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Adversary Model

» Inject backdoor into final model

> Learn Information about individual local datasets

» Backdoor attack is performed during training

@ > Malicious clients submit poisoned model updates
» Inference attacks are performed on local models

@ » Adversary has no access to benign models
& » Majority (51%) of clients is benign

» Fully compromised clients & server
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Limitations of Server-Side Backdoor Defenses

Filtering

Operate directly on
client’s weights.

Rely on client’s data
distribution.

Assumptions about
attack strategy.

[Shen et al., ACSAC 2016, Blanchard et al., NIPS 2017]
[Rieger et al., NDSS 2022, Yin et al., ICML 2018]
[Fung et al., RAID 2020, Andreina et al., ICDCS, 2021]

Differential Privacy

[McMahan et al., ICLR 2018]
[Bagdasaryan et al., AISTATS 2020]
[Nasari et al., NDSS 2022]

Reduce the benign

accuracy of the model.




Limitations of Server-Side Backdoor Defenses

Goal: Detangle mechanisms from assumptions about
attacks/data while preserving main task accuracy.
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CrowdGuard — Contributions

Framework for utilizing clients’ data for detecting poisoned models

Trusted hardware guarantees privacy of data and models

HLBIM metric for analyzing changes in models’ behavior

Using statistical tests for indicating presence of poisoned models

Multi-Layer clustering algorithm for mitigating validation reports of
malicious clients
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Evaluation Overview

Data Distribution TPR TNR Backdoor Type TPR TNR
CIFAR-10 — 1-class non-IID rates 100.0%
CIFAR-10 — 1-class non-IID rates 100.0%

Pixel-Trigger 100.0% 100.0%
Label Swap Backdoor 100.0% 100.0%

CIFAR-10 — Dirichlet Distribution 100.0%
CIFAR-10 — Normal 100.0%
MNIST — 1-class non-IID rates 100.0%

Semantic Trigger 100.0% 100.0%
Multi-Backdoor Attack 100.0% 100.0%

Varied Attack Parameter TPR TNR

PMR € {0.05, 0.1, ..., 0.45} 100.0% 100.0%
a €{0.1, ..., 0.9} 100.0% 100.0%

PDR € {0.1, ..., 0.9} 100.0% 100.0%

TPR: True-Positive-Rate
LR € {0.01, 0.001} 100.0% 100.0% TNR: True-Negative-Rate
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CO N Cl UsS | on Integrated in Intel’s Framework OpenFL

\
Federated Learning allows joint DNN training without sharing data
Distributed setting allows malicious clients injecting backdoors
Existing defenses make strong assumptions on data scenario or adversaries
- N . A
N » Client-Side analysis inside TEEs using local data
@ » HLBIM metric measures changes of updates to detect poisoned models
» Server-Side algorithm for robust vote aggregation y
\

» Effectively mitigates backdoor attacks, even in non-IID scenarios

» Behavior analysis prevents filtering of benign models

» Trusted hardware prevents privacy attacks
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Evaluation Results — Comparison Against SotA

Approach BA
No Attack

No Defense

Differential Privacy

Zhao et al.
Median
FoolsGold
Krum

Auror
CrowdGuard

MA

0.0%
80.0%
80.0%
100.0%
0.0%
0.0%
100.0%
80.0%
0.0%

TPR TNR

100.0%
88.9%
0.0%
100.0%

BA: Backdoor Accuracy
MA: Main Task Accuracy

TPR: True-Positive-Rate
TNR: True-Negative-Rate

PRC: Precision

PRC

47.4%
42.1%

100.0%
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