report-client-compliance.



Proof: We prove the tax-report-client-compliance as fol-
lows. In this experiment, A wins if it outputs doc which
passes the authority verification but is inconsistent with the
transaction histories. Given that £ extracts transaction his-
tories hy = (uid,Rdyeq, Rdast, Rdy.q, Ry, RA2% | tsy, puby)

for t € [N]. A wins if one of the following events happens:

1. doc was not obtained from queries but passed verification;

2. The user uses others’ registration record: the user identities
of asset and registration records are not the same;

3. The price was inconsistent as follows: In deposit transac-
tion, Rd’y.acp # pub,.pr,,; or in exchange transaction,
Rd),.acp # Rd.q.acp or Rdow.acp # pub,pr,,; Or in

withdraw transaction, Rd]_,.acp # Rdgst.acp.

. doc was obtained by interacting with Os;gn, but the incon-
sistency happens since the compliance information was up-
dated incorrectly in some exchange or withdraw transaction;

5. The user identifier has not been registered : uid ¢ RU in

any transaction expect for Join;

In a high level, event 1 happens meaning that A forges
a valid signature which is contradicted by the unforgeability
of Ils. Events 2, 3, or 4, happens meaning that A finds the
collisions of commitment that violate the binding property
of commitment, or A proves on a wrong statement that
violates the argument of knowledge property of non-interactive
ZKAoK. Event 5 happens which contains three possible cases.
The first is A forges a record with new wid, which violates the
unforgeability of IIj,s. The second is A finds collisions on uid,
which violates the binding property of commitment. The third
is that A proves a wrong statement including the unregistered
uid, which violates the argument of knowledge property of
non-interactive ZKAoK. So, we reduce the security of our
scheme to the unforgeability of Ilg, the binding property of
commitment, and the argument of knowledge property of non-
interactive ZKAoK. We elaborate it case by case.

(1) Suppose that Pr[A wins and event 1 happens] is non-
negligible. In this case, .4 works honestly for each transaction
but sends a doc to the authority which contains the incorrect
¢p;, cpy and a forged signature on them. It breaks the unforge-
ability of the blind signature.

(2) Suppose that Pr[ A wins and event 2 happens] is non-
negligible. In this case, a valid transaction is generated but
the records belong to different users. However, the user needs
to prove that all records belong to himself by proving they
contain the same wid which is a contradiction. So it breaks
the argument of knowledge of the underlying ZKAoK.

(3) Suppose that Pr[A wins and event 3 happens] is non-
negligible. In this case, A generates a commitment for its
new asset containing its uid, asset identifier aid, asset name
i, amount k; and price pr;. Here pr; is different from the real
price w.r.t the output of Opypic. For the deposit transaction,
the price is different from the public price. For the exchange
transaction, the price is different from that of the old asset
record or the price credential. For the withdraw transaction,
the price is different from that of the old asset record. The
occurrence of the incorrect price leads to at least one of the
following contradictions:

e A uses the incorrect witness to generate a valid proof, which
breaks the argument of knowledge of underlying ZKAoK;

e A opens the commitment to different values and generates
the proof. It means one commitment produces two different
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openings which contradicts the binding property of the
commitment scheme;

e In the exchange transaction, A manipulates the price by
using the price credential forged by itself. It breaks the
unforgeability of the blind signature scheme Ilj.

(4) Suppose that Pr[ A wins and event 4 happens] is non-
negligible. In this case, for at least one exchange or withdraw
transaction the new compliance information cpj, cp5 was in-
correct but the proof is valid. It leads to at least one of the
following contradictions:

e When computing cpj,cps, A uses some incorrect selling
prices different from the output of Opypiic. Its success
implies that it breaks the argument of knowledge of un-
derlying ZKAoK, or breaks the binding property of the
commitment scheme, or forges a price credential (in the
exchange transaction) which breaks the unforgeability of the
blind signature.

e When proving the correctness of cpi, cp5, A just uses the
incorrect witness to generate a valid proof, which breaks the
argument of knowledge of underlying ZKAoK;

e A opens the commitment to different compliance informa-
tion values and generates the proof. It means one commit-
ment produces two different openings which contradicts the
binding property of the commitment scheme.

(5) Suppose that Pr[A wins and event 5 happens] is non-
negligible. In this case, uid has not registered but A generates
a valid transaction on it which leads to at least one of the
following contradictions:

o A forges a registration record in which the o, should be
issued by the platform via a blind signature scheme, so A
breaks the unforgeability of the blind signature;

e A does not have the o,, but generates a valid proof in
the deposit, exchange or withdraw protocol, so it breaks the
argument of knowledge of the underlying ZKAoK.

VI. PERFORMANCE EVALUATIONS

In this section, we describe our instantiation, prototype im-
plementation and the performance evaluation. The evaluation
results show that our design is efficient and practical.

Instantiation and implementation. We instantiate the anony-
mous exchange system using the Pointcheval Sanders blind
signatures [34] and Pedersen commitment [33]. The ZKAoKs
are instantiated with X-protocol on the knowledge of DLog,
its equality, and range. We implement this instantiation of
the anonymous exchange system with Java. We use the open
source Java library upb.crypto® and the bilinear group provided
by mcl(bn256)7. We run experiments on MacBook Air (1.6
GHz Dual-Core Intel Core i5, 16GB memory).

TABLE I: Avg. computation cost in milliseconds.

Party Join | Deposit | Exchange | Withdraw
Pisces-user 9 11 46 37
Pisces-platform 7 14 88 62

Supb.crypto: https:/github.com/upbcuk.
"mcl: https://github.com/herumi/mcl.


https://github.com/upbcuk
https://github.com/herumi/mcl

Performance. We test the pure computation time cost and
communication cost of each procedure to show the efficiency.
Then to show the practicality, we make two comparisons. One
is to compare the secure exchange with plain exchange to show
the overhead is truly small. The other is to compare with other
anonymous credential applications, including Privacy Pass and
the privacy-preserving incentive system (PPIS for short).

Computation cost. We test the computation time cost of each
party in each procedure of the anonymous exchange system.
As shown in table I, we can see that each party’s time cost for
each procedure is less than 88ms, which is quite efficient.

Communication cost. We measure the communication cost of
each procedure and none of them exceeds 12kb. Concretely,
in the Join and deposit procedures, the user adds “2.6kb and
~3.3kb data to the request, respectively. The platform adds a
“1.8kb data to both responses. In the exchange and withdraw
procedure, the user adds “12kb and ~8.7kb data to the request,
respectively. The platform adds "2.3kb and "2.8kb data to the
response, respectively.
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Fig. 8: Comparison between plain exchange system and
Pisces

Comparison with plain exchange. To demonstrate its practical-
ity, we have taken into consideration the cost of secure com-
munication and have provided a comparison of the estimated
time costs between plain operations and secure operations, as
shown in Fig. 8. For plain operations, we have estimated the
lower-bound time costs by considering only communication
cost and on-chain transaction confirmation time, assuming the
computation cost to be 0. We detail the estimation of plain and
secure join, deposit, exchange, and withdraw in the following.
Consider the optimal network performance, 30 — 40ms is the
desired round-trip time (RTT)®. We pick RTT = 30ms.

a) Join operation: For a new user, the plain join includes the
sign-up procedure and identity verification for KYC without
on-chain confirmation cost. The communication cost includes
one TLS handshake with at least 2 round-trip time (RTT for
short) cost, 2 RTTs for sign-up setting username and password,
and at least 1 RTT for identity verification. Totally the time
cost is 5 RTT say 150ms. The secure join runs all the plain
join process and additionally runs the (Join,Issue) protocol.
The time overhead includes 1 RTT for interaction latency, user
and platform computation time 16ms, and data transfer time

2.6kb 1.8kb . :
TOIBs + 00MBTs 0.278ms. (We assume for a user device

the uploading speed is 10M B/s and the downloading speed
is 100M B/s) The total time cost is 196.278ms.

b) Deposit operation: A plain ETH deposit includes one
handshake with a platform costing at least 2 RTTs, the log-
in procedure to get the receipt address costing 1 RTT, an on-

chain payment request costing at least 1 RTT, and an Ethereum
transaction confirmation time 12.21s. The total time cost of the
plain deposit is 12.33s. In an anonymous ETH deposit, users
do not log in to the platform saving 1 RTT, but run all other
procedures of plain deposit. Then users additionally interact
with the platform running (Deposit, Credit), where the total
computation cost is 25ms, the interaction cost is 1 RTT, and
the data transfer time is 103];[”}“31’/5 + 105']\84’“;/3 ~ 0.358ms. The
total time cost of the secure deposit is around 12.355s.

c) Exchange operation: A plain exchange includes server
authentication via TLS handshaking at least 2 RTTs, user
login costing 1 RTT, price fetching with 1 RTT, and sending
exchange request with 1 RTT. The total time cost of a plain ex-
change is at least 5 RTT, around 150ms. The secure exchange
removes login but additionally runs the (Exchange, Update)
protocol, where the computation cost is 134ms, interaction
equals the exchange request sending, and data transfer costs

12kb 2.8kb_ ~; 1.228ms. The total time cost of secure

10M B/s "'. 100M B/s
exchange is around 255.228ms.

d) Withdraw operation: A plain withdraw of ETH includes
server authentication via TLS handshaking at least 2 RTTs,
user login costing 1 RTT, sending withdraw request with 1
RTT, and waiting for the on-chain confirmation with 12.21s.
The total time cost of a plain withdraw is around 12.33s.
The secure exchange gets rid of the login, saving 1 RTT,
but additionally requests the price with 1 RTT, and runs the
(Withdraw, Deduct) protocol, where the computation cost is
99ms, interaction equals the withdraw request sending, and
data transfer costs —Srkb 2.3kb__ ~ ().893ms. The total

: T0MB/s T 100M B/s
time cost of a secure exchange is about 12.43s.

The results show that the time costs for plain and secure
operations are similar, with the overhead of each secure
operation being less than 0.11s. Notably, the overhead ratio
of secure deposit and withdrawal is less than 1%.

Comparison with Privacy Pass and PPIS. To provide a better
understanding of the practicality of our system, we conduct
performance comparisons with widely used anonymous user-
authentication mechanism Privacy Pass [19]. Privacy Pass
published preliminary tests on consumer hardware, indicating
that creating a pass in the extension takes less than 40ms°.
Although the test environments may not be identical to ours, as
both are on consumer hardware, the key takeaway is that each
procedure of our system incurs similar time costs as Privacy
Pass, showcasing its practicality. It’s important to note that our
system offers additional functionalities beyond Privacy Pass’s
anonymous authentication. We also test the time cost of the
privacy-preserving incentive system (PPIS) [13]. The results,
as shown in table II, demonstrate that our system is more
complicated and more private, yet similarly practical to PPIS.

TABLE II: Avg. computation cost of each party per
procedure over 100 runs in milliseconds.

Party Join Earn Exchange Spend
PPIS [13]-user 10 8 N/A 30
PPIS [13]-provider 9 12 N/A 72

8Network latency: https://www.ir.com/guides/what-is-network-latency.
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9Privacy Pass FAQ: https://privacypass.github.io/fag/


https://www.ir.com/guides/what-is-network-latency
https://privacypass.github.io/faq/

VII. CONCLUSION

In this paper, we give the first study of cryptocurrency
exchange that supports user anonymity and compliance re-
quirements simultaneously. The platform cannot get more in-
formation from the transactions other than that has to be public.
Users cannot get more assets from the platform so double
spending is prohibited and they have to correctly report their
accumulated profits for tax purposes, even in a private setting.
Also, critical compliance functions are to be supported. Our
construction is efficient and achieves constant computation and
communication overhead with only simple cryptographic tools
and rigorous security analysis. Additionally, we implement our
system and evaluate its practical performance.

There are many interesting questions that could be fur-
ther investigated, including more systematic study of privacy
preserving solvency solutions as mentioned earlier, as well as
more general private yet accountable/compliable (e.g., leverag-
ing more advanced cryptographic tools such as [23]) exchange
system, potentially even in the decentralized setting.
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APPENDIX A
ARTIFACT APPENDIX

Abstract—Pisces is a secure design of the private and com-
pliable cryptocurrency exchange system, where users interact
with the platform in the join, deposit, exchange, and withdrawal
procedures. The artifact is a prototype in Java implementing
all four procedures. For each procedure, the user sub-procedure
interacts with the platform sub-procedure locally via memory
communication, so that we can focus on testing the computation
time cost and communication size, and excluding communication
time cost. The experiment is run on MacBook Air (1.6GHz Dual-
Core Intel Core i5, 16GB memory). The provided instructions
should work for both MacOS and Linux, but the results may
vary a bit depending on the computation powder.

A. Description & Requirements

1) How to access: The artifact source code is accessible
at https://github.com/yananlil17/Pisces and https://doi.org/10.
5281/zenodo.8328453 with DOI: 10.5281/zenodo.8328453.

2) Hardware dependencies:

e No hardware dependency for function test.

e MacBook Air (1.6GHz Dual-Core Intel Core i5, 16GB
memory) is necessary to reproduce similar time cost.
Since different computation powder makes much differ-
ence in the computation time cost, It is necessary to use
the same to reproduce similar results, especially for the
computation cost.

3) Software dependencies:

e MacOS or Linux

e JDK 17 or later versions

e Maven 3.8.1 or later version

e mcl library and gmp library.
1 did all the tests on MacOS. It should also work on Linux
systems. Since one dependency mcl is programmed with
C, which is system-dependent, the provided compiling
method works for MacOS and Linux.

4) Benchmarks: None

B. Artifact Installation & Configuration

1) Download the project. We have compiled and packaged
the project into an artifact xx.jar in the provided archive.
Install JDK 17 or later version.

Install Gmp library. Gmp library is the prerequisite to
using the mcl library. Please refer to the instructions gmp
installment for both MacOS and Linux.

Compile mcl library for your system. Since the Java
project uses a bilinear group which is implemented
in mcl library (C/C++ implementation) for efficiency,
before running the artifact to test, you should com-
pile the underlying mcl library for your system. You
can follow the instructions of Compiling mcl on Linux
or macOS. To be concrete, first download the file in-
stall_fast_mcljava_linux_mac.sh. Then execute the file to
compile mcl library and related headers with

2)
3)

4)

$ ./install fast_mcljava_linux mac.sh $JAVA HOME/include
# SJAVA\_HOME is the Java installment directory

If it does not work, maybe you need to give permissions
of the file to everyone:
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$ chmod 777 foldername

Then execute the file again.
5) Finally, you are ready to test.

C. Major Claims

e (Cl): The designed private and compilable cryptocur-
rency exchange scheme functions by supporting all four
procedures: joining the platform, depositing coins to the
platform, exchanging one kind of coin to another kind of
coin without leaking the amount and kind of coins, and
withdrawing coins to the blockchain anonymously. The
implemented prototype is proven by running the experi-
ment with four procedures, where the computation cost is
reported in table I and the communication cost is reported
in the paragraph Communication cost in section VL.

e (C2): The designed scheme is practical via comparison
with the privacy-preserving incentive system (PPIS for
short), another anonymous credential application. It is
proven by running two schemes on the same environment
and comparing the computation time cost of each related
procedure, where PPIS’s time cost is reported in Table II.

e (C3): The comparison between secure exchange and
plain exchange and the comparison with Privacy Pass
also demonstrates the practicality. Since all the needed
experimental data is the same as Cl, other estimated
data is reported in the parts of Comparison with plain
exchange and Comparison with Privacy Pass and PPIS
in section VL.

D. Evaluation

1) Experiment (EI): [Pisces’s computation time cost and
communication size] [less than 10 human minutes + 2 com-
puter minutes]: Pisces has four procedures: join, deposit,
exchange, and withdraw. In each procedure, the user and the
platform interact with each other. We test the computation time
and communication size of each party in each procedure. The
expected computation results are shown in table I, which is
consistent with our tested results in Pisces/testlog.log. The
expected communication size results are shown in Commu-
nication cost in Section VI of the full paper, which is also
consistent with our tested results in Pisces/testlog.log and
independent of the experiment environment.

[Preparation] Please follow the README in the provided
repository to install the requirements. No further configurations
are needed.

[Execution] Please go to the directory of Pisces (the full
repository you download). and run the command:

$ java -jar uacs-1.0-SNAPSHOT-jar-with-dependencies.jar

[Results] The produced log shows the four procedures
in sequence. For each procedure, the user interacts with the
platform to run 100 times, the computation time is accumulated
for each party over 100 iterations. The average time per
iteration is shown in the terminal and log file, which should
be consistent with the paper if the running environment is
similar. In one iteration of each procedure, the byte length
of messages each party sends is accumulated and printed out.
The communication size should be independent of the running
environment since the message length is inherent, not related
to the environment.


https://github.com/yananli117/Pisces
https://doi.org/10.5281/zenodo.8328453
https://doi.org/10.5281/zenodo.8328453
https://github.com/herumi/mcl
https://gmplib.org/
https://github.com/alibaba-edu/mpc4j/tree/main/mpc4j-native-tool/doc
https://github.com/alibaba-edu/mpc4j/tree/main/mpc4j-native-tool/doc
https://github.com/cryptimeleon/mclwrap
https://github.com/cryptimeleon/mclwrap
https://github.com/cryptimeleon/mclwrap/blob/develop/scripts/install_fast_mcljava_linux_mac.sh
https://github.com/cryptimeleon/mclwrap/blob/develop/scripts/install_fast_mcljava_linux_mac.sh
https://github.com/yananli117/Pisces#readme

2) Experiment (E2): [PPIS computation cost as a compar-
ison] [Less than 5 human minutes + 2 computer minutes]: To
show the practicality, we test another anonymous credential ap-
plication PPIS in the same environment for comparison. PPIS
only has three procedures: join, earn, and spend corresponding
to Pisces’ join, deposit, and withdraw, respectively. For each
procedure, both the user and provider computation time are
measured and accumulated. Then the average results among
100 iterations in milliseconds are printed.

[Preparation] No further configurations beyond EI.

[Execution] PPIS (also called UACS by the authors: up-
datable anonymous credential system) is implemented by the
authors. This is the . We compile it package to the jar file
in Pisces/uacs-1.0-SNAPSHOT-jar-with-dependencies.jar PPIS
(also called UACS by the authors: updatable anonymous
credential system) is implemented by the authors. This is the
source code. We compile it and package it to the jar file
in Pisces/uacs-1.0-SNAPSHOT-jar-with-dependencies.jar. You
can directly run it with the command:

java -jar uacs-1.0-SNAPSHOT-jar-with-dependencies.jar

[Results] The produced log uacstestlog.log shows each
party’s running time of the three procedures in sequence in
milliseconds. It also depends on the experimental environment.
Even though it could be quite different for different computa-
tion powder, one sure thing is the results are comparable with
Pisces’ results in E1 and similar to each other as we claim in
the paper.
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https://github.com/cryptimeleon/uacs-incentive-system
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