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Abstract—The sharing of Cyber Threat Intelligence (CTI)
across organizations is gaining traction, as it can automate
threat analysis and improve security awareness. However, limited
empirical studies exist on the prevalent types of cybersecurity
threat data and their effectiveness in mitigating cyber attacks. We
propose a framework named CTI-Lense to collect and analyze the
volume, timeliness, coverage, and quality of Structured Threat
Information eXpression (STIX) data, a de facto standard CTI
format, from a list of publicly available CTI sources. We collected
about 6 million STIX data objects from October 31, 2014 to April
10, 2023 from ten data sources and analyzed their characteris-
tics. Our analysis reveals that STIX data sharing has steadily
increased in recent years, but the volume of STIX data shared
is still relatively low to cover all cyber threats. Additionally,
only a few types of threat data objects have been shared, with
malware signatures and URLs accounting for more than 90%
of the collected data. While URLs are usually shared promptly,
with about 72% of URLs shared earlier than or on the same day
as VirusTotal, the sharing of malware signatures is significantly
slower. Furthermore, we found that 19% of the Threat actor data
contained incorrect information, and only 0.09% of the Indicator
data provided security rules to detect cyber attacks. Based on our
findings, we recommend practical considerations for effective and
scalable STIX data sharing among organizations.

I. INTRODUCTION

Cyber attacks have increased in number, and their risks are
becoming more severe [1]. A recent report [20] reveals a 435%
increase in the number of ransomware attacks from 2019 to
2020. It is also reported that 68% of industry practitioners felt
that cybersecurity risks would threaten their business [2] and
56% of utilities were targeted by cyber attacks [65]. Not only
is the scale of cyber attacks growing, but the costs incurred by
victims are also rising. For example, the estimated cost of the
Solarwinds attack is about $100 billion [54].

Cyber Threat Intelligence (CTI) has emerged as an indis-
pensable component of standard security procedures, assisting
organizations in risk prioritization, timely detection, mitiga-
tion, and containment of attacks [25]. A SANS report [18]
indicates that nearly 60% of organizations are already utilizing
CTI in their security practices, and 25% plan to integrate

it into their security operations. The report also unveils that
nearly 47% of them have dedicated CTI teams. Sharing
CTI data across organizations is instrumental in countering
sophisticated attacks such as Advanced Persistent Threats
(APTs). Comprehensive CTI data can be leveraged to identify
indicators linked to one or more stages (e.g., reconnaissance,
initial compromise, lateral movement, and data exfiltration)
of these attacks [47]. For instance, ransomware threats like
Locky [24] and WannaCry [44] employ a similar method of
infection–emails containing malicious attachments or links. A
shared characteristic between these attacks is the use of the
Tor network for their command and control communication.
Once a ransomware sample infiltrates a system, it propagates
laterally, aiming to compromise others in the network. The kill
chains for these attacks, which occurred almost a year apart,
showed significant overlap; knowledge of the former attack
could have facilitated preparations for the subsequent one.

Several standards are available to represent and share
threat information in a structured manner, such as Structured
Threat Information eXpression (STIX) [57], Cyber Observable
eXpression (CybOX) [11], and Malware Information Sharing
Platforms (MISP) [13]. Sharing CTI data in a structured format
makes it easier to automate data processing and analysis. STIX
has become the de facto standard [19], [3] for representing
CTI data because it was expressly designed to represent
various levels of CTI information in a machine- and human-
readable format [56]. Furthermore, a standard protocol, Trusted
Automated eXchange of Indicator Information (TAXII) [33],
facilitates the sharing of STIX data across organizations.
Therefore, we focus on STIX analysis.

Despite the availability of STIX, companies perceive that
vital CTI (e.g., campaigns, motivations, and TTPs) is not effec-
tively disseminated in practice [25]. A recent survey found that
many organizations value high-level CTI (e.g., TTPs, threat
actors, security rules, and APT campaigns) more than simple
indicators of compromise (IoCs), such as malware hashes, IP
addresses, and URLs, for developing effective defenses against
sophisticated attacks [10]. However, despite the recognized
importance of high-level CTI, little research has been done to
understand how high-level CTI is shared in the wild. Previous
research in open CTI has predominantly focused on a limited
range of basic IoC data types [26], [27], [17], [73].

To address the lack of knowledge on the STIX data sharing
landscape, we collect STIX data from all publicly available
open CTI sources, enabling comprehensive large-scale anal-
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ysis. This analysis is essential for enhancing the sharing of
advanced cybersecurity threat data, as it will help identify key
challenges inhibiting organizations from effectively sharing
such data.

To this end, we develop a framework named CTI-Lense1

that collates STIX data from a set of open CTI sources
and systematically analyzes the collected data. The analysis
evaluates the data on four measurements: volume, timeliness,
coverage, and quality on a large scale. CTI-Lense facilitates
more efficient and accurate analysis of the state of open CTI
data sharing. To demonstrate the potential of CTI-Lense, we
collect approximately 6 million STIX data points from October
31, 2014 to April 10, 2023 (a span of nine years) across 10
data sources and conduct a comprehensive analysis of these
data. We summarize our findings as follows.

Volume. STIX data sharing has steadily increased in recent
years, but the volume of STIX data shared is still relatively
low to cover all the cyber threats arising. Our investigation
reveals that security service providers generate and share an
average of only 2,063 unique STIX objects per day. This
quantity seems significantly inadequate to handle the daily
influx of new malware samples, malicious IPs, and URLs,
particularly considering that the AV-TEST Institute records
over 450,000 new malware samples and potentially unwanted
applications each day [6]. Furthermore, our research found that
37.89% of STIX objects generated even by a single service
provider are duplicated, with JamesBrine exhibiting the
highest duplication rate at 68.74%. However, the percentage
of duplicated data across different service providers remains
relatively low at 4.10%. Based on these findings, consumers
of STIX data should contemplate implementing additional de-
duplication procedures and collecting STIX data from various
sources to enhance the heterogeneity of STIX data.

Timeliness. We find that URL objects are typically dissemi-
nated promptly, with approximately 72% and 88% of URLs
shared either before or on the same day as their appearance
on VirusTotal and HybridAnalysis, respectively. This prompt
sharing of URLs within the first 24 hours could potentially pre-
vent a considerable portion of malicious domains, considering
their typically short lifespans [23]. For example, many spam
domains are active for merely a day, aiming to evade detection
and avoid inclusion in blocklists [72]. On the contrary, the
sharing of file-type threat objects (e.g., malware signatures)
is notably slower than that of VirusTotal. This observation
indicates potential inefficacy in preventing malware attacks,
especially considering that 54% of malware samples are active
for only 24 hours [48]. In addition, we note that STIX data
is commonly shared two to four days after reporting security
incidents. Our data show weak evidence of causality [51]
from security incidents reported in sources like Malpedia and
security news websites to the sharing of STIX data in our
collected dataset, with p < 0.05 for the 2–4 and 2–12 days
time-lag, respectively. However, we do not find any evidence
of causality between the publication of CVEs and STIX data.

Coverage. The STIX standard [57], [9] is designed to represent
a wide range of sophisticated cybersecurity threat information,
such as APTs, threat actors, and their relationships. However,
our analysis of shared STIX data shows that only a limited

1https://github.com/SKKU-SecLab/CTI Lense

number of STIX data types are used. Most STIX data represent
simple IoCs, such as malware signatures and URLs. This
suggests that the STIX standard is not being used to its full
potential. We also found that many of the objects and attributes
specified in the STIX standard are not used in practice. For
example, only 0.09% of indicators contain security rules that
can be used for detecting cyber attacks in an automated
manner. This suggests that more guidance is needed on how to
use the STIX standard to represent complex threat information.

Quality. We evaluate the quality of the values contained in the
STIX data from two aspects: correctness and completeness.
Correctness refers to whether the STIX data are appropriately
used with the right objects, attributes, and values as intended
in the STIX standard. For example, we found that 19% of the
STIX data have incorrect Threat actor values. Completeness
refers to whether the STIX data accurately contain valid
threat information. For example, we found that over 50% of
the Indicator objects represent their information in narrative
forms as existing threat reports. This suggests that additional
manual efforts are required to process STIX objects and extract
relevant threat information.

II. BACKGROUND AND MOTIVATION

A. What are CTI and STIX?

Cyber Threat Intelligence (CTI). CTI is evidence-based
knowledge about cybersecurity threats that supports security
analysts in making informed decisions. It provides information
about threats at all levels, from low-level indicators such as
basic IoCs (e.g., malware hashes and IP addresses) to high-
level indicators (e.g., TTPs). CTI data is often disseminated
in unstructured forms, such as narrative reports, blog posts,
or vendor documents. This requires significant preprocessing,
including deduplication and structurization, before it can be
used to make any decisions on threats in an automated
method [10]. Structured CTIs, such as STIX and MISP, address
this challenge by providing a machine-readable format for CTI
data. This makes it more efficient to manage and analyze CTI.

Structured Threat Information eXpression (STIX). The
heterogeneity of CTI specifications, each with its own structure
and data expression method, challenges organizations when
sharing intelligence. To address this challenge, the US Depart-
ment of Homeland Security (DHS) and MITRE2 collaborated
to develop STIX, a standard that provides a structured language
for expressing threat information.

STIX ecosystem. Figure 1 illustrates the entities within a
STIX ecosystem. A standardization organization (e.g., OASIS)
publishes the STIX specification ( 1 ). A producer (e.g., a
security analyst) analyzes cyber threats and generates STIX
data according to the STIX standard ( 2 ). The producer then
shares the STIX data via platforms (e.g., STIX data repositories
or TAXII servers) managed by a service provider like MITRE
or AlienVault OTX ( 3 ). A consumer then fetches the STIX
data from such a platform using a standard protocol such as
Git or TAXII ( 4 ). Finally, the consumer employs this data
to analyze security incidents or minimize the risk of cyber

2MITRE is a non-profit R&D organization supporting various US gov-
ernment agencies in aviation, defense, healthcare, homeland security, and
cybersecurity domains.
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Fig. 1: Ecosystem of STIX. A standard organization is respon-
sible for publishing STIX specifications. Producers generate
STIX data and upload them to a platform managed by a
dedicated provider. Consumers then access and retrieve this
STIX data using an industry-standard protocol such as TAXII.

threats, for instance, by extracting indicators from the STIX
data and implementing them in firewall rules ( 5 ). In a real-
world STIX ecosystem, there are typically multiple service
providers, producers, and consumers. Producers and consumers
can be enterprises, financial institutions, or even individuals.

STIX objects and attributes. STIX data comprise various
types of cyber threat information such as observables, indi-
cators, incidents, Tactics, Techniques and Procedures (TTPs),
exploit targets, courses of action, campaigns, and threat actors.
Information within STIX data is depicted as objects and their
corresponding attributes. Figure 2 shows an example of STIX
1 data representing indicator information, which includes the
IP address of the command and control (C&C) server related to
ET.Evil malware, as well as the Snort rule for detecting such
network traffic. In this figure, a threat indicator is expressed as
an Indicator object (i.e., <stix:Indicator>. An object’s
details, such as Title and Type, are represented as attributes
(i.e., <indicator:Title> and <indicator:Type>).

STIX 1 and STIX 2. STIX 1, introduced by MITRE in 2012,
uses an XML format to describe threats and supports nested
structures (i.e., objects within objects). However, these nested
structures often render STIX data intricate and challenging to
parse. Additionally, STIX 1 allows for multiple representations
of the same threat, leading to the existence of two STIX objects
that describe the same target with different structures. To
overcome the limitations of STIX 1, STIX 2 was standardized
by OASIS in 2017. The main distinction between STIX 1 and
STIX 2 is in their structures: STIX 2 uses the JSON format,
making it more lightweight and easier for programmers to
work with, and it favors a more flat and relational data model
over deeply nested structures. Although the CTI ecosystem
is gradually transitioning to STIX 2, many service providers
continue to share STIX 1 data. Hence, it is crucial to analyze
STIX 1 data as well. To perform analysis, we collect and
examine both versions of the STIX data.

B. Trusted Automated eXchange of Indicator Information

The Trusted Automated Exchange of Intelligence Informa-
tion (TAXII) [33] is a protocol for exchanging CTI data over
HTTPS. TAXII defines APIs, enabling producers (or publish-
ers) to share their CTI data with consumers (or subscribers).
TAXII outlines two primary services to support different types
of sharing: (1) a TAXII collection and (2) a TAXII channel. A
TAXII collection is used by CTI producers to store CTI data
on a data repository managed by a service provider. A TAXII
channel is employed to exchange CTI data between TAXII
servers (i.e., publisher pushing CTI data) and TAXII clients

1 <stix:STIX_Package ...>
2 <stix:Indicator
3 id="opensource:indicator-..."
4 timestamp="2014-11-05T03:05:02.125545+00:00"
5 version="2.1.1">
6 <indicator:Title>
7 ... Reported CnC ...
8 </indicator:Title>
9 <indicator:Type>IP Watchlist</indicator:Type>

10 <indicator:Description>
11 SNORT Rule ...
12 </indicator:Description>
13 <indicator:Observable idref="...">
14 <cyboxCommon:address_value>
15 78.46.33.91
16 </cyboxCommon:address_value>
17 </indicator:Observable>
18 <indicator:Indicated_TTP>
19 <ttp:Name> ET.Evil </ttp:Name>
20 </indicator:Indicated_TTP>
21 <indicator:Test_Mechanisms>
22 <snortTM:Rule>
23 alert tcp HOME_NET any ...
24 </snortTM:Rule>
25 </indicator:Test_Mechanisms>
26 <indicator:Producer>
27 <stixCommon:Name>
28 rules.emergingthreats.net
29 </stixCommon:Name>
30 </indicator:Producer>
31 </stix:Indicator>
32 </stix:STIX_Package>

Fig. 2: Example of a STIX 1 document. The STIX data
consists of objects (e.g., stix:Indicator) and their attributes
(e.g., indicator:Title) written in an XML format (STIX 1) or a
JSON format (STIX 2).

(i.e., consumer requesting data to obtain CTI data). A server
typically manages several data repositories through these two
services to publicly share STIX data with consumers. However,
TAXII does not support backward compatibility with regard to
STIX 1 and STIX 2. In other words, a TAXII server cannot
share both versions of STIX. As we deal with both STIX 1 and
2 data in our analysis, we collect our data from open TAXII
1 and 2 servers, respectively.

C. Why Do We Focus on STIX?

Despite the need for advanced threat intelligence (e.g.,
TTPs, threat actors, security rules, and APT campaigns), there
is a lack of research on the sharing of structured CTI that
can effectively represent such information. Therefore, we focus
on STIX in our CTI analysis because it is the de facto
standard for structured CTIs [19], [3] and is widely used in
cybersecurity due to its effectiveness in representing complex
threat data [18], [53]. STIX is used in various domains,
including security policy development, threat hunting, and risk
monitoring. For example, Syam et al. [5] propose a trusted
response management ecosystem where STIX serves as a
unified language for threat intelligence providers to seamlessly
use CTIs for defensive actions. STIX also plays a crucial
role in formalizing ontology for CTI, enabling connections
between security events and CTIs, and allowing the inference
of new knowledge about potential threats [40]. Prominent
entities in the cybersecurity sector, such as SANS [31] and
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Intel [30], incorporate STIX indicators into their threat-hunting
methodologies. These indicators, such as IP addresses, do-
main names, and host artifacts, serve as the foundation for
formulating security rules for network monitoring. Automated
alerts generated from threat-hunting platforms can be exported
via TAXII in a STIX-compatible format, which can then be
integrated into security information and event management
(SIEM) systems.

III. RESEARCH QUESTION & METHODOLOGY

This section presents the research questions we aim to
answer, the design of our framework (CTI-Lense), and the
dataset we employ to answer these research questions.

A. Research Questions

Our research has two main goals. First, we aim to ex-
amine the volume, timeliness, and coverage of STIX data
disseminated in the public domain to gain insights into its
usage. Second, we aim to evaluate the quality of STIX data
in accurately representing cybersecurity threat information,
including malware, threat actors, and TTPs. To achieve these
goals, we raise the following research questions:

RQ1 (Volume): What is the extent of STIX data that
is being generated and shared publicly? Our objective is
to quantify the amount of STIX data publicly released from
open sources. Specifically, we examine the count of unique
STIX objects shared daily. This analysis provides insights
into the quantity of shared STIX data to determine if the
volume of publicly shared STIX data is sufficient to cover
a massive number of new cyber threats. Next, we are also
interested in how many duplicated data are in the collected
dataset to see the substantial scale of the shared STIX data.
A lot of redundant data results in a smaller coverage of the
target threats that STIX describes. Furthermore, it means that
security applications that rely on STIX objects should perform
the unnecessary deduplication process. Lastly, we investigate
the number of STIX data over time for multiple sources. It
aims to find any trend in STIX adoption. We also focus on the
existence of sources where data is consistently shared.

RQ2 (Timeliness): How promptly is STIX data shared
following a cyber threat discovery? Our objective is to assess
the time interval from when a threat is initially detected to
when a corresponding STIX object is publicly released since
the timeliness of threat intelligence plays a pivotal role in
cybersecurity. This analysis provides a clearer perspective on
how efficiently threat intelligence sharing can act as a deterrent
against cyber attacks.

RQ3 (Coverage): To what extent does publicly shared
STIX data cover a wide range of cybersecurity threats?
Our objective is to evaluate the coverage of threat information
disseminated via the STIX standard. STIX defines a wide
range of objects and attributes to represent different aspects
of cybersecurity threats, from basic IoCs (e.g., malicious IPs
and file hashes) to sophisticated TTPs (e.g., threat actors and
malware categories). We analyze the distribution of STIX
objects and attributes in a large dataset of publicly available
STIX data. This analysis provides a deeper understanding
of the extent to which the STIX standard is being used to
represent a wide range of cybersecurity threats.
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Fig. 3: Overview of CTI-Lense.

TABLE I: CTI source information used to evaluate STIX data
in CTI-Lense.

CTI data Format Sources Contained info

STIX XML,
JSON

• TAXII
• Repository

• STIX 1 obj/attr
• STIX 2 obj/attr

Incidents TEXT
• CVE
• Malpedia
• Security news

• Title
• Description
• Publication time

APT report TEXT

• Kaspersky
• TendMicro
• McAfee
• ESET
• Fortinet

• Malicious IoCs
• Threat actor
• Malware type

AV report JSON
• VirusTotal
• MetaDefender
• HybridAnalysis

• AV scan results
• First submission time

RQ4 (Quality): What is the quality of STIX data in
terms of its correctness and completeness in representing
cyber threats? Our objective is to evaluate the quality of
STIX data by assessing its correctness and completeness in
representing crucial cybersecurity information. We investigate
if the objects and attributes within the STIX data are used
accurately according to the STIX standard, and if producers
assign valid values correctly. This analysis provides insights
into the reliability of the disseminated STIX data.

B. Overview of Our Framework (CTI-Lense)

To answer our research questions, we developed CTI-
Lense, a framework that aggregates CTI data from multiple
open sources and analyzes the compiled data to assess its vol-
ume, timeliness, coverage, and quality. We use CTI-Lense to
analyze STIX data. Figure 3 illustrates the overall architecture
of CTI-Lense, which collects CTI data (particularly STIX data)
from various sources to better understand the STIX ecosystem.
The format, full list of sources, and information for each CTI
data are listed in Table I.

We primarily analyze STIX as our CTI dataset, evaluating
volume, timeliness, coverage, and quality based on its objects
and attributes. The “incident” dataset is a narrative text dataset
sourced from Malpedia, security news websites, and CVEs.
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It contains the title, description, and publication time, which
we use to perform causality tests to measure timeliness.
The “APT report” dataset is another narrative text dataset
reported by security experts from prominent companies, such
as Kaspersky. This dataset provides information on malicious
IoCs, threat actors, and malware types and helps to evaluate
the quality of the STIX data. For text-based CTI datasets
like “incident” and “APT reports,” we transform them into
JSON format, incorporating both raw text and essential details
for comparison with STIX data. Finally, the “AV report”
dataset is a JSON-formatted CTI dataset collected from three
widely used scanning services: VirusTotal, MetaDefender, and
HybridAnalysis. It contains anti-malware scanning results and
IoC submission times, which we use to analyze the timeliness
and quality of the STIX data.

Volume. We assess the volume and duplication of STIX data
to understand the amount and quality of information. First, we
count the number of STIX data objects shared daily and by
source. Then, we measure the proportion of duplicated STIX
data within and across sources by comparing objects based
on unique attribute values. Finally, we measure the number of
monthly shared STIX data for each source (see Section IV).

Timeliness. We assess the timeliness of STIX data by compar-
ing its public release time with the timing of security incidents
and its registration time to popular scanning services such as
VirusTotal [71]. This allows us to determine how quickly STIX
data is shared compared with commercial services. First, we
investigate how long it takes for STIX data to be publicly re-
leased after a security incident occurs. We collect information
about security incidents from three sources: Malpedia [16],
security news websites [35], [29], and CVEs [7]. We also
perform a Granger causality analysis [62] to determine whether
the occurrence of security incidents causes more sharing of
STIX data objects. Second, we compare the public release time
of STIX data with its registration time to popular scanning
services such as VirusTotal [71], HybridAnalysis [12], and
MetaDefender [46] (see Section V).

Coverage. We assess the threat type coverage in STIX data by
measuring the number of objects and attributes producers use
to represent cybersecurity information. We count the objects
and attributes in our collected dataset and compare them to the
total specified in the STIX standard. We analyze object and
attribute usage statistics to see which types are used, and how
these have changed over time. This allows us to understand the
threat information types used in STIX data and if the STIX
standard is utilized to its full potential (see Section VI).

Quality. We assess the quality of STIX data by examining
improper values and improper usage. Improper values refer
to instances of incorrect values that violate the correctness of
STIX. We evaluate improper values by investigating whether
the information associated with objects or attributes is correct
and accurate. For keyword type values (e.g., threat actors and
malware categories), we obtain valid keywords as correct in-
formation from diverse trustworthy data sources. We consider
several valid keywords because several producers use their
own unique attribute values. For example, some producers use
“Lazarus Group,” while others use “Guardians of Peace” or
“Whois Team.” We check whether a given keyword matches
one of these valid keywords. We also check whether indicator
objects (e.g., malware hash, IP, and URL) refer to malicious

TABLE II: List of STIX data sources (TAXII servers (T)
and repositories (R)), the number of total and unique objects
collected from each source, and the proportion of duplicated
(dup.) objects in each STIX data source within the same source
(In dup.) and across different sources (Out dup.).

STIX sources Total Unique In dup. Out dup.

STIX 1
Hail a TAXII (T) 3,820,542 1,900,237 50.71% 0.76%
AlienVault OTX (T) 2,697,680 1,647,509 38.93% 1.16%
IBM X-Force Exchange (T) 628,738 273,274 46.36% 20.32%
PickupSTIX (T) 100,859 73,575 18.13% 6.86%

STIX 2
AlienVault OTX (T) 1,739,017 1,657,442 3.02% 2.00%
JamesBrine (R) 658,282 205,776 68.74% 0.00%
DigitalSide (R) 298,598 198,439 33.52% 7.78%
Cyware (T) 263,633 228,782 11.94% 2.51%
IBM X-Force Exchange (T) 122,717 119,611 1.25% 2.54%
Unit42 (T) 38,201 33,379 7.03% 13.29%
MITRE ATT&CK (R) 16,936 17,042 0.05% 1.73%
Limo from Anomali (T) 7,170 6,492 0.06% 12.68%
PickupSTIX (T) 516 507 1.74% 0.00%

entities by comparing each indicator object’s value with the
scanning reports obtained from online scanning services. We
use three prominent online scanning services, VirusTotal [71],
HybridAnalysis [12], and MetaDefender [46], to determine
whether a given data is malicious using a threshold-based
method [64]. Improper usage refers to cases where values exist
in an object but are not assigned to the precise attributes, which
violates the completeness of STIX. For example, a malware
family name is described in the description attribute in
a Report object rather than the name attribute in a Malware
object. We evaluate improper usage by investigating whether
values are incorrectly assigned to improper objects or attributes
when they exist (see Section VII).

C. Dataset

To conduct our analysis, we compiled a dataset of STIX
data from seven publicly available TAXII servers and three
repositories, as outlined in Table II. The observation period
spanned from October 31, 2014 to April 10, 2023, during
which we gathered a total of 6,362,065 objects (3,894,595
from STIX 1 and 2,467,470 from STIX 2). At first glance,
the quantity of STIX data instances we gathered may appear
to be smaller than the number of reported IoCs in the previous
study [70]. However, a direct comparison between these two
statistics is not straightforward. The IoCs reported in [70]
contain all IoCs provided by producers, a significant portion
of which would be duplicates. In contrast, our study focuses
exclusively on refined and actively shared CTI data provided
by service providers, as illustrated in Figure 1.

We selected seven TAXII servers: AlienVault OTX,
Hail a TAXII, IBM X-Force Exchange, Cyware,
PickupSTIX, Unit42, and Limo from Anomali;
along with three public repositories: JamesBrine,
DigitalSide, and MitreAttack. To aggregate as
many public STIX data sources as possible, we refer to
the services listed on the official STIX website [43] and
data sources referenced in academic literature [3] and public
communities [66], [42]. There are 84 STIX-related services
in total, and we finally select 10 services among them.
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The reasons why we remove 74 services are because 23 of
them are inaccessible and 19 of them are confined to closed
communities or necessitate payment. The rest 32 services are
ones that only leverage STIX (e.g., SIEM) but do not share
their STIX data through a TAXII server or a repository.

To facilitate effective analysis of STIX objects, we store the
content of the collected STIX objects in our internal MongoDB
database. To handle two major STIX versions – STIX 1.x and
STIX 2.x, which differ in structure (flat vs. nested) and format
(XML vs. JSON), we convert STIX objects that are formatted
in XML (i.e., STIX 1) into JSON-encoded ones using the
python-stix3 library.

STIX allows for references within objects. However, these
references can have varying styles, complicating processing.
For instance, a STIX 1 object from AlienVault incorporates
an Observable object as one of the attributes within an Indi-
cator object. Conversely, Hail a TAXII generates separate
Observable objects and references them within an Indicator
object using the id attribute from the Observable objects. We
tackle this challenge by ensuring all Observable objects exist
as independent entities with unique ids when we store STIX
objects in our database.

The final step in our data collection process is deduplicating
the STIX objects. This is another challenging task because dif-
ferent collections can have different STIX objects representing
the same threat information, even with different identifiers. For
example, two STIX objects might both represent a malware
sample, but they might have different identifiers because
they were collected from different sources. To address this
challenge, we follow a two-step deduplication process. First,
we remove objects with identical identifiers that were collected
from the same data source. This ensures that we do not have
multiple copies of the same object from the same source. Sec-
ond, we eliminate duplicate objects based on unique attribute
values. For example, we might compare the hash values of
malware samples or the IP addresses of malicious domains.
This ensures that we do not have multiple copies of the same
object from different sources. After deduplication, our dataset
comprises 6,362,065 objects, which were deduplicated from
10,392,889 objects.

IV. VOLUME OF STIX DATA IN THE WILD

This section provides several statistical measures of pub-
licly shared STIX data using CTI-Lense. We first quantify the
volume of STIX data by measuring the number of publicly
shared STIX objects, analyzing in more detail with regard to
STIX version and data source. Second, we analyze the extent
of duplicated data within the dataset. Finally, we measure
the number of monthly shared STIX data for each source to
analyze the volume trend over time.

Number of STIX objects shared. In our dataset, we find
that the first shared STIX data appeared on October 31, 2014.
In total, 10,392,889 STIX objects were shared until April
10, 2023, equating to an average daily share of 3,371 STIX
objects. Of the total number of shared STIX objects, 7,247,819
(69.74%) are in STIX 1 format and 3,145,070 (30.26%) are in
STIX 2 format.

3https://github.com/STIXProject/python-stix

For STIX 1 data, Hail a TAXII emerged as the domi-
nant source, contributing 3,820,542 objects, which represent
52.70% of the total 7,249,819 objects. The second largest
contributor was AlienVault OTX, with its share amounting
to 2,697,680 objects or 37.21%. IBM X-Force Exchange
and PickupSTIX together accounted for approximately 10%
of the shared data, with contributions of 8.67% and 1.39%,
respectively. For STIX 2 data, 2,171,254 objects (69.04%)
were shared via TAXII, and external repositories contributed
973,816 objects (30.96%). Among the entities that share STIX
2 data over TAXII, AlienVault OTX was the most prolific,
contributing 1,739,017 objects, which represent more than 80%
of the shared data.

For all STIX objects in our dataset, we observed that more
than 9,419,073 objects (90.63%) were shared through TAXII
and 973,816 objects (9.37%) were shared from external repos-
itories. The top 3 most frequent data sources over TAXII are
AlienVault OTX, Hail a TAXII, and IBM X-Force
Exchange, sharing 4,436,697 (47.10%), 3,820,542 (40.56%),
and 751,455 (7.98%) of the total shared STIX objects, re-
spectively. For external repositories, JamesBrine was the
most prevalent, sharing 658,282 objects (67.60%), followed
by DigitalSide, sharing 298,598 objects (30.66%), and
MITRE ATT&CK, sharing 16,936 objects (1.74%).

Data duplication. Table II shows the number of STIX objects
shared by each data source from the moment we first observed
their sharing activity to the end of our data collection period.

Our analysis of unique objects shared by data sources in
both the STIX 1 and STIX 2 data reveals interesting trends.
Contrary to what one might expect, the volume of shared ob-
jects does not directly correlate with the number of duplicates
across various data sources. For instance, Hail a TAXII,
which shares the highest number of objects, has the lowest
proportion of duplicates at only 0.76%. This is followed by
AlienVault OTX at 1.16%, PickupSTIX at 6.86%, and
IBM X-Force Exchange at 20.32%. Similarly, in STIX 2,
each data source possesses a significant number of uniquely
shared STIX objects not found in other data sources. These
results are consistent with previous work showing that most
data in threat intelligence feeds are unique [41], [68], [26].

However, we observe a significant amount of duplication
within individual data sources. For instance, Hail a TAXII
shows a 50.71% duplication rate in its shared STIX 1 ob-
jects. Other sources present similar trends: IBM X-Force
Exchange contains 46.36% duplicates, AlienVault OTX
contains 38.93%, and PickupSTIX contains 18.13%. Con-
sidering that Hail a TAXII and AlienVault OTX to-
gether account for 89.91% of all shared STIX 1 objects, the
high rate of duplication within these sources raises concerns
about data redundancy.

In contrast, the rate of duplicates in STIX 2 data shared via
TAXII is relatively lower, but the concentration of duplicates
is higher for data shared through external repositories. Among
these, JamesBrine shared the highest number of STIX
2 objects (658,282), with 68.74% of which are duplicates.
DigitalSide, the second most prevalent repository, shared
298,598 objects, 33.52% of which are duplicates.

Overall, 37.89% of the STIX objects generated by a single
source are redundant, with AlienVault OTX exhibiting the
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Fig. 4: Monthly number of shared STIX data. The red zones
indicate periods of rapid increase in STIX data volume, while
the blue zone indicates a period of rapid decrease in volume.

highest duplication rate at 68.74%. Of the total 10,392,889
shared STIX objects, only 6,362,056 (61.22%) are unique
across all data sources. Consequently, a daily average of
just 2,063 unique objects is publicly shared. Given the daily
influx of new malware samples, IPs, and URLs, this number
seems insufficient, especially considering AV-TEST Institute’s
records indicating that over 450,000 new malware samples and
potentially unwanted applications emerge each day [6].

STIX data sharing volume over time. Figure 4 shows how
many STIX data (1 and 2) have been shared by each source
during our observation period, excluding sources with less than
100,000 unique data for better presentation.

STIX data sharing has increased in recent years. As shown
in Figure 4a, over 10,000 STIX data points have been shared
on Hail a TAXII in most months since January 2015.
AlienVault OTX experienced a sharp rise in shared STIX
1 data starting in June 2016, with nearly 10,000 STIX data
points being shared in most months after that. IBM X-Force
Exchange has consistently shared over 1,000 STIX data
points monthly since March 2018. These three sources signifi-
cantly contributed to the dataset and consistently shared STIX
data until Hail a TAXII stopped sharing in June 2022. As
shown in Figure 4b, for STIX 2, Cyware, DigitalSide,
IBM X-Force Exchange, and JamesBrine have ac-
tively shared data since the release of the latest STIX 2.1
version in March 2020 [9]. Because STIX 2 was released in
July 2017, there should technically be no data created before
this date. We have found cases where the creation time of STIX
2 data is earlier than July 2017. This occurred because some
STIX 1 data was converted to STIX 2 after July 2017, resulting
in the retention of the original creation time in the new format.
We verified this by extracting indicators from both STIX 1 and

STIX 2 data that shared identical hash values, confirming that
STIX 1 data was utilized in the generation of STIX 2 data.
Overall, the trend of sharing STIX data has been rising since
2016.

We apply linear regression to our dataset to see the trend
in the number of shared data for each source over time. We
found that the volume of shared data for AlienVault OTX,
IBM X-Force Exchange, JamesBrine, and Cyware
gradually increased with p < 0.05. On the contrary, the volume
of shared data for Hail a TAXII suddenly decreased with
p < 0.05. However, this is because Hail a TAXII stopped
sharing STIX data in June 2022. Furthermore, we observe that
the total amount of shared data in STIX 2 gradually increases
with p < 0.05, while the trend in the total amount in STIX 1
is not statistically significant.

Takeaway: STIX 1 is shared more often than STIX
2, but the sharing of STIX 2 data has been signifi-
cantly increasing recently, along with new sources. The
data is primarily sourced from leading security compa-
nies like AlienVault OTX, Hail a TAXII, and IBM
X-Force Exchange, mainly through TAXII. This con-
centration implies that the open STIX dataset predominantly
depends on a few sources. This concentration implies that
the open STIX dataset largely relies on a few sources. While
there is a low level of duplicate data across providers, sub-
stantial duplication is observed within individual providers.
This emphasizes the need to remove duplicate data before
deployment. Overall, we observe that the trend of sharing
STIX data has been rising since 2016.

V. TIMELINESS

This section investigates the timeliness of STIX data,
utilizing CTI-Lense. First, we analyze the relationship between
the STIX data and corresponding security incidents. Then, we
analyze the latency between the initial appearance of STIX
data and its subsequent detection by popular scanning services.

A. STIX and Security Incidents

We examine the relevance of STIX data to actual security
incidents. Timely threat information is crucial for consumers.
Therefore, we first explore the latency between the date that
security incidents are initially detected and the date when
the corresponding STIX object is generated. Subsequently, we
analyze the Granger causality [62] between the daily number of
shared STIX objects and the daily number of security incidents
reported from three distinct sources: Malpedia [16], security
news websites, and the publication of CVEs. We perform this
analysis at various time lags. Based on the time each security
incident is detected, we measure the number of days until the
corresponding information is first shared in the STIX data for
each data source.

Security incidents. To measure the timeliness of STIX data
sharing against security incidents, we focus on two infamous
cyber attacks: the Mirai botnet [4] and the WannaCry ran-
somware [61]. Specifically, we measure the time (i.e., the
number of days) it took for the hash value of a malware sample
for each attack to be shared as an attribute value in the STIX
object, starting from the date of detection. We then compared
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TABLE III: Number of days it takes for STIX data to be
produced after a security incident occurs.

STIX sources
Mirai botnet WannaCry

Initial Variant Initial Variant

OTX AlienVault 55 10 96 30
IBM X-Force Exchange 43 30 109 50

the STIX data creation date delays of initial malware samples
with their variants.

To identify initial malware sample hash values, we referred
to the security reports of renowned companies for Mirai botnet
(6b7b6ee71c8338c030997d902a2fa593) and Wan-
naCry (9c7c7149387a1c79679a87dd1ba755bc) [39],
[60]. To calculate the time delay, we searched the malware
hash value on VirusTotal and determined its first detected
time using first submission time. For malware variants, we
randomly selected 100 malware hashes labeled Mirai and
WannaCry in STIX data for each source and measured the
average time difference with VirusTotal in the same way.

Table III summarizes our findings on the time delays.
Only two sources, AlienVault OTX and IBM X-Force
Exchange, contained initial malware sample hash informa-
tion for Mirai and WannaCry. IBM X-Force Exchange
produced the initial Mirai malware hash 43 days after the
initial detection, which is 12 days faster than AlienVault
OTX. In contrast, AlienVault OTX produced the initial
WannaCry sample hash 96 days after the initial detection,
which is 13 days faster than IBM X-Force Exchange.
Unlike initial malware samples, we found that STIX data for
the variants was shared more quickly for both the Mirai botnet
and WannaCry. AlienVault OTX shared STIX data for
Mirai botnet and WannaCry variants within an average of 10
and 30 days, respectively, while IBM X-Force Exchange
shared it within 30 and 50 days, respectively.

Causality test. Analyzing the relationship between STIX ob-
jects and security incidents can be challenging due to missing
attributes or unstructured text in the shared data. Alternatively,
we collect daily security incidents from various sources and
conduct causality tests with daily shared STIX data.

To obtain the daily number of security incidents, we
collect 12,133 posts from Malpedia, 15,671 posts from popular
news websites, and 151,431 published CVEs within the same
period as the STIX dataset. Malpedia [16] is a resource for
malware information, providing details such as malware family
and threat actor information. Furthermore, it promptly shares
information about security incidents from various sources,
including well-known cybersecurity companies (e.g., Avast,
Bitdefender), news websites (e.g., Threatpost), and blogs. This
information includes reports of cyber attack campaigns such
as targeted attacks and critical vulnerabilities.

We utilize Granger causality [62], a statistical concept
of causality used to identify if one time series can predict
another, to measure the relationship between STIX data and
security incidents. We define a time-lag as the number of
days between the date a security incident occurs and the date
when the exchange rate of STIX data increases. Then, we
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Fig. 5: Differences in the data generation time between STIX
and each scanning service. VirusTotal (VT), HybridAnalysis
(HA), and MetaDefender (MD).

analyze causality by varying the time lag from one day to
30 days. To address the multiple comparison problems, we
apply Bonferroni corrections [45], with n = 90, since we
analyze causality with a time-lag up to 30 days for three
incident data sources. We find weak evidence of a causal
relationship between security incidents reported on Malpedia
and security news websites and the sharing of STIX data in
our collected dataset. Specifically, we find that STIX data
are shared after 2–4 days and 2–12 days, with p < 0.05,
following the reporting of incidents in Malpedia and security
news websites, respectively. However, we do not find any
significant evidence suggesting a causal relationship between
the publication of CVEs and STIX data sharing, with p > 0.05
for all time-lag values.

B. STIX and Other Services

We also compare the generation time of STIX data with the
submission time of corresponding data on popular scanning
services, such as VirusTotal [71], HybridAnalysis [12], and
MetaDefender [46]. These platforms serve as widely used
repositories for virus samples. We concentrate specifically on
the Observable attributes present in Indicator objects, as the
Observable attributes contain one of four types of data: an IP
address, a domain, a file hash, or a URL.

In total, we collect 70,997 file hashes and 374,973 URLs
from VirusTotal, 31,290 file hashes from MetaDefender, and
14,924 domains, 10,179 file hashes, 836 IPs, and 8,055 URLs
from HybridAnalysis. Then, we compare the timestamp at-
tributes of the Indicator objects with the first submission time
values of VirusTotal and scan start time values in Hybrid-
Analysis and MetaDefender. We exclude the Observable types
(e.g., those in IP and domain objects for VirusTotal) for which
the first submission time and scan start time are not shown
in the results for each service.

Figure 5 shows the time differences between STIX data
generation and scanning service data submission for each data
type. For example, HA-Domain represents the number of days
between when a domain data appeared in HybridAnalysis and
the same domain data appeared in STIX. These differences are
calculated by subtracting the STIX data generation time from
the data submission time for each service. A concentration of
positive values for timeliness indicates that STIX data gener-
ation is quicker than the submission time of the services (e.g.,
HA-Domain). As shown in Figure 5, STIX data for domains,
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file hashes, and URIs is generated equally or more quickly than
HybridAnalysis, while IP data is generated more slowly. STIX
also shows comparable performance to VirusTotal for URI data
on average, sharing 72% of URLs either before or on the same
day. However, STIX is much slower than MetaDefender and
VirusTotal with respect to the first submission date for file
hash data. This is a critical issue, as antivirus response times
can be slow, as reported in a previous study [8] that found
an average antivirus response time of 19 days. These results
suggest that utilizing STIX data could enhance the efficiency
of prompt detection and defense against attacks involving
domains and URIs. However, the efficacy of IP and file hash
data is questionable.

Takeaway: Our analysis shows that producers of STIX data
actively generate and share them within 2–4 days after a
security incident occurs. However, except for domain and
URI data, the efficacy of STIX is not yet confirmed, as most
STIX data are generated considerably slower than other
commercial services.

VI. COVERAGE

This section presents the evaluation of the application of
the STIX standard in terms of coverage, utilizing CTI-Lense.
Although STIX 1 and STIX 2 define 8 and 20 types of objects,
respectively, only 6 (75%) and 15 (75%) object types are used
in their respective datasets. This indicates that the full range of
STIX objects is not being utilized. Examples of unused object
types include Campaign and Report in STIX 1, and Malware
Analysis in STIX 2.

We also analyze the dataset to identify the types of objects
most frequently used by those producers (see Table IV).
Based on our quantitative analysis, we obtained three important
findings. First, we find that the most widely used object type
is Indicator, which accounts for more than 90%, regardless
of the versions of the STIX dataset. The reason why objects
of Indicator type are so widely used is that they contain
observables, such as hash values of malware or URL strings,
which are used to identify specific malicious samples (see
Figure 2). Second, we find some cases in which the number of
similar data increases fast. For example, a Cerber ransomware
variant was generated every 15 seconds [15] as the URLs
used are frequently changed by domain generation algorithms
(DGA). Finally, most STIX objects contain less than 50% of
the attributes defined in STIX 1, while most STIX 2 objects
use more than 50% of the attributes. Although it seems that the
number of attributes used in STIX 2 is higher compared with
that of STIX 1, we find that the main reason for such difference
is that STIX 2 defines several additional but simple metadata,
such as Created, Modified, and Spec version as shown in
Table V. We observe that an average of 2 and 6 attributes
for STIX 1 and STIX 2 contain metadata, respectively. Other
than that, the numbers of attributes used in STIX 1 and STIX
2 are similar, which means that producers still do not benefit
from newly added objects and attributes.

Attributes usage in Indicator. As the Indicator type is the
most used in the STIX dataset, we take a further look into the
attributes used in Indicator. Figure 2 includes an example of an
Indicator object in the STIX 1 dataset. Title and Description

TABLE IV: Objects and attributes used in the STIX dataset.
We find that only 6 (75%) and 15 (75%) types of objects are
used in the STIX 1 and STIX 2 datasets, which means that
the full range of STIX objects is not being utilized.

STIX version Objects Attributes

STIX 1 Count Prop. Usage Prop.

Course of action 3,768 0.10% 5 / 19 26.32%
Exploit target 10,789 0.28% 6 / 15 40.00%
Incident 29,086 0.75% 4 / 34 11.76%
Indicator 3,846,499 98.77% 13 / 25 52.00%
Threat actor 719 0.02% 3 / 20 15.00%
TTP 3,734 0.10% 10 / 18 55.56%

STIX 2 Count Prop. Usage Prop.

Attack pattern 1,662 0.07% 12 / 18 66.67%
Campaign 151 0.01% 9 / 20 45.00%
Course of action 1,181 0.05% 11 / 16 68.75%
Identity 1,110 0.04% 12 / 20 60.00%
Indicator 2,342,261 94.93% 18 / 23 78.26%
Intrusion set 211 0.01% 12 / 23 52.17%
Location 1 0.11% 9 / 25 36.00%
Malware 2,733 0.21% 16 / 26 61.54%
Observed data 5,087 0.00% 11 / 19 57.89%
Report 57,165 2.32% 14 / 19 73.68%
Threat actor 723 0.03% 10 / 27 37.04%
Tool 491 0.02% 11 / 20 55.00%
Vulnerability 5,755 0.23% 11 / 16 68.75%
Sighting 1,273 0.05% 12 / 22 54.55%
Relationship 47,666 1.93% 11 / 20 55.00%

contain suspicious IP addresses and texts. Type and Indi-
cated TTP are used to describe the types of information (e.g.,
malware family) with several pre-defined keywords, such as
IP Watchlist (i.e., suspicious IP addresses) and ET.Evil
(i.e., a name of a malware family). Test Mechanism presents
rules for detecting Observable.

Table V lists attributes with data on their usage in Indicator.
Almost all the STIX 1 Indicator objects contain the Title
(100%) and Observable (99.92%) attributes. However, not
many objects include information types, such as Type (53.73%)
or Indicated TTP (34.76%). Furthermore, only 0.09% of Indi-
cator objects contain some rules in the Test Mechanisms (e.g.,
Snort rule) attribute for detecting suspicious data. Similarly,
most of the STIX 2 data includes the name (100%) and
pattern (100%) attributes, which correspond to the Title and
Observable attributes in STIX 1. By contrast, labels (32.62%)
and indicator types labels (17.13%) were seldom used or not
used at all.

STIX object/attribute coverage over time. We analyze object
and attribute usage for each source to analyze the coverage
trend over time. STIX object type usage patterns across various
sources show a degree of consistency, with occasional devia-
tions. Figure 6 shows the monthly average number of objects
used from each source from January 2015 to December 2022.
For better visualization, we have excluded data from STIX
sources with fewer than 100,000 unique objects. We observe
that the number of object types and attributes provided by
each source also increases overall, but there remains a limited
number of object types over time.
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TABLE V: Attributes used in Indicator objects. We note that
producers use only certain attributes to describe indicators,
and few STIX data include security rules or information about
attack steps useful to detect cyber attacks.

STIX version Attributes Count Prop.

STIX 1

Id 3,846,499 100.00%
Title 3,846,499 100.00%
Observable 3,843,391 99.92%
Timestamp 3,773,080 98.09%
Description 2,346,868 61.01%
Type 2,066,834 53.73%
Producer 1,972,657 51.28%
Version 1,899,238 49.38%
Indicated TTP 1,337,050 34.76%
Confidence 1,308,416 34.02%
Short description 1,140,838 29.66%
Test Mechanism 3,482 0.09%
Sightings 116 0.00%

STIX 2

Id 2,342,261 100.00%
Created 2,342,261 100.00%
Modified 2,342,261 100.00%
Pattern 2,342,261 100.00%
Type 2,342,261 100.00%
Valid from 2,342,261 100.00%
Name 2,342,217 100.00%
Description 2,170,475 92.67%
Pattern type 2,005,272 85.61%
Spec version 2,001,972 85.47%
Pattern version 1,999,546 85.37%
Labels 763,935 32.62%
Indicator types 401,322 17.13%
Kill chain phases 401,286 17.13%
Created by ref 238,844 10.20%
Object marking refs 98,700 4.21%
Revoked 62,759 2.68%
Valid until 33,503 1.43%

For STIX 1, AlienVault OTX consistently used either
Indicator and Threat actor or Indicator and Incident. IBM
X-Force Exchange used up to three object types by De-
cember 2020, but since June 2021, it has primarily used only
the Indicator type. Hail a TAXII used only the Indicator
type since 2015 and until June 2022, when it appears to have
ceased its sharing service.

For STIX 2, AlienVault OTX mostly shares two object
types, with a slight increase in the average number recently.
IBM X-Force Exchange consistently shares just one ob-
ject type, while Hail a TAXII does not share any STIX 2
data. Cyware, JamesBrine, and DigitalSide showed
a sudden increase in the number of objects used, indicating
service initiation at that point. After June 2020, Cyware
observed an increase in the average number of shared objects
from 2–3 to about 4.

Our linear regression analysis indicated a statistically sig-
nificant increase in the average number of STIX object types
used across all sources, except for Hail a TAXII in STIX
1 and JamesBrine in STIX 2, with p < 0.05. Hail a
TAXII showed a declining trend, likely due to the cessation
of their service after June 2022.
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Fig. 6: Average number of STIX object types used for each
source per month. The red zones indicate periods of rapid
increase in STIX object types used, while the blue zone
indicates a period of rapid decrease in STIX object types used.

STIX attribute usage patterns in Indicator objects show
similar trends. Figure 7 shows the average number of at-
tributes used in Indicator objects for each source per month.
We performed linear regression on STIX attribute usage in
Indicator objects per source and found a statistically significant
increase in the average number of STIX attributes used across
all sources (p < 0.05), except for AilenVault OTX in both
STIX versions and IBM X-Force Exchange in STIX 2.
AlienVault OTX showed no significant trend, and IBM
X-Force Exchange gradually decreased its attribute usage
(p < 0.05).

Interestingly, different sources use different object types
and attributes to represent even the same CTI data, likely due to
variations in STIX generation. Each source has its own unique
web interface for collecting CTI information, with varying
options and defaults. These differences appear to have led to
unique object types and attribute patterns for each source.

Takeaway: Our analysis shows that the STIX data are
mostly based on the Indicator objects, accounting for more
than 90% of all the data. Most of the Indicator objects
contain simple indicators of compromise information, such
as malicious file hash or URL strings, while few of them
include security rules to detect cyber attacks or information
about attack steps to detect or predict multistep attacks.
Also, we find that the number of object types and attributes
used for STIX data is diverse depending on the data source.
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Fig. 7: Average number of attributes used in Indicator objects
for each source per month. The red zones indicate periods of
rapid increase in attribute usage in Indicator objects, while
the blue zone indicates a period of rapid decrease in attribute
usage.

VII. QUALITY

This section analyzes the quality of STIX data by evaluat-
ing improper values and improper usage of objects/attributes,
utilizing CTI-Lense.

A. Improper Value

We analyze whether the values in STIX objects and at-
tributes written by producers are correct. We focus specifically
on values in three objects for each STIX version – STIX
1: Indicator, TTP, and Threat actor; and STIX 2: Indicator,
Malware, and Threat actor.

Figure 8 shows an example of an improper value case,
where Lazarus, a threat group name, is described with
the Name attribute of the TTP object. It is also important
to ensure the simple hash value in the Observable attribute
contains a malicious file hash value related to Lazarus.
For this example, we examine whether the hash value
12cc14bbbc421275c3c6145bfa186dff is actually re-
lated to TTP.

In addition, the simple hash value in the Observable at-
tribute must contain a malicious file hash value, which is
related to Lazarus, to use STIX properly. Incorrect STIX
data can cause severe problems, leading to improper responses
to security threats. Rectifying incorrect STIX data can be
a heavy burden for security practitioners who process large
volumes of threat data.

1 <stix:Indicator id="indicator-...">
2 <indicator:Observable idref="...">
3 <cyboxCommon:simple_hash_value>
4 12cc14bbbc421275c3c6145bfa186dff
5 </cyboxCommon:simple_hash_value>
6 </indicator:Observable>
7 <indicator:Indicated_TTP>
8 <stix:TTP id="ttp-...">
9 <ttp:Behavior>

10 <ttp:Malware_Instance>
11 <ttp:Name> Lazarus </ttp:Name>
12 </ttp:Malware_Instance>
13 <ttp:Behavior>
14 ...
15 </stix:TTP>
16 </indicator:Indicated_TTP>
17 </stix:Indicator>

Fig. 8: Example of improper value of an attribute. Note that
Lazarus, a threat actor, is assigned to the Malware Instance
attribute in the TTP object.

Incorrect keywords in attributes. To evaluate the improper
values of attributes, we first focus on the mapping between
attributes and values in three objects – Threat actor, TTP, and
Malware – where values are a form of attribute keywords.
To quantify the level of improper values, we first generate
the ground truth dataset of threat actors and malware fami-
lies by querying three data sources: Malpedia [16], MITRE
ATT&CK [47], and MISP GitHub4, which are widely used
for labeling threat actors or malware families [67], [59], [32].
In detail, for each STIX data in the datasets, we extract the
values of the Name attributes of the Threat actor, TTP, and
Malware and make a list of names. As there can be different
keywords that indicate the same target (e.g., “Lazarus” and
“Hidden Cobra”), we also refer to the “alias” fields and include
all the values of the field in our keyword list. Finally, the list
includes 2,111 threat actor names and 4,071 malware family
names. Then, we search all the names in the list of the data
sources and classify the results into one of Threat actor, TTP,
Malware, or Unknown. Also, we collect naming conventions
of threat actors (e.g., “UNC N”, “APT-C-N ,” and “Magecart
group N”) used by security vendors. Based on the ground truth
dataset and naming conventions, we determine the mapping
between attributes and values in STIX data is correct if the
mapping matches any entry in the ground truth dataset or a
value in the Name attribute of the Threat actor follows any of
the naming conventions. For instance, if we find “UNC 10” in
the Name attribute of the Threat actor, we consider it correct
as the name follows the naming convention “UNC N .”

We report our analysis results in Figure 9, where Correct
means that the values written in the STIX data and in the
ground truth dataset are in the same objects, or the values
follow any of the naming conventions, while Incorrect means
that the values of the STIX data and that of the ground
truth dataset are different. We mark as Unmatched the values
classified as Unknown in our ground truth dataset. We find
that 19% of Threat actor objects of both STIX versions
contain TTP names or Malware names. Furthermore, 62%
and 58% of malware family information in STIX 1 and 2
(i.e., TTP and Malware) does not match any of the entries

4https://github.com/MISP/misp-galaxy/tree/main/clusters
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TABLE VI: Detection rates of Indicator objects in the STIX dataset by observable type and commercial scanning service.
Detected denotes the proportion of Indicator objects detected by at least one engine out of the total count of requests. Not det.
denotes the proportion of Indicator objects detected by no engine out of the total count of requests. N/A denotes the proportion
of Indicator objects that do not exist in a scanning service.

VirusTotal HybridAnalysis MetaDefender

Observable types Count Detected Not det. N/A Detected Not det. N/A Detected Not det. N/A

AddressObjectType 43,537 50.62% 49.38% 0.00% 8.75% 91.25% 0.00% 30.02% 69.98% 0.00%
DomainNameObjectType 163,121 39.99% 59.90% 0.12% 9.25% 90.63% 0.12% 18.28% 81.59% 0.13%
FileObjectType 88,470 78.37% 1.87% 19.75% 42.24% 5.30% 52.46% 77.02% 3.22% 19.75%
URIObjectType 377,857 97.06% 2.18% 0.76% 2.37% 96.87% 0.77% 91.72% 8.26% 0.02%

Total 672,985 77.77% 19.18% 3.05% 9.69% 82.95% 7.35% 67.99% 29.37% 2.64%

Malware (STIX 2)

Threat actor (STIX 2)
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Threat actor (STIX 1)
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Fig. 9: Proportion of correct and incorrect attribute values. We
find that 19% of Threat actor objects of both STIX versions
contain TTP names or Malware names.

in the ground truth dataset. To understand the reason for such
unmatched objects, we manually analyze their values. We find
that the majority of the values are named based on producers’
own conventions. For instance, some STIX producers use
the substrings (e.g., “DIK” and “ZBOT.DIK”) of the name
of malware (e.g., “TSPY ZBOT.DIK”) defined by security
providers (e.g., TrendMicro). There are also some misspelled
cases (e.g., “WannaCry” as “Wancry”) that increase the number
of unmatched cases.

Validation of values in attributes. We investigate whether the
values in Observable attributes (e.g., malware hashes, domains,
URLs, and IPs), generated between January 1, 2020, and
January 3, 2022, are actually malicious.

To build a ground truth dataset of Indicator objects,
we retrieve scanning reports from three services: VirusTotal,
HybridAnalysis, and MetaDefender, which are widely used
to validate threat indicators [28], [38], [37], [21], [55]. For
each attribute type (i.e., malware hashes, domains, URLs,
and IP addresses), VirusTotal and MetaDefender provide de-
tection results from various anomaly detection engines, and
HybridAnalysis provides a threat score with three status tags
(i.e., malicious, suspicious, and no specific threat). We used
the report, search, and lookup APIs provided by VirusTotal,
HybridAnalysis, and MetaDefender, respectively, to obtain the
latest scanning results. We collected the values for different
observable types of indicators, including hashes of malware,
domains, URLs, and IP addresses, which correspond to the val-
ues of the FileObjectType, DomainNameObjectType,

URIObjectType, and AddressObjectType properties
of Indicator objects, respectively. Since the STIX data we
searched for may not exist for each service, we measure the
ratio of detected, undetected, and not applicable (N/A) data
for each service.

Table VI summarizes the statistics derived from reports
collected from three services. In total, we query 672,985
Observable data in the Indicator objects and obtain 652,452
(96.95%), 623,492 (92.65%), and 655,213 (97.36%) reports for
VirusTotal, HybridAnalysis, and MetaDefender, respectively.
We first count the number of detections as the number of
reports that include at least one positive result. Then, we
compute the detection rate by dividing the detection count by
the number of total reports. We find that 523,352 (77.77%) and
457,595 (67.99%) threats described by the corresponding STIX
data are confirmed by at least one of the engines in Virus-
Total and MetaDefender, respectively. However, only 65,225
(9.69%) STIX data are confirmed by HybridAnalysis. In detail,
the FileObjectType data, which is applicable in each
source, can be almost found in all three scanning services with
high accuracy (97.67%, 88.85%, and 95.99% for VirusTotal,
HybridAnalysis, and MetaDefender, respectively). In addition,
the URIObjectType data, which is the most dominant
observable type (56.15%) in STIX, can be almost found in
VirusTotal (99.24%) and MetaDefender (99.98%) with high ac-
curacy (97.80% and 91.72%, respectively). However, although
most (over 99%) of the AddressObjectType data and
DomainNameObjectType data exist in all three scanning
services, their detection rates are low (lower than 50.62%).
On the other hand, the FileObjectType data are the most
missing type in VirusTotal (i.e., up to 52.46% of them are
missing), but they show the highest accuracy (up to 96.95%).

We analyze the VirusTotal detection result of 672,985 STIX
data in more detail. To this end, for each STIX data, we check
how many detection engines classify it as an anomaly. We
evaluate accuracy based on the threshold [64], which indicates
the minimum number of anomaly detection engines that report
a positive. Since the detection results for individual VirusTotal
engines can be flipped over time, we measure the accuracy
of the data with respect to the various thresholds for each
Observable attribute type. We select thresholds that range from
t = 2 to 39, as suggested by [64].

Figure 10 shows that the FileObjectType achieves
over 90% accuracy when the threshold is set to less than
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Fig. 10: Accuracy for observable types based on each
threshold t. We note that both FileObjectType and
URIObjectType, which account for 70.34% of all the data,
achieve about 90% of accuracy when the threshold is set to
less than or equal to t = 5 (96.74% and 87.69%, respectively).
Although STIX does not always contain accurate values, STIX
includes quite verified values for file objects and URIs.

or equal to t = 20 (90.08% for t = 20). We conclude
that STIX disseminates accurate values, especially for file
objects. Subsequently, URIObjectType achieves about 90%
accuracy in a small range with a threshold less than or equal
to t = 5 (87.69% for t = 5). However, the detection rate
becomes 0, when the threshold is set to over t = 20. In
addition, we find that about 50% of AddressObjectType
and DomainObjectType data are detected by no engine in
VirusTotal. It means that for the AddressObjectType and
DomainObjectType data, STIX data are not confirmed to
be accurate with regard to VirusTotal; however, it does not
mean that the STIX data are inaccurate because there can be
some addresses or domain names that the VirusTotal engines
do not detect. Interestingly, when t = 20, the accuracy of
most observable types becomes 0, but FileObjectType
shows significantly high accuracy. The result indicates that
STIX provides verified information on file objects.

Validation of values in attributes by producer. We were
curious to see if the validity of STIX data varies depending on
the producer. To this end, we divided the Indicator objects
by producer and compared them with VirusTotal detection
results. Table VII compares the validity of STIX Indicator
objects shared on VirusTotal from January 2020 to January
2022 by producer. We categorized the Indicator objects into
three groups: those from producers with known identities
(phishtank.com and dshield.org) and those without
producer information (‘None’).

Our results are based on VirusTotal scanning reports of
672,985 Indicator objects shared over two years. Of the
328,600 (48.83% out of 672,985) Indicator objects with
producer names, 328,585 objects (99.99%) are produced by
phishtank.com and achieve a very high accuracy of
99.79%, which is much higher than URIObjectType objects
without producer names (77.74% out of 49,963)5. This sug-
gests that the accuracy of URIObjectType objects with producer
names is higher than that of objects without producer names.

5Note that a total number of objects without producers is 344,385 (51.17%
out of 672,985), but only 49,963 (14.51%) has URIObjectType objects.

TABLE VII: Validity of Indicator objects in the STIX dataset,
grouped by producer identity, using VirusTotal. Detected de-
notes the proportion of Indicator objects detected by at least
one engine in the VirusTotal.

Producer Observable types # (%) Objects Detected

phishtank.com URIObjectType 328,585 (99.99%) 99.79%
AddressObjectType - -

dshield.org URIObjectType - -
AddressObjectType 15 (0.00%) 6.67%

None
URIObjectType 49,963 (14.51%) 77.74%
AddressObjectType 43,522 (12.64%) 50.63%

Total 344,385 (100%) -

TABLE VIII: Correctly mapped STIX objects with APT re-
ports.

Indicator attr. Ref. object Overlap # (%) Correct

Observable
(STIX 1)

Threat actor 17,737 15,875 (89.50%)
TTP 10,632 3,601 (33.87%)

Pattern
(STIX 2)

Threat actor 27,352 12,538 (45.84%)
Malware 1,661 86 ( 5.18%)

However, in the case of AddressObjectType objects, the situ-
ation is reversed. The 15 objects on dshield.org have a
very low accuracy of 6.67%, which is significantly lower than
objects without producer names (50.63%). We believe that the
AddressObjectType objects may generally have incorrect (or no
longer valid) information, as the objects are used to specify IP
addresses, and IP addresses are volatile and temporarily used
for malicious purposes. Also, this case is difficult to generalize,
as the sample size is only 15.

Correctness of attributes mapping. Finally, we validate the
values of Observable attributes such as Threat actor, TTP, and
Malware. For example, in Figure 8, we examine whether the
value of TTP (12cc14bbbc421275c3c6145bfa186dff)
is truly linked to Lazarus.

To conduct this analysis, it is necessary to verify the
validity of each Observable attribute value. We use threat
reports written by security experts for the ground truth. In
other words, we verify the validity of an Observable (STIX
1) or a Pattern (STIX 2) attribute based on the analysis
results presented in these threat reports. We collect 4,042 threat
reports from renowned security companies such as Kaspersky
and TrendMicro. These reports contain a total of 57,382 Ob-
servable (STIX 1) or Pattern (STIX 2) attribute values within
Indicator objects that overlap with our dataset. Table VIII
shows the number and proportion of valid attribute values
verified by the threat reports. Interestingly, approximately 90%
of Threat actor attributes in STIX 1 are valid. However, for
TTP attributes in STIX 1, only about 34% have valid values.
Furthermore, the rate of valid attribute values for Threat
actor and Malware attributes in STIX 2 is relatively lower,
standing at 45.84% and 5.18%, respectively.

The results of our analysis highlight a substantial mismatch
between the attributes of STIX data, excluding Threat Actor,
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1 <stix:STIX_Package ...>
2 <stix:STIX_Header>
3 <stix:Title> Dtrack and ATMDtrack ATM

Malware Linked to Lazarus </stix:Title>
4 <stix:Description> Summary After discovering

ATM malware they named ATMDtrack, Kaspersky
found a significant number of other related
samples of malware which they have named
Dtrack ... A remote access Trojan (RAT) is
also installed ... </stix:Description>

5 ...
6 </stix:STIX_Header>
7 <stix:Indicators>
8 <stix:Indicator id="...">...</stix:Indicator

>
9 ...

10 </stix:Indicators>
11 </stix:STIX_Package>

Fig. 11: Example of improper usage of an attribute.
ATMDtrack, the name of malware, is described in the De-
scription attribute rather than the Malware Instance attribute.

in STIX 1 and the IoCs reported in threat reports. The discrep-
ancy between STIX data and real-world threat reports suggests
that we need better data quality control mechanisms. This
includes standardized procedures, data validation, and ongoing
monitoring. We may also need improved methodologies for
generating STIX attributes.

B. Improper Usage

We measure the number of objects that contain information,
which can be precisely represented with other objects or
attributes, within a sentence, but does not include the objects
or attributes. For instance, Figure 11 presents an example of a
STIX header containing a narrative description of a malicious
sample, which we defined as improper usage. Specific actions
such as Dtrack, ATMDtrack, and RAT are described in Title
and Description but not in a TTP object that is defined to
describe such actions. Similarly, the threat actor Lazarus
should be represented using the Threat actor object, but it
is only described in Title of STIX Header. We also find this
practice in the STIX 2 dataset. Many STIX 2 data (e.g.,
threat actor and malware) use the description attribute in
Report objects to describe specific information in a narrative
way. Although such attribute usage in Title or Description
does not violate the standard, this practice limits the main
purpose of automatic processing and rapid response to threats
by machines as intended by STIX. To this end, we first make a
list of keywords from Attack pattern, Malware instance, Target
information, and Threat actor. We next review sentences of the
Description attribute of the Indicator objects and collect the
objects that include any keyword in the list. From the objects,
we classify an object in which the keyword is not described
with the precise objects or attributes as improper usage.

We make a list of keywords based on the list of keywords
used in the improper usage and the vocabularies, which are
pre-defined keywords for specific attributes listed in the STIX
standard6. We also add all the words used in the Attack
pattern objects (e.g., Brute Force) and the Target information

6https://stix.mitre.org/XMLSchema/default vocabularies/1.2.0/stix default
vocabularies.xsd
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Fig. 12: Number of indicator objects where information is writ-
ten in the Description attribute and the precise object/attribute
for four information types: Attack pattern (AP), Malware
instance (MI), Threat actor (TA), and Target information (TI).
All the types of the Indicator objects but Attack pattern
imprecisely use attributes in STIX 1 and 98% of the Indicator
objects in STIX 2 include information about attack patterns
only in the Description attribute.

objects (e.g., User information or Google Inc.) as their values
are simple keywords. With the list, we check the Indicator
objects if they are improperly used.

Our analysis shows that all the types of the Indicator
objects but Attack pattern improperly use attributes in STIX 1
(see Figure 12). Only less than 45% of Indicator objects, which
include keywords in the description sentence, precisely repre-
sent the information with objects or attributes for all types.
Furthermore, 98% of the Indicator objects in STIX 2 describe
attack pattern information only in a narrative way. The result
shows that producers rely on description rather than strictly
using the specified attributes in describing the threat. Notice
that this practice undermines machine readability, which is one
of the main purposes of STIX.

Takeaway: Our analysis shows that producers do not prop-
erly use objects or attributes as they are intended in the STIX
standard. We report two common misusages. First, STIX
does not always contain accurate values, although STIX
includes quite verified values for file objects and URIs.
Second, producers often do not properly select objects and
attributes to represent values. Instead, they describe specific
information in a narrative way, rather than using specific
STIX attributes.

VIII. DISCUSSION

In this section, we discuss the impact of our findings and
recommendations to move forward.

A. Impact of Findings

Our findings have several important implications for the
use of STIX data in cybersecurity.

Volume. The low volume of STIX data generated and shared
daily (an average of only 2,063 unique STIX objects) sug-
gests that security service providers have not yet widely
adopted STIX. This is a significant limitation, as cybersecurity
professionals do not have enough STIX data to meet their
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needs. Additionally, the high duplication rate among STIX data
objects suggests that it is essential to remove duplicate STIX
data.

Timeliness. The prompt sharing of URL objects is a positive
finding, suggesting that STIX can be effectively used to detect
new attack websites. However, the slower sharing of file-type
threat objects is a concern, suggesting that STIX is not yet
used effectively to prevent malware attacks.

Coverage. The limited number of STIX data types used in
practice suggests that the STIX standard is underutilized, po-
tentially due to its complexity. This is a missed opportunity, as
STIX can represent a wide range of sophisticated cybersecurity
threats. The lack of security rules in STIX indicators is also
a significant limitation, as it hinders the automation of cyber
attack detection.

Quality. Incorrect threat actor attribution and the frequent use
of narrative text in attack pattern objects can lead to ineffective
countermeasures [69] and make automatic processing difficult.
This requires security analysts to manually verify the validity
of CTI data, which is a time-consuming task that requires
security knowledge and experience. For example, a previous
study [50] showed that three full-time annotators spent five
months labeling 133 reports. Such extensive manual efforts
can delay timely responses to cyber threats [52].

B. Recommendations

Our findings suggest several actions organizations can take
to promote the adoption of STIX:

Common vocabulary. The STIX standard includes several
predefined vocabularies to describe information related to
STIX objects. For example, the TTP object includes a type at-
tribute that represents malware types, using 18 keywords (e.g.,
Adware, Bot, and Ransomware). However, our analysis
revealed that only two keywords (Bot Loader and Remote
Access Trojan) were observed in the collected TTP ob-
jects. Instead of using existing keywords, many producers
use their own words to describe threat information, as shown
in previous work [58], [59]. This leads to confusion among
consumers and makes security rule-generation tasks especially
difficult to automate. To address this problem, the security
community should conduct further analysis to represent and
organize such information effectively. Additionally, we must
bring together a consortium of organizations using STIX to
build a universal and comprehensive standardized vocabulary
for CTI. Specifically, similar to how new vulnerabilities receive
new identifiers in databases such as CVE, a public database
should also be developed for malware.

Training program. Recall that there are various objects and
attributes specified in the STIX standard, but only 75% (STIX
1) and 75% (STIX 2) of objects and less than 70% of attributes
are used for most objects. Furthermore, our analysis shows that
producers often improperly use objects and attributes when
describing threats, indicating that producers and consumers
still need to fully benefit from the proper expressiveness of
STIX. Organizations for standardization (e.g., OASIS) and
service providers need to consider developing educational
programs to train security analysts who use STIX data. They
are recommended to offer practical guidelines for creating and
sharing CTI data in the STIX and TAXII standards.

Automated tools. Our analysis shows that many STIX data
contain common errors, such as spelling mistakes, imprecise
object and attribute usage, and duplicate data. To detect and
reduce these errors, service providers could deploy automated
verification and deduplication processes. Alternatively, spe-
cialized software could be developed and distributed to help
producers generate structured STIX data from raw sources.
Such tools can help security analysts avoid human errors and
inconsistencies in STIX objects and attributes during the data
generation process.

Accountability. One way to enhance the trustworthiness of
STIX data is by upholding the reputation of security analysts
who produce this data. Currently, anyone can anonymously
create and modify STIX data. Although the Producer attribute
is specified in the Indicator object of the STIX standard, it is
included in only 51.28% of STIX 1 data. The integrity of this
attribute is not ensured, complicating the task of tracing the au-
thors of the STIX data. As the results in Table VII demonstrate,
STIX objects that include producer names tend to be more
accurate. Standard organizations might consider promoting the
use of the Producer attribute to motivate STIX producers
to explicitly add their identities. Furthermore, introducing
a new attribute representing the signature of the identities
to ensure the integrity of the STIX producers’ identities is
essential. Maintaining and tracking historical records regarding
the validity of shared STIX data can motivate security analysts
to produce more reliable data.

C. Limitations

First, although we attempted to collect data from all the
TAXII servers and public repositories listed in the STIX
official website [43], we only found ten available STIX data
sources. It may introduce some biases in our analysis, and
more STIX data may help for generalization. We excluded
commercial and industrial resources of STIX data because we
set up our scope on publicly available STIX data. As future
work, it would be interesting to conduct a study analyzing
the differences and similarities between the public STIX and
commercial and industrial datasets.

Second, we conducted a keyword-based analysis, which
may not be accurate, in finding the imprecise usage of the
keywords in narrative descriptions. To verify the validity of the
keyword-based analysis, we randomly selected 100 narrative
descriptions and evaluated the imprecise usage of keywords
(see Figure 12). Then, we manually checked that the keywords
were correctly used in the description, and our approach
achieved 87% accuracy. However, more effective methods
could be applied to properly extract related information from
narrative descriptions, such as topic modeling in text analysis.

Third, CTI-Lense analyzes the generation and dissemina-
tion of STIX data. However, it does not track the adoption and
utilization of the STIX data by various companies. The empha-
sis is primarily on determining the types and extent of STIX
data shared across platforms. The subsequent consumption of
these data remains unexamined for future work.

Lastly, the lack of ground truth is one of the most challeng-
ing issues in our analysis. To obtain more reliable and accurate
actual security threat data, we use at least three representative
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services related to each measurement (e.g., VirusTotal, Hybri-
dAnalysis, and MetaDefender for the timeliness analysis) as
sources of security threat data instead of relying on a single
service. Note that these sources are widely used as ground truth
in prior works [28], [38], [37], [21], [55], [67], [59], [32].

IX. RELATED WORK

Quality and applicability assessment of CTIs. Existing
research has not focused much on analyzing the quantity and
quality of CTI data. Li et al. [26] conducted a quantitative
evaluation of the coverage and accuracy of various IoC data,
finding significant overlap in threat intelligence data from
various public sources. Similarly, Griffioen et al. [27] assessed
the timeliness, sensitivity, originality, and impact of 1.38
million indicators from threat intelligence feeds, highlighting
varying response times, with some feeds providing indicators
within days of a security incident and others lagging behind
by months. Bouwman et al. [73] emphasized the practical
effectiveness of publicly available CTI data, showing that
blocklists from public CTI data sources were more successful
at thwarting COVID-19 related phishing attacks than existing
defenses. However, these studies focus on a limited range of
threat intelligence types, such as simple IoC types (IPs and
malware hashes) [26], [27] or a specific threat intelligence
source [73]. Additionally, they do not consider any advanced
threat data, such as TTPs and threat actors. Unlike these
existing studies, we focused our research on how STIX objects,
a type of structured CTI data, are being shared.

Automated extraction and generation of CTIs. Several
attempts have been made to automate the extraction and
generation of structured CTI data from unstructured data.
For instance, Kim et al. [36] introduced CyTIME, a CTI
management framework that integrates heterogeneous CTI data
into a single, structured STIX format and auto-generates se-
curity rules. Sadique et al. [22] proposed a privacy-preserving
mechanism that utilizes Syslog data and represents raw cyber
threat data in STIX format in an automated manner. However,
these frameworks generate structured CTI data that contains
only simple IoC information. To address this limitation, several
frameworks have been proposed to generate structured data, in-
cluding advanced data such as threat actors and IoC categories,
from unstructured data. For example, Kim et al. [14] proposed
CTIMiner, which parses public security reports and generates
structured CTI data for specific domains (e.g., finance and
IoT). Similarly, Koloveas et al. [49] proposed INTIME to
identify and analyze cyber threats in the IoT domain. Zhao et
al. [34] proposed machine learning-based methodologies for
creating highly accurate CTI data in an automated manner,
leveraging Convolutional Neural networks (CNNs), word em-
bedding, and syntactic dependency. Fujii et al. [63] proposed
a method to generate CTI data using several state-of-the-
art natural language processing techniques, such as named
entity recognition and relation extraction, to extract named
entities and relations between them. Despite these efforts to
generate sophisticated structured CTI data, the best-performing
frameworks still achieve F1 scores of around 80%.

X. CONCLUSION

In this paper, we analyze STIX usage in terms of volume,
timeliness, coverage, and quality. Although STIX is frequently

shared during security incidents, there is still room for im-
provement in practice to fully benefit from STIX’s diverse
expressive power and the quality of values in STIX data. Based
on our findings in the collected STIX dataset, we suggest
four practical recommendations: (1) establishing a common
vocabulary to ensure the consistency and comparability of
STIX data across different entities; (2) developing training
programs to encourage security analysts to generate more
valid and useful STIX data; (3) using tools that automatically
generate STIX data from raw data or natural language reports,
and validate the objects and attributes in STIX data; and (4)
maintaining and tracking the historical records on the validity
of shared STIX data to encourage security analysts to generate
more credible and trustworthy data.
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APPENDIX A
ARTIFACT APPENDIX

This document describes how to use the source code of
CTI-LENSE, a tool that collects STIX data from a set of open
CTI sources and systematically analyzes the gathered data. The
code evaluates the STIX dataset in terms of volume, timeliness,
diversity, and quality.

A. Description & Requirements

Below we explain about how to set up CTI-LENSE,
providing links to get the source code, dataset, and docker
image. The docker image includes all requirements for our
experiments, such as software, source code, and dataset. So,
we highly recommend you to directly use our docker image.

1) Access:

• Source code (Github): https://github.com/SKKU-SecLab/
CTI Lense.

• Source code (figshare): https://dx.doi.org/10.6084/m9.
figshare.24581004.

• Dataset (figshare): https://dx.doi.org/10.6084/m9.figshare.
24126336.

• Docker image: jinbumjin/cti-lense:artifactv1.1

2) Hardware Dependencies: Our experiments are run on a
virtual machine with at least 4 cores and 32 GiB memory.

3) Software Dependencies: We provide the environment for
our experiments with source code using a docker image, so you
must install the docker client.

4) Benchmarks: None.

B. Artifact Installation & Configuration

To begin with, the docker client should be installed on
Ubuntu 18.04. Then, download and run the docker image of
CTI-LENSE. The following commands will install the required
dependencies and pull/run the docker image:

$ sudo apt-get install docker.io
$ sudo docker pull jinbumjin/cti-lense:artifactv1.1
$ sudo docker run -it jinbumjin/cti-lense:artifactv1
.1 /bin/bash

C. Experiment Workflow

To reproduce the results that we report in our paper, follow
the instructions below:

First, start the MongoDB service in the docker container. It
takes up to 10 minutes to enable the MongoDB service. Then,
to get our experimental results, simply run CTI_Lense.py
code with the following commands in the docker container.

/CTI_Lense# service mongodb start
/CTI_Lense# python3 CTI_Lense.py -e analysis_type

D. Major Claims

Our major claims are as follows:

• (C1): CTI-LENSE shows that STIX data producers ac-
tively generate and disseminate STIX data within 2–12
days after a security incident. This claim is supported by
Experiment 1 (E1), whose findings are detailed in Section
5.

• (C2): CTI-LENSE shows that STIX data is mostly based
on Indicator objects, accounting for over 90% of all
the data. Most of the Indicator objects contain simple
indicators of compromise information, such as malicious
file hash or URL strings. This is evidenced by Experiment
2 (E2), whose results are reported in Table IV and Table V
of Section VI.

• (C3): CTI-LENSE shows that producers do not always
adhere to the intended use of objects and attributes in
the STIX standard. First, STIX does not always contain
accurate values, although it generally includes verified
values for file objects and URIs. Second, producers do not
consistently select the appropriate objects and attributes
to represent values. Instead, they often describe specific
information in a narrative way, bypassing specific STIX
attributes. This is evidenced by Experiment 3 (E3), whose
results are reported in Figures 9, 10, 12, and Table VI and
VIII of Section VII.

E. Evaluation

The operational steps and experiments for our evaluation
are as follows:

1) Experiment 1 (E1): [Timeliness] [1 compute-second]:
This experiment shows the causality test results between daily
security incidents from Malpedia and the daily shared STIX
data. You can observe that STIX data are disseminated 2—
12 days post the incident reporting on Malpedia, with a
significance level p < 0.05.

[Preparation] Ensure that the docker container is running
and the mongodb is enabled in the docker container.

[Execution] Run the “CTI Lense.py” script to obtain our
experimental results using the command:

/CTI_Lense# python3 CTI_Lense.py -e timeliness

[Results] The output shows the results of causality tests
between the daily Malpedia and STIX datasets, for time lags
of 1 to 30 days. The p-values for time lags of 2 to 12 days
are less than 0.0008 (adjusted by Bonferroni correction).

2) Experiment 2 (E2): [Diversity] [3 compute-minutes]:
This experiment shows how STIX data objects and attributes
are utilized, as detailed in Table IV of Section VI. It also
elucidates the attributes used in Indicator objects, as shown in
Table V of Section VI.

[Preparation] Ensure that the docker container is running
and the mongodb is enabled in the docker container.

[Execution] Run the “CTI Lense.py” script to obtain our
experimental results using the command:

/CTI_Lense# python3 CTI_Lense.py -e diversity
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[Results] The output shows the results of Table IV and
V. Table IV indicates that the Indicator object type is most
frequently employed, accounting for 98.77% in STIX 1 and
94.93% in STIX 2. Table V indicates that a considerable
number of Indicator objects do not contain advanced attributes.
Specifically, in STIX 1, only 53.73% of the objects have the
attribute Type, 34.76% have Indicated TTP, and a mere 0.09%
have Test Mechanisms. In STIX 2, only 17.13% of the objects
have both Indicator types and Kill chain phases.

3) Experiment 3 (E3): [Quality] [1 compute-hour]: This
experiment measures and reports the quality of STIX data,
including improper values and usages, in Figures 9, 10, 12,
and Table VI and VIII of Section VII

[Preparation] Ensure that the docker container is running
and the mongodb is enabled in the docker container.

[Execution] Run the “CTI Lense.py” script to obtain our
experimental results using the command:
/CTI_Lense# python3 CTI_Lense.py -e quality

[Results] The output shows the results of Figures 9, 10,
12, and Table VI and VIII. These results indicate that STIX
data often contains inaccurate values and narrative descriptions
instead of specific STIX attributes.
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