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Abstract—Anonymous communication systems such as mix
networks achieve anonymity at the expense of latency that is
introduced to alter the flow of packets and hinder their tracing.
A high latency however has a negative impact on usability. In this
work, we propose LARMix, a novel latency-aware routing scheme
for mixnets that reduces propagation latency with a limited
impact on anonymity. LARMix can achieve this while also load
balancing the traffic in the network. We additionally show how a
network can be configured to maximize anonymity while meeting
an average end-to-end latency constraint. Lastly, we perform
a security analysis studying various adversarial strategies and
conclude that LARMix does not significantly increase adversarial
advantage as long as the adversary is not able to selectively
compromise mixnodes after the LARMix routing policy has been
computed.

I. INTRODUCTION

Mix networks [8], [11], [25], [30], or mixnets, are anony-
mous overlay networks that provide communication anonymity
towards global adversaries, who are capable of observing
all communications in the network. To achieve anonymity,
messages are routed through multiple intermediary mixnodes,
where each mixnode cryptographically transforms and reorders
messages by randomly shuffling and delaying them before
forwarding along the route. Mixnets incur high latency com-
pared to direct transmissions due to both sending messages
via multiple overlay hops and randomly delaying messages at
each hop. Given a volume of traffic routed via the mixnet,
reductions to latency in mixnets typically have a negative
impact on the anonymity provided to messages, according to
known fundamental tradeoffs between latency and the resulting
anonymity [10].

While a variety of mixnet designs have been proposed in
the literature [30], current deployed mixnets such as the Nym
network 1 have an architecture that is based on Loopix [25],
i.e., made up of continuous-time mixes (which delay mes-
sages independently for an exponentially distributed amount
of time [19]) that are arranged in a layered topology [12].
Such mixnets can easily support private communications for
delay-tolerant applications such as email, crypto wallets, file

1https://nymtech.net

sharing, etc. Applications with mid-latency tolerance like
instant messaging are feasible to use, but latency starts to
degrade user experience. Low-latency applications such as web
browsing become rather uncomfortable to use if there is high
latency. Reducing latency in mixnets thus broadens the range
of applications that can use them to protect communications
while remaining usable. In this work we focus on a Loopix-
based layered network as base design.

In particular, we are interested in finding latency ef-
ficiencies that do not have a fundamental tradeoff with
anonymity [10], so that latency can be reduced while limiting
the anonymity impact. To this end, we note that besides
mixing delays that are introduced for anonymity purposes,
the propagation time between mixnodes has a significant
contribution to the overall latency.

We thus propose LARMix, a latency-aware routing scheme
that reduces end-to-end latency by choosing routes with shorter
propagation times – instead of choosing random routes as is
currently the case. LARMix includes techniques that can be
applied (independently or together) to assist mixnet creation
and to define the routing policy. Mixnet creation involves
the arrangement of mixnodes to layers in the network, and
LARMix does so in a way that maximizes the availability of
low-latency paths. Given an arrangement, LARMix computes
the routing policy that defines how message paths are selected.
The policy can be more or less biased towards faster routes
according to a tuneable parameter τ .

We evaluate the impact of the LARMix latency-reduction
techniques, applied in isolation as well as in combination,
on both latency and anonymity (measured as entropy). Our
results show that LARMix can significantly reduce latency in
mixnets while having a limited anonymity impact. We find
in experimental scenarios that the mixnet propagation latency
can be reduced as much as 8x (from 120ms to 15ms) while
the anonymity reduction is 2 bits in terms of entropy. Route
selection that is biased towards low latency paths can result
in an imbalanced routing policy where some mixnodes route
more traffic than others. If load balancing is desired, LARMix
includes techniques to ensure that all mixnodes route the traffic
in a balanced way – while still maintaining a bias toward faster
routes. We perform an empirical evaluation of the re-balancing
techniques and find that the propagation latency reduction is
3.5x while less than halving the anonymity set (0.8 bits of
entropy reduction). Our findings remain consistent when we
scale up the number of mixnodes.

Further, we consider an average target end-to-end latency
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and examine the impact of having different relative contribu-
tions from mixing latency (introduced inside each mixnode)
and propagation latency (introduced between mixnodes), as
well as empirically finding the configuration that maximizes
anonymity for various values of the target latency. We find
that for a lower target latency (200ms – 400ms), the optimal
configuration balances mixing time with optimizing propaga-
tion latency. However, for larger values of the target latency
(> 1000ms), the benefits of minimizing propagation latency
become smaller and uniform random routing offers the best
tradeoff, highlighting that the LARMix approach is particularly
useful in situations with tight latency constraints.

We also evaluated LARMix in adversarial conditions.
Specifically, we consider a mixnode adversary that controls a
subset of mixnodes and may thus fully compromise message
routes when all the mixnodes in the path are malicious.
We evaluate adversarial advantage in LARMix comparing the
fraction of end-to-end corrupted paths (FCP) to the baseline
policy where all routes are equally likely (uniform). We review
adversarial strategies to increase the FCP, such as deploying
multiple mixnodes in close proximity that have small propaga-
tion latency from each other. The LARMix routing policy has
increased chances of selecting paths through these nodes, as
those are faster. Our results show however that our approaches
do not dramatically increase the adversary’s advantage as long
as the adversary is not able to cause a worst case scenario (i.e.,
compromise the combination of nodes that maximizes FCP for
a given routing policy, which is extremely unlikely to happen
by chance).

Finally, we note that there are existing techniques that aim
to minimize latency in other anonymous overlay networks
such as Tor. Most such designs [1], [17] cannot be used
for mixnets due to inherent limitations (detailed in Sec. III).
However, CLAPS [26] approach of using linear programs
could be applied to mixnets. Thus, in Sec. VII we describe how
CLAPS can be applied to the problem at hand and perform a
comparison between the results of CLAPS and LARMix. We
find that the CLAPS based approach does not provide better
latency-anonymity tradeoffs than LARMix. Additionally, the
approach does not scale well and incurs large computational
overhead (300x more than LARMix). Such overhead can make
it infeasible to calculate solutions in a timely manner.2

To summarize, LARMix proposes a set of novel and
efficient techniques to define routing policies that reduce
propagation latency in mixnets, while having a limited impact
on anonymity and on the ability of an adversary to fully
compromise message routes. These techniques can thus help
broaden the range of applications supported by mixnets.

II. PROBLEM STATEMENT

A. Anonymity-latency tradeoffs in mixnets

As shown by the anonymity trilemma [10], in mix networks
(mixnets) anonymity is traded with traffic volume and end-
to-end latency. According to this trilemma, for a given traffic
rate, reducing communication latency comes necessarily at the

2Both Tor and Nym require refreshing the routing weights every hour, which
is longer than the time taken by CLAPS to compute a solution for a large
network.

expense of anonymity. In practice, this limits the usability
of mixnets for applications that have a sub-second latency
tolerance, such as instant messaging or web browsing.

We observe however that the end-to-end latency of a
message routed through a mixnet has multiple components.
Given a message routed via L intermediary mixes in a Loopix-
like network, the average end-to-end latency can be expressed
as:

l̄e2e = L · µ+ (L+ 1) · δ + (L+ 1) · l̄

where µ is the average mixing latency introduced at each mix
for anonymity purposes (reordering of messages); δ is the
time needed (by both intermediary mixes and the recipient)
to cryptographically process a message; and l̄ is the average
network propagation latency per transmission, i.e., the amount
of time the message spent traveling on the Internet per hop of
the route. Each of these latency components has a different
relationship to anonymity:

The mixing delay µ directly impacts anonymity as modeled
by the anonymity trilemma, with larger µ benefiting anonymity
by allowing for more reordering of messages per mix. This is a
design parameter that may take any arbitrary value, according
to the desired anonymity-latency tradeoff (currently µ = 50
ms per mix in the Nym network).

The processing time δ has no anonymity benefit and should
thus be minimized as much as possible, e.g., with more ef-
ficient cryptographic algorithms. Existing cryptographic mes-
sage formats such as Sphinx [9] require δ < 1 ms of processing
per hop, and thus δ already contributes minimally to l̄e2e.

The propagation latency l̄ does not have an obvious tradeoff
with anonymity and may thus be reduced in order to lower l̄e2e,
making mixnets more usable for applications with sub-second
latency tolerance. Reductions of l̄ may however still indirectly
involve an anonymity tradeoff: a preference for faster routes
biases route selection, which becomes more predictable and
thus less anonymous. Propagation latency can range from 10
ms to 150 ms per hop, depending on geographical distance and
network connectivity in each hop of the message route – thus
potentially contributing more than half the end-to-end latency,
particularly when µ ≤ 100 ms.

The parameter l̄ can be further broken down into com-
ponents: l̄ = 1

(L+1) (ls,mix + l̄mix + lmix,r), where ls,mix is
the propagation latency between the message sender s and the
mixnet, lmix,r is the propagation latency from the mixnet to
the final recipient r, and l̄mix is the aggregation of L − 1
link propagation delays within the mixnet. Of these three
propagation latency components, ls,mix and lmix,r depend
on the network locations of individual senders and receivers;
while l̄mix is a characteristic of the mixnet that is the same (on
average) for all clients. The latency l̄mix depends on the mixnet
routing scheme and whether it takes propagation latency into
account when selecting message routes through the mixnet.
LARMix thus aims at reducing l̄mix with the definition of a
routing policy biased towards faster links.

B. Design goals and system model

Our main goal in this work is to develop a latency-aware
routing policy for a mixnet that provides a good tradeoff
between (i) the average aggregate mixnet propagation latency
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l̄mix; and (ii) the anonymity impact of biased selection of faster
routes. We define a parameter τ (0 ≤ τ ≤ 1) that tunes this
tradeoff, with τ = 0 meaning that l̄mix is maximally optimized
(reduced) and τ = 1 that no routing optimization is made to
limit l̄mix, which corresponds to a uniform routing policy.

We furthermore consider two constraints, namely: (1) load
balancing, meaning that the scheme selects routes so that all
mixes process on average the same amount of traffic; and
(2) a layered network topology LxW with L layers and W
mixes per layer, such that all messages are part of the same
anonymity set when the network scales up (larger W ) to serve
more clients. This layered design is common in various mixnet
proposals, such as Loopix [25] or Nym [11], and is in contrast
to mix cascade topologies where the anonymity sets of W
parallel cascades [7] are disjoint and thus do not benefit from
scaling the user base. Also following the baseline of prior
proposals [11], [25], we consider that the traffic load must be
distributed equally among all W mixnodes of each layer. Our
methods are however generalizable to setups where mixnodes
have different capacities that must be accounted for when
balancing the traffic load (ref. Appendix. A).

Note that LARMix does not consider the client or des-
tination locations when selecting message paths, instead fo-
cusing on reducing propagation latency in the links between
mixnodes. Dependencies on client or destination location make
it impossible to bound the share of traffic routed by each
mixnode, as well as causing routing choices themselves to
leak information about the location of the end clients sending
or receiving the anonymous messages. We consider a single
routing policy that is used by the entire set of clients, meaning
that routing choices are the same for all clients, and thus leak
no information about message the sender or receiver.

C. Threat model

There are two main types of adversaries to consider when
evaluating anonymity in overlay networks such as mixnets.
The global passive adversary is assumed to have visibility
over all the network links. Concretely, such an adversary
can observe all the messages transmitted between network
entities and derive probabilistic relationships between input
and output messages. A measure of a message’s anonymity
is then given by the entropy of the probability distribution
linking that message at one end of the communication to all
the possible corresponding messages at the other end [13],
[27]. The mixnode adversary additionally controls a subset
of malicious nodes that are part of the mixnet. For those
compromised nodes, the adversary knows the mapping be-
tween incoming and outgoing messages. If all the mixnodes
in a message’s route are corrupted, then the adversary is able
to trace the message end to end, meaning that the message
has zero anonymity. For the purpose of our evaluation, we
consider both adversaries and assess anonymity under various
adversarial conditions.

III. RELATED WORK

To our knowledge, there has been no previous attempt to
develop latency-aware routing for layered mixnets. There are
however multiple proposals [1]–[3], [5], [15], [17], [23], [26],

[29], [34] to add similar capabilities to Tor [14].3 Most of
these solutions are specifically tailored to Tor and are not easily
adaptable to the context of mixnets. Some of the designs could
potentially be used for mixnets, but present limitations. For
instance, Lastor [1] introduces a methodology to select relays
to minimize latency but does not consider balancing the load
in the network. The recent ShorTor [17] paper takes a dif-
ferent approach to minimize latency by suggesting an overlay
network on top of Tor. The idea rests on the observation that
BGP is designed to respect business relationships among ASes
and is not optimized for the shortest or lowest latency paths.
Thus, the direct path between two endpoints on the Internet
may not be the fastest and if the path passes via some other
intermediate endpoint it can be faster. This approach is used
by CDNs to optimize for low latency and thus they suggest
creating a multi-hop overlay network of intermediate nodes to
reduce latency in Tor without needing to change their existing
routing policy. An approach like ShorTor could thus be applied
in conjunction with our proposal, though once the routing
policy is biased towards choosing low-latency links, chances
are that not much room is left for the kind of optimization
performed by ShorTor, which adds intermediaries from the set
of nodes. Furthermore, ShorTor may also lead to unbalanced
load as nodes have to now process two kinds of traffic: the
traffic routed through them as part of the routing policy, and
the additional traffic received as part of the new multi-hop
overlay network.

The prior work that is most relevant to LARMix is
CLAPS [26]. It provides a framework to improve any existing
location-aware scheme proposed for Tor. CLAPS uses linear
programming, where an objective function is defined together
with a set of constraints. Once defined, the linear programs are
solved for maximizing or minimizing the objective function
while respecting the said constraints. These constraints can
be defined on properties such as node capacities, adversarial
advantage in specific attacks, etc. A CLAPS-based approach
can thus be adapted to mixnets, defining latency minimization
as the objective function and accounting for anonymity and
load balance via constraints. In Sec. VII, we develop a CLAPS-
based approach to obtain a lower-latency routing policy for
mixnets, which we compare to LARMix. We observe that the
CLAPS-based approach does not provide better tradeoffs than
LARMix while requiring ≥ 300x computational overhead.

IV. APPROACH

Considering that N = LW mixnodes are available, we
identify two stages in the setup of a layered mixnet, shown in
Fig. 1: (1) assigning nodes to L mixnet layers; and (2) defining
the routing policy that determines how paths are selected. Since
messages must traverse one mixnode per layer, the routing
policy is defined by the fraction of messages that each node
in a layer forwards to each node of the following layer. Our
approach includes strategies that can be applied at both stages
to facilitate the reduction of the average latency l̄mix. We
note however that the approach is modular and the strategies

3Additionally, there are approaches [4], [22], [32], [33] that are location-
aware but focus on protecting Tor from traffic analysis and website finger-
printing attacks. The goal of these solutions is to make it harder for malicious
ASes or ISPs to have visibility over of both the entry and exit relays of a
Tor circuit. These considerations are not applicable to mixnets as they already
assume a global adversary who observes all network links.
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Mixnodes grouped
to clusters

Fig. 1: Overview of LARMix.

can be applied together as well as separately. We additionally
introduce methods to re-balance the traffic load across the
mixnodes of each layer after it becomes imbalanced due to
latency optimizations.

A. Selection and arrangement of mixnodes

In this phase we consider there are N = LW mixnodes
to arrange in L layers of W nodes. As baseline, existing
approaches [11], [25] assign nodes to layers at random. Such
random arrangements may however lead to configurations
where a high proportion of routes have high propagation
latency. As extreme example, consider an arrangement where
nodes belong to layers populated by other nodes in their
vicinity, while traversing from one layer to another always
involves an inter-continent leap. In this case l̄mix cannot be
reduced much by the routing algorithm and will always be
high. Conversely, arranging mixnodes in layers with maximum
diversity, i.e., so that each layer includes mixnodes from all
locations, ensures there will be some choices of low latency
paths, a feature that can then be leveraged by a routing policy
that seeks to minimize l̄mix.

The method we propose to achieve this first clusters
mixnodes according to their geographical location, and then
uses the obtained clusters to arrange mixnodes in layers. We
assume that average values for the propagation latency between
pairs of mixnodes are publicly available, e.g., through the
VerLoc protocol [20], which also allows verifying mixnodes’
approximate geolocation. We represent geolocation by its
Cartesian coordinates and feed them as input to the clustering
method. We considered K-means, K-medoids and FCM [18]
as clustering methods because they can take the coordinates
and iteratively identify the best K clusters. (we discuss in
Appendix B how to select an appropriate K).

After this step we obtain K clusters along with their
centroids. The purpose of the layer arrangement algorithm is
to ensure that each of the L mixnet layers of size W has
geographically diverse (i.e., cluster diverse) mixnodes. The
algorithm, outlined in Appendix C, depends on K and W ,
and on whether W < K, W > K or W = K.

When W < K, we start by randomly selecting a cluster
and mixnode from that cluster to be the first mixnode in the
first layer. Next, we measure the distance between the centroids
of the chosen cluster and the other clusters and select the
cluster with the largest distance. We randomly select a mixnode
from it to be the second mixnode in the layer. We choose as
third cluster the one with maximum distance from the two

previous clusters, and select a mixnode from it. We continue
this process till we have selected W nodes. And then repeat
the process for the other layers until all mixnodes are assigned
(note that mixnode selections are without replacement). When
W = K, we simply choose one mixnode from each cluster
to assemble a layer. The final scenario occurs when there are
fewer clusters than mixnodes per layer i.e. W > K. In this
case, we first select one mixnode from each cluster for the
layer. The remaining nodes are sampled (without replacement)
from clusters proportionally to cluster size.

B. Latency Aware Routing (LARMix)

Existing mixnet routing schemes select message routes
through the layers uniformly at random [11], [25], without
considering the propagation latency of different mixnet links.
LARMix is a latency aware routing scheme that reduces the
average propagation latency of messages routed through the
mixnet. This is achieved by biasing route selection towards
lower latency mixnet paths. The parameter τ introduced in
Section II-B tunes the level of bias in LARMix, with τ = 0
meaning that lowest latency routes are deterministically se-
lected, and τ = 1 meaning that routes are selected uniformly
at random (same as in preexisting schemes).

A routing scheme that minimizes propagation latency
considering all hops of the route end-to-end would need to
account for sender and receiver locations, which may not
be known when selecting a route. Furthermore, such routing
scheme would result in distinct routing choices per client,
which in turn has two effects: (1) making load balancing
impossible; and (2) having message routes that are correlated
with clients’ locations and choice of correspondent, which
opens avenues for inference attacks. To avoid this, LARMix
assumes that all users choose message routes following the
same policy, independently of their own location and that of
their correspondent. Once an entry (first layer) mixnode M1

has been selected for a message route, however, the choice of
mixnodes in the following mixnet layers M2 · · ·ML may be
biased (depending on τ ) towards faster links.

Let M1 = m1
i be the mixnode that was randomly chosen as

the first node in a message route, and let lij be the propagation
latency between m1

i and mixnode m2
j in the next layer. We

order nodes m2
j by increasing lij and define a function Ri(j)

that outputs the position (rank) of node m2
j in this ordered

list, with Ri(j) = 0 for the node with the lowest propagation
latency and Ri(j) = W − 1 for the node with the largest
propagation latency. LARMix selects the next mixnode M2
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Fig. 2: Average entropy of the distributions P[M2 = m2
j |M1 =

m1
i ] with respect to τ , considering a mixnet with L = 2, W =

128, and propagation latencies lij sampled from RIPE atlas.

with probability P[M2 = m2
j |M1 = m1

i ] computed as:

P[M2 = m2
j |M1 = m1

i ] =

(
1
e

)Ri(j)
(1−τ)

τ

(
1
lij

)(1−τ)

Σk

(
1
e

)Ri(k)
(1−τ)

τ

(
1
lik

)(1−τ)
(1)

In the case of τ = 0, note that P[M2 = m2
j |M1 = m1

i ] = 1
if Ri(j) = 0 and P[M2 = m2

j |M1 = m1
i ] = 0 if Ri(j) > 0.

For τ = 1 we obtain P[M2 = m2
j |M1 = m1

i ] =
1
W for all m2

j .
For intermediate values 0 < τ < 1, routes are more likely to
be chosen when they have lower latency than the alternatives.
Appendix E further discusses the intuition behind Formula 1.

The amount of randomness (or conversely, determinism) in
the LARMix routing choices can be characterized by the Shan-
non entropy [28] of the distribution P[M ℓ+1 = mℓ+1

j |M ℓ =

mℓ
i ] per mixnode mℓ

i in layer 1 ≤ ℓ ≤ L − 1 with respect
to its W successors mℓ+1

j in layer ℓ + 1. We show in Fig. 2
how τ influences the entropy (randomness) of this distribution
considering an example with L = 2 layers and W = 128
mixnodes per layer. We sample from the publicly available
RIPE atlas dataset [31] inter-node latency values lij between
the 128 mixnodes in the first layer and the 128 mixnodes
in the second layer. We then compute the routing weights
P[M2 = m2

j |M1 = m1
i ] with Eq. (1) for different values

of τ . We compute the entropy of the weights distribution for
each of the 128 nodes m1

i and obtain the average. The average
entropy values range from 0 bits when τ = 0 (deterministic
routing) and log2(128) = 7 bits when τ = 1 (random routing).

C. Re-balancing the network load

For τ < 1, the distributions P[M ℓ+1 = mℓ+1
j |M ℓ = mℓ

i ]
obtained following the approach described in the previous
section will normally result in an uneven load across mixnodes,
since there is no guarantee that

∑
i P[M ℓ+1 = mℓ+1

j |M ℓ =

mℓ
i ] will add up to 1

W of the total traffic routed in layer ℓ+1.
Thus, beyond the first layer (which is still chosen uniformly
at random), some mixnodes receive more traffic than others.

Load imbalance may be undesirable as, e.g., it can result
in performance bottlenecks due to some mixnodes receiving a
disproportionate share of traffic and becoming overloaded. In
the rest of this section we propose two balancing approaches,
which we call greedy balancing and naive balancing.

For compactness, we denote the conditional probability
P[M ℓ+1 = mℓ+1

j |M ℓ = mℓ
i ] as γℓ

ij . For each layer ℓ, we
organize the values γℓ

ij in a scattering matrix Γℓ of size WxW :

Γℓ =

 γℓ
11 · · · γℓ

1W
...

. . .
...

γℓ
W1 · · · γℓ

WW


W×W

(2)

The goal of balancing is to obtain a modified scattering
matrix Γ̃ℓ that still prioritizes low latency routes but that also
fulfills the balancing condition

∑
i γ̃

ℓ
ij = 1. Note that as in

the previous case, it still must hold that 0 ≤ γ̃ℓ
ij ≤ 1 and∑

j γ̃
ℓ
ij = 1.

1) Greedy balancing: This approach identifies nodes that
are overloaded, i.e., those for whom

∑
i γ

ℓ
ij > 1, and de-

creases their weights γ̃ℓ
ij , while increasing γ̃ℓ

ij for underloaded
mixnodes for whom

∑
i γ

ℓ
ij < 1. The algorithm is greedy

because it attempts to keep the γ̃ℓ
ij distributions as biased as

possible towards faster routes, while still balancing the load.
The algorithm runs multiple iterations, redistributing the load
from overloaded nodes to underloaded ones, as described in
Algorithm 1 in Appendix C, until the routing for the layer is
balanced. The balancing is done sequentially per layer, starting
from the first layer.

M1
1

M1
2

M1
3

M1
4

M2
1

M2
2

M1
3

M2
4

Layer1 Layer2

0.2
0.3
0.1
0.5

0.1
0
0.5
0.3

0.7
0.2
0.1
0.2

0
0.5
0.3
0

Fig. 3: Example of initial unbalanced routing weights.

As an example to illustrate how the greedy algorithm
functions in practice, consider a first layer of width W = 4 as
depicted in Fig. 3, with a scattering matrix Γ1 before balancing
given by:

Γ1 =

 0.2 0.1 0.7 0
0.3 0 0.2 0.5
0.1 0.5 0.1 0.3
0.5 0.3 0.2 0


To balance the routing, we first compute the aggregate
load per mixnode in the second layer, which is equal to
[1.1, 0.9, 1.2, 0.8]. We thus label the first and third mixnodes
as overloaded, and the other two as underloaded. We then
multiply the first column of the scattering matrix by 1

1.1 and the
third column by 1

1.2 , this reduces the overall traffic received
by the two overloaded nodes by scaling down the updated
values for γ̃1

i1 and γ̃1
i3. The difference between the initial and

updated values, given by γ1
ij − γ̃1

ij , contains the ‘leftover’

5



probabilities, and is equal to [0.0182, 0.0273, 0.009, 0.0455]
and [0.117, 0.033, 0.0167, 0.033] in the example.

Next, we distribute these leftover weights among the under-
loaded nodes proportionally to their initial weight γ1

ij , leading
to an updated scattering matrix Γ̃1

Γ̃1 =

 0.1818 0.2352 0.583 0
0.2727 0 0.167 0.5606
0.0909 0.516 0.0833 0.309
0.4545 0.3785 0.167 0

 (3)

This resulting scattering matrix is however not yet balanced,
as the second mixnode is now overloaded while the fourth is
still underloaded. We thus iterate the algorithm to obtain an
updated scattering matrix Γ̃1:

Γ̃1 =

 0.1818 0.208 0.583 0.07
0.2727 0 0.167 0.5606
0.0909 0.456 0.0833 0.368
0.4545 0.335 0.167 0.043

 (4)

As the Γ̃1 resulting from this second iteration is balanced,
the algorithm terminates for the first layer and can be applied
to the next layer.

2) Naive balancing: The greedy algorithm achieves a bal-
anced network while maintaining the bias towards low latency
path selection. To achieve that however, it may require multiple
iterations, increasing the computational overhead. The naive
balancing algorithm is an alternative that achieves balancing
in just one iteration.

Similar to the greedy approach, we first calculate the load
per node by summing columns in the scattering matrix Γ1 and
scale down the weights to balance those overloaded nodes.
The leftover load is also calculated as in the greedy case, but
in this case the leftover is distributed to underloaded nodes
according to how underloaded they are. Thus, unlike greedy
approach that prioritizes the latency bias (or proximity) while
assigning load, the naive approach only looks at the available
capacity of underloaded nodes.

Considering again the example in Fig.2, the two under-
loaded mixnodes 2 and 4 have loads of 0.9 and 0.8, respec-
tively, and thus spare capacities of 0.1 and 0.2 to achieve
balance. The naive algorithm distributes the overall leftover
given by 0.1 + 0.2 = 0.3 by distributing 0.1

0.3 of the leftover
weight to the second node and 0.2

0.3 to the fourth node. This
leads to an updated scattering matrix Γ̃1:

Γ̃1 =

 0.1818 0.045 0.583 0.19
0.2727 0.5201 0.167 0.04
0.0909 0.308 0.0833 0.517
0.4545 0.026 0.167 0.352


We evaluate these two balancing approaches in terms of

their latency and anonymity in the next section.

Rebalancing operation: Balancing the network load is a one-
time operation per network configuration. It is then repeated
when the network is reconstituted due to churn or periodic
updates. In Nym, this rearrangement (selecting nodes and
assigning them to layers) happens once every hour. The
rebalancing operation is global and requires knowledge about

latency between all pairs of nodes. In Nym, information on
pairwise latency is publicly available via the implemented Ver-
loc protocol [21]. The node assignment to layers and routing
policy (weights) are agreed by a set of entities orchestrating the
network. In Nym these entities are a set of validators running
a consensus protocol.4 Note that, given the latency dataset,
each validator can locally run our algorithms to determine
the routing weights. If all entities with the same input and
algorithm arrive at the same routing policy, they sign it in a
consensus. This policy is then distributed to clients to choose
packet routes.

V. EVALUATION

We evaluate LARMix using two approaches. The first is an
analytical approach that evaluates the predictability of message
routes for a given routing policy. If message routes are fully
deterministic (as is the case in mix cascades) then an adversary
who wants to trace a message sent by a client to a first mixnet
node can narrow down the anonymity set to the messages
output by the last node in that deterministic route. On the
other extreme, if message routes are completely uniform, all
nodes in the last layer are equally likely to output a target
input message sent to any of the first-layer nodes, maximizing
the uncertainty of the adversary. Solutions in between result
in some nodes being more likely than others as last hop of a
message route, given the entry node of that route.

The second approach simulates a mixnet that routes mes-
sages with a discrete event simulator. Unlike the first approach
that isolates and studies the impact only due to predictability
of routes, this approach helps us to study the anonymity
and latency of individual messages due to the combined
effect of predictability of routes as well as the mixing of
packets within mixnodes. The simulator and analysis scripts
are written in Python with about 10K LOC. The details of the
implementation are provided in Appendix G. (Link to code:
https://github.com/larmix/larmix)

The rest of this section first describes the metrics used
for the evaluation and the assumptions made in the system
model. We then present the experimental setup and the results
obtained by performing various experiments. An overview of
the experiments conducted and the system parameters are listed
in Tab. I and Tab. II, respectively.

A. Evaluation metrics

We evaluate LARMix with respect to both average latency
and anonymity, which are calculated as follows.

1) Latency: In the analytical approach we consider all
possible paths through the mixnet and their probability of being
chosen according to the routing policy. The latency lmix of a
path is given by the sum of the propagation delays experienced
at each link of the route in the mixnet. We compute the
average mixnet latency l̄mix as the weighted average of all
paths, considering their aggregate propagation delay and their
probability of being chosen.

4Tor also periodically distributes to clients a consensus document (signed by
10 authorities) specifying the routing weights that clients follow to construct
circuits.
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Experiment Variables Results
Latency aware routing Arrangement + Routing + Balancing Entropy + Latency
Meeting end-to-end delay constraints Network & Mix latency + Routing Value of τ with max entropy
Varying network size Network size + Routing + Balancing Entropy + Latency

TABLE I: Overview of experiments: Arrangement = Random, diversified, and worst case. Routing = τ ranging from 0
(deterministic) to 1 (random). Balancing = Imbalanced, naive balancing and greedy balancing.

In the simulation-based evaluation, we record the latency
of each message that traverses the mixnet. Note that this
recorded latency includes the aggregation of lmix propagation
delay and the mixing delay experienced at each intermediary
mixnode, which is exponentially distributed with mean µ. On
average, a message going through three mixes is delayed by
3µ for mixing purposes. We collect latency samples for all the
messages in the simulation and show their distribution in the
form of a box plot.

2) Anonymity: Traditionally, for mixnet systems,
anonymity is conceptualized as the uncertainty of an
adversary attempting to identify the output corresponding to a
target input message; or vice versa, identify the sender of the
input corresponding to a target output message. Intuitively, if
an input message can be potentially mapped to a large set of
outputs with equal likelihood, then the adversarial uncertainty
is very high, while more deterministic mappings lead to lower
adversarial uncertainty. The uncertainty is modeled as the
Shannon entropy [28] of the probability distributions relating
inputs to outputs, which are obtained given knowledge of the
mixnet’s parameters, the routing policy and the observation of
all messages transmitted between network entities with their
exact arrival and departure timings [13], [27]. A resulting
entropy of b bits represents the effective size of the target’s
anonymity set, and corresponds to an adversarial uncertainty
equivalent to perfect indistinguishability among 2b messages
as possible matches for the target.

In the simulator we select target messages and calculate the
probability distributions of each target input being any of the
possible outputs, based on approaches outlined in [6], [24].
Each target thus provides a latency sample and an entropy
sample, denoted as H(m). We then show boxplots that include
all the obtained samples. Note that in this approach the entropy
of output messages is due to a combination of the mixing of
messages within a mixnode (with the help of the mixing delay)
and the randomness of routing choices.

Since the proposed routing approach aims to minimize
propagation latency without modifying the mixing latency µ,
in the analytical approach we isolate and study the effect of
the routing policy on anonymity. To do this, we represent the
routing weights of the mixnet as matrices and we calculate
the routing entropy by performing matrix operations. To under-
stand this method in detail, we need to define some terms. The
first term referring to the scattering matrix is already defined
in Sec. IV-C. We now also define the transformation matrix.

Definition 1. The transformation matrix T is the result of
the multiplication of the scattering matrices for the different
mixing layers. The matrix element βij defines the probability
that a message entering the mixnet via mixnode m1

i in the
first layer exits the mixnet via mixnode mL

j in the last layer.

T = Γ1 × Γ2 · · · × ΓL−1. (5)

T =

 β11 · · · β1W

...
. . .

...
βW1 · · · βWW


W×W

(6)

Given the transformation matrix, we calculate the entropy for
matching the first and last mixing layers as follows:

H(M1 → M3) =

W∑
i=1

H(M1 → M3|M1 = m1
i )P(M1 = m1

i )

=
1

W

W∑
i=1

H(M1 → M3|M1 = m1
i ),

= − 1

W

W∑
i=1

W∑
j=1

(βij log(βij)) . (7)

Note that this entropy measures the uncertainty on the
possible output mixnodes for a route given an input mixn-
ode, and thus can, at maximum, be equal to log2 W . For
individual messages the uncertainty on the output mixnode
is compounded with the number of messages output by each
of the last layer mixnodes during the time period when the
target message may be output. Thus in a sense, simulation-
based message entropy is an aggregation of the entropy of the
transformation matrix and the entropy due to the mixing of
multiple messages within individual mixnodes (see Appendix
F for details).

Parameter Value

Topology Stratified
Mix layers (L) 3
Size of network (N) 384
Layer size (W) 128
Mix latency (µ) 50 ms
Input traffic rate 10000 msgs per sec
Target messages 200
Iterations 400
Number of clusters (K) 5
Clustering method K-medoids

TABLE II: Baseline parameters for experiments.

B. Experimental setup

We show in Table II the parameter values we considered as
baseline for the experiments. Unless specified otherwise, these
values are used by default in all experiments. We consider a
Loopix-based mixnet architecture that uses a layered topology
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(a) Clustering and Diversification (b) Random (c) Bad Case

Fig. 4: Entropy and Latency for the analytical evaluation with different arrangements.

with three layers. Each layer consists of 128 nodes5 and the
total network size is 384 nodes. We assume µ to be 50 ms
per mixnode i.e., every message will be delayed on average
50 ms at each layer. Note that the mix latency is only relevant
to simulation-based experiments as in the analytical setting
we just evaluate the randomness of the routing policy. In
the simulations we assume a traffic generation rate for all
clients combined of 10000 messages per second, with each
mixnode receiving on average 10000

W messages per second. We
randomly select input messages that we call ‘target messages’.
For each target we calculate the entropy of the distribution
describing the likelihood of corresponding to each possible
output. We consider 200 target messages per simulation run
and perform 400 runs, each with a new mixnet arrangement
and freshly computed routing weights. To assign realistic
latency values to the links between mixnodes we consider the
latency measurement data from the RIPE atlas project [31], an
overlay network of more than 10000 probes spread across the
globe. From the publicly available RIPE data we extract the
latency values of a subset of nodes, all of which have a latency
measurement to every other node in the subset. We obtained
a dataset that consists of 568 such nodes that we use for our
experiments.

C. Experimental results

We now evaluate LARMix and present results for the
different experiments summarized in Table I.

1) Evaluating latency-aware routing: This first experiment
evaluates the approaches developed for mixnode arrangement
and route selection, with and without load balancing. As
previously mentioned, we evaluate the schemes in two settings.
We first describe the results of the analytical approach followed
by the simulation results. Note that all the parameters for the
experiments are as described in Tab. II.

5We select W to be an integer power of 2 so that it is convenient to analyze
H(T ), which is a factor of log2 W

Analytical evaluation: Fig. 4 shows the entropy H(T ) (top
figures) and average path latency l̄mix (bottom figures) relative
to the the randomness parameter τ in three different cases
of mixnode arrangement into layers: Fig. 4a considers cases
where the diversification algorithm developed in Sec. IV-A was
used to place mixnodes in layers; Fig. 4b considers instead
cases where mixnodes are arranged randomly in layers; and
Fig. 4c considers unfavorable corner cases, where mixnodes
in the same continent (or cluster) are placed in the same layer
and thus all available routing links are high-latency.

For each of these three scenarios we depict results for three
flavors of the proposed schemes, considering values for the
randomness parameter τ ranging between zero (deterministic)
and one (uniform). In blue we show results when the ‘naive
balancing’ approach is considered for deriving the routing
policy; in red we show results when the ‘greedy balancing’
approach is considered instead; and in green we show results
when the routing policy minimizes latency without concern for
equalizing (balancing) the load of traffic across nodes.

We observe that the results of scenarios using the di-
versification algorithm (Fig. 4a) are essentially identical to
scenarios where mixnodes are randomly placed (Fig. 4b), both
in terms of latency and anonymity. This is because a random
placement when considering W = 128 mixnodes per layer is
highly likely to offer enough low latency links to allow for
a good latency optimization of the routing policy. Employing
the diversification algorithm is however still useful to avoid
particularly unfavorable corner cases (Fig. 4c) which, even if
unlikely, may occasionally happen. In these worst cases, for
all three schemes the entropy is only slightly better than in the
diversified and random arrangements while (as expected) the
latency is significantly worse.

We observe in all figures that both entropy and latency
increase with the randomness τ . For τ = 1 all approaches lead
to uniform routing policies with maximum entropy (given by
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log2 W = 7 bit for W = 128) and no latency optimization. In
the other extreme, for τ = 0 the imbalanced approach (green
line) shows aggressive latency optimizations of about 90%
latency reduction compared to uniform routing – though at the
cost of zero entropy in the transformation matrix, meaning that
given the first mixnode in the message’s route, the last layer
mixnode where the message will come out is fully predictable.
Balanced approaches do not go as far in latency optimization
but are able to offer significantly more entropy in terms of
routing. At τ = 0 the naive approach (blue line) cuts latency by
50%, optimizing the least for latency compared to the other two
alternatives but also preserving the most anonymity: with 5.76
bits this scheme incurs a loss of less than 1.5 bits compared
to uniform routing. The greedy approach (red line) provides
an intermediate tradeoff, where the latency reduction is 75%
for τ = 0 while the anonymity is around 4 bits, a loss of 3
bits compared to uniform routing.

When observing results for intermediate values of τ , we
can see that for all three approaches in all the cases the average
latency is rather stable between τ = 0 and τ = 0.6, and then
increases sharply between τ = 0.6 and τ = 1. The entropy on
the other hand increases steadily between τ = 0 and τ = 0.8,
at which point it maxes out and does not increase any further
when τ is increased. This means that there are sweet spots
with respect to the latency-entropy tradeoff determined by τ .
In particular, for τ = 0.6 we obtain all the latency reduction
benefits in all the schemes while losing less than one bit (out
of seven) of entropy in the balanced approaches, and two bits
(instead of all seven as for τ = 0) in the imbalanced approach.

Note that although the sweet spot may vary based on the
latency dataset, it should still exist. Any given set of globally
distributed nodes will include large and small pairwise latency
values depending on geographical distance between the pair.
When routing is uniform (τ = 1) the average latency is
influenced by the large latency values (worst cases). The largest
values are the first to be removed when τ decreases. As τ
decreases further, however, there are diminishing returns, as
the latency values being removed are not significantly larger
than the ones remaining. In contrast, for entropy, removing a
few paths from a large number of possible paths in the mixnet
has a small impact on overall entropy, since all messages are
still being mixed with each other and there remains significant
uncertainty on possible message routes (many routes are still
possible). Entropy starts decreasing significantly when too
many possible paths are removed, such that routing becomes
rather deterministic (τ approaching zero).

Simulation evaluation: We now present simulation results for
entropy and latency in the diversified arrangement, shown in
Fig. 5. The simulation allows us to obtain samples for indi-
vidual messages, which provide not just the expected average
for latency and entropy but their full distribution of values,
depicted in a boxplot per simulation setup. The boxplots
in the figure show the distribution of latency and entropy
samples from experiments with a certain τ parameter value
and balancing approach (naive balancing, greedy balancing, or
unbalanced). For each scenario, the values in the box contain
50% of the samples while the whiskers show the data range
and the dots mark the outliers.

Note that the latency values include the aggregation of

Fig. 5: Entropy and Latency obtained from simulations for
diversified arrangement.

both propagation and mixing delays, while the entropy values
account for uncertainty introduced by both the mixing at each
mixnode as well as the routing choices. Therefore, these results
are dependent not only on the routing policy but also on the
average delay per mixnode (set to µ = 50 ms) and the volume
of traffic (set to 10000 messages per second sent to the network
by the entire set of clients).

In terms of latency there is wide variability among samples:
in the best cases messages are transmitted with negligible
latency, while in the worst cases they may experience up to half
a second of latency. This is in large part given by the variability
of the exponentially distributed mixing delay applied at each
mixnode, which is long-tailed. Note that in the lowest latency
scenarios the median latency is below 150ms, even taking into
account that on average 150ms of mixing delay are added.
This is because the median of an exponential distribution is
smaller than its mean.

In terms of entropy the variability of values is lower,
particularly for high values of τ , where only outliers obtain
less than 8 bits of entropy. Given the traffic volume and mixing
per node we can see that no message is fully traceable (zero
entropy) even in the worst cases (imbalanced approach with
low τ ). Comparing the results for the greedy approach (red
boxes), we can see that for τ ≤ 0.6 the scheme reduces latency
by 100 ms in the first quartile (from 300 ms to 200ms) and
by 90 ms in the median (from 240 ms to 150 ms) compared
to uniform routing (τ = 1). This is at the cost of a median
entropy loss of about 2 bits when τ = 0 but just 0.4 bits when
τ = 0.6.

We can see that the median values for both entropy and
latency follow a similar trend to the averages of the analytical
results in Fig. 4a: latency stays constant between τ = 0 and
τ = 0.6, and then increases steadily for higher values of τ .
Entropy on the other hand increases steadily between τ = 0
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τ 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

l̄mix 68.0 68.0 68.0 68.0 69.0 71.0 75.99 95.0 121.0 139.0 150.0

µ 44.0 44.0 44.0 44.0 43.6 43.0 41.3 35.0 26.3 20.3 16.6

H(T ) 4.27 3.92 4.18 4.61 5.13 5.70 6.35 6.84 6.99 6.99 7.0

H(m) 6.48 6.63 6.75 7.0 7.28 7.62 7.98 8.14 7.68 7.0 6.4

TABLE III: Results for various values of τ and µ considering lb = 200 ms.
Fig. 6: Optimal τ and µ combinations for
different values of lb

and τ = 0.8, but then in maxes out and higher τ does not
anymore translate into higher entropy. Again, τ = 0.6 offers
the best tradeoff in these results, in terms of maximum gains
(in terms of latency reduction) with minimal impact (in terms
of diminished anonymity).

Further, we had similar findings when we compared the
diversified arrangement with the random and unfavorable ar-
rangements. We observed a much higher latency for the bad
arrangement scenario and a slightly higher latency for the
random arrangement.

2) Average end-to-end latency constraints: As we have
seen in all the previous results, there is a tradeoff between
latency and anonymity depending on parameter values, where
reducing latency also diminishes anonymity. Mixnets with
continuous-time mixnodes allow tuning this tradeoff though
the choice of parameter µ, which determines the added mixing
latency per hop. In addition, the parameter τ in our approach
allows trading latency for anonymity by making the routing
policy more or less biased towards faster routes.

We now consider scenarios were the latency tolerance
of the traffic sent through the mixnet is given as a design
constraint and examine anonymity for different combinations
of µ and τ that lead to the same average latency. Let lb
be the target average latency that we want to optimize for,
where lb includes both the mixing delays at each layer and the
propagation between mixnodes, i.e., lb is a constraint on the
aggregate latency from entry to exit of the mixnet. Given three
mixing layers we note that: lb = l̄mix+3µ, where l̄mix varies
depending on τ .

We perform a systematic parameter sweep to find the µ
and τ value combinations that maximize anonymity while
satisfying the latency constraint lb. To do so, we first compute
l̄mix for each value of τ (recall that l̄mix only depends on
the routing policy which is tuned by τ ). For a given value
of τ and its corresponding l̄mix, we calculate the remaining
budget for mixing latency by subtracting l̄mix from lb. We then
compute: µ = lb−l̄mix

3 . Once we have obtained the pairs of µ
and τ that satisfy lb, we evaluate anonymity using both the
analytical approach (entropy of the transformation matrix) and
the simulation approach (entropy of actual messages).

We show in Tab. III the results of applying this evaluation
method considering lb = 200 ms. Note that higher values
of τ result in higher H(T ) but also in higher l̄mix, which
decreases the remaining latency budget available for µ. Since
higher µ also contributes to higher entropy for messages, the

value of H(m) is dependent on both τ and µ. Starting from
τ = 0 we can see that H(m) grows as τ increases, thanks
to increased randomness in the routing choices. The message
entropy H(m) peaks at 8.14 bits at τ = 0.7. After that
point, the amount of latency consumed on average by link
propagation constrains the mixing delay µ to be too small to be
effective. For random routing (τ = 1), meeting the lb = 200ms
constraint requires setting µ = 16.6ms, which leads to the
worst (lowest) anonymity configuration of all options for that
average latency with H(m) = 6.4 bit. Thus, for an average
mixnet delay lb = 200 ms, we find that τ = 0.7 and µ = 35
ms maximize the entropy of messages.

We performed the same evaluation for lb values of 250,
300, 350, 400 and 450 ms. We plot in Fig. 6 the values
of τ and µ that maximize the entropy for these values of
lb. We observe that increasing the latency budget lb gives
more room for randomness in routing (i.e., higher τ ) with
the mixing delay µ taking whatever latency budget is left;
while tighter latency constraints require a more careful balance
between routing randomness and mixing delay (i.e., leading
to lower τ ). Essentially, if lb is high enough then latency-
aware routing may not be required to provide the maximum
possible anonymity, as simple uniform routing (corresponding
to τ = 1) provides a good configuration. However, for lower lb
constraints, latency-aware routing along with appropriate τ and
µ selection are required to optimize the anonymity provided
to routed messages while still meeting latency constraints.

3) Effect of network size: In this experiment we study how
the proposed approaches fare at different network scales. In the
previous experiments we considered a default network size of
N = 384 mixnodes (i.e., a mixnet of 128x3), which is an order
of magnitude larger than previous mixnet evaluations [16],
[25]. For comparison with deployed systems, our baseline size
of N = 384 nodes is slightly larger than the Nym mixnet [11]
which, at the time of writing, includes N = 240 active
mixnodes in three layers (i.e., size 80x3), randomly sampled
each hour from a set of about 400 available nodes. Here we
evaluate the routing entropy H(T ) and the average latency
l̄mix for various network sizes N : 102, 204, 306, 408 and 510
mixnodes arranged in three layers; considering three different
values of τ : a low value of τ = 0.1 that leads to nearly
deterministic routing; a high value of τ = 0.9 that corresponds
to nearly uniform routing policies; and an intermediate value
τ = 0.6 that provides a good tradeoff between latency and
routing entropy as shown in previous experiments. We consider
that the clustering and diversification steps are applied to
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arrange mixnodes in layers and that greedy balancing is used
to derive the routing policy.

The results are shown in Fig. 7. In terms of latency (dashed
lines), we can see that for near-uniform routing (τ = 0.9,
blue) the average latency l̄mix stays constant at about 110
ms regardless of network size. For more deterministic routing
however (τ = 0.1, green), a larger network size allows for
more routing choices, including choices with low propagation
latency that give more room for optimization: in networks of
N = 510 mixnodes the latency l̄mix is 55 ms, compared to
30 ms in smaller networks of just N = 102 mixnodes. For
intermediate routing randomness (τ = 0.6, red) we observe the
best latency reduction as the network scales, which is cut by
half from 60 ms to 30 ms. Note that for the larger network sizes
the latency is a good (i.e., as low) for intermediate randomness
(τ = 0.6) and near-deterministic routing (τ = 0.1).

Fig. 7: Routing entropy H(T ) and average latency l̄mix for
different network sizes.

In terms of entropy (solid lines), we can see that increasing
the network size is always beneficial in terms of entropy H(T ).
The upper bound of H(T ) is given by log2 W , where W is the
width of the mixnet layers. A larger W increases the mixnode
candidates that may be the last hop in a message route. This is
particularly the case for larger values of τ , that more heavily
randomize the routing choices. As we can see in Fig. 7, the
entropy increase is most pronounced for τ = 0.9 (blue) while
being rather minimal for τ = 0.1 (green). For τ = 0.6 the
entropy gains are in between but still significant, particularly
considering that this configuration provides the same latency
as τ = 0.1, which offers significantly lower entropy.

VI. ADVERSARIAL ANALYSIS

The proposed latency optimizations involve biased routing
choices, compared to choosing routes uniformly at random
in the vanilla case (τ = 1). This bias can potentially be
exploited by an adversary to compromise message anonymity.
In particular, we are concerned about the ‘mixnode adversary’,
which is an adversary that controls a subset of mixnodes. This
adversary can trace messages end to end if their route is fully
made up of adversarial nodes. We first evaluate LARMix by
computing the fraction of fully corrupted paths given a routing
policy (whose bias is dependent on τ ) and various adversarial
settings. In a separate experiment we assess the distribution
of anonymity for all messages (instead of only messages with
fully corrupted paths), taking into account that the adversary

observes all communication links in addition to controlling a
subset of mixnodes.

A. Fraction of fully corrupted routes

We denote by |C| the total number of adversarial mixnodes
and by Cℓ the set of corrupted nodes in layer ℓ, of size |Cℓ|,
such that

∑L
ℓ=1 |Cℓ| = |C|. The distribution of corrupted

mixnodes among the layers may vary widely depending on
the instance. Taking into account that all mixnodes in the first
layer are selected with equal probability 1

W , we compute the
probability of a fully corrupted route by taking into account
the conditional probabilities that define the routing weights.
For three layers we obtain:

P
[
M1 ⊂ C1,M2 ⊂ C2,M3 ⊂ C3

]
=

∑
m1

i∈C1

∑
m2

j∈C2

∑
m3

k∈C3

P
[
M1 = m1

i ,M
2 = m2

j ,M
3 = m3

k

]
=

∑
m1

i∈C1

∑
m2

j∈C2

∑
m3

k∈C3

1

W
P
[
M2 = m2

j |M1 = m1
i

]
P
[
M3 = m3

k|M2 = m2
j

]
. (8)

Given an adversary able to run |C| malicious mixnodes,
we consider several possible adversarial settings. Note that
adversaries may not have the power to determine the layer
where their adversarial mixnodes are placed, particularly if the
assignment process is randomized. We consider four possible
scenarios as follows.

1) Random placement: In this scenario the adversary con-
trols a subset of |C| mixnodes that are chosen uniformly
at random from all N mixnodes. Note that there is wide
variability in the results of this adversarial setting depending
on the experiment. To account for that we run a large number
of instances, each with a freshly chosen malicious subset C,
and compute the average fraction of corrupted paths over all
experiments. We use this adversarial setting as a baseline.

2) Worst case: Finding the set of |C| corrupted mixnodes
that maximize the fraction of fully corrupted paths requires
enumerating all possible combinations of C adversarial nodes,
which scales with

(
N
C

)
. In other words, looking for the worst

case configuration is an NP-hard problem. We develop a
greedy algorithm to approximate this worst case, described in
Appendix D. We note that even when the adversary possesses
complete knowledge about all the parameters such as the
location and routing weights of all the nodes, it is still a
daunting task to find out which specific mixnodes maximize
route compromise. Note that if mixnodes are randomly as-
signed to layers in a way that the adversary cannot bias, then
the adversary may not have capability to arrange its mixnodes
to maximize route capture. We nevertheless study worst case
results as an upper bound on the fraction of paths that may
be corrupted in the most unfavourable corner cases. Note
that, at the other end of the spectrum, an adversary cannot
compromise any message route whenever it fails to have at
least one adversarial node in every layer of the mixnet.

3) Single location: In this setting we consider that the
adversary runs |C| nodes that are close to each other, i.e.,
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in the same geographical region. This will ensure that those
mixnodes are part of the same cluster after the clustering
phase. Subsequently, the arrangement algorithm distributes
nodes in the same cluster among the different layers. Such
diversification benefits the adversary as its nodes will most
likely be in different layers and have high routing weights
among themselves, which increases the probability of being
chosen as part of the same route.

4) Diverse locations: For comparison we also study the
opposite case, where adversarial nodes are placed in distant
geographical locations, ensuring that they are assigned to
different clusters. Having the malicious nodes in different
clusters should be unfavorable for the adversary compared to
the previous case, as it increases the chances that adversarial
mixnodes are assigned to the same mixnet layer. Even when
adversarial nodes are in adjacent layers, their routing weight
will not be high because the link between them is not low
latency. This effect is more pronounced if routing is more
biased towards low latency links (i.e., with small τ as well
as with imbalanced approaches).

Fig. 8: Fraction of corrupted paths vs τ in different adversarial
settings (greedy balancing).

B. Results

We performed three different experiments considering a
network of size 96 mixnodes (32 per layer). We use a smaller
network than in previous experiments due to the variance
of results (and the need for large numbers of samples to
compute accurate averages) in larger networks. We use a
cluster size of 5 and run 1000 experiments per setting. Other
parameters are as defined in Tab. II In the first experiment
we quantify the fraction of corrupted paths (FCP) for different
values of τ and adversarial settings, considering that 20% of
the nodes in the network are adversarial (i.e., 19 out of 96
mixnodes are adversarial). The second experiment fixes τ at
an intermediate value while varying the number of corrupted
nodes to be between 5% and 20% of all the nodes, and studies
the FCP for the different levels of compromise. Finally, the
third experiment computes entropy for the full set of messages,
and not just the fraction of corrupted paths. We calculate the
per-message entropy H(m) using simulations, with varying τ
and for each of the three proposed balancing approaches.

1) FCP vs τ : Fig. 8 shows the results for FCP in the
four adversarial settings, considering that 20% of all nodes are
compromised and a routing policy balanced with the greedy
approach. As expected, all settings lead to the same FCP

when τ = 1, which corresponds to uniform routing policies
where the adversary gains no advantage from compromising
some nodes instead of others. As τ decreases and the routing
policy becomes more biased towards faster routes, we see
different effects depending on the adversary. The ‘worst case’
adversary gains a significant advantage for low values of τ .
We note however that achieving this worst case would require
the adversary to selectively compromise the mixnodes that
maximize FCP after the routing policy has been derived, since
it is not possible to a priori predict which mixnodes will
maximize FCP. Note also that given a routing policy, even iden-
tifying those mixnodes requires solving an NP-hard problem,
which may be impractical in systems with churn where routing
policies are frequently updated, as is the case in deployed
networks. The best practical strategy an adversary can follow
is to place all the malicious nodes in close proximity (i.e., in a
‘single location’). As we can see in the results, this adversarial
strategy outperforms the random placement in terms of FCP.
This is because adversarial mixnodes have higher than average
routing weights among themselves, enabling an increased
rate of full route compromise compared to ‘random’. The
adversarial advantage is however rather limited, even for low
values of τ . The ‘random’ compromise of mixnodes leads
to a flat FCP rate on average — though the actual FCP
has high variance depending on the adversary’s “luck” with
the corrupt selection. Finally, locating adversarial mixnodes
in distant places (‘diverse location’) slightly underperforms
the ‘random’ baseline, as those nodes have high propagation
latency between themselves and consequently a low weight in
the routing policy, making fully corrupted paths less likely to
be chosen.

2) FCP vs number of corrupted mixnodes: Here we exam-
ine the effect of varying |C| on the fraction of corrupted paths
while keeping the routing randomness constant at τ = 0.5. We
consider adversaries that corrupt 5%, 10%, 15% and 20% of all
the nodes, and the adversarial nodes are chosen according to
the four adversarial settings introduced earlier in this section.
The network is arranged with the clustering and diversification
algorithms and we consider imbalanced (low latency) routing
(Fig. 9a), greedy (Fig. 9b), and naive balancing (Fig. 9c).

The results in Fig. 9 show that balancing the network
significantly reduces the adversarial advantage compared to the
low latency approach, in particular for the worst case adversary
as well as for the adversary that places all adversarial nodes
in the nearby geographical locations. Moreover, as expected,
increasing the number of malicious nodes increases the FCP
in all scenarios. The worst case is significantly worse than
all the other adversarial settings, though it may be infeasible
for the adversary to achieve such favourable placement for its
mixnodes. Placing the malicious nodes in a single location
is a better strategy than random placement for improving
attack results. The single location approach provides however
much lower adversarial success compared to the worst case,
particularly when a balancing approach (whether naive or
greedy) is used.

3) Entropy vs τ : In the last experiment we consider an
adversary that observes all network links in addition to corrupt-
ing a set of mixnodes. Besides fully deanonymizing messages
routed via a fully corrupted path, this adversary is also able
to reduce anonymity for messages that are not fully traceable.
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(a) Low Latency (b) Greedy (c) Naive

Fig. 9: Fraction of corrupted paths V.S. Fraction of corrupted mixnodes for τ = 0.5

We measure the entropy H(m) of sample messages using our
simulator, considering that 20% of nodes are malicious. We
modify the entropy calculation formula to account for adversar-
ial mixnodes (following the approach described in [16]): when
messages traverse a corrupt mixnode, the adversary knows
the exact input-output correspondence, rather than having a
probabilistic guess, meaning that adversarial nodes do not add
any entropy to messages they route.

Fig. 10: Entropy vs τ for single location adversary.

Fig. 10 shows the results considering a single location
adversary and the three proposed balancing approaches. We
observe that this strategy leads to an median drop of 0.3 bit in
entropy when we select τ = 0.6, compared to vanilla routing
(τ = 1). The entropy loss is similar for greedy and naive
balancing, but it becomes 1 bit of loss for an imbalanced (low
latency) network. We note that compared to Fig. 5 the median
and higher values of entropy are similar, while in Fig. 10
the lower end of the range and outliers have lower values,
as they correspond to messages that go through routes that are
partially or fully compromised. We obtained similar results
when considering the random selection adversary, with 0.3
bits drop in entropy for the balanced approaches. Overall, we
observe that the bias of latency-aware routing does provide
a potential gain to the adversary but, unless the adversary is
able to engineer a worst case arrangement, the attack impact
is rather limited in comparison to scale of latency reduction
achieved.

VII. COMPARISON WITH CLAPS

Given a set of constraints and an optimization function,
CLAPS [26] can output a routing policy (i.e., set of routing

weights) that meets all the constraints while maximizing the
objective function, by solving a linear program. Even though
CLAPS was originally proposed for improving Tor’s path
selection, by setting the appropriate constraints the CLAPS
framework can be used to obtain a latency-aware routing policy
for mixnets, as an alternative to LARMix.

To instantiate CLAPS we must first define the objective
function that we want to optimize. In our case we define this
as the minimization of the weighted average of link latency,
given by:

min(
∑
ℓ

W∑
i,j=1

γℓ
ij ∗ lij), (9)

where γℓ
ij represents the routing weight from mixnode mℓ

i in
layer ℓ to mixnode mℓ+1

j in the next layer, and lij is the average
propagation latency between mℓ

i and mℓ+1
j . Note that lij is

provided as input to the framework whereas the values of the
weights γℓ

ij , which define the resulting routing policy, are the
desired output obtained at the end of the process. To conform
a valid routing policy, the weights γℓ

ij must additionally meet
a number of constraints: (1) their value must be between zero
and one (0 ≤ γℓ

ij ≤ 1); (2) all the weights leaving a node mℓ
i

must add up to one to represent a valid probability distribution
(
∑W

j=1 γ
ℓ
ij = 1); and all the weights incoming to a mixnode

mℓ+1
j must add up to one to ensure that the traffic load is

balanced (
∑W

i=1 γ
ℓ
ij = 1).

CLAPS lacks a built-in tuning mechanism to allow trading
average latency for entropy of the routing policy. Note that
it is also not possible for CLAPS to optimize for entropy in
its objective function, since entropy is a non-linear function.
We introduce tuneability of the latency-entropy tradeoff for
CLAPS by defining a parameter 0 ≤ τ ≤ 1 that further
constrains the range of values for the routing weights γℓ

ij .
As before, larger values of τ lead to more uniform (random)
routing, while lower values of τ lead to more deterministic
routes (optimized for low latency). The tuning constraint is
formulated as:

(
1

W
)

1
τ ≤ γℓ

ij ≤ (
1

W
)τ (10)

To evaluate this approach, we solved the CLAPS linear
programs for the objective function and constraints defined
above and obtained the routing weights γℓ

ij . These weights
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were then evaluated with our analytical approach to quantify
the average latency l̄mix and the entropy H(T ) of the resulting
routing policy. We compared the results obtained from CLAPS
to those of LARMix (for both naive and greedy balancing),
for different values of τ . In order to assess the latency-entropy
tradeoff, we compute H(T )

l̄mix
, a quantity that is maximized for

the best tradeoff, since it grows both with higher entropy and
with lower latency, both of which are desirable. The results
are shown in Fig. 11. We can see that LARMix with greedy
balancing outperforms CLAPS (as well as LARMix with naive
balancing) by offering the best entropy-latency tradeoff for all
values of τ . As in previous experiments, we see that τ = 0.6
provides a good entropy-latency tradeoff.

Fig. 11: Entropy/Latency H(T )

l̄mix
vs τ for CLAPS and LARMix.

Additionally, we recorded the time it takes for CLAPS
and LARMix to find a solution for the set of γℓ

ij values. We
found out that it takes ≈ 300x more time for CLAPS to find
the solution using linear programs than for LARMix. Further,
we observed a non-linear increase in time while scaling the
network (doubling N resulted in tripling the runtime). In a
deployment setting, one may need to frequently recompute
routing weights (these are refreshed about once an hour in Tor
and Nym). Scaling CLAPS to the current Tor network size of
> 6000 relays would require substantially more than an hour.
LARMix on the other hand can be used to recompute routing
weights on a frequent basis.

VIII. DISCUSSION

A. Comparison with simpler approaches

We now consider approaches simpler than LARMix that
may offer similar tradeoffs for latency and anonymity. First,
we consider reducing the number of mixnet layers to two,
while maintaining a uniform routing policy. This eliminates
one link from end-to-end connections, thus reducing latency.
We devised an experiment considering 2-layers with uniform
routing, and compared it with the 3-layer LARMix routing
with τ = 0.6. For both cases we considered a total average
mixing latency of 150 ms, distributed equally among 2-layers
in the first case (75 ms of average mixing latency per layer) and
among 3-layers in the second case (50 ms of average mixing
latency per layer). We performed the experiment for 1000
iterations. The results from the experiment are summarized
in Tab. IV below.

As we can see, the average latency in 2-layer random
routing is higher in comparison to LARMix for both analytical

Parameter 2-layer 3-layer LARMix
random routing

Analytical Latency 46.9 ms 34.5 ms
Simulation Latency 170.2 ms 150.3 ms
Simulation Anonymity 7.7 bits 8.8 bits

TABLE IV: Latency and anonymity comparison for natural
trade-offs.

as well as simulation evaluation. This result may be slightly
counter-intuitive but can be explained. The LARMix approach
optimizes for selecting lower latency paths by removing high
latency outliers that can be selected in random routing, leading
to higher average latency across all message paths. Moreover,
as expected, the anonymity in 2-layers is reduced in compari-
son to 3-layers LARMix (7.7 bits from 8.8 bits). Thus, overall,
the simple approach of removing a layer in the mixnet for
latency reduction is not better than LARMix neither in terms
of latency nor anonymity.

Other approaches such as creating multiple localized
mixnets instead of one global mixnet, or considering a single
cascade of mixnodes per client instead of a layered mixnet with
a global routing policy, can also reduce latency. The evaluation
such approaches requires assumptions on the distribution of
client locations to determine the size of the localized networks
and the amount of traffic routed, making it hard to compare
such approaches on equitable grounds. Note however that
we can expect a significant anonymity reduction in such
approaches, as clients are partitioned in subsets rather than
forming one large anonymity set.

B. Considering endpoint connection latency

In terms of latency, all the evaluations performed in this
work report the minimization of lmix. From a client’s usability
perspective the end-to-end (client-to-destination) latency (l̄) is
the most important value.

However, it is non-trivial to determine what the actual
distribution of clients may be in a live network, which makes it
challenging to perform realistic simulations of such scenarios.
We can approximate the average latency between clients and
the mixnet and add a constant client latency to the existing
latency evaluation. To that end, we randomly selected 350
RIPE nodes (considered to be clients) and recorded their
latency to all the mixnodes in the first layer.6 The average client
latency obtained from this evaluation was 63.2 ms. Thus, a
client that uses the mixnet with uniform routing options would
observe on average 246.4 ms propagation latency i.e., 63.2
ms (client-to-mixnet latency) + 120 ms (mixnet-propagation
latency) + 63.2 ms (mixnet-to-destination latency). A client
using LARMix with greedy balancing and τ = 0.6 will reduce
it to an average of 160.9 ms (63.2+34.5+63.2); a reduction of
34.8% in client-to-destination propagation latency. If we also
consider the ‘mixing’ latency then the reduction in end-to-end
latency is 22%.

6We again considered the RIPE dataset as it has globally scattered endpoints
representing good coverage.
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C. RIPE vs Nym latency dataset

In our evaluation, we used the RIPE dataset for obtaining
a distribution of latency between pairs of mixnodes. This
is a good data source for generic evaluation. However, the
evaluation can be made even more realistic if the latency
values are derived from a deployed mixnet such as Nym. These
latency values have more recently become accessible using the
Verloc protocol, which is run by each mixnode to periodically
measure the latency to every other mixnode.7 We thus obtained
the latency values between pairs of mixnodes and compared
this Nym mixnet latency dataset to the RIPE dataset. As can be
seen in Fig. 12, CDF of the distributions of both the datasets
are similar, with the Nym dataset having a slightly lower
latency on average. Overall, we can conclude that our existing
evaluation captures realistic performance gains that would be
observed if our methods are deployed in a real mixnet.

Fig. 12: Nym vs RIPE latency distribution comparison.

IX. CONCLUSION AND FUTURE WORK

LARMix is a novel solution to location-aware routing
in layered mixnets, a problem that had not been tackled
before. LARMix includes separate methods for both arranging
mixnodes in layers and for deriving a routing policy given an
arrangement. LARMix can additionally ensure that the traffic
load is balanced across nodes while selecting low-latency
paths. Our evaluation of LARMix shows there is ample scope
for reducing latency while maintaining anonymity even if the
adversary can compromise some nodes. Overall, we believe
this work is a significant step towards making mixnets more
widely usable for applications with latency constraints.
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APPENDIX

A. LARMix with variable node capacities

LARMix assumes a fixed and equal capacity of all the
nodes in the network. This assumption is common in Loopix-
based mixnet designs which is the target architecture of
LARMix. However, LARMix can be easily extended to work
for nodes with different capacities. The major change will be
required in the arrangement of the mixnet where we need
to ensure that diversifying the mixnodes does not lead to
high disparity in capacities of different layers. This can be
achieved by selecting mixnodes from clusters considering their
capacities and introducing bounds for the combined capacity of
nodes within a layer. The routing algorithm will not be affected
by the change in capacities. The balancing algorithms can also
easily work for variable capacities by defining the total load
on a node based on its capacity and accordingly calculating
if a node is underloaded or overloaded. Similar considerations
will be taken when the extra load from overloaded nodes is

distributed to the underloaded nodes. The details on how it can
be achieved are presented below.

To extend the balancing algorithms (Greedy and Naive)
for generalized node capacities we consider the individual
capacity of the node while labelling them as underloaded
or overloaded. Thus in Algo. 2 and Algo. 1 while labelling
for overloaded nodes, we will modify the condition to be∑

i γ
ℓ
ij > node_capacityj instead of

∑
i γ

ℓ
ij > 1 for all nodes

j. Similarly, we will update for underloaded and balanced
nodes labelling. While distributing the load of overloaded
nodes to the underloaded ones, we will normalize according to
the node capacities. However, as previously stated, for Loopix
based mixnet designs the node capacities are considered to be
equal and thus in the design of LARMix we take the same
assumption.

B. Effect of change in cluster size

As previously highlighted, one needs to appropriately select
the size of the cluster to avoid corner cases that compromise
the effectiveness of the clustering process. For instance, setting
K to be equal to the total number of mixnodes (N) or
having only one cluster would be equivalent to performing
random routing. However, barring the corner cases, selecting
an appropriate K is in itself a non-trivial task as it may depend
on factors such as the number of mixnodes, their geographical
diversity, consideration of malicious nodes etc. Thus, we devise
experiments to study the impact of the number of clusters on
the entropy and latency offered and select the value of K
that offers the maximum benefit. We performed an experiment
where we fixed the value of τ = 0.5 and varied the cluster
sizes to obtain the corresponding entropy and latency values
for the analytical as well as the simulation setting.

As can be seen in Tab. VI, for most of the lower values
of K (until 40) there is no impact on entropy or latency.
However, when the values of clusters are high, both the entropy
of the transformation matrix and entropy of output messages
increase. This is due to the fact that increasing the number of
clusters makes the diversification algorithm less effective as
it becomes close to a random arrangement, leading to more
uniform paths and higher entropy. However, it is important
to note that this increase in the number of clusters also has
a negative impact on latency, as seen in the table. A high
number of clusters can lead to high end-to-end latency, while
a low number like 2 can prevent the diversification algorithm
from operating properly. Therefore, to achieve the best trade-
offs between latency and anonymity, we recommend using
a moderate number of clusters, such as 5 - 20, to achieve
better tradeoff in anonymity and latency while minimizing the
computational overhead. Note that we can even select values
of clusters to be 40, but that may increase the computational
load on the diversification algorithm

C. Algorithms for different approaches

D. Worst case adversary

We developed a greedy algorithm to find the worst-case
adversary that maximizes the fraction of corrupted paths for a
fixed number of adversary nodes in the network. We call this
approach greedy for fairness, as it selects mixnodes equally in
different layers. It is non-trivial to select the set of corrupted
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Symbol Meaning
Γℓ Scattering Matrix of layer ℓ
T Transformation Matrix
N Number of mixnodes
K Number of clusters
L Number of mixing layers
W Number of mixnodes per layer
C Set of corrupted mixnodes (size |C|)
Cℓ Set of corrupted mixnodes in layer ℓ (size |Cℓ|)
mℓ

i i-th mixnode of layer ℓ
M ℓ Mixnode in a message path at layer ℓ

P[M ℓ = mℓ
i ] Probability of selecting mixnode mℓ

i at layer ℓ
P[M ℓ+1 = mℓ+1

j |M ℓ = mℓ
i ] Routing weight (probability) of node mℓ

i

γℓ
ij sending messages to successor mixnode mℓ+1

j

γ̃ℓ
ij Modified routing weight when balancing the network load.

H(T ) Entropy of the transformation matrix
H(m) Entropy of message m
µ Average mixing delay
δ Average processing latency per hop
lij Propagation latency between mixnodes i and j
l̄e2e Average end-to-end latency
l̄mix Average aggregate mixnet propagation latency
ls,mix Propagation latency between sender s and mixnet
lmix,r Propagation latency between mixnet and recipient r

TABLE V: List of key notations and variables

Analysis Low latency (Imbalance) Greedy Naive
Number of clusters k 2 5 20 40 100 300 2 5 20 40 100 300 2 5 20 40 100 300
Average link delays 10 10 10 10 10 40 30 30 34 34 40 50 50 50 50 50 60 70

E2E latency 126.9 126.8 126.7 126.2 126.3 152.3 145.0 144.1 145.1 145.6 153.3 166.9 160.3 159.7 160.5 161.1 167.7 174.2
Entropy H(T ) 3.0 3.0 3.0 3.0 3.1 3.4 5.5 5.5 5.5 5.5 5.8 6.0 6.1 6.1 6.1 6.1 6.2 6.5
Entropy H(m) 7.5 7.5 7.5 7.5 7.8 8.3 8.0 8.0 8.0 8.0 8.2 8.3 8.1 8.1 8.1 8.1 8.1 8.4

TABLE VI: Effect of varying cluster size (K) on LARMix.

Algorithm 1 Greedy Balanced Algorithm
1: procedure A BALANCED MIX-NET
2: Input: Scattering matrix
3: Summation of scattering matrix over columns
4: Label the mixnodes
5: if The next mixnode is overloaded (i.e.

∑
i γ

ℓ
ij > 1) then

label it as 1.
6: if The next mixnode is balanced (i.e.

∑
i γ

ℓ
ij = 1) then label

it as 0.
7: if The next mixnode is under loaded (i.e.

∑
i γ

ℓ
ij < 1) then

label it as -1.
8: Multiply the columns with label 1 by the inverse of

∑
i γ

ℓ
ij .

9: Save the remaining probabilities for these columns and
distribute them among the columns with label equal to -1.

10: Consider the priorities to be biased based on the proximity
of mixnodes when distributing over underloaded mixnodes.

11: Verify if the modified scattering matrix is balanced (i.e.∑
i γ̃

ℓ
ij = 1).

12: If not, repeat the algorithm.
13: The Greedy Algorithm stops when a decimal precision for

the balance criteria is achieved.

mixnodes fairly from each layer to maximize the fraction of
corrupted paths. So in this algorithm, we first choose C

3 from
the first mixing layer in a uniform way. Then we choose C

3
mixnodes in the next mixing layer such that they receive the
maximum streams from the chosen corrupted mixnodes in the
previous mixing layer (i.e. Max ΣjΓ

i[j]). Then we compute

Algorithm 2 Naive Balanced Algorithm
1: procedure A BALANCED MIX-NET
2: Input: Scattering matrix
3: Summation of scattering matrix over columns
4: Label the mixnodes
5: Repeat steps 5 - 8 from the greedy algorithm
6: Save the remaining probabilities for these columns.
7: First, calculate the probability distribution of assignments

from underloaded mixnodes (i.e. Pi = 1−Loadi∑
j 1−Loadj

).
8: Distribute the remaining loads among the underloaded mixn-

odes based on the calculated probability distribution.

Algorithm 3 Greedy For Fairness
1: procedure BEST SUBSET OF CORRUPTED MIXNODES
2: Select one set of corrupted mixnodes out of

(
W
C
3

)
possible

ways(If there is a limitation decrease the set to 3N cases).
3: For remained layers select C

3
mixnodes from ith mixing layer

such that ΣjΓ
i[j] where j describes corrupted mixnodes

4: Try different options of the set to maximize the mentioned
probability.

5: Return Set of corrupted mixnodes along with the fraction of
corrupted paths.

the fraction of corrupted paths and repeat for different sets of
corrupted mixnodes from the first mixing layer. Ideally, we
should try

(
W
C
3

)
cases, but it may lead to an exhaustive search

and to avoid it we check 3N cases out of all possibilities.
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We performed experiments on a smaller topology of 30
nodes to compare the results of the greedy approach with an
exhaustive search and observed that the developed algorithm
produces almost the same result as that obtained from the
exhaustive search.

E. Intuition behind the routing formula

Fig. 13: Entropy vs Tau for varying values of the coefficient.

In Sec. IV-B we introduce the formula used to bias the net-
work towards low latency paths. Now, we discuss the rationale
behind selecting different values for the formula. Overall our
idea was to use the formula to bias the network while giving
the flexibility to the network designer about how much they
would want to bias it. The actual parameter that we want to
base this bias on is the latency between hops. We include it
in the formula in the numerator as 1

lij
. We then multiply a

coefficient of 1
e to control the fraction of the latency values

to be considered in the probability distributions8. However,
the extent to which we want to bias towards low latency is
controlled by τ . Thus, we need to use the latency factor and
the coefficient in an intelligent way such that low values of
τ makes the next-hop (or path) selection deterministic, while
a high value should make it random. This means that for a
value of τ = 0, the probability should be 1 for selecting the
lowest latency next hop while the probability of selecting any
other next hop should be 0. On the other hand, for the value
of τ = 1, the probability of selecting any next hop should be
the same (1/W ).

To achieve this, we raise the latency factor to a value of
1−τ which ensures that with an increasing value of τ , the value
of latency that will be considered in probability calculation will
be minimized. Similarly, for the coefficient, we raise it to the
power of (Ri(j)

τ )(1−τ). The factor (Ri(j)
τ )(1−τ) encompasses

multiple considerations. The component (1−τ)
τ will range from

∞ to 0 for τ ranging from 0 to 1. This will result in a variation
between 0 to 1 for the value of coefficient when τ varies from 0
to 1 respectively. We multiply the component with a variable
Ri(j) that represents the index of the next-hop node when
they are arranged in ascending order of latency. For instance,
in a network with W = 10, the node with the least latency will
have the value of j as 0 and the highest latency value will have

8One could even consider other values of the coefficient such as 1/2, 1/3,
etc., depending on how steep they want the bias in distributions to be. 1/e
provides a good range of bias in comparison to other values (ref. Fig. 13).

a value of 9. Thus, when τ = 0, the probability distributions
will consist of a value of 1 for the 0th node and a value of 0
for all other nodes thereby achieving the desired objective.

F. Relation between H(T) and H(m)

We use two ways of measuring anonymity throughout
our evaluation. One was the analytical approach using the
entropy of the transformation matrix (H(T)) and the other
was the entropy of simulation (H(m)) calculated by mapping
the target messages to all potential input messages. We note
that H(m) is a sum of H(T) and the randomness introduced
by the mixing of messages. Fig. 14 illustrates the entropy
of the transformation matrix and the results obtained from
simulations, considering the previously established setting for
clustering and diversification. As the value of τ increases,
both entropies increase, due to the randomization of routing.
However, the difference in increase is almost constant. The
gain is majorly due to an increase in the value of H(T).

Fig. 14: Relation between H(T) and H(m).

G. Artifact Appendix

1) Description & Requirements: We performed the evalua-
tion of LARMix in two distinct settings, the analytical setting
and the simulation setting. For the analytical setting, we mod-
eled and represented the mixnet via matrices and performed
appropriate operations. For the simulation setting, we modeled
the mixnet in the form of a discrete event simulator using
the Simpy Python framework. We defined multiple classes to
specify the functioning of different components of the network.
Specifically, we define the functionality of a message that
traverses the network, the mixnode that performs appropriate
operation on messages, the mixnet that control the functional-
ity and structure of the network, etc. Additionally, we also
model different operations such as clustering, arrangement,
routing and latency that are applied on these components.
All these components and operations are used in conjunction
to perform the simulation with specific tasks and generate
appropriate results. Overall, the analysis scripts and evaluation
code is written in Python with about 10K lines of code. For
both evaluation settings, we need to provide the latency and
geographical coordinates of the mixnodes. To evaluate our
approaches on realistic data, we considered the RIPE atlas
dataset because it provides a good number (568) as well as
a good geographical distribution of nodes in the dataset. The
code has been tested to work on a server with Python 3.8
and higher on Ubuntu 20.04 OS with 128 GB RAM and
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2 TB disk space. However, the scaled-down version of the
experiments (fewer iterations) can be easily executed on a
standard laptop/desktop with 16 GB RAM and 50 GB hard
disk space.

2) How to access: You can access the artifact of LARMix
through the following link on permanent storage with DOI:
https://doi.org/10.5281/zenodo.8311051 or also at the Github
link: https://github.com/larmix/larmix.

3) Artifact Installation & Configuration: To evaluate the
artifact, one needs to set up a Python environment with Python
version 3.8 or higher. The dependencies of the code can be
easily installed using the requirements.txt file bundled
with the code. Once this is achieved, the results can be easily
generated by executing the Main.py file.

4) Major Claims: In this section we mention the main
claims of LARMix:

• (C1): LATENCY MINIMIZATION We observed a re-
duction in latency by 8x and 3.5x when using the
imbalance or greedy balance approach as compared
to vanilla mixnet routing for a mixnet size of 3 ∗ 128
with 400 iterations and τ = 0.6. The anonymity loss
was 2.2 bits and 0.8 bits of entropy respectively for
the two cases. These results are demonstrated in Figure
4a.

• (C2): MAXIMUM ENTROPY WITH END-TO-END CON-
STRAINTS Setting a boundary of 200 ms for end-to-
end latency of the mixnet with a size of 128 ∗ 3 and
1000 iterations, we found that the best tradeoff for
the highest value of message entropy occurs when
τ = 0.7 and the mixing delay is equal to 35ms. This
is demonstrated by Table 3 in the original submission.

• (C3): ADVERSARY ANALYSIS We captured the frac-
tion of corrupted paths (FCP) for varying values of
adversarial corruption (5%, 10%, 15%, and 20%)
and observed two trends. First is that the FCP for
the imbalanced approach (Figure 9a) is higher when
compared with the balancing approaches (greedy and
naive in Figure 9b and 9c respectively). Second is that
the best practical approach (barring the worst-case) for
the adversary to maximize FCP is to have all corrupted
mixnodes in a single location, which is true across
Figures 9a, 9b, and 9c.

• (C4): NATURAL TRADEOFFS We compared LARMIX
with τ = 0.6 and greedy balancing to a standard
uniformly routed mixnet with two layers of mixnodes.
We observed that the LARMIX system provides lower
analytical and simulation latency while offering higher
message entropy. This is not yet demonstrated in the
original paper but is part of a minor revision.

5) Evaluation: In this section, we tie each of the claims
in the previous section with an experiment that can be used
to verify them.9 All the results will automatically be stored in
Figures and Tables folders.

1) Experiment (E1): [Figure 4a and Figure 5] [15
min]: In this experiment, we analyze LARMix with

9Note that all other results in the main paper can also be reproduced.
However, here we focus on the major claims and experiments.

clustering and diversification to arrange mixnodes
to layers. We expect a reduction in latency and
improved anonymity, as described in C1. In Figure
5, we observe that the reduction in latency for the
greedy approaches is less than 1 bit, while the latency
reduces by approximately 90ms.
[Preparation and Execution] Uncomment the line
with the following function and their default values
already filled in Main.py:
C.Basic_Exp_Diversification()
Then execute the Main.py as follows:
python3 main.py
[Results] The results will be automatically saved
in the "Figures" folder as Fig4-a-Latency.png,
Fig4-a-Entropy.png, Fig5-Latency.png, and Fig5-
Entropy.png.

2) Experiment (E2)[Table3] [15 min]: In this experi-
ment, we investigate the trade-off between the value
of τ and mixing delay to increase the entropy of
output messages, as claimed in C2. There is an
optimum value of tau and mixing delay, which was
mentioned earlier and can be achieved with this
experiment, around τ = 0.7.
[Preparation and Execution] Uncomment the line
with the following function and the corresponding
default values in Main.py and execute Main.py:
C.Table3()
[Results] The results will be automatically saved in
the "Tables" folder as Maximum-Mixing-delay.pdf
and will also be shown in the command window.

3) Experiment (E3)[Figure 9] [Duration: 30 min]
This experiment explores different routing ap-
proaches while considering strong adversarial set-
tings. The results from this experiment can be used
to verify the two trends as described in C3.
[Preparation and Execution] Uncomment the line
with the following function and the corresponding
default values in Main.py and execute Main.py:
C.FCP_Cnodes()
[Results] The results will be automatically saved in
the "Figures" folder as Fig9-a.png, Fig9-b.png, and
Fig9-c.png.

4) Experiment (E4)[Table 4] [Duration: 20 min]
As mentioned in C4, this experiment aims to derive
the results presented in Table 4 of the paper, demon-
strating that using LARMix reduces latency while
increasing the entropy of output messages compared
to two layers mixnet.
[Preparation and Execution] Uncomment the line
with the following function and the corresponding
default values in Main.py and execute Main.py:
C.Two_Layers_VS_LARMIX()
[Results] The results will be automatically saved in
the "Tables" folder as Loopix-LARMix.pdf.

Note that there were two experiments that were not con-
sidered in the artifact evaluation as these were performed and
added after undergoing a minor revision. These experiments
are described along with their results in Section. VIII. These
experiments are already part of the code provided on Github
and can be easily replicated (using Main.py).
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