
Maginot Line: Assessing a New Cross-app Threat to
PII-as-Factor Authentication in Chinese Mobile Apps

Fannv He∗, Yan Jia†, Jiayu Zhao∗, Yue Fang∗, Jice Wang∗, Mengyue Feng∗, Peng Liu‡, and Yuqing Zhang∗§∥¶
∗National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China

†DISSec, College of Cyber Science, Nankai University, China
‡College of Information Sciences and Technology, Pennsylvania State University, USA

§Hangzhou Institute of Technology & School of Cyber Engineering, Xidian University, China
∥School of Cyberspace Security, Hainan University, China

Abstract—Authentication is one of the established practices
to ensure user security. Personally identifiable information (PII),
such as national identity card number (ID number) and bank
card number, is used widely in China’s mobile apps as an
additional secret to authenticate users, i.e., PII-as-Factor Au-
thentication (PaFA). In this paper, we found a new threat that
calls on the cautiousness of PaFA: the simultaneous usages and
business-related interactions of apps make the authentication
strength of a target app weaker than designed. An adversary,
who knows fewer authentication factors (only SMS OTP) than a
PaFA system required, can break the authentication by gathering
information or abusing cross-app authorization from other apps.
To systematically study the potential risks, we proposed a semi-
automatic system, MAGGIE, to evaluate the security of PaFA in
target apps. By measuring 234 real-world apps in Chinese app
markets with the help of MAGGIE, we found 75.4% of apps
that deployed PaFA can be bypassed, including the popular and
sensitive ones (e.g., AliPay, WeChat, UnionPay), leading to severe
consequences like hijack user accounts and making unauthorized
purchases. Additionally, we conducted a survey to demonstrate
the practical implications of the new risk on users. Finally,
we reported our findings to the vendors and provided several
mitigation measures.

I. INTRODUCTION

Mobile applications (Apps) today support some most pop-
ular daily tasks like payment, financial transactions, and email
access. In 2022, China had 1.04 billion smartphone users,
accounting for 15% of the world’s users [1]. A report revealed
that the average Chinese smartphone user installed 73 apps
on their phones and mobile app usage stood at 7.6 hours per
day [2]. The boost of apps results in the simultaneous usage
of multiple apps. Authentication, as one of the most important
established practices to protect sensitive operations (e.g., login
and payment), identifies the users by authentication factors.
Besides passwords, apps also leverage other authentication
factors to verify identity, including short messaging service

¶ Yuqing Zhang is the corresponding author.

one-time passwords (SMS OTP), personally identifiable infor-
mation (PII), security questions, biometric data, etc. Among
these authentication factors, PII, such as national identity card
number (ID number), is commonly used as an additional
secret to authenticate users. This type of authentication method
is called PII-as-Factor Authentication (PaFA) in this paper.
For example, two popular payment apps, UnionPay and
AliPay, demand a user’s bank card number, full name, ID
number, and SMS OTP to meet the authentication requirements
of payment passwords recovery. That is, app vendors deploy
additional PaFA mechanisms in order to gain higher authen-
tication strength. However, whether the PaFA mechanism
in modern apps effectively provides the intended level of
authentication strength in real-world scenarios remains not
clear.

As being observed in recent years, in China, PII is widely
gathered and stored by mobile app vendors. Many apps re-
quire users to provide relevant PII when providing services,
such as real-name information for booking air tickets and
bank card numbers for receiving provident funds. Meanwhile,
many users use multiple apps developed independently by
various vendors with different security considerations. The
authentication requirements of apps with no highly sensitive
functions (like Kindle app for reading e-books) are generally
less restrictive compared with apps for online banking. In
our observation, the fact that different apps have different
authentication strengths could provide the attacker with an
opportunity to launch cross-app attacks in which the PII
obtained by breaking the authentication mechanism of one app
with lower authentication strength could be exploited as an
authentication factor to break the authentication mechanism
of another app with higher authentication strength. Besides
this opportunity, we observe that the attacker could enjoy a
second opportunity by abusing the cross-app authorization
mechanism of an app with lower authentication strength.
Therefore, given an app, its authentication system could be
potentially weakened by other apps, which means attackers
could leverage the weaknesses of business partners’ apps to
threaten the business of the target.

Existing works have examined the personal security ques-
tions (e.g.,favorite food, father’s middle name and ZIP code)
for account recovery authentication and found that the answers
are vulnerable to random guessing, social networking sites and
potent sources (such as club membership rosters) searching,
acquaintances [3], and statistical attacks [4]. However, infor-

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24241
www.ndss-symposium.org

AirChina

Full Name

ID Number

PICC

UnionPay

Full Name

Bank Card Number
 Login

 Password recovery

Fig. 1. An attack path for UnionPay.

mation required by the PaFA in Chinese apps nowadays is of
a totally different nature: it is generally infeasible to guess
and would not be intentionally made public by users or shared
among other people. In contrast, this study found a new threat
that reveals an unexpected security weakness of PaFA: the
simultaneous usages and business-related interactions among
apps make the authentication strength of a target app weaker
than designed.

A motivating case. Here, we provide a manually found case.
An attacker, who can only access SMS OTP (e.g., direct
contact with SIM cards by frequent mobile phone theft and
loss [5–10]), bypasses the strong PaFA of a payment app
(UnionPay) that requires bank card number, full name, ID
number, and SMS OTP, and successfully transfers money from
the victim’s bank account.

Firstly, by accessing SMS OTP, the attacker can log in to
the victim’s accounts on several apps with lower authentication
strength and gather useful PII, although he cannot log in to the
UnionPay app. Specifically, the attacker can find the victim’s
full name and ID number on the UI where users book flights
in the AirChina app and find bank card numbers on the
screen where users purchase insurance in the PICC (People’s
Insurance Company of China) app. With this PII, the attacker
can reset the victim’s login and payment passwords of the
UnionPay app by abusing the password recovery process.
Finally, with the two passwords, the attacker can transfer
money from the victim’s UnionPay account. Fig. 1 shows
the attack path and the attacker’s operations.

Method. In order to systematically study the potential risks
when users use multiple apps simultaneously, we proposed
a semi-automatic system, called MAGGIE, to check whether
the authentication strength of a given app can be weakened
by other apps. Our idea is to act as the adversary, who only
knows incomplete and inadequate authentication factors (e.g.,
only SMS OTP) of the victim, to operate other apps (through
impersonating the victim) for breaking the target authenti-
cation. The challenge here is how to automatically identify
the security risk and efficiently find all needed operations
to achieve the attack, given millions of possible operations
on hundreds of apps. For this purpose, we proposed a finite
state model to describe the combined use process of multiple
apps and leverage model checking to effectively find operation
sequences that the attacker can follow to break the target
app. The model starts with a set of “weak authentication”
apps to obtain some seed PII and then uses the seed PII
to achieve the snowball effect until the adversary cannot
obtain additional PII or has tried all the potentially relevant
apps. Moreover, we modeled cross-app authorization rules.
The attacker could leverage the apps with weak authentication

strength as the pedals to compromise the target app business.
To ease human effort, we implemented XHelper module to
automatically gather the PII shown on mobile apps’ screens
and extract the relevant authentication and authorization rules,
which helps us build the finite state model from hundreds of
apps. Additionally, to assess the actual risk on real users, we
conducted a survey by distributing 281 questionnaires to the
general public to determine what apps they had installed and
used.

Findings. After analyzing 234 real-world apps (evenly dis-
tributed across types) from Chinese app markets using MAG-
GIE, we found PaFA is widely deployed (by 65 apps, 27.8%)
and PII is ubiquitous in various apps that are developed to
process data/information with different degrees of sensitivity.
More importantly, we demonstrated that 49 apps (out of 65)
using PaFA are less secure than designed when users use mul-
tiple popular apps simultaneously. With fewer authentication
factors than the app designed, an attacker can Bypass Au-
thentication by utilizing Cross-App Information gathering and
Business relationships (Bypass Authentication by Cross App
Exploitation, Bacae attack). For instance, AliPay requires
four authentication factors (SMS OTP, bank card number, full
name, and ID number) to login. However, through the autho-
rization of Taobao, an attacker can log in AliPay with only
two factors (SMS OTP and ID number). This means that the
attacker can bypass the login authentication without knowing
all the authentication factors required during a normal login
process. Another example is that ID number and user’s full
name, the authentication factors used by Etax for login, are
exposed by 154 (65.8%) apps (e.g., after logging into Qunaer,
an attacker can view the ID number and full name in historical
order.). Statistically, powered by MAGGIE, our measurement
study of 234 popular mobile apps reveals that 95.7% of these
apps display PII on one or more UI pages. Additionally, out
of the total number of apps, 27.8% of them employ PaFA
mechanism. Among these apps, a staggering 75.4% of them
are susceptible to Bacae attack, which can result in severe
consequences like account hijacking, unauthorized purchases,
and fraudulent activities, etc. Note that in our measurement,
the apps are distributed evenly across all types. For apps
simultaneously used by a real user, our survey results suggest
that the Bacae attack could have more severe consequences:
we observed all users had used one or more apps with PaFA
and 94.2% of users were subject to at least one attack path.

Contributions. In summary, we make the main contributions
as follows:

• New findings. We conducted the first systematic empirical
study on the PaFA mechanisms of highly popular apps in the
scenario where the victim simultaneously uses many apps.
Our research reveals that multiple apps may have serious
security implications on other apps, resulting in authentication
strength of PaFA mechanisms equal to SMS OTP only in most
cases. Vendors can learn from our new understanding to better
communicate with each other and improve their authentication
mechanisms.

• Model and semi-automatic tool. We proposed a model
that described the combined usage process of multiple apps
as a state transition system and defined a security property
for the model checker to identify attack paths that can be

2

exploited to bypass the authentication of a target app with
fewer authentication factors. Based on the model, we designed
and implemented a tool, MAGGIE, to investigate whether the
authentication strength of a given app can be weakened by
other apps if a victim user is using them at the same time.

Ethical Considerations. The Bacae attack related experiments
were conducted using phone numbers and app accounts of the
authors, hence did not affect other users. For security reasons,
we have hidden the version number of apps in the paper.

II. BACKGROUND AND THREAT MODEL

A. Authentication Factors in App

Mobile apps extensively utilize SMS one-time passwords
(OTP), user-chosen passwords, and personally identifiable in-
formation (PII) to verify users.

User-chosen password. User-chosen password is the most
commonly used authentication method. The app user is re-
quired to enter the preset password that matches the account
ID. Sometimes, apps may require users to set additional
passwords for protecting sensitive operations like payment. In
addition, when the user forgets the password, almost all apps
provide a function to reset the password.

SMS OTP. SMS OTP is another widely used authentication
factor by mobile apps. Users are required to enter the SMS
OTP which is sent to the corresponding phone number bound
with the account. At present, many apps use SMS OTP as an
alternative authentication way instead of the complex login
password. This mechanism gives convenience for users by
avoiding setting up and remembering static passwords while
bringing more security risks to users. Previous studies showed
that attackers could obtain SMS verification codes from var-
ious channels, such as SIM swaps [11], installing malicious
app. Since such malicious apps only need READ SMS and
SEND SMS permissions [12], it is a fairly practical attack to
steal SMS OTP.

PII-as-factor authentication. In addition to the above mech-
anisms, the PII of the account owner, (such as ID number,
bank card number, birthday, and name) is also often used to
authenticate users, especially for password recovery. For ex-
ample, before providing the retrieve account service, Alipay
first prompted users to enter their name and ID number to
find a linked account, and then to enter a bank card number
for identity verification. This kind of authentication usually
is used together with other authentication methods, aiming
to provide additional security protection. In this paper, we
call the authentication schemes that use PII as PII-as-Factor
Authentication (PaFA).

B. Authentication and Authorization in Apps

Real-world mobile apps consist of complex function logic
involving multiple parties and authentication mechanisms.
Fig. 2 typically depicts how a third-party payment app au-
thenticates users and interacts with other apps.

First of all, 1⃝ the app user registers an account by creating
an account ID with a password and providing additional
information such as a phone number and ID number. Note

Third-party App

 Login

User

 Register

 Payment

 Login

 Login password recovery

 Bank card connection

 Pay password recovery

Bank

 Single sign-on

Fig. 2. An example of authentication and authorization in apps.

that, phone numbers and email addresses are often chosen
as usernames. 3⃝ Afterwards, the user can log into the app
by entering their password or an SMS-OTP. In case the user
forgets the password, the app provides the password recovery
function: 2⃝ a user who answers some specific questions (e.g.,
SMS OTP, ID number, or bank card number) can reset the
password. Instead of creating a totally new account, 4⃝ a user
can use the account of another app to log in via a single
sign-on (SSO) process. For example, a user can sign in to
Alipay using his/her Taobao account. After login, 5⃝ the
user needs to link a bank card to the app through authorization
and authentication of the bank before making the payment.
This process connects the bank payment business to the third-
party payment app. Additionally, the user can set a payment
password to protect sensitive operations, which would be asked
for and verified by the app before making a payment. 6⃝ The
app also designs corresponding payment password recovery
processes. With the payment password, 7⃝ the user can achieve
the goal of money transfer.

Each scenario in the whole process requires the user to
accomplish different types of authentication. In summary, mod-
ern mobile apps often involve various authentication mech-
anisms and complex interactions with multiple third-party
businesses, which brings potential security risks.

C. Threat Model and Scope

Assuming that the victim, Alice, is a normal user. She
has installed numerous popular apps from official sources,
created accounts, and provided real personal information to
these apps. As a result of Alice’s usage, these app accounts
contain her usage histories (e.g., air ticket booking records).
According to Alice’s/vendors’ security expectation, an attacker
who possesses insufficient authentication factors (e.g., only
SMS OTP) should NOT be able to complete the password
recovery process or authentication process for a target app.

The attacker, Mallory, can only obtain the victim’s SMS
OTP. This can be realized in various ways, e.g., mobile phone
theft, OTP fraud and underground (cyber-crime) markets. Our
threat model is realistic. First, in many regions, the SIM card
in a mobile phone can be physically removed and inserted into
another device, enabling the attacker to receive SMS without
unlocking the former phone screen. Mobile phone theft and
loss are frequent occurrences in many areas worldwide [5–10],
for example, one in ten U.S. smartphone owners are victims of
phone theft [9]. Second, attackers can also obtain SMS OTP
by OTP fraud. Reports of OTP fraud have surfaced in various
countries [13–15]. For example, over 2,000 cases of OTP fraud

3

Fig. 3. The architecture and workflow of MAGGIE.

took place in India in 2021 [14]. Thirdly, there are instances
where the obtained OTPs were on sale in underground (cyber-
crime) markets, for instance, customers’ smartphone numbers
and OTPs were sold by (corrupted) telecom operator staff
in China [16][17]. These evidences clearly indicate that real-
world criminals have already been utilizing stolen OTPs.

Mallory aims to bypass or compromise the authentication
mechanisms of the target app in order to achieve illegal goals,
e.g., hijacking Alice’s accounts, gathering more PII of Alice,
making purchases with Alice’s funds, and taking out loans
in Alice’s name, etc. Note that, Mallory does not need to
enumerate all the victim’s installed apps. Instead, he can
simply attempt to recover passwords for popular apps which
the victim is likely to use. In some cases, Mallory knows little
about Alice but he knows that UnionPay is very popular so
there is a fair chance for Alice to use it. In addition, the target
apps do not have any implementation-level vulnerabilities. We
do not make any specific assumptions on the risk control
deployed by vendors, as it is a black box and operates on
a probabilistic basis. The partial impact of risk control is
discussed in Section V-E.

III. DESIGN AND IMPLEMENTATION OF MAGGIE

In this section, we elaborate on the design and implemen-
tation of MAGGIE. As mentioned earlier, the attacker’s goal
is to gain additional authentication factors and later break the
PaFA of a target app. He would try to leverage the limited
authentication factors he knows to operate other apps on behalf
of the victim. Given millions of possible orders in which an
attacker could operate these apps, the challenge here is how
to efficiently find attack paths that specify the operations
necessary for completing the attack within such a large set
of possibilities.

Our approach is building a state machine model that
describes the adversary who simultaneously operates hundreds
of apps and leverages model checking to find attack paths that
gain additional authentication factors or find vulnerable cross-
app authorizations towards breaking the target PaFA. To extract
the model from real-world Android apps, we implemented
an auxiliary tool XHelper that gathers the PII displayed in
mobile apps and assists a human analyst in extracting the
authentication requirements.

A. Overview

To achieve our goal, we model the combined usage process
of multiple apps as a state transition system and utilize a model

checker to verify whether pre-defined security properties of
target apps hold in the model. The counter-examples reported
by the model checker demonstrate the attack paths and are
verified manually.

Architecture. MAGGIE includes three core modules: an auxil-
iary tool XHelper that explores the UI to help gather available
PII in apps, a Model Builder that generates the state machine
model specified in NuSMV language, and a Model Checker
that analyzes the model with security property we proposed
and outputs counter-examples (attack paths), as outlined in
Fig. 3. The apps considered in MAGGIE have already been
used by the victim, as described in the threat model. With
the output of XHelper and manually extracted authentication
conditions and authorization partners, we get the Authentica-
tion&Reward (AuthR) metadata (defined in Section III-B) of
each app, which then are used by the Model Builder to generate
the specific code of the model. Based on the user-specified
security property, the Model Checker would generate counter-
examples if they exist. These counter-examples are further
verified manually.

B. Extracting Authentication&Reward

Authentication&Reward (AuthR) is 4-tuple metadata,
which is composed of operations, SUCCESS condition, au-
thorization, and reward. The format of AuthR is as follows. It
describes the authentication requirements of an app operation
and the PII (i.e., the reward) that could be obtained after
authentication is completed.

AuthR::=(App.Op, Cond, Authorz, Reward)

App.Op refers to the operations that can be performed
within an app. In our model, an app involves a series of
operations that require authentication, such as login, payment,
or bank card connection.

Cond is the set of authentication factors, indicating the
SUCCESS condition of passing the app.op’s authentication.
Note that Cond not only includes direct authentication factors
required by the current operation but also includes the factors
required by pre-operations. For example, the Cond of payment
includes not only the payment password but also the password
for login.

Authorz records third-party operations that have delegated
authorization relationship with current app.op. For exam-
ple, Taobao’s user account can log in Alipay by single
sign-on, the Authorz record the authorization relationship
{Taobao.SSO}.

Reward is a set of PII, which refers to PII that can be
obtained from the app after completing this app.op’s authen-
tication. For example, one can view the connected bank card
number after passing the login authentication in PICC app.
The bank card number should be put into the set Reward.

Automatic extraction of the AuthR.Cond and Au-
thR.Authorz is difficult because most apps have anti-
automation settings such as captchas and security keyboards
during authentication process. Luckily, the Cond and Authorz
are easy to collect manually since the pages of authentication
are limited and they are clearly displayed in UIs. However,
complex apps with many pages, especially those that expose

4

Algorithm 1: Exploring UI widgets and Matching PII
1 launch App();
2 current page←MainActivity Page;
3 page stack.push(current page);
4 while page stack.size()! = 0 do
5 if current page in page repository then
6 page stack.pop();
7 current page← page stack.top();
8 back to(current page);
9 continue;

10 else
11 match PII(current page);
12 page repository.add(current page);
13 end
14 if page stack.size() < Stack max depth and

current page.unvisited widgets.size()!=0 then
15 click(random pop(unvisited widgets));
16 current page← get current page();
17 page stack.push(current page);
18 else
19 page stack.pop();
20 current page← page stack.top();
21 back to(current page);
22 end
23 end

PII in deep paths, make manually extracting the Reward (PII
displayed on UIs) a big challenge. Specifically, user-configured
PII in apps is usually displayed differently on UIs with how
it is initially input. For example, a configured ID number may
be partially obscured (e.g., 123******4567) or not displayed
at all on the configuration page, but be fully exposed on other
pages. Meanwhile, apps may sometimes display more PII than
a user has configured manually. For instance, an ID number
may be obtained from other third parties through authorization.
Thus, it is necessary to traverse apps pages to find potential PII
leaks, but the process of manual analysis is tedious and may
involve random negligent mistakes. To address this challenge,
we developed an auxiliary tool XHelper to efficiently detect
potential PII leaks within apps, reducing the difficulties of
manually traversing numerous pages.

XHelper. XHelper automatically traverses app UIs based on
depth-first strategy and gathers PII displayed with regular
expressions. The design of the two components is illustrated
below.

• Depth-first UI exploration. As shown in the Algorithm 1,
XHelper launches the app and starts the exploration from the
MainActivity page. It does depth-first exploration on all
clickable widgets. The exploration process is maintained in
page stack. Pages that need to be explored are pushed into the
stack. Once all clickable widgets on a page have been visited,
the page is popped from the stack, indicating that the page’s
exploration is complete. Thus, the MainActivity always
stays at the bottom of the stack, and its popup indicates the
end of the whole exploration. To improve search efficiency,
we empirically set the maximum depth of the stack to 4.
Increasing the depth to 5 dramatically doubles the test duration
of an app, but barely increases the number of PII detected. To
avoid XHelper being trapped in a loop, we designed a Page
Repository to store UI pages.

Specifically, we stored the structure and content informa-
tion of the explored pages and proposed a Tree Matching
algorithm to compare this metadata with that of new pages.
The algorithm starts from the root nodes of two trees and
then recursively compares the attribute values of each node,
which are related to the structure, function, content, and so
on. Finally, a numerical value is computed to represent the
similarity of the two trees. If a new page has a high similarity
in structure or content with a certain page in Page Repository, it
will be popped out without exploration. For example, shopping
apps like Amazon Shopping contain countless pages of
commodities with similar structures. The similarity comparison
help avoids repeatedly visiting these pages.

In addition, we set a blocklist to make some widgets not be
clicked by XHelper, such as “Logout”, “Upload photograph”,
and “account deletion”. Because these operations only involve
deleting or uploading information, they do not provide new PII
for the attacker. Also, we empirically assign higher searching
priority to certain widgets, such as “Personal center”, “Order
list” and “Mine”, etc. During the exploration, if such widgets
exist on a page, XHelper will continue to explore until no
such widgets are found, even if the maximum stack depth is
reached.

• Matching PII. Before inputting the app into XHelper, a
tester (acting as Alice) uses the app and sets up the account
information. The recorded information is then used for further
comparison with the text in the app. XHelper collects widget
texts from the UI page and first applies regular expressions to
filter out potential PII. We created 24 regular expressions that
can classify texts into 9 types of PII. For example, expres-
sion [“(z.+@test.com—.+n@test.com)”] would filter out texts
which likely is “z****n@test.com”. Next, these suspected PII
displayed on the UI page will be further matched with the
stored tester’s information byte-by-byte.

Based on our observations within the dataset, these 9
specific types of PII have generally proven to fulfill the authen-
tication factors established by these apps. This determination
is based on the specific requirements and practices within the
Chinese apps ecosystem. For instance, in China, it is common
for the ID number to serve as both a national identification
number and a driving license number. It is important to
acknowledge that the sufficiency of PII can vary depending on
specific circumstances, cultural norms, and legal frameworks in
different countries and regions. However, our study conducted
in the Chinese app ecosystem can provide valuable guidance
and serve as a reference for research in other countries and
regions.

C. Formal Modeling with Model Builder

The state machine model. We model the usage process
of multiple apps by an attacker A as a state machine,
M = (S, O, T, s0, ss). S is the set of states. Among them,
s0 (s0 ∈ S) is the initial state where the attacker starts
exploring apps. He only has inadequate authentication factors,
as illustrated in the threat model. ss (ss ∈ S) is the SUCCESS
state where the attacker has achieved his goals. O is a finite
set of operations on apps. T is a transition function indicating
the operations of apps that drive the system to transit from one
state to the next.

5

Def. 1. State. A state sj (sj ∈ S) has two variables:
sj = {FV, app.op}. FV is a set of authentication factors,
indicating the attacker’s knowledge on authentication factors.
FV = {f0, f1, ..., fi}, where fi stands for a certain au-
thentication factor, such as phone number, SMS OTP, and
ID number. The app.op records the operation performed by
the attacker, which would help generate the access paths
(see Def 4.). Note that in each state, we only record the
last operation performed by the attacker. The initial state
s0 = {FVinit, null}, where FVinit holds the attacker’s initial
ability.

Def. 2. Operation. The definition of Operation is the
same as App.Op in AuthR. An operation app.op (app.op ∈
O) performed by the attacker would cause a state transi-
tion. At state si, the attacker can take one of any avail-
able operations associated with any apps (e.g., the app.op
in AuthRn(app.op, Cond, Authorz,Reward)), if the at-
tacker holds adequate authentication factors to pass the au-
thentication of AuthRn.app.op or the third party operation
(AuthRm.app.op) related to the AuthRn.app.op.

si.FV ⊃ AuthRn.Cond

or {
si.FV ⊃ AuthRm.Cond

AuthRm.app.op ∈ AuthRn.Authorz

The operations would expand the FV in si (authentication
factors known by the attacker).{

sj .FV := si.FV ∪AuthRn.Reward

sj = {FV,AuthRn.app.op}

As mentioned in Section III-B, set O and corresponding
AuthRs are constructed with the assistance of XHelper.

Def. 3. Transition: T : S × O → S is a function that
drives the transition from one state to another. For example,
T (si, appx.login) = sj indicates that the “login” operation of
appx drives the system from state si to sj .

Model builder. Our model builder models the continuous use
of multiple apps and generates the model specified using the
NuSMV language. More specifically, the states are determined
by the attacker’s knowledge, and the state transitions are
determined by operations the attacker can perform. However,
manually modeling authentication operations for 234 apps is
a complex task requiring substantial human effort. To address
this, we designed a model generator to create the NuSMV
model automatically. The generator takes necessary modeling
information and uses it to customize each operation in the
template code. The template code includes the state transitions,
the attacker’s knowledge, and the operation code framework.

Considering the efficiency of the model, we do the fol-
lowing optimizations: 1⃝ We merged apps with the same
login AuthR.Cond and AuthR.Reward together, creating an
AppCluster. Each AppCluster was treated as a single node
on the access path, potentially representing multiple apps.
As a result, the number of nodes on the path during model
checking was significantly reduced. 2⃝ We pruned some
insignificant authentication options by removing redundant
paths. For instance, if the authentication factors required for

the first login option are fully included in the second login
option, we pruned the second path and kept the first one. 3⃝
We removed meaningless state transitions, such as those where
the authentication factor(s) (i.e., Reward) obtained after login
are a subset of the authentication factors required for login
authentication.

D. Detecting Security Flaws with a Model Checker.

With the generated model, we leverage an off-the-shelf
model checker, NuSMV, to verify the models against a gener-
alized security property, which is elaborated as follows.

Def. 4. Access path: An access path from si to sj
is an ordered sequence of operations (op1, op2, ..., opn),
such sequence of operations brings a series of transitions
T (si, op1, op2, ..., opn) = sj , along which si can reach sj .

Intuitively, an access path indicates how an attacker is able
to extend his authentication factors from si to sj .

Def. 5. Security property: Given a targeted operation
(AuthRt.app.op) of an app and an attacker A with FV , there
should not be an access path from s0 to si that allows the
attacker to expand his FV to pass the authentication conditions
of targeted operation and perform the sensitive operation.

The property can be specified as2:

AG1 (A.FV ∩AuthRt.Cond) < AuthRt.Cond

FV in s0 and AuthRt.app.op are specified by the user
of MAGGIE. For example, if we consider an attacker who
can steal SMS OTP, the s0.FV should be {SMS OTP}.
With respect to the property, our model checker reports a
counterexample (security property violation) if it can find an
access path that allows the attacker to operate other apps
(through impersonating the victim) for gaining enough PII and
bypassing the target PaFA. We called the counterexample an
attack path.

Attack path optimization. When the model checker searches
for a path, if app.op can expand the attacker’s knowledge FV ,
app.op will drive the state transition and be stored in the access
path. A transition is considered redundant if it expands an
authentication factor that is neither the authentication factor
required by the target AuthR.Cond nor the authentication
factor for the subsequent AuthR.Cond. However, it is difficult
to distinguish redundant transitions until the model reaches the
final state, as it depends on whether subsequent state transitions
use the factors obtained in the transition. After obtaining the
final access paths, we filter out paths with such redundant state
transitions and obtain optimized attack paths.

E. Implementation

In this section, we provide the relevant implementation de-
tails of MAGGIE. The full source code is released online [18].

We utilized the Python library uiautomator2 to retrieve
and interpret the App UI page. uiautomator2 encapsulates
UIAutomator [19] commands as http interfaces. It exposes
the interface to Python programs by running an http rpc server

2“AG p” is a CTL (Computation Tree Logic) formula here, which means
for all paths (All), for all states (Globally) along them, p holds.

6

on the Android device. The XHelper functions were developed
in Python 3.8 and executed on Windows 10. We defined a
NuSMV global variable “word[i]” to represent authentication
factors, where each bit is either 0 or 1. Each bit in the variable
represents one type of PII or portion of PII possessed by the
attacker. For example, “1100000” indicates that the authen-
tication factors held by the attacker in the current state are
SMS OTP and the first 6 digits of the ID number3. The model
judged whether an AuthR.app.op could be completed through
“FV &AuthR.Cond”. If the model passed the AuthR.app.op,
FV was expanded through “FV |AuthR.Reward”, and the
state transition was driven. We use a Python script to read
apps’ AuthR and automatically generate state transition code.

We described the security property through Computation
Tree Logic (CTL). The security property was verified when
we executed the NuSMV code: the model state variable FV
can reach the expected state through x different paths. Let X
be the maximum value of x that can satisfy the property, that is,
the number of attack paths we found. We first initialized x = 1,
then expanded the value of x exponentially, and continued to
execute NuSMV code until the properties were not satisfied.
Remember that the attempted value of x at this time is xi,
and the last attempted value of x is xi−1. Therefore, it can
be determined that xi−1 ≤ x < xi. Then, we tried X by
the dichotomy in the interval of [xi−1, xi), and found the
maximum value of x that satisfied the property, that is, the
number of attack paths.

We deployed NuSMV on Ubuntu 18.04 running in a
VMware Workstation with configuration of 8-core and 16GB
RAM to execute the model. We also developed some scripts for
automatically running the model, which took approximately 8
hours to complete all the tasks.

Evaluation of XHelper. To evaluate the accuracy of XHelper,
we randomly selected two apps from each of the 39 categories
in our dataset (Section IV-A), for a total of 78 apps, and
manually configured PII for each app. Two researchers inde-
pendently explored each app’s UIs for at least 30 minutes to
identify any available PII, which minimizes careless omission.
In total, this process took 83 manhours and got 362 instances
of PII as the ground truth. Next, we used XHelper to extract PII
from these apps and compared the identified PIIs with ground
truth. The result shows that XHelper achieves a precision of
100% and a recall of 87.6% (317 out of 362). By manually
inspecting the 45 missed PIIs, we found that 18 of them
were located on WebView pages, since XHelper inherits the
limitations of UIAutomator which is incapable of identify-
ing WebView elements; 12 missed PIIs were caused by the
exploration depth limitation set for XHelper (as illustrated in
Section III-B); 9 PIIs were missed because loading times of
these UI pages were too long and skipped by XHelper; 6
missed PIIs appeared at the bottom of the overlong pages and
XHelper gave up to endless scrolling down such pages.

Example. Here we take a real-world case (Fig. 1) as an
example to describe how MAGGIE works roughly. At be-
ginning, the adversary only has the ability to receive SMS
OTP. s0 = {sms, null}. The target is the payment operation

3A Chinese ID number can be divided into three pieces of information -
the first 6 digits, the middle 8 digits (representing the birthday), and the last
4 digits.

TABLE I. SOME AUTHRS IN THE EXAMPLE IN FIG 1.

AuthR(AirChina.login, {sms}, ∅, {fn, id}1)

AuthR(PICC.login, {sms}, ∅, {fn, bcn}1),
AuthR(UnionPay.LPwdRecovery2 , {sms, fn, id, bcn}, ∅, ∅)
AuthR(UnionPay.PPwdRecovery2 , {sms, fn, id, bcn}, ∅, ∅)
1 fn: full name, id: ID number, bcn: bank card number.
2 LPwd: Login password, PPwd: Payment password.

of app UnionPay (UnionPay.pay). Given the three apps
(AirChina, PICC, UnionPay), with the help of XHelper,
we extract at least 4 AuthRs, as shown in Tab. I. More
specifically, we login AirChina and PICC via SMS OTP.
Next, after logging in, XHelper gathers the PII available: full
name and ID number from AirChina, and full name and
bank card number from PICC.

With AuthRs, the model builder generated the state ma-
chine model, and the model checker would find an access path
that violates the security property. That is, an attack path can be
T (s0, AirChina.login, PICC.login, UnionPay.login) =
sj , sj = ({sms, fn, id, bcn}, UnionPay.pay). This path
means an attacker, who only knows SMS OTP, can break
the payment authentication of UnionPay through logging in
AirChina and PICC.

IV. EXPERIMENT SETUP

A. Dataset

We selected 234 high-profile apps from the three most
popular app stores - Huawei [20], Vivo [21], and Tencent
App Centre [22] - based on their total download numbers
in these app stores, as there is no dominant app store in
China. To make a comprehensive measurement, we categorized
the apps into 39 categories based on their business functions
(e.g., map navigation, car-hailing, travel services, house rental,
shopping, online payment, instant messaging, etc.), referring
to mobile applications classification in the National Standard
“GB/T 41391-2022”. From each category, we selected top 6
apps with the highest total download numbers, resulting in a
total of 234 apps for our test set. All the ranking lists were
obtained in June 2022.

B. Experimental Procedure.

Initially, we manually registered and configured the apps
using a researcher’s authentic personal information, including
her name, phone number, id number, email address, and bank
card details. These configurations often require Turing tests,
such as graphic verification code. Therefore, this step was
performed manually (Step 1⃝). Secondly, we extracted the
AuthRs of these configured apps with the help of XHelper.
During the process of XHelper exploring the app UIs, we
manually assisted it in completing the authentication process
when anti-automation mechanisms occurred (e.g., verification
codes, face recognition, and security keyboards) (Step 2⃝).
Thirdly, we used the model checker to obtain the attack paths
based on the model generated by the Model Builder (Step 3⃝).
For every target app.op, we output the optimized attack paths
from the first 1000. Finally, we manually verified the optimized
attack paths using the researchers’ own knowledge in the real
world (Step 4⃝). In our experiment, we take into account a

7

common scenario where individuals typically possess a single
phone number. In scenarios where users employ multiple
phone numbers for different apps, we consider different phone
numbers as distinct users, which means there would be false
positive attacks.

Risk control considerations. Risk control analyzes multiple
factors such as device, IP address, location, and user behavior
to determine the level of risk associated with an operation
(e.g., a login attempt). Based on the risk level, the authenti-
cation system may require additional authentication factors or
block the login attempt. Although this paper does not cover
black-box risk control of apps, we adopted some measures to
test its impact since they are deployed in some apps in reality.
Specifically, we repeated the experiment from the second step
with different devices and IP addresses to compare the results
with the first test. Some interesting differences between the two
deployments were observed and discussed in Section V-E.

Note that except for the comparative experiment of risk
control, the rest of this paper discussed the test results after
replacing the device and IP.

V. FINDINGS AND MEASUREMENTS

With the help of MAGGIE, in this section, we report the
measurement results of Bacae risk. First, we summarize the
primary causes leading to Bacae attack (i.e., ubiquitous PII in
apps and cross-app business partnerships) along with realistic
case studies that illustrate the process and consequence of Ba-
cae attack. Then, we report the statistics on PaFA deployment,
business partnerships, PII exposure, and attack opportunities
(attack paths).

A. Root Causes of Bacae Attack

Ubiquitous PII in apps. We observed lots of mobile apps
collect and store users’ PII for their business (e.g., hospital
registration, hotel reservation, ticket reservation, and electronic
banking.), which can be obtained by logging in to accounts and
checking the UIs of apps. Due to the ubiquitous PII in mobile
apps, an attacker in our threat model, who only can access
the victim’s SMS OTP, has opportunities to break a strong
PaFA system by harvesting PII from other apps with lower
authentication strength. That is, PII available in some apps is
the authentication factor of some other apps, and the combined
use of these apps with different authentication strengths results
in PaFA becoming weaker.

• Full exposure. Many apps directly use PII and display it
on normal UI pages, and an attacker can easily obtain these
PII by checking UI pages as long as he logs into the victim’s
account. For example, after logging in to Ctrip, an attacker
can access the “air ticket booking records” and extract PII
from the order list, which may include the user’s full name,
ID number, phone number, and so on. Moreover, when using
the booking service, the app provides the stored PII for the
current user. It is convenient for users to double-check the
information of passengers when booking flights and tickets.
Besides displaying PII for business functions, apps also show
PII on the pages like “personal center”, which is designed for
users to edit their information. More importantly, regional laws
may require apps to show what data they have collected from

Agoda

Pahealth

C: Full name, ID number, SMS OTP

UnionPay

C: Bank card number, Full name, ID number, SMS OTP

QQ mail

Bettas

Alipay

C: ID number(***1111), SMS OTP

Umetrip

Taobao

C: SMS OTP

Zhihu

C: Email address, SMS OTP

TARGET

 : PII obtained after login.

R: ID number

R: ID number(***1111)

R: Full name

R: Last nameR: First name

R: Bank card number R: Email address

C : Authentication conditions.

R

Etax

START

Fig. 4. Breaking PaFA by cross-app PII harvesting and business partnerships:
a case study.

users. Thus, many apps added an entry to the “privacy data
collection list” which lists all users’ information.

In addition to activities, some mobile apps also show PII
on other external files (e.g., pictures or pdf files). For instance,
Qianzhan, an app providing financial services, downloaded
510,000 times, displays the user’s full name, ID number, and
bank card number in the payment authorization agreement
document. This pdf file belongs to the account and is stored on
the cloud, which is always available after changing the phone.

• Risky partial exposure. Some apps mask parts of the infor-
mation displayed on UIs to avoid exposing full PII. However,
because different apps adopted different masking strategies,
an attacker could stitch the pieces together into full PII. For
instance, with the last name displayed in Didibike and the
given name displayed in Anjuke, an attacker can obtain the
full name. Another representative is the ID number. It has 18
digits in total, and the 7th to 14th digits are the individual’s
birthday. Many apps display the first 6 digits and the last 4
digits of the ID number. E.g., Airbnb exposes the first 6
digits, and MOMO shows the last 4 digits. Meanwhile, many
apps expose the user’s birthday, like Soul and Blued. If a
user registers several of them, an attacker could stitch together
these pieces of information into the whole ID number. In this
case, any of the apps above likely does nothing wrong, but the
inconsistent security policies bring realistic risks to their users
who use them simultaneously.

Case study. Here, we provide a case study that is likely to
happen in the real world to illustrate the impact of this cause.
As introduced in the threat model, we assume an attacker,
who only could access the victim’s SMS OTP (as discussed
in Section II-C, by SIM card theft, OTP fraud, etc.), aims
to transfer money from UnionPay, and access to victim’s
QQ mail account. As shown at the top of Fig. 4, the target
UnionPay app requires full name, ID number, bank card

8

number, and SMS OTP to transfer money; the target QQ mail
app requires the email address and SMS OTP to reset the
login password. The attacker starts from three apps that only
require SMS OTP for login (Step 1⃝), i.e. Agoda, Zhihu and
Bettas, which expose first name, last name, and last four
digits of the ID number respectively after the attacker login
as the victim. Note that these three apps all were downloaded
more than 100 million times. The attacker then stitches the
first name and last name together into the full name (Step 2⃝).
With the last four digits of the ID number and SMS OTP, the
attacker can log into Umetrip to get the full ID number (Step
3⃝). Next, the attacker is able to reset the login password of
Etax app and log into it to get the victim’s email address
(Step 4⃝). So far, with the email address and SMS OTP, the
attacker can reset the password of the QQ mail account so as
to access the QQ mail (Step 5⃝). Meanwhile, the attacker can
log into Pahealth to get the bank card number (Step 6⃝).
With the victim’s full name, ID number, and bank card number,
the attacker can reset the payment password of UnionPay app
and transfer the victim’s money (Step 7⃝). Notably, each app
in the attack path could be replaced by many other apps, which
is demonstrated in our measurement results – an attacker has
many attack path choices to bypass a target’s authentication
condition (Section V-B). Thus, the attack case is very likely
to occur in real life.

This case study demonstrated that PaFA mechanisms, even
those deployed in sensitive apps, do not provide the ex-
pected security as designed. More exactly, the designers of
UnionPay and QQ mail do not expect a user who only
knows SMS OTP can reset passwords and transfer money.

Cross-app business partnership. Besides directly breaking
PaFA by providing the PII, cross-app business partnerships
also threaten the security of PaFA system in mobile apps. An
attacker can leverage apps with lower authentication strength
that have a business partnership with the target app to bypass
its authentication. We observed risks mainly come from two
types of connections below.

• Account sharing. SSO provides significant convenience for
users. For example, with one account of Taobao app, users
can log into other apps through an easy authorization process
that only requires logging in Taobao. However, when SSO
connects with other apps that require higher authentication
conditions, one could pass the authentication with fewer au-
thentication factors.

Besides the widely SSO connection among companies, the
account system of one big company is usually shared among
its multiple products. For example, a Google account can
be used in both Gmail and Google Calendar. In this
situation, The inconsistent security designs of the services
of one company also could potentially jeopardize apps that
deploy strong authentication mechanisms. Here we illustrate
another example of QQ and WeChat, which are both popular
social software of Tencent Company and connect more than 1
billion people worldwide. WeChat provides a way for users
to log their account into a new device by requiring an SMS
OTP and scanning a QR code from the user’s old device.
By contrast, resetting the password of QQ only requires an
SMS OTP. Meanwhile, WeChat allows users use QQ account
and password to log into WeChat, along with sending an

SMS verification code to a certain phone number. Thus, an
attacker who can send and receive SMS OTP is able to reset
the victim’s password of QQ for logging in to the associated
WeChat account (without the victim’s old device).

Moreover, many apps enable users to synchronize their data
from SSO providers. This makes the PII exposure unexpect-
edly, because different apps may not mask shared PII equally.
For example, after a user logging in Qunar by Alipay
account, Alipay shares the user’s ID and name to Qunar.
But the ID number masked by in Alipay will be fully
displayed on Qunar’s UI.

• Business authorization. An app can open service interfaces
for other vendors, letting them serve as the third party to pro-
vide equivalent services through authorizations. For example,
banks can grant payment authority to other third-party pay-
ment apps (e.g., eBay). However, the different authentication
strengths of these cooperative apps may jeopardize apps with
higher security requirements. For instance, Bank of China
app holds high security: it requires multiple authentication
factors (i.e., phone number, SMS OTP, ID number, bank card
number, and PIN of the bank card) for login and payment
authentication. By contrast, some third-party payment apps
require fewer authentication factors than the bank app does.
Therefore, by linking the Bank of China debit card to
a third-party payment app like UnionPay, BestPay and
Hebao, an attacker can pay with that debit card through an
app with weaker authentication strength.

Moreover, many banks in China provide the “Add without
entering card number” service to apps. Through this service,
a user can check and link her bank card by only providing ID
number, full name, and SMS OTP for authentication. Thus,
there could be a serious attack on new users who use apps that
provide such a service, like UnionPay. An attacker, who only
knows SMS OTP, can first obtain the victim’s ID number and
full name by the Bacae attack mentioned in Section V-B, then
register an account as the victim and link the victim’s bank
card through this service to UnionPay. We successfully did
such a Bacae attack on one of the authors’ bank cards, who
had not registered UnionPay account, and made a payment
by her bank card.

Case study. Here we provide another case study to illustrate
that the combination of causes makes the Bacae attack more
feasible and complicated. As shown in Fig. 4 (Step 1⃝, 8⃝, 9⃝),
an attacker, who only can access the victim’s SMS OTP, aims
to illegally hijack the victim’s Alipay account. The target
Alipay app requires the phone number, ID number, bank
card number, and SMS OTP to log in. The attacker starts from
Bettas app and obtains the last four digits of the ID number
(Step 1⃝). Next, with the last four digits of the ID number and
SMS OTP, the attacker logs into Taobao (Step 8⃝). Finally,
the attacker logs into Alipay through Taobao SSO (Step
9⃝). Obviously, the designers of Alipay do not expect a user

who only knows SMS OTP can access an account.

B. Statistic Results

To conclude, according to statistics on 234 apps of various
types, a considerable number of apps deploy PaFA to protect
sensitive operations, but MAGGIE found that 75.4% of them

9

0

5

10

15

20

25

30

35

Parts of ID number Email FaceID Full name ID number Phone number Bank card number

The number of apps

 Login Login password recovery Bank card connection Payment password recovery

Fig. 5. PII usage in PaFA of 65 apps.

are susceptible to Bacae if the attacker could obtain SMS OTP.
This means that a total of 20.9% of apps in official markets
perhaps are impacted. More details are illustrated below.

PaFA deployment. Apps using PaFA are targets of Bacae at-
tack. We observed that 65 out of 234 apps deployed PaFA,
accounting for 27.8%. These apps mostly belong to sensitive
categories such as payment (6 of 6 apps), lending (6/6),
shopping (5/6), traveling (5/6), messaging (4/6), etc. This
indicates that sensitive apps seek a more secure design by
deploying PaFA. Specifically, 20 apps employ PaFA to protect
login, 29 apps for recovering login passwords, 30 apps use
PaFA for bank card connection, and 27 apps for resetting
payment passwords.

The first column of Tab. II shows the specific authenti-
cation factor combinations in PaFA we observed. Further, we
summarized the PII in PaFA mechanisms of the 65 apps. As
shown in Fig. 5, PaFA mechanisms of different operations use
PII subtly differently. For login password recovery, some apps
may choose PII that is easier to be gathered through Bacae,
such as certain digits of the ID number. For payment password
recovery, apps tend to choose some complex PII, such as a
complete ID number and bank card number. However, the
lower authentication strength of login enables an attacker easier
to gather more PII after logging in as the victim and break a
stronger authentication system.

In addition, phone numbers and email addresses are com-
monly used as usernames in apps. Among the 234 apps we
studied, 186 apps use phone numbers and 76 apps use email
addresses as username identifiers. Therefore, our threat model
is capable of handling most apps. Another observation is that
SMS OTP is widely used for app authentication. For apps that
deploy PaFA mechanisms, SMS OTP combined with PII is a
common pattern of authentication condition.

Business connection. SSO is a popular login method that
allows users to log in with a single ID to multiple related
software systems. Among the 234 apps, 172 apps allow users
to log in to their systems by using SSO services from third-
party apps. Therefore, the login authentication (login pass-
word recovery) strength of these 172 apps would be possibly
downgraded by the SSO identity providers that they connect
with. The mainstream SSO identity providers in China are the
following popular apps: Wechat, QQ, Weibo, Alipay, and
Taobao, which are supported by 95% of 172 apps. Finally,

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Phone number

Full name

Gender

Address

Age

Birthday

ID number

Email

Bank card number

The percentage of apps

Fully exposure Part exposure No exposure

Fig. 6. The percentage of apps that exposed personal data in 234 apps.

we found that the login authentication conditions of 12 apps
could be weakened by third-party SSO.

Out of the 234 apps we analyzed, 41 offered third-party
payment services. 30 of these third-party payment apps require
PII as authentication factors when connecting bank cards.
Another 8 apps required payment passwords for linking bank
cards, but these passwords could be reset by Bacae attack.
Consequently, these 38 third-party payment apps could likely
be leveraged by Bacae attack (as a key node in attack paths) to
circumvent the banks’ payment authentication of a victim. In
contrast, the 6 bank apps we tested required strong authentica-
tion factors that cannot be easily bypassed, e.g., bank branch
details and PIN.

PII availability. PII exposure contributes most to Bacae attack.
PII is widely exposed in apps and can be easily obtained after
user login. 224 (95.7%) apps show PII in one or more UI
pages and 86.3% of the apps have a complete display. Among
them, only 16 apps require additional verification when a user
tries to view PII. As shown in Fig. 6, nearly half of the apps
fully exposed PII, such as phone number and full name. ID
numbers and bank card numbers are partially displayed in most
apps, indicating that some app vendors are aware that some
PII like ID numbers and bank card numbers are relatively
sensitive. However, using asterisks (*) in replacement of partial
PII data in apps is not an efficient method to protect PII
gathering when users use many apps with different masking
policies simultaneously, as we discovered in Section V-A. In
addition, we also observed that apps in different categories
tend to expose different kinds of PII. Social apps expose
more information about names and birthdays; shopping apps
expose addresses more often; travel apps lack the protection
of ID numbers; financial management apps are at great risk of
exposing bank card numbers. These features of the distribution
can help an attacker find an attack path more effectively.

Gaining more PII is a critical step in Bacae attack. There-
fore, attackers pay special attention to apps that display more
PII than is necessary for their login processes. Of all the 234
apps, 193 apps showed additional PII in their UIs post-login.
The details are presented in the Appendix Tab. V. With SMS
OTP and Bacae attack, an attacker could potentially log into
185 apps and gain additional PII.

Attack paths. With SMS OTP and Bacae attack, the attacker

10

TABLE II. THE PaFA MECHANISM IN APPS AND ATTACK PATHS OBTAINED BY MAGGIE

Authentication conditions2
App operations1

(number of apps) Attack case The number of
optimized pathsL LPR BCC PPR Attack path example Target App.op

{sms, fn} 2 {sms}->Huolala.L{sms,fn}-> JD.LPR 125
{sms, bcn} 1 17 5 {sms}->Pahealth.L{sms, bcn}-> Szzc.L{sms, bcn}-> Szzc.BCC 3

{sms, id(0,4)3} 2 1 {sms}->Zhixing.L{sms, id(0,4)}-> Umetrip.LPR 45
{sms, id(0,6)} 2 2 {sms}->QQ.LPR->QQ.SSO1-> Vmall.L 257
{sms, id(2,4)} 2 2 {sms}->MOMO.L{sms, id(0,4)}->Zhihu.L{sms, id(4,4)}-> JD.LPR 126
{sms, id} 1 5 1 {sms}->Sousou.L{sms, id(6,4)}->SF Express.L{sms, id}->Meituan.L{sms, id}-> Meituan.PPR 260
{pn, e, ep} 1 {sms}->Soul.L{sms, e}->QQ.LPR{sms, ep, e}-> MailMaster.LPR 53
{fn, id} 3 {sms}->Ebuy.L{sms, fn}->Youjiankang.L{sms, fn, id}-> Keep.L 303

{sms, fn, id} 3 7 {sms}->Ctrip.L{sms, fn, id(1,1)}->Huajiao.L{sms,fn,id}-> Etax.LPR 303
{pn, id, bcn} 2 {sms}->Qunar.L{sms, id}->Unicom.L{sms, fn, id}->Hebao.L{sms, fn, id, bcn}-> Shengbei.LPR 78
{e, ep, id} 1 {sms}->Boss.L{sms, e}->QQ.LPR{sms, e, ep}->Tuniu.L{sms, e, ep, id}-> Railway12306.LPR 613

{sms, id, bcn} 1 1 5 {sms}->Tujia.L{sms, id}->Taobao.L->Taobao.SSO-> Alipay.L 78
{sms, fn, bcn} 2 {sms}->Xiaohongshu.L{sms, fn}->PICC.L{sms, fn, bcn}->Qunar.L{sms, fn, bcn}-> Qunar.BCC 28

{e, ep, id, bcn} 2 {sms}->Soul.L{sms, e}->QQ.LPR{sms, e, ep}->Gtgj.L{sms, e, ep, id}->
PICC.L{sms, e, ep, id, bcn}-> JD finance.LPR 813

{sms, fn, id, bcn} 3 9 13 {sms}->Qunar.L{sms, fn, id}->Pahealth.LPR{sms, fn, id, bcn}-> Unionpay.LPR 113

{fn, id, faceid} 2 {sms}->Airbnb.L{sms, fn, id(6,2)}->SoYoung.L{sms, fn, id}->
Hebao.L{sms, fn, id, bcn}->Alipay.L->Alipay.SSO-> MISP.L 113

{sms, faceid} 7 {sms}->Haohuan.L{sms, fn, id(6,4)}->JD.L->JD.SSO-> JD finance.L 126
Total* 15 18 28 24 3,437

1 L: Login, LPR: Login Password recovery, BCC: Bank card connection, PPR: Payment password recovery, SSO: Single sign-on.
2 pn: phone number, sms: SMS OTP + pn, e: email address, ep: email OTP, fn: full name, id: ID number, bcn: bank card number.
3 id(0,4): the first 0 digit and the last 4 digits of the ID number.
* Note that apps may provide more than one Auth.Cond. Each Auth.Cond of App.Op is counted separately in table.

could jeopardize 49 of 65 apps that deployed PaFA: breaking
the authentications of 15 apps’ login, 18 apps’ password
recovery, 28 apps’ bank card connection, and 24 apps’ payment
password recovery. Specifically, Tab. II displays the 17 types
of PaFA conditions of vulnerable 49 apps and attack paths
that can be leveraged by the attacker who can only access
the victim’s SMS OTP initially. Authentication conditions that
require more factors try to make the system more secure,
but an attacker is able to find many potential attack paths.
For example, for the Authentication condition ep + e + id
+ bcn, the attacker has 813 attack path choices. Moreover,
although the attacker cannot break “FaceID” authentication
directly, he could bypass it by Bacae attack (the last two
rows in Tab. II). In summary, MAGGIE discovered a total of
3,437 optimized attack paths. Some concrete attack paths are
provided in table, showing the process by which an attacker
can successfully breach the Authentication condition.

C. Dissecting Attackers without SMS OTP

To evaluate PaFA more comprehensively, beyond our
threat model, we ran MAGGIE with different attacker initial
ability (FVinit) settings without SMS OTP. Our findings
are as follows: 1⃝ If starting with email verification code
only [23], the attacker could additionally break two apps’
login authentication with 500+ attack paths. For example,
Railway 12306 requires email verification code and ID
number to reset the login password, while Tuniu allows
the attacker to gain the victim’s ID number by exploiting
the login password recovery with only an email verification
code. The attack path could be {e, ep}->Tuniu.LPR{e, ep,
id}->Railway12306.LPR. 2⃝ Face authentication systems have
been demonstrated vulnerable to many attacks [24][25]. If
starting with FaceID, the attacker could also break apps’ PaFA
through Bacae attack. For instance, an attack path could be
{faceid}->Alipay.L{faceid, fn, id}->MISP.LPR. 3⃝ If the
attacker could initially obtain only some PII (possibly due
to phishing attacks [26]), he could potentially compromise
several apps that only require PII for authentication through
Bacae attack. For example, an attacker with a user’s ID number
and bank card number can log in to two apps, Vipshop and

Shengbei, through password recovery and obtain the full
name. With the additional PII, the attacker could then reset the
phone number associated with the target apps (such as Keep,
Yunmanman and YunmanmanConsignor) and gain SMS
OTP to log in to them. In addition, during the experiment
we observed that some apps, like Eleme, allow users to
authenticate without SMS OTP by providing their history order
number. This interesting kind of secret can be found in users’
payment apps. In conclusion, although under different threat
models without SMS OTP, PaFA remains vulnerable to our
Bacae attack.

D. Impact

Consequence. Out of the total 65 apps that deployed the
PaFA system, 49 apps (75.4%) are susceptible to Bacae attack.
These vulnerable apps are found in various categories, such
as “UnionPay” for payment, “Taobao” for shopping, “JD
Finance” for finance, “Ctrip” for tourism, and “QQ mail” for
communication. Exploiting the cross-attack on these apps can
indeed lead to severe consequences. Some potential outcomes
include: 1⃝ Hijacking user accounts. Attackers can manipulate
user sessions, alter account credentials, and gain unauthorized
access to sensitive information, thereby taking control of the
user’s accounts. 2⃝ Unauthorized purchases. Once the attacker
gains control of a user’s account in certain apps, they can make
unauthorized purchases using the user’s funds. This can result
in financial loss for the victim and damage their reputation.
3⃝ Fraudulent activities. By accessing a user’s account and
PII, attackers can engage in various fraudulent activities.
This includes applying for loans, opening new accounts, or
conducting transactions on behalf of the user. These actions
can have significant financial and legal consequences for the
victim. We successfully conducted several PoC attacks on our
own accounts, as presented in the case studies in Section V-A.

Magnitude. In addition to exploring attack paths on the dataset
that covers all kinds of apps evenly, we conducted a user study
to estimate the real impact of Bacae attack on users. The
questionnaire is designed simply: we showed the 234 apps
to users (divided into 16 groups) and asked the participants

11

TABLE III. DEMOGRAPHICS OF THE QUESTIONNAIRE PARTICIPANTS

n
(sum=208) %

Gender
M 92 44.23
F 116 55.77

No answer 0 0

Age

18-25 29 13.94
26-35 112 54.85
36-45 49 23.56
46-55 11 5.29
56+ 7 3.37

No answer 0 0

Education

Below bachelor 43 20.67
Bachelor 137 65.87

Master or above 22 10.58
No answer 6 2.88

to select the apps they had registered and used. In addition,
we added one attention test question in the middle of the
questionnaire to filter out those participants who did not answer
seriously. Finally, we ran MAGGIE to discover attack paths
from apps that were registered and used by every real user.

We recruited 281 participants via a popular online research
platform Wenjuanxing4. The survey5 was done on April
29, 2023. We rejected the responses that were completed
in less than 90 seconds or wrongly answered the attention
test question to ensure the quality of the results. Finally, we
got 208 effective responses. On average, it took 4 minutes
to finish the survey. Based on the local income, participants
who completed the survey in China received 2 CNY. The
participants’ demographics are presented in Table III.

Based on the survey results, we found that the Bacae attack
has a high success rate on real users. We discovered that
94.2% of participants had at least one attack path in the
simultaneously used apps to break the authentication of an
installed app. Although this success rate is potentially overes-
timated due to the incompletely/dishonestly filling in personal
information and occasional account deletion [27], Bacae may
still have a high probability of success. In the survey, we
limited participants to selecting apps from our dataset of 234
apps. However, it is likely that individuals used other apps
beyond this set, resulting in an increased number of potential
targets and attack paths.

E. Discussion

SMS OTP becomes the sole protection. Our study found that
Chinese apps rely too heavily on SMS OTP for authentication.
Approximately 27.8% of apps, particularly those related to
financial transactions, have added the PaFA mechanism to
obtain additional security protection. However, PII is not
a secure authentication factor. In addition to frequent data
breaches nowadays [28] and threats revealed by previous
stuides [4][29][30], our study reveals a new concerning fact:
when people use many apps simultaneously (which is true
revealed by our user study), SMS OTP becomes the sole

4https://www.wjx.cn
5Our institution does not require IRB for online questionnaire-based studies.

However, we adhere to standard ethical research procedures and are committed
to safeguarding participants’ information and maintaining its confidentiality.
No personally identifiable data was collected from participants in the ques-
tionnaire.

protection because of the PII exposure in apps and business-
related interactions of two or more apps, rendering the PaFA
mechanism useless. Striking a balance between security and
usability remains a significant challenge.

Moreover, unfortunately as stated in the threat model,
SMS OTP is not secure either and can be vulnerable to
numerous attacks. For example, SIM-swap attacks [11] can
allow attackers to redirect incoming SMS messages to their
own devices, giving them access to OTPs. Also, SMS messages
can be sniffed [31] or intercepted by malicious apps [32],
potentially allowing attackers to obtain OTPs without even
compromising the user’s device. These vulnerabilities highlight
the need for more secure authentication methods beyond SMS
OTP. Using additional authentication factors in conjunction
with SMS OTP is indeed recommended for stronger security.
Biometrics such as fingerprint or facial recognition can provide
an additional layer of security and reduce the reliance on
SMS OTP. However, only 39 apps (out of 234 apps) provide
biometric authentication, including face recognition and finger-
print recognition, and only 4 of them require biometrics to be
mandatory. Many users may choose not to enable biometric
authentication when using mobile apps, which may limit
the effectiveness of this authentication method. On the other
hand, the hardware requirements also limit the deployment of
biometric authentication.

Risk control. During our experiment, we observed that some
apps set up risk control systems to safeguard their users, but
their security enhancement was limited. In total, 18 apps (out
of 234) added additional authentication factors for login au-
thentication when tested under changed device and IP address
conditions (see Section IV-B). Taking Taobao as an example,
after changing the device and IP address, it requires the user
to additionally provide the last four digits of the ID number
for login.

As shown in Tab. IV, 7 apps required PII as additional
authentication factors besides SMS OTP. However, as revealed
by this paper, PII gathering attacks can compromise these
added factors. Therefore, such added authentications may not
be effective in improving security. Moreover, 10 apps added
biometric authentication, such as FaceID, to enhance login
security, while 4 apps added different types of authentication,
such as historical order numbers. These types of authentication
cannot be broken by PII gathering. However, part of them
can be compromised by SSO or account sharing, reducing its
effectiveness. Overall, 15 out of the 18 apps that implemented
risk control measures to enhance login security are vulnerable
to Bacae attack, suggesting that the additional authentication
for risk control provides limited benefits in terms of security.

Inconsistent protection in websites. Our findings demonstrate
that different mobile apps may have inconsistent security
policies regarding the display of PII. Inspired by this, we
further manually examined the websites of some mobile apps
that provide sensitive services and found that the display of the
same PII was inconsistent with the display on the mobile apps.
Take Lifangtong as an example. The login conditions of
the website and mobile app are the same. However, the bank
card number, which is partly displayed (first 6 digits and last
4 digits) in the Lifangtong app, is fully displayed on the
website. Over half of the app vendors in our dataset provide a

12

TABLE IV. COMPARISON OF LOGIN AUTHENTICATION BEFORE AND
AFTER CHANGING DEVICE AND IP.

App Original
login cond.

Additonal login cond.
(New device and IP) Account sharing

JD {sms} {id(2,4)1} QQ/Wechat
Taobao {sms} {id(0,4)} / {faceid} Alipay
Hebao {sms} {id(0,6)} \

Taobao.movie {sms} {id(0,4)} Alipay
Alipay {sms} {id, bank card number} / {faceid} Taobao

Vipshop {sms} {id}/{bank card number} QQ/Wechat
Vmall {sms} {email OTP} / {id number(0,6)} QQ/Wechat
DiDa {sms} {faceid} Wechat

JD finance {sms} {faceid} JD/Wechat
Kuaishou.nebula {sms} {faceid} QQ/Wechat

Kuaishou {sms} {faceid} QQ/Wechat
Zhenai {sms} {faceid} \

Railway12306 {sms} {faceid} \
QQ {sms} {fn, id, faceid} \

Hello bike {sms} {faceid} / {Alipay order number} Alipay
Maoyan.movie {sms} {Meituan order number} QQ/Wechat
Haokanshipin {sms} {username} QQ/Wechat

WeChat {sms} {QR code} QQ
1 id(2,4) indicates the first 2 digits and the last 4 digits of the ID number.

corresponding web version of their services, which means that
attacks can originate from a wider range of surface. Therefore,
we believe that expanding the attack idea to websites besides
apps could potentially make the authentication mechanisms of
apps become weaker.

F. Responsible Disclosure

We have made responsible disclosures to the app vendors
and CNCERT/CC (the authority for coordinating and handling
cybersecurity threats and incidents in China). For app vendors
that have Security Response Center or contacting emails, we
report the issues related to their apps by the platforms or
emails. For app vendors without public contact information,
we reported the relevant risk reports to CNCERT/CC and
requested their assistance.

Tencent and Alibaba acknowledged the issues we
reported but did not make modifications. Some app vendors
(e.g., Unionpay) have updated their app versions during our
experiment and added FaceID or CVV to their PaFA mech-
anisms, which prevent Bacae attack. However, we received
few responses from most vendors until the submission of this
paper. This lack of response is likely due to the fact that our
attack involves multiple apps, and each vendor may believe
that they are not solely responsible for the risk.

VI. SUGGESTIONS AND LIMITATIONS

A. Suggestions

The most important lesson learned from this study is that
the widely deployed PaFA mechanisms in (Chinese) mobile
apps provide few security benefits. The imperfect/different
strategies of app vendors in information protection and authen-
tication mechanisms contribute to the success of Bacae attack.
Therefore, a standardized data display mechanism and an
authentication strength assessment (e.g., with the help of MAG-
GIE) before business cooperation agreed by cross-app vendors
would be beneficial to users’ security. However, a unified
standard usually takes a long time to be carried out. For app
vendors today who want to mitigate PaFA attack, we suggest
they add additional biometric authentication mechanisms (e.g.,
FaceID) and do not rely on PII for authentication purposes,
which provides limited security benefits but hurts usability.

B. Limitation

Further analysis on risk control. As discussed in Sec-
tion V-E, some risk control measures could mitigate Bacae at-
tacks. However, the effectiveness of these measures is often
difficult to assess due to the black-box and random nature of
the system. Interestingly, during our experiment, for example, a
certain risk control measure implemented by Taobao required
us to select a friend from our Taobao contacts to confirm our
identity. However, there was no friend associated with the test
account, and we were able to bypass the risk control measure
by clicking on any name displayed on the screen. While our
method may not be able to perfectly measure the impact of risk
control, our results show that Bacae attacks are still realistic in
some cases where risk control is present. In the future, more
effective methods for analyzing and understanding risk control
will be necessary.

Sounder implementation of MAGGIE. First, our tool requires
manual assistance to complete the authentication process
when anti-automation mechanisms are present (e.g.,verification
codes and security keyboards). In the future, computer vision
processing technology could be used to reduce the need
for manual assistance and make MAGGIE more automated.
Second, XHelper is built based on the open source tool
UIAutomator, so some of its functions are limited to the
implementation of UIAutomator. Finally, MAGGIE could
be made more efficient and effective by integrating state-of-
the-art methods [33] from the software engineering field that
focus on app UI exploration and testing.

Limitations of dataset. First, the scale of the number of apps
analyzed could be improved. Although we selected the 234
apps with the highest downloads in 39 categories as compre-
hensively as possible, we cannot claim to have covered the
entire app ecosystem. Second, we only studied the app market
in China. The mobile app ecosystem in foreign countries
is quite different from that of China, and the authentication
systems may be designed differently. Additionally, PII in
different countries may vary. For example, in China, the 7th to
14th digits of the ID number represent an individual’s birthday.
Thus, our model may require minor changes to be applied to
the PaFA system in other countries. We believe that the mobile
app market in China is huge and representative. However, we
encourage researchers around the world to cooperatively study
the potential risks in the PaFA system in the future. However,
we believe that PaFA systems in other countries may also
have the potential risks that need more research by checking
apps from other sources. For instance, the password recovery
process of Outlook requires name, birth date, region and
other personal information, which can also possible be exposed
by other apps. This means that our results are a conservative
estimate of the actual attack surface.

VII. RELATED WORK

Authentication security of mobile apps. Many works have
been done to study the security of authentication mecha-
nisms [34–38]. Password-based authentication schemes are
vulnerable to guessing attacks, offline dictionary attacks, brute-
force attacks, and credential stuffing attacks [39][40]. To avoid
these attacks, multi-Factor Authentication (MFA) - i.e., the
combination of two or more authentication factors, is being

13

increasingly advocated for securing online services. For exam-
ple, many bank apps use face features to authenticate users.
However, facial recognition can be invaded by trojaned model
provided by attackers [25]. Another widely used authentication
is SMS OTP which avoids users’ creation and memorization of
passwords [41]. However, existing techniques provide conve-
nience for attackers to obtain SMS OTP. For example, attackers
can read SMS OTP through malware [42], SIM card swapping
attacks [11], and wireless network hijacking attacks [31]. By
contrast, considering above risks in our threat model, we
evaluated another authentication factor of mobile apps – PaFA.

Account recovery. Prior papers evaluated the personal security
questions for fallback authentication and demonstrated that
secret questions have poor security and reliability in account
recovery authentication [3] [4] [30]. Security credentials can be
obtained through several approaches, e.g., online guessing [3],
publicly available answers [4] and social engineering [30].
Even some pieces of private information of users might be
exposed during the process of recovering the password [29].
Besides, Guri et al. found the password recovery process could
leak users’ private information [29]. Prior studies examined the
personal security questions and focus on the “vulnerability to
random guessing” because the answers are shared by different
users. However, sensitive security questions, like “ID num-
ber”, required by the PaFA are generally infeasible to guess.
Instead, this work propose a novel concept of “vulnerability to
cross-app PII collection and interactions”, which arises from
inconsistent security policies in apps regarding their use and
display of PII, as well as their business interactions with apps
of different authentication strengths.

Detection of privacy leakage in mobile apps. Considering
mobile apps have access to personal sensitive data, many
approaches [43–48] have been proposed to detect privacy
leakage in mobile apps. They leveraged many state-of-the-art
techniques like formal models, network data flow analysis,
NLP, program analysis, etc, to identify whether and what
personal information is gathered/sent out by apps. In sharp
contrast, we focus on the personally information exposed on
app pages, which can be easily gathered by the attacker in
our threat model. So MAGGIE uses Android GUI testing
technology to traverse app UIs. Our goal is quite different
from the detection of privacy leakage in apps.

VIII. CONCLUSION

We performed the first study to analyze whether the simul-
taneous use of multiple apps will affect the PaFA mechanism
of a target app. Our approach is building a state machine
model that describes the adversary who simultaneously op-
erates hundreds of apps and leverages model checking to find
attack paths that break the target PaFA. We built a semi-
automatic tool MAGGIE and measured 234 Chinese apps,
revealing that the widely used PaFA of mobile app cannot
effectively protect users as designed and SMS OTP becomes
the single point of failure in most cases. Furthermore, a large
number of users may be subject to Bacae attack considering
the list of apps they registered and used, as found by our
survey. Finally, we reported our finding to related parties and
put forward some suggestions to mitigate such issues. Our new
findings and understanding will lead to better protection of

users and provide valuable insights towards app authentication
mechanisms.

ACKNOWLEDGMENT

This work was supported by the National Key Research
and Development Program (2023YFB3106400, 2023QY1202),
the National Natural Science Foundation of China (U2336203,
U1836210), and the Key Research and Development Science
and Technology of Hainan Province (GHYF2022010). Yan Jia
is supported by the National Natural Science Foundation of
China (62102198) and China Postdoctoral Science Foundation
(2021M691673, 2023T160335).

REFERENCES

[1] “App industry china,” https://daxueconsulting.com/china-app-m
arket/, 2023.

[2] “Mobile apps in china,” https://www.statista.com/topics/5577/m
obile-apps-in-china/#topicOverview, 2023.

[3] A. Rabkin, “Personal knowledge questions for fallback au-
thentication: Security questions in the era of facebook,” in
Proceedings of the 4th Symposium on Usable Privacy and
Security, 2008, pp. 13–23.

[4] J. Bonneau, E. Bursztein, I. Caron, R. Jackson, and
M. Williamson, “Secrets, lies, and account recovery: Lessons
from the use of personal knowledge questions at google,” in
Proceedings of the 24th international conference on world wide
web, 2015, pp. 141–150.

[5] “What to do if your phone is lost or stolen,” https://www.asur
ion.com/connect/tech-tips/what-to-do-when-your-phone-is-los
t-or-stolen/, 2023.

[6] “Mobile device security,” https://www.channelpronetwork.com/
article, 2023.

[7] “Phone reported stolen,” https://www.bbc.com/news/uk-engla
nd-london-65105199, 2023.

[8] “134 cellphones lost, stolen daily in city,”
https://indianexpress.com/article/cities/mumbai/134-cellphones-
lost-stolen-daily-in-city-fir-registered-in-3-pc-of-the-cases-rti-
7873867/, 2022.

[9] “Smartphone theft statistics,” https://www.identity-theft-aware
ness.com/smartphone-theft-statistics.html, 2022.

[10] “Mobile phone stolen,” https://www.statista.com/statistics/1027
661/brazil-share-population-mobile-phone-stolen/, 2022.

[11] K. Lee, B. Kaiser, J. Mayer, and A. Narayanan, “An empirical
study of wireless carrier authentication for sim swaps,” in
Sixteenth Symposium on Usable Privacy and Security (SOUPS
2020), 2020, pp. 61–79.

[12] “Android permissions.” https://developer.android.com/referenc
e/android/Manifest.permission, 2023.

[13] “Otp frauds increases,” https://www.cnbctv18.com/technology/otp-
frauds-increases-three-times-post-pandemic-common-method-
to-scam-people-16896221.html, 2023.

[14] “One time password frauds,” https://www.statista.com/statistic
s/1097969/india-number-of-otp-frauds-recorded-by-leading-sta
te/, 2022.

[15] “Sms pumping fraud epidemic,” https://www.infosecurity-mag
azine.com/news/experts-warn-of-sms-pumping/, 2023.

[16] “Sms sold,” https://new.qq.com/rain/a/20220722A09WAZ00,
2022.

[17] “Sms sold,” https://www.thepaper.cn/newsDetail forward 189
35983, 2022.

[18] M. Line, “Maggie,” https://github.com/ncnipc0/MAGGIE, 2023.
[19] “Uiautomator,” https://stuff.mit.edu/afs/sipb/project/android/doc

s/tools/help/uiautomator, 2022.
[20] “Huawei app gallery,” https://appgallery.huawei.com/Featured,

2021.

14

[21] “Vivo app store,” http://info.appstore.vivo.com.cn/detail/47998,
2021.

[22] “Tencent app centre,” https://sj.qq.com/, 2021.
[23] Y. Li, H. Wang, and K. Sun, “Email as a master key: Analyzing

account recovery in the wild,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, 2018, pp.
1646–1654.

[24] Y. Yan and Z. Yang, “Spoofing real-world face authentication
systems through optical synthesis,” in 2023 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, 2023,
pp. 882–898.

[25] J. Lin, L. Xu, Y. Liu, and X. Zhang, “Composite backdoor attack
for deep neural network by mixing existing benign features,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, 2020, pp. 113–131.

[26] Z. Alkhalil, C. Hewage, L. Nawaf, and I. Khan, “Phishing
attacks: A recent comprehensive study and a new anatomy,”
Frontiers in Computer Science, vol. 3, p. 563060, 2021.

[27] Y. Liu, Y. Jia, Q. Tan, Z. Liu, and L. Xing, “How are your
zombie accounts? understanding users’ practices and expecta-
tions on mobile app account deletion,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 863–880.

[28] F. Schlackl, N. Link, and H. Hoehle, “Antecedents and conse-
quences of data breaches: A systematic review,” Information &
Management, p. 103638, 2022.

[29] M. Guri, E. Shemer, D. Shirtz, and Y. Elovici, “Personal
information leakage during password recovery of internet ser-
vices,” in 2016 European intelligence and security informatics
conference (EISIC). IEEE, 2016, pp. 136–139.

[30] C. Karlof, J. D. Tygar, and D. A. Wagner, “Conditioned-
safe ceremonies and a user study of an application to web
authentication.” in NDSS, 2009.

[31] W. Jin, X. Ji, R. He, Z. Zhuang, W. Xu, and Y. Tian, “Sms goes
nuclear: Fortifying sms-based mfa in online account ecosystem,”
in 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W). IEEE,
2021, pp. 7–14.

[32] Y. Shen, P.-A. Vervier, and G. Stringhini, “A large-scale tem-
poral measurement of android malicious apps: Persistence, mi-
gration, and lessons learned,” arXiv preprint arXiv:2108.04754,
2021.

[33] X. Zhang, L. Fan, S. Chen, Y. Su, and B. Li, “Scene-driven
exploration and gui modeling for android apps,” In Proceedings
of the 38th IEEE/ACM International Conference on Automated
Software Engineering, 2023.

[34] I. Stylios, S. Kokolakis, O. Thanou, and S. Chatzis, “Behavioral
biometrics & continuous user authentication on mobile devices:
A survey,” Information Fusion, vol. 66, pp. 76–99, 2021.

[35] C. Wang, Y. Wang, Y. Chen, H. Liu, and J. Liu, “User au-
thentication on mobile devices: Approaches, threats and trends,”
Computer Networks, vol. 170, p. 107118, 2020.

[36] Y. Zhang, C. Xu, H. Li, K. Yang, N. Cheng, and X. Shen,
“Protect: efficient password-based threshold single-sign-on au-
thentication for mobile users against perpetual leakage,” IEEE
Transactions on Mobile Computing, vol. 20, no. 6, pp. 2297–
2312, 2020.

[37] M. A. Ferrag, L. Maglaras, A. Derhab, and H. Janicke, “Au-
thentication schemes for smart mobile devices: Threat models,
countermeasures, and open research issues,” Telecommunication
Systems, vol. 73, no. 2, pp. 317–348, 2020.

[38] A. Acien, A. Morales, R. Vera-Rodriguez, J. Fierrez, and
R. Tolosana, “Multilock: Mobile active authentication based on
multiple biometric and behavioral patterns,” in 1st International
Workshop on Multimodal Understanding and Learning for Em-
bodied Applications, 2019, pp. 53–59.

[39] P. Markert, D. V. Bailey, M. Golla, M. Dürmuth, and A. J.
Aviv, “This pin can be easily guessed: Analyzing the security of
smartphone unlock pins,” in 2020 IEEE Symposium on Security

and Privacy (SP). IEEE, 2020, pp. 286–303.
[40] S. Agrawal, P. Miao, P. Mohassel, and P. Mukherjee, “Pasta:

password-based threshold authentication,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2018, pp. 2042–2059.

[41] Z. Lei, Y. Nan, Y. Fratantonio, and A. Bianchi, “On the
insecurity of sms one-time password messages against local
attackers in modern mobile devices,” in Network and Distributed
Systems Security (NDSS) Symposium 2021, 2021.

[42] A. D. P. Center, “Additional requirements for the use of specific
permissions.” https://play.google.com/about/privacy-security-d
eception/permissions/, 2019.

[43] H. Lu, L. Xing, Y. Xiao, Y. Zhang, X. Liao, X. Wang, and
X. Wang, “Demystifying resource management risks in emerg-
ing mobile app-in-app ecosystems,” in Proceedings of the 2020
ACM SIGSAC conference on computer and communications
Security, 2020, pp. 569–585.

[44] L. Shi, J. Ming, J. Fu, G. Peng, D. Xu, K. Gao, and X. Pan,
“Vahunt: Warding off new repackaged android malware in app-
virtualization’s clothing,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Secu-
rity, 2020, pp. 535–549.

[45] Y. Chen, M. Zha, N. Zhang, D. Xu, Q. Zhao, X. Feng, K. Yuan,
F. Suya, Y. Tian, K. Chen et al., “Demystifying hidden privacy
settings in mobile apps,” in 2019 IEEE Symposium on Security
and Privacy (SP). IEEE, 2019, pp. 570–586.

[46] M. Zha, J. Wang, Y. Nan, X. Wang, Y. Zhang, and Z. Yang,
“Hazard integrated: Understanding security risks in app exten-
sions to team chat systems,” in Network and Distributed Systems
Security (NDSS) Symposium, 2022.

[47] Z. Yang, W. Pei, M. Chen, and C. Yue, “Wtagraph: Web tracking
and advertising detection using graph neural networks,” in 2022
IEEE Symposium on Security and Privacy (SP). IEEE, 2022,
pp. 1540–1557.

[48] P. Dodia, M. AlSabah, O. Alrawi, and T. Wang, “Exposing the
rat in the tunnel: Using traffic analysis for tor-based malware
detection,” in Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, 2022, pp. 875–889.

APPENDIX

A. Detailed Experiment Results

Tab.V details the dataset and the experiment results for
each app. Besides the apps’ basic information, the “One
of the vulnerable authentication conditions” column lists the
vulnerabilities found by MAGGIE for each app, and the
corresponding authentication factors required by the vulnerable
app operations. An attacker could find at least one attack
path to bypass these authentication conditions. Note that for
each operation, there may be multiple authentication conditions
available for the attacker to choose from. This table only
lists one of the (vulnerable) authentication conditions. We also
listed additional PII that an attacker can gain after logging in,
which he can use to build attack paths. To make it easier to
identify the 185 apps which show additional PII post-login
(as discussed in Section V-B), the table also presents the au-
thentication condition {sms} in the Login and LPR columns.
Apps that deploy PaFA but are vulnerable to Bacae attack may
further weaken the authentication strength of other apps that
do not deploy PaFA, so that the number of apps impacted
by Bacae attack in Tab.V is more than 49. Note that the
experiments were conducted during 2021 to 2022 and some
apps were updated. For security reasons, we have hidden the
version number of apps. The attack paths for each vulnerable
authentication condition are displayed in Tab.II.

15

TABLE V: Apps in dataset and identified vulnerabilities under the SMS OTP-only threat model

Category App One of (vulnerable) authentication conditons1 Additonal PII
post-login2

App name Downloads Login LPR BCC PPR fn bir id e bcn

Map
navigation

Amap 11.6B+ {sms} # H# #
Baidumap 10.3B+ {sms} H# # H# H# #

Tencentmap 2.7B+ # # # # #
Omap 130.9M+ # # # # #

BaiduCarlife+ 66.2M+ {sms} H# # H# # #
Beidoumap 44.5M+ # # # # #

Ride-hailing

DiDa 1.1B+ {Wechat.SSO} {sms, fn, id, bcn} H# # H# # H#
Huolala 696.1M+ {sms} # # # #

Huaxiaozhurider 382.2M+ {sms} {sms, fn, id, bcn} {sms, fn, id, bcn} # # # # #
Caocaokeji 251.8M+ {sms} H# H# #

T3go 250.6M+ {Alipay.SSO} H# # H# # #
Yigaosu 214.3M+ {sms} {sms, fn, id, bcn} # # # H#

Instant
messaging

WeChat 25.4B+ {send sms, QQ.acct3} # # H#
QQ 23.3B+ {sms} {sms, bcn, ppwd3} {sms, id, bcn} H# # H#

Weplay 234.1M+ {sms} # # H# # #
Ifreetalk 156.4M+ {sms} H# H# # #
Palmchat 154.8M+ {sms} {sms, bcn, ppwd} {sms, fn, id, bcn} H# # H#
WanBa 112.4M+ {sms} H# H# # #

Online
community

Weibo 20.4B+ {sms} # # # #
Xiaohongshu 11.8B+ {sms} # # #

MOMO 3.6B+ {sms} H# H# # #
Qzone 1.7B+ {QQ.SSO} # # #

Baidutieba 1.4B+ {sms} H# # H# H# #
Douban 362.0M+ {sms} # # H# #

Online
payment

Alipay 15.8B+ {Taobao.SSO} {sms, id, fn, bcn} {sms, bcn} H# # # H#
Etax 3.5B+ {sms, fn, id} # # H#

Unionpay 1.7B+ {sms, fn, id, bcn} {sms, bcn} {sms, fn, id, bcn} # # # # #
Bestpay 1.0B+ {sms} {sms, ppwd} {sms, fn, id} H# # H# H# H#
Fenqile 122.1M+ {sms} {sms, fn, id, bcn} # # # H#
Hebao 114.5M+ {sms, id(0, 6)4} {sms, id} {sms, fn, id, bcn} {sms, fn, id} H# # H#

Online
shopping

Taobao 22.9B+ {sms, id(0, 4)} # # H# #
JD 18.8B+ {sms, id(2, 4)} {sms, fn} {sms, bcn} {sms, bcn} # H# H#

Vmall 13.0B+ {sms, id(0, 6)} {sms, id(0, 6)} # # H#
Vipshop 12.8B+ {sms, id} {pn, id, bcn} {sms, bcn} {sms, id, bcn} # H#

Taote 6.0B+ {Alipay.SSO} # # # #
Ebuy 2.8B+ {sms} {sms, id} {sms, bcn} {sms, id, bcn} # H# H#

Food
delivery

Meituan 18.2B+ {sms} {sms, bcn} {sms, id} H# # H#
Eleme 3.3B+ {sms} # # # #

Meituantakeout 2.5B+ {sms} # # # #
Xiachufang 1.8B+ {sms} # # # #

Hippo 944.0M+ {sms} # # H# #
KFC 794.2M+ {sms} # # #

Mail and package
delivery

Cainiao 1.4B+ {sms} # H# # #
SF Express 255.1M+ {sms} H# # #
Yunmanman 156.0M+ {sms} {sms, bcn} {sms, bcn} H# # H# # H#
Ishansong 141.3M+ {sms} # H# # #

YunmanmanConsignor 109.1M+ {sms} {sms, bcn} {sms, bcn} H# # H# # H#
Sousou 100.0M+ {sms} # H# # #

Transportation
ticketing

Rail12306 1.6B+ {e, ep2, id} # # # #
Chelaile 1.0B+ {sms} # # # #
Mybus 800.0M+ {sms} # # # #
Zhixing 684.0M+ {sms} H# H# #

Gtgj 329.8M+ {sms} # # #
Lulutong 329.2M+ {sms, Rail.acct, id(0, 4)} # H# #

Dating and
matchmaking

Tantan 1.7B+ {sms} # # # #
Soul 1.4B+ {sms} # # #

Ailiao 266.4M+ {sms} # # # #
Yidui 225.9M+ {sms} # # # #
Blued 162.9M+ {sms} # # H# #
Zhenai 150.9M+ H# H# # #

Job search and
recruitment

58client 8.5B+ {sms} H# H# # H#
Boss 900.0M+ {sms} # #

Zhilianzhaopin 833.3M+ {sms} # #
Ganji 703.4M+ {sms} # # #
51job 570.0M+ {sms} # #

Maimai 438.3M+ {sms} {sms, bcn, fn, id} {sms, bcn, id} # H#

Online lending

JD finance 1.3B+ {JD.SSO} {sms, id(2, 4)} {sms, bcn} {sms, bcn} H# # # H# H#
360Loan 336.2M+ {sms} # # # #

PaipaiDai loan 200.2M+ {sms} {sms, id} {sms, fn, bcn} H# # H# H# H#
Haohuan 183.3M+ {sms} # H# # H#

Ayh 155.3M+ # H# # H#
Shengbei 142.8M+ {sms} {pn, id, bcn} # H# # H#

Used car
trading

Guazihaoche 442.6M+ {sms} # H# # H#
Renrenche 64.0M+ {sms} H# # # # H#
Ershouche 55.3M+ {sms} H# # # # #

Car300 48.4M+ # # # # #
Uxin 43.1M+ # # # # #

Chaboshi 17.2M+ {sms} # # # #

16

Table V continued from previous page

Rental housing

Anjuke 1.9B+ {sms} H# H# # #
Beike 210.0M+ {sms} # # H# # #
F100 610.0M+ # # # # #

Lianjia zhilian 377.3M+ # # # # #
Ziroom 123.0M+ {sms} # H# H#
Wawj 90.7M+ {sms} # H# #

Medical services

Pahealth 594.7M+ {sms} #
MISP 286.6M+ {Alipay.SSO} # # # #

Threegeneyimiao 256.0M+ {sms} # # #
Youjiankang 223.5M+ {sms} # #

Haodf 222.8M+ {sms} H# # #
SoYoung 191.4M+ {sms} H# # #

Travel services

Qunar 4.8B+ {sms} {sms, fn, bcn} H# #
Tianjitong 3.9B+ {sms} {sms, bcn} # H# H#
Mafengwo 825.8M+ {sms} H# #
Umetrip 634.1M+ {sms, id(0, 4)} {sms, bcn} # # H#
Tuniu 380.4M+ {sms} {sms, bcn, fn, id} H# #
Ctrip 190.0M+ {sms} {sms, bcn} H# H#

Hotel services

Booking 4.9B+ {WeChat.sso} # H#
Htinns 317.6M+ {sms} # # # #
Airbnb 316.5M+ {sms} {sms, bcn, fn, id} # H# H#
Agoda 200.0M+ {sms} H# # # # #
Tujia 115.5M+ {sms} #

Muniao 95.9M+ {sms} H# #

Online games

Wangzherongyao 7.1B+ {QQ.SSO} # # # #
Miniworld 3.8B+ {sms} # # # H# #

Happyelements 2.8B+ # # # # #
Hpjy 2.7B+ # # # # #

Minecraft 1.5B+ # # # # #
Wepiesnake 650.0M+ # # # # #

Education
and learning

Zhihu 7.5B+ {sms} H# # H# H# #
Baiduhomework 5.4B+ {sms} # H# # #

Xuexi 2.4B+ {sms} H# # #
Jiakao 1.6B+ # # # # #

Kuaiduizuoye 1.3B+ {sms} H# # H# # #
Fenbi 1.0B+ {sms} # # #

Local life

FleaMarket 5.2B+ {sms} # # #
Unicom 2.3B+ {sms, id(0, 6)} {sms, bcn} {sms, id, bcn} # # H#

ChinaMobile 2.1B+ {sms} # # # #
Ctclient 1.2B+ {sms, fn, id} # # # #

Zzmarket 1.1B+ {sms} H# # #
Wzsearch 500.0M+ # # # # #

Women’s health

Seeyou 1.0B+ {sms} # # #
Qinbaobao 573.7M+ {sms} # # #

Babytreepregnancy 506.8M+ {sms} # # #
Mamapregnant 331.0M+ {sms} # # #

Bevol 225.4M+ # # # # #
Dayima 131.7M+ {sms} # # # #

Car services

Hellobike 2.3B+ {Alipay.SSO} # # # #
Szzc 126.4M+ {sms} {sms, bcn} # # H# H#
1hai 111.9M+ {sms} # H# H# #

Didibike 69.5M+ {sms} H# # H# # #
Qhzc 51.4M+ {sms} # # #
Ofo 31.9M+ # # # # #

Email and
cloud storage

Baidunetdisk 5.7B+ {sms} H# H# H# #
QQmail 3.4B+ {QQ.SSO} # # # #
139mail 421.5M+ {sms} H# # # #

MailMaster 381.8M+ {pn, e, ep} # # #
Mcloud 367.3M+ {sms} # # # #

Neteasemail 152.8M+ {sms} # # # #

Online
meetings

TencentMeeting 2.3B+ {sms} # # #
Zhumu 21.6M+ {sms} # # H# #

Scorpionteams 15.4M+ {sms} # # # #
GNetMeetNow 13.2M+ {sms} # # #

FastMeetingcloud 8.5M+ {sms} # # #
HuaweicloudMeeting 8.3M+ {sms} # # H# #

Live streaming

Huya 2.8B+ {sms} H# H# # #
Bettas 1.8B+ {sms} H# H# H# H#

YY 970.0M+ {sms} H# H# # #
Ingkee 373.7M+ {sms} H# H# # #

Yangshipin 362.4M+ {sms} # # # #
Huajiao 300.0M+ {sms} # #

Online videos
and audio

Iqiyi 14.3B+ {sms} # # # #
Kuaishou.nebula 13.3B+ {QQ.SSO} # # #

Douyin.lite 12.5B+ {sms} # # #
Xiguashipin 11.7B+ # # # # #

Youku 11.6B+ {sms} # # H# #
KugouPlayer 11.4B+ {sms} # # # #

Short videos

Douyin 35.8B+ {sms} {sms, ppwd} {sms, fn, id} H# # H#
Kuaishou 26.1B+ {Wechat.SSO} # # #

Haokanshipin 7.0B+ {Weibo.SSO} H# # H# H# #
Douyinhuoshan 6.8B+ {sms} {sms, ppwd} {sms, fn, id} H# # H#

Weishi 3.0B+ # # # # #

17

Table V continued from previous page
Meipaimv 586.7M+ H# H# # #

News

Jinritoutiao 20.6B+ {Douyin.SSO} {sms, ppwd} {sms, fn, id} H# # H#
Tencent.news 15.3B+ {sms} # # # #

Jinritoutiao.lite 8.8B+ {sms} {sms, ppwd} {sms, fn, bcn, id} H# # H#
Netease.newsreader 2.2B+ {sms} # # #

Qukan 2.2B+ {sms} # # #
Sohu.newsclient 1.8B+ {sms} # # # #

Input method

baidu.input huawei 5.4B+ # # # # #
Sougou.inputmethod 5.0B+ {sms} # # # #
Iflytek.inputmethod 3.2B+ {sms} # # # #
Ohos.inputmethod 1.2B+ # # # # #

Baidu.input 800.0M+ {sms} # # H# #
QQpinyin 172.2M+ {sms} # # # #

Browsers

Baidu.searchbox 25.4B+ {sms} H# H# #
Tencent.mtt 21.4B+ # # # # #
UCMobile 14.0B+ {sms} # # # #

Baidu.searchbox.lite 2.3B+ {sms} H# H# H# #
Quark 1.6B+ # # # # #

Sogou.mobile.explorer 470.9M+ # # # # #

Security
management

Copydata 9.4B+ # # # # #
Shoujiguanjia 4.5B+ # # # # #
QQpimsecure 3.7B+ # # # # #
360mobilesafe 680.0M+ # # # # #

QQsafe 290.6M+ # # # # #
Liebao 200.0M+ # # # # #

E-books

Dragon.read 3.7B+ {sms} {sms, ppwd} {sms, fn, bcn, id} H# H# # H#
Kmxs 2.9B+ # # # # #

Kuaikan 1.2B+ {sms} # # #
Weread 866.3M+ {WeChat.SSO} # # # #

QQ.reader 800.0M+ # # # # #
Mdwz 760.0M+ # # # # #

Photography

Mtxx 7.9B+ {sms} H# # H#
Huawei.videoeditor 5.7B+ {Huawei.acct} # H# H#

Lemon.lv 4.5B+ # # # # #
Meiyancamera 3.8B+ {sms} # # # H#
Snowcamera 2.2B+ # # # # #
Lemon.faceu 1.7B+ # # # # #

App stores

Tencentappcentre N/A # # # # #
Huawei.appmarket N/A {Huawei.acct} {sms, bcn} {sms, bcn, id, fn} # H# H#

Vivo.appstore N/A # # # # #
Xiaomi.market N/A {sms} H# # H# H# #
Oppo.market N/A {sms} H# H# #

Baidu.appsearch N/A {sms} H# # H# H# #

Utility tools

Wifilocating 8.7B+ {sms} {sms, id, fn, bcn} {sms, bcn, fn, id} # H# # H#
Shoujiduoduo.ringtone 5.6B+ {sms} # # # #

Mjweather 3.7B+ {sms} # # # #
Camscanner 2.6B+ # # # # #

QQpim 2.3B+ # # # # #
Kugou.ringtone 825.1M+ {sms} # # # #

Show ticketing

Taobao.movie 249.0M+ {sms, id(0, 4)} {sms, id} # # #
Maoyan.movie 151.8M+ {QQ.SSO} # #

Damai 100.0M+ {sms} H# # #
Wandafilm 71.9M+ {sms} # # #

Mtime 24.7M+ {sms} # # # #
Juqitech.niumowang 24.0M+ {sms} H# # #

Mobile
banking

CCB 9.4B+ # H# #
ICBC 5.7B+ H# # H# # H#
BOC 3.3B+ H# H# #
ABC 2.1B+ # H# # H#
PSBC 1.3B+ # # # H#
CMB 1.3B+ # # # H#

Investment
and finance

Pinganlifeinsurance 2.1B+ {WeChat.SSO} {sms} # H# #
Tonghuashun 1.0B+ {sms} # H# H#
Sinafinance 305.5M+ {sms} # # # #

Fengshouhulian 148.3M+ {QQ.SSO} H# # H# H# #
Tiantianfund 139.4M+ {sms, id, bcn} {sms, bcn} {sms, fn, id} # # H# #

PICC 119.7M+ {sms} # H# #

Sports and
fitness

Huaweihealth 20.6B+ {Huawei.acct} {sms, bcn} {sms, fn, id, bcn} H# H#
Keep 2.4B+ {fn, id} # # # #

Tangdou 641.5M+ {QQ.SSO} # # # #
Walkmonkey 515.7M+ {sms} # # # #

Codoon 356.8M+ {sms} # # #
Zhibo8 225.9M+ # # # # #

 : fully exposure, H#: part exposure, #: No exposure.
1 LPR: Login password recovery, BCC: Bank card connection, PPR: Payment password recovery.
2 pn: phone number, sms: SMS OTP + pn, e: email address, ep: email OTP, fn: full name, bir: birthday, id: ID number, bcn: bank card number.
3 acct: account number and login password, ppwd: payment password.
4 id(0, 6): the first 0 digit and the last 6 digits of the ID number.

18

