
Unus pro omnibus: Multi-Client Searchable
Encryption via Access Control
Jiafan Wang

Data61, CSIRO
Sydney, NSW, Australia

jiafan.wang@data61.csiro.au

Sherman S. M. Chow
Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

Abstract—Searchable encryption lets an untrusted cloud server
store keyword-document tuples encrypted by writers and conduct
keyword searches with tokens from readers. Multi-writer schemes
naturally offer broad applicability; however, it is unclear how to
achieve the distinctive features of single-writer systems, namely,
optimal search traversing only the result set and forward privacy
invalidating old search tokens against any new data. Cutting-edge
results by Wang and Chow (Usenix Security 2022) incur extra
traversal over existing keywords and weaken forward privacy
that only invalidates previous-issued search tokens periodically.

We propose delegatable searchable encryption (DSE) with opti-
mal search time for the multi-writer multi-reader setting. Beyond
forward privacy, DSE supports security measures countering
new integrity threats by malicious clients and keyword-guessing
attacks inherent to public-key schemes. These are simultaneously
made conceivable via one-time delegations of updating and/or
searching power from the data owner and our tailored notion
of shiftable multi-recipient counter encryption. DSE also benefits
from the hybrid searchable encryption idea of Wang and Chow
but at a microscopic level. Our evaluation confirms the order-of-
magnitude improvement in search time over real-world datasets.

I. INTRODUCTION

Secure multiparty collaborative applications, often cloud-
based, enable secure and managed collaboration on projects
by mutually distrustful entities with different roles. Managing
personnel, or the project owner, establishes a project folder
and grants specific access rights to authorized users, ensur-
ing only they can read and/or write to files in the folder.
Collaboration can be from software development teams on a
complex codebase or managerial/compliance staff reviewing
financial records. In the first example, programmers get both
read and write privileges, allowing them to contribute source
code and review logs. On the other hand, auditors may have
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Fig. 1: Architectures of Searchable Encryption

read-only access but can write logs after reviewing. Access
control policies can be granular, say, based on keywords.

Storage servers are often untrustworthy, especially amidst
recurrent data breach incidents. Encryption is thus vital, but
it precludes any operations such as indexing. Searchable
symmetric encryption (SSE) [32], [16], [24] has then emerged.
It is designed to cater to a single client as the sole writer
(for updating) and reader (for searching), who uses the secret
key to generate tokens. The storage server helps search or
update specific keywords with these tokens. To ensure forward
privacy [33], [8], [27], i.e., old search tokens cannot compro-
mise the privacy of future updates, these tokens are generated
differently depending on prior searches and updates or the
updating state of the encrypted database in general. Directly
applying SSE to multi-client scenarios requires synchronizing
the distribution of different versions of tokens, and hence
frequent interactions among the clients, let alone the lack of
resilience against threats caused by corrupt clients. Despite
its single-client limitations, SSE achieves optimal search with
symmetric-key operations linear in the search result size.

Multi-writer searchable encryption is typically realized by
public-key encryption with keyword search (PEKS) [6]. Any-
one who knows the public key of the data owner can inde-
pendently generate PEKS ciphertexts. As a result, there is no
global structure indexing them. Indeed, the syntax of PEKS
mandates that “searching” is done by testing a search token
against each ciphertext, making the search time linear in the
database size. Its public-key nature also hinders the state
maintenance for forward privacy. Specifically, encryptors have
no way to get informed of the need for encrypting “differently”
to invalidate the old search tokens. PEKS thus faces inherent
difficulty in achieving sublinear search and forward privacy.

Categorizing SSE and PEKS, they are “single-writer/single-
reader” (S/S) and “multi-writer/single-reader” (M/S), respec-
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TABLE I: Comparison of M/∗ Searchable Encryption Notions

Scheme Read Write Fwd. Pri. Integrity Model
HSE [36] O(W + r) O(1) Epoch N/A M/S
DSE O(r) O(W ) Regular Yes M/M

W : the number of keywords ever written; r: the size of the search result.

tively, as depicted in Fig. 1. “Single-writer/multi-reader” (S/M)
schemes can be obtained from S/S, as observed [16], [11]. The
“multi-writer/multi-reader” (M/M) architecture is the most
flexible and challenging to achieve. This paper aims to address
the limitations inherent in SSE and PEKS, providing the
first solution to the open problem of devising a searchable
encryption scheme that offers sublinear searches, standard
forward privacy, and multi-client support.

Hybrid searchable encryption (HSE) recently proposed by
Wang and Chow [36] makes a significant step towards achiev-
ing sublinear search and forward privacy simultaneously in
the M/S setting. However, it incurs an additive overhead of
public-key operations that scales linearly with the number of
active keywords, i.e., keywords ever written in the database.
Moreover, HSE only offers epoch-based forward privacy [36]:
while updates cannot be identified by search tokens of past
epochs, updates within the same epoch as the search token
generation remain searchable. It also relies on a global clock
to supply epoch information for search and update token
generation. Finally, all writers must refresh (part of) their own
encrypted databases for the reader at each epoch (hence their
tagline “Omnes pro uno”1). Failure to do so results in the loss
of the new updates or the forward privacy over them.2

To achieve the best of SSE and PEKS, we formulate Del-
egatable Searchable Encryption (DSE), a new framework for
M/M searchable encryption that supports keyword search and
update of keyword-document tuples (w, id) through delegating
permissions to search and update. That is, to enable clients to
search for w or add a new tuple (w, id), a database owner
grants the corresponding searching or updating right to them.

Anyone can act as an owner by setting up their DSE in-
stances (for projects with separate access control) with simple
management: conferring or withholding keys. The delegation
is only needed once per client. Searching or updating needs
no further client-owner interaction. The owner can go offline,
similar to running identity-/attribute-based encryption (I/ABE)
for access control [14]. DSE thus embodies the spirit of “Unus
pro omnibus.”1 Delegation opens an implicit keyword-specific
channel with which eligible clients collaboratively maintain
states and indices of the ciphertexts and a door to optimal
search and forward privacy. Table I compares DSE and HSE.3

1“Unus pro omnibus, omnes pro uno” is a Latin phrase meaning “One for
all, all for one.” Inspired by it, DSE asks the owner to set up the keys for all.

2The complications stem from the core design of having the writer set up
a writer-specific SSE database and store encryption of its SSE search tokens
in the encrypted database of the reader. As a search token is ever-changing
across epochs for epoch-based forward privacy, the number of ciphertexts for
them is also ever-growing. The assistance from each writer is to rebuild this
part of the encrypted database to ease the burden of the reader.

3Appendix A discusses other so-called “multi-client/user” schemes.

A. Design Overview

DSE essentially upgrades the inverted index of dynamic
SSE [24], [8], [27] to the M/M setting. In SSE, the sole client
maintains a search counter sctw and an update counter uctw
for any keyword w as its state, keeping track of the number
of searches and updates performed on w. It is crucial to keep
uctw secret, or it leaks whether w is being updated, breaking
forward privacy. Meanwhile, sctw is allowed to be inferrable
by the server in SSE schemes [8], [27] to enable efficient
searches. These counters form the basis for forward privacy.

Update and Search in SSE. To facilitate updates, the SSE
client generates a pseudorandom function (PRF) key. It is used
to derive the PRF value of (w, sctw) as an index key IKw.
When an update on w is performed, it will be stored at the
address determined by the PRF value of uctw under key IKw,
which remains pseudorandom until IKw is revealed. After each
update, uctw is incremented, preparing for the next update.

To search for w, the client provides the server with IKw,
which helps locate the addresses storing ciphertexts associated
with w until the last address, which is the PRF value of uctw
under key IKw. After each search on w, sctw is incremented. It
mandates subsequent operations to use new IKw for new sctw,
rendering keys granted to the server for older sctw useless.

M/M Upgrades. The DSE database owner delegates IKw

to any client who can perform searches and updates on w. A
global state containing sctw will be published by the server.

To securely maintain uctw among multiple clients, we tailor
a primitive called shiftable multi-recipient encryption (SME).
SME is an efficient public-key encryption scheme for multiple
recipients, corresponding to counters uctw for each keyword in
DSE. It allows homomorphic shifting on the ciphertext of uctw
to change its value with each update. After shifting, encrypted
update counters for all keywords are re-randomized to avoid
leaking the updated one. The encrypted uctw is published via
the global state. Only eligible clients with the SME secret key
of w delegated can access uctw for searches or updates on w.

To distinguish readers from writers, the database owner sets
up an IBE instance for each keyword. Its identity-based secret
key is only delegated to eligible readers. Each update on w
is then IBE-encrypted under the “identity” sctw, invalidating
previous keys similar to forward-private SSE.

Optimizing Public-Key Operations. All M/M solutions
must differentiate different writers’ updates; public-key op-
erations seem unavoidable. DSE further reduces their uses via
“microscopic” uses of hybrid encryption. That is, a writer IBE-
encrypts the secret key material once, which will then be used
for encrypting subsequent updates within the encrypted index
of SSE. The traversal only takes one IBE decryption to retrieve
the first result from each writer. The remaining operations in
the asymptotical-optimal search use only symmetric keys. In
contrast, HSE uses hybrid encryption to first encrypt an SSE
token via an IBE extension (identity-coupling key-aggregate
encryption [36]) before SSE encryption. This makes DSE
240× faster than HSE for the widely-evaluated Enron dataset.
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B. Security Overview

Oblivious Access Control via SME. The M/M setting poses
new threats in the presence of corrupt clients. As an example,
access control on the state for different keywords should be
enforced in an oblivious manner. Otherwise, the keywords
being updated will be revealed. SME is a lightweight tool
tailored for securely maintaining counters. Notably, SME is
concretely more efficient than generic multi-client oblivious
primitives without non-colluding assumptions [15].

Integrity. Integrity is instrumental in many distributed sys-
tems with numerous clients. Our DSE could require each client
to provide well-formed proof of the operation, including the
state modification via SME. Our SME instantiation is as simple
as multi-recipient ElGamal encryption. Together with the sim-
ple structure of other (encrypted) states, our DSE instantiation
provides efficient integrity protection using the recent succinct
arguments of knowledge for bilinear group arithmetic [28], in
contrast to heavyweight circuit-based proofs.

Non-Committedness. Similar to SSE, DSE and its building
block need to be non-committing (see Section II-C). In particu-
lar, the security proof of SME involves intrinsic generic-group
analysis, unlike the random-oracle-based ElGamal encryption.

Extended Defense. A line of research is devoted to studying
the leakage of SSE. Existing generic enhancements for SSE
can be easily adapted in DSE since it largely follows the SSE
index design, e.g., hiding deleted updates for backward pri-
vacy [9] and hiding search result sizes for volume hiding [22].

Keyword-Guessing Mitigation. The delegation process of
DSE could further enhance write-access control by delegating
keyword-specific secrets required for encrypting and search-
ing [34]. DSE thus resolves the vulnerability to keyword
guessing, an inherent weakness of PEKS [6] and HSE [36].

Security for M/M Constructions. Security definitions of
SSE are often parameterized by leakage functions [16], [24],
e.g., search pattern (the repetition of searched keywords) and
access pattern (the accessed document identifiers). The defini-
tion naturally follows real-world versus ideal-world formaliza-
tion. Yet, the notable M/S notion, PEKS, has no leakage-based
definition. Security for DSE requires new definitional efforts.

Moreover, the server in SSE is the only corrupt party
(essentially an honest-but-curious server). In contrast, a DSE
adversary can corrupt not only the server but also many
clients who have searching or updating rights of different
keywords, demanding a dedicated formulation with no direct
SSE counterpart. Meanwhile, it could decide to only corrupt
some clients but not the server, and it is not weaker since a
DSE scheme might then feature a different leakage profile.
Our definitions capture what can be achieved in either case.

Corruption becomes more versatile in an M/M architecture.
In particular, we formally define integrity to capture the
guarantees that updates from honest clients are always search-
able by those authorized, even when malicious clients try to
corrupt the encrypted database. In short, the pursuit of DSE
is not confined to achieving practical efficiency but also the
foundation of a new cryptographic notion and new primitives.

II. PRELIMINARIES

A. Notations

Basic Notations. Polynomial and negligible functions in the
security parameter λ are denoted by poly(λ) and negl(λ),
respectively. [n] = {1, . . . , n}. For a set S, x ←$ S samples
x ∈ S uniformly at random. For a probabilistic polynomial-
time (PPT) algorithm A, x← A(·) executes A and assigns its
output to the variable x. A deterministic assignment of y to x
is denoted by x := y. Algorithms can abort by outputting ⊥.
Empty sets and strings are denoted by ∅ and ϵ, respectively.
AlgO denotes an oracle in the security game regarding al-

gorithm Alg, except CorrO is for secret revelation/corruption.
Vectors and Indexed Sets are in or start with capital letters,
e.g., Γ,Uctr. The entry-wise multiplication and addition be-
tween vectors are denoted by “◦” and “+”, respectively. All
sets considered in this work are indexed. Let S = {sw}w∈W
be a set indexed by an index set W . We often view S as a
vector of length |W|. Let W ⊆ W . S|W := {sw}w∈W is the
restriction of S by W . S[w] is the entry of S at position w.

ΓW :W is the characteristic vector of W with respect to W .
ΓW :W [w] = 1 if w ∈ W ; 0, otherwise. “:W” is omitted if it
is clear. These notations are crucial for, e.g., shifting counters
in SME (Uctr|W = {5, 0} for W = {w2, w3} in Fig. 15.)
Implicit Cyclic Group Notation. Let G1,G2,Gt be cyclic
groups of order q with pairing e : G1 × G2 → Gt. For i ∈
{1, 2, t}, we denote the generator of Gi by [1]i. [1]t := [1]1[1]2
is a generator of Gt. For x, y ∈ Zq , elements in group G with
discrete logarithm x with respect to [1] is denoted by [x]; group
operations are denoted additively, e.g., [x] + [y] := [x + y];
[x] to the power of y is denoted by [xy] := y · [x]. Pairing
operations are expressed multiplicatively as [x]1[y]2 := [xy]t.

B. Non-Committing Primitives

Definition 1 (Non-Committing Pseudorandom Functions). A
PRF family F : K × X → Y is non-committing pseu-
dorandom if there exist PPT simulators S1,S2,S3 such
that for any sequence of inputs {xi}ℓi=1, ℓ ∈ poly(λ),
the distributions below are computationally indistinguish-

able:

(K, y1, . . . , yℓ) :

td← S1(1λ);
(yi, td)← S2(td, i) ∀ i ∈ [ℓ];

K ← S3(td, {xi}ℓi=1)

 and

{(K, y1, . . . , yℓ) : K ←$ K; yi ← F (K,xi) ∀ i ∈ [ℓ]}.

It is easy to show that any function F : K × X → Y is
non-committing pseudorandom if F is a random oracle. For
the i-th query on a PRF value, the simulator randomly selects
yi ←$ Y as the answer and records (i, yi). After all ℓ queries,
the simulator receives {xi}ℓi=1, randomly selects K ←$ K, and
programs the random oracle with yi = F (K,xi) for i ∈ [ℓ].

Definition 2 (Identity-Based Encryption [7]). An IBE scheme
is a tuple of PPT algorithms defined as follows. Below also
recall Boneh–Franklin IBE [7], using cryptographic hash
functions H1 : {0, 1}∗ → G1 and H2 : Gt → {0, 1}λ.
(pk, sk)← KG(1λ): It outputs a master key pair (pk, sk).

Output (pk, sk) := ([s]2, s), where s←$ Zq .
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Real-NCIBE
A (1λ)

(pk, sk)← KG(1λ)

return b← AExtO,EncO(pk)

ExtO(w)
dkw ← Ext(sk, w)

return dkw

EncO(w,m)

c← Enc(pk, w,m)

return c

Fig. 2: Real Experiment for Non-Committing IBE

Ideal-NCIBE
A,S(1

λ)

D := Empty dictionary
Corr := ∅
(pk, td)← S(1λ)
b← AExtO,EncO(pk)

return b

ExtO(w)
(dkw, td)← S(td, w,D[w]),Corr := Corr ∪ {w}
return dkw

EncO(w,m)

if w ∈ Corr then c← Enc(pk, w,m)

else (c, td)← S(td), D[w] := D[w] ∪ {(m, c)}
return c

Fig. 3: Ideal Experiment for Non-Committing IBE

dkw ← Ext(sk, w): The algorithm inputs a secret key sk and
an identity w. It outputs a decryption key dkw for w.

Output dkw := [d]1 = sk[h]1, where [h]1 := H1(w).

ctx← Enc(pk, w,m): The algorithm inputs pk, an identity w,
and a message m. It outputs a ciphertext ctx.

Pick r ←$ Zq . Parse pk as [s]2. Compute [h]1 = H1(w).
Output ctx := ([c0]2 := [r]2, c1 := H2(r[h]1[s]2)⊕m).

m← Dec(dkw, ctx): The algorithm inputs a key dkw and a
ciphertext ctx. It outputs the decrypted result m.

Parse ctx as ([c0]2, c1). Output m := c1 ⊕H2(dkw[c0]2).

Definition 3 (Non-Committing IBE). An IBE scheme is (re-
cipient) non-committing if, for any PPT adversary A, there
exists a PPT simulator S s.t. the quantity is negligible:∣∣∣Pr[Real-NCIBE

A (1λ) = 1]− Pr[Ideal-NCIBE
A,S(1

λ) = 1]
∣∣∣.

Real-NCIBE
A and Ideal-NCIBE

A,S are defined in Figs. 2 and 3.

Unlike existing definitions for non-committing encryption
that work with one public key, e.g., [20], Definition 3 allows
many ciphertexts under different identities. We formulate an
encryption oracle that outputs a ciphertext c without using
message m and identity w, and records (m, c) in a dictionary
entry D[w], used by the simulated extraction oracle ExtO.
This simplifies the housekeeping for multi-recipient encryption
(e.g., Definition 5): When some recipients can be compromised
(put into Corr), simulation without the message is not possible.

To show that Boneh–Franklin IBE is non-committing in the
random oracle model, the simulator outputs a random tuple
([c0]2 = [r]2, c1) to simulate a ciphertext. When the identity w
and message m are later revealed, the simulator samples
k ∈ Zq . It programs H1(w) := [k]1 and H2(r[k]1[s]2) :=
c1 ⊕m, and outputs the identity decryption key as k[s]1. The
simulation is perfect, modulo hash collisions.

C. Non-Committedness and Security of Searchable Encryption

Non-committedness is necessary for realizing adaptive se-
curity in traditional SSE schemes. For an update tuple (w, id),
an SSE server stores a symmetric-key encryption Enc(skw, id)
with skw derived from a PRF. The simulator needs to simulate

Enc(skw, id) without knowing w or id. Not until the adversary
requests to search for w, the simulator is given all {idi}
where {(w, idi)} were supposed to be previously updated.
Now, to “explain” all the ciphertexts {ci} previously simulated
SSE simulators [16], [9] will patch the query-response of the
random oracle to output sk such that Dec(sk, ci) = idi, which
effectively realizes non-committing encryption Enc(skw, id) of
input id and non-committing PRF F (skw, w) of input w.

The DSE simulator needs to do more. It “explains” cipher-
texts and keys not only when receiving requests for searching
but also when the corruption of clients with related rights
happens. The simulation can be realized given the well-defined
leakage and the non-committing property of underlying prim-
itives, i.e., PRF, IBE, and our SME in Section III.

III. SHIFTABLE MULTI-RECIPIENT ENCRYPTION (SME)

Shiftable multi-recipient encryption (SME) is our tailored
notion of homomorphic encryption over a set of messages,
each in a slot for a recipient. We will use SME to encrypt the
update counters in the global state of DSE, with each recipient
corresponding to a keyword. SME features two properties.

Shiftable: Each slot features homomorphic addition over
the message space (M,+). Namely, an SME-encrypted mes-
sage m in a slot can be shifted by an offset m′ via encrypt-
ing m′ for the same slot and adding up these two ciphertexts.

Expandable: SME allows expanding a multi-recipient ci-
phertext to include more recipients by using their secret keys.

A. Syntax

Definition 4 (Shiftable Multi-Recipient Encryption). An SME
scheme for message space (M,+), ciphertext space (C,+),
and recipient space R is a tuple of PPT algorithms:

pp← Setup(1λ): It generates public parameters pp.

(pk, sk)← KG(1λ): It generates a key pair (pk, sk).

ctx∅ ← Init(1λ): The ciphertext initialization algorithm gener-
ates an initial ciphertext ctx∅ ∈ C associated with the empty
set of recipients. In general, the ciphertext ctxA associated
with the recipient set A ⊆ R encrypts messages in MA.

ctxA∪B ← Expand (SK|A, ctxB): This algorithm expands the
ciphertext ctxB ∈ C associated with the set B ⊆ R of
recipients to the ciphertext ctxA∪B ∈ C associated with A∪B,
where A∩B = ∅, given the decryption keys SK|A of A. Each
expanded slot encrypts the identity 0M ∈M.

ctxA ← Enc (PK|A,M |A): This algorithm inputs a set of
encryption keys PK|A and a set of message M |A associated
with the recipient set A ⊆ R. It outputs a ciphertext ctxA ∈ C.

ctx′′A ← Shift (ctxA, ctx
′
A): This algorithm inputs two ci-

phertexts ctxA, ctx
′
A ∈ C that encrypt some messages

M |A,M ′|A ∈ M for the recipient set A ⊆ R, respectively.
It outputs a new ciphertext ctx′′A that supposedly encrypts the
shifted messages M +M ′|A, where “+” is done entry-wise.

M |A ← Dec (SK|A, ctxB): The decryption algorithm inputs a
set of decryption keys SK|A and a ciphertext ctxB ∈ C with
A ⊆ B. It outputs the messages M |A.
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Real-NCSME
A (1λ)

D,D′ := Empty dictionary

ν, µ := 0, D[ν] := ∅, D′[µ] := ∅
pp← Setup(1λ), ctxν ← Init(1λ)

for i ∈ R do (pki, ski)←KG(1λ)

b← AO(PK|R, ctxν)

return b

ExpandO(j, A)

ensure j∈ [ν] ∪ {0}, D[j] ∩A=∅
ν := ν + 1, D[ν] := D[j] ∪A

ctxν ← Expand(SK|A, ctxj)

return ctxν

EncO(j,M |A)
ensure j ∈ [ν], A = D[j]

µ := µ+ 1, D′[µ] := D[j]

ctx′µ := Enc(PK|D[j],M |D[j])

return ctx′µ

ShiftO(j, t)
ensure j ∈ [ν], t ∈ [µ]

ensure D′[t] = D[j]

ν := ν + 1, D[ν] := D[j]

ctxν := ctxj + ctx′t
return ctxν

CorrO(i∗)
return ski∗

Fig. 4: Real Experiment for Non-Committing SME

Ideal-NCSME
A,S (1

λ)

D,D′, L, L′ := Empty dictionary

ν, µ := 0, D[ν] := ∅, D′[µ] := ∅
pp← Setup(1λ), ctxν ← S(Init, 1λ)
for i ∈ R do pki ← S(KGen, 1λ)
b← AO(PK|R, ctxν)

return b

ExpandO(j, A)

ensure j∈ [ν] ∪ {0}, D[j] ∩A=∅
ν := ν + 1, D[ν] := D[j] ∪A

for i ∈ D[j] do L[i][ν] := L[i][j]

for i ∈ A do L[i][ν] := 0M

ctxν ← S(Expand)
return ctxν

EncO(j,M |A)
ensure j ∈ [ν], A = D[j]

parse M |A as {mi}i∈A

µ := µ+ 1, D′[µ] := D[j]

for i ∈ D′[µ] do L′[i][µ] := mi

ctx′µ ← S(Enc, {mi}i∈Corr)

return ctx′µ

ShiftO(j, t)
ensure j ∈ [ν], t ∈ [µ]

ensure D′[t] = D[j]

ν := ν + 1, D[ν] := D[j]

for i ∈ D[ν]

do L[i][v] := L[i][j] + L′[i][t]

ctxν := ctxj + ctx′t
return ctxν

CorrO(i∗)
ski∗ ← S(Corr, L[i∗], L′[i∗]),Corr := Corr ∪ {i∗}, return ski∗

Fig. 5: Ideal Experiment for Non-Committing SME

An SME scheme for message space (M,+), ciphertext
space C, and recipient space R is correct if for any λ,
pp ∈ Setup(1λ), (pk, sk) ∈ KG(1λ), and A ⊆ R, we have:
• Dec(SK|A∪B ,Expand (SK|B , ctxA)) = Dec(SK|A, ctxA) ∪
0M|B , for any ctxA ∈ C and B ⊆ R s.t. A∩B = ∅, where
0M|B is a set of copies of 0M at slots indexed by B.

• Dec(SK|A, ctxA) = M |A for any ctxA ∈ Enc (PK|A,M |A).
• Dec(SK|A, ctx′′A) = Dec(SK|A, ctxA)+Dec(SK|A, ctx′A) =
M |A + M ′|A for any ctxA ∈ Enc (PK|A,M |A), ctx′A ∈
Enc (PK|A,M ′|A), and ctx′′A ∈ Shift (ctxA, ctx

′
A).

Shift Non-Committing. Traditional non-committing encryp-
tion [20] requires the existence of an efficient simulator S.
On start-up, S simulates a public key pk. Subsequently, S
simulates an encryption oracle outputting a ciphertext ctx for
each message m, given that m is chosen by an adversary A
and unknown to S. Upon the request of A, S simulates a secret
key sk to “explain” the ciphertexts simulated previously.

KG(1λ)

x←$ Zq

sk := x

pk := [x]

return (pk, sk)

Init(1λ)

r ←$ Zq

ctx∅ :=([r], ∅)
return ctx∅

Enc (PK|A,M |A)
parse PK|A as {[xi]}i∈A

parse M |A as {[mi]}i∈A

r ←$ Zq

return ([r], {r[xi] + [mi]}i∈A)

Shift (ctxA, ctx
′
A)

parse ctxA as
(
[c0], {[ci]}i∈A

)
parse ctx′A as

(
[c′0],

{
[c′i]

}
i∈A

)
for i ∈ A do [c′′i ] := [ci] + [c′i]

ctx′′A :=
(
[c0] + [c′0],

{
[c′′i ]

}
i∈A

)
return ctx′′A

Expand (SK|A, ctxB)
ensure A ∩B = ∅
parse SK|A as {xi}i∈A

parse ctxB as
(
[c0], {[ci]}i∈B

)
for i ∈ A do [ci] := [c0] · xi

ctxA∪B :=
(
[c0], {[ci]}i∈A∪B

)
return ctxA∪B

Dec (SK|A, ctxB)
ensure A ⊆ B

parse SK|A as {xi}i∈A

parse ctxB as
(
[c0], {[ci]}i∈B

)
for i ∈ A do

[mi] := [ci]− [c0] · xi

return {[mi]}i∈A

Fig. 6: Construction of SME

Shiftable non-committing SME further requires S to sim-
ulate the result of homomorphic shifting on any ciphertext
without knowing which slots are shifted and the offsets in
shifting. This shift non-committing property for multi-recipient
encryption has not been formalized before.4 Note that this
notion subsumes the chosen plaintext attack (CPA) security.

Definition 5 (Shift Non-Committing). An SME scheme is shift
non-committing, if for any PPT adversary A, there exists a
PPT simulator S s.t. the following quantity is negligible:∣∣∣Pr[Real-NCSME

A (1λ) = 1]− Pr[Ideal-NCSME
A,S (1

λ) = 1]
∣∣∣.

Real-NCSME
A and Ideal-NCSME

A,S are defined in Figs. 4 and 5.

In Figs. 4 and 5, adversary A can access oracles O :=
{ExpandO,EncO,ShiftO,CorrO}. ctxν is the ciphertext re-
sulted from ExpandO and ShiftO. ctx′µ is the ciphertext from
EncO. D[j] records the recipients of the j-th version of ctxν
for j ∈ [ν], similar to D′[t] for ctxµ. L[i][j] records the i-th
message of the j-th version of ctxν , similar to L′[i][t] for ctxµ.

B. Construction

Let G be a group of λ-bit prime order q where the decisional
Diffie-Hellman (DDH) assumption holds. Our SME scheme
starts with Setup(1λ) that outputs (G, [1], q). Fig. 6 describes
the other algorithms, which equips Expand() to the multi-
recipient ElGamal encryption with randomness reusing [4].
Our shift non-committing property was not explored [4].

Our SME scheme is very efficient. With the encryption slots
(i.e., authorized keywords in DSE) known and small-exponent
exponentiation (for small counter values in DSE) precomputed,

4Function-wise, one might view SME as a set of cryptographic coun-
ters [25] However, there is no (shift-)non-committing cryptographic counter.
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Enc() can pick r and perform the exponentiations offline.
Online computation is purely modular additions.

A shift non-committing SME is also a non-committing
encryption; hence, construction in the standard model is im-
possible [29].5 Non-committing encryption can be constructed
trivially in the random oracle (RO) model, e.g., by hashing the
ephemeral keys produced by a key encapsulation mechanism
with an RO. However, such usage of RO destroys the ho-
momorphism of ciphertexts. We thus consider an alternative
idealized model, i.e., the generic group model (GGM).6

It is straightforward to show that our SME scheme is correct
and CPA-secure under DDH [4]. Theorem 1 asserts its shift
non-committing property with the proof in Appendix C.

Theorem 1. SME (Fig. 6) is shift non-committing in GGM.

IV. DELEGATABLE SEARCHABLE ENCRYPTION (DSE)

A. System Model

DSE involves three parties: a server that provides storage
services; a database owner that initializes the system and
delegates the searching and/or updating rights of specified
keyword sets to any client; and multiple clients that become
readers and/or writers of some keywords after delegations.

A writer could insert keyword-document tuples for any of
their update-permitted keywords to the database. A reader
could retrieve the identifiers of documents matching any of
their search-permitted keywords from the database. Neither
writers nor readers own the data, similar to the traditional Unix
permissions – a file only has one owner, the database owner.

Different from the convention where the server is the only
adversary, DSE clients with searching and updating rights
could also be adversarial. We consider security in cases of
an honest-but-curious (or simply curious) server and an honest
server separately, while client corruption could happen in both
cases. Corrupt parties aim to derive information beyond the
confined leakage. Meanwhile, malicious clients might inten-
tionally submit faulty requests to tamper with the global state
or the database such that updates from honest clients could not
be searched. DSE defines integrity against this misbehavior.

B. Syntax

Let the keyword space be {0, 1}∗. When delegating, the
data owner specifies two keyword setsWü,WL ⊆ {0, 1}∗ for
each client, denoting search-permitted and update-permitted
keywords, respectively. Let W ⊆ {0, 1}∗ be the active key-
word space, which is the union of keywords ever delegated by
the database owner. When a delegation on (Wü,WL) involves
new keywords (i.e., (Wü∪WL)\W ̸= ∅),W will be expanded
to ensure Wü ⊆ W and WL ⊆ W after the delegation.

DSE assumes a global state: the server maintains a public
state and refreshes it after delegation (by the database owner)
and search or update operations (by the server alone). Any
client could synchronize with the latest global state in an

5It could be possible under a relaxed definition where the simulator is only
required to simulate an a priori bounded number of ciphertexts.

6GGM has been used in multi-client searchable encryption [2], [26].

offline phase. To search/update, a client enters an online phase
to produce the corresponding token. The server operates with
the token and refreshes the state. Our syntax follows a non-
interactive formulation, i.e., no extra roundtrip between any
parties except the inevitable one for searches.

Definition 6 (Delegatable Searchable Encryption). A DSE
scheme consists of a tuple of PPT algorithms:

(msk, st,EDB)← Setup(1λ): It is run by the database owner
inputting the security parameter 1λ. It outputs a master secret
key msk to be kept secret, an initial state st, and an initially
empty encrypted database EDB. st and EDB are forwarded
to the server. The server will publish st, which serves as an
input to the remaining algorithms.

(st′, sk)← Delegate(st,msk,Wü,WL): The delegation algo-
rithm is run by the database owner to delegate searching
and/or updating rights to a client. It takes global state st, a
master secret key msk, and two sets of keywords (Wü,WL).

It outputs an updated global state st′ to be published by the
server, and a secret key sk to be forwarded to the client. The
client with sk can search for any keyword in Wü and encrypt
documents with respect to any keyword in WL.

s← SrchTkn(st, sk,Wü): The algorithm allows a client to
generate a search token for keywords s/he could search for.
Suppose that a client possesses a secret key sk for search-
permitted keywords Wü. The algorithm inputs secret key sk
and a keyword set Wü ⊆ Wü. It outputs a search token s.

(st′,EDB′, ID|Wü
)← Srch(st,EDB, s): The algorithm lets a

server search an encrypted database EDB with a valid search
token s. It outputs updated state st′, (possibly) updated en-
crypted database EDB′, and search results ID|Wü

.

u← UpdtTkn(st, sk, ID|WL
): The algorithm allows a client

to generate an update token for keywords s/he could update.
Suppose that a client possesses a secret key sk for update-
permitted keywords WL. The algorithm inputs the secret key
sk and a set ID|WL

of document identifiers indexed by WL ⊆
WL to be inserted.7 It outputs an update token u.

(st′,EDB′)← Updt(st,EDB, u): The algorithm allows a
server to update an encrypted database EDB with a valid
update token u. It outputs updated st′ and updated EDB′.

A DSE scheme is correct if: for any keyword w and any set
of document identifiers ID, if (w, id) for all id ∈ ID has been
written by any client with updating rights of w, any client with
searching rights of w who searches for w obtains results that
contain ID. Integrity (Section IV-D) subsumes correctness.

C. Security

Adaptive security of DSE is considered in two settings –
one with a curious server and the other with an honest server,
both parameterized by the corresponding leakage function L.
Adversary A could adaptively access oracles of delegation
DelegateO, search SrchO, update UpdtO, and corruption

7A way for deletion is to maintain a second instance for deleted tuples [8].
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Real-CSDSE
A (1λ)

I := ∅ // client identifier set

(msk, st,EDB)← DSE.Setup(1λ)

O :=

{
SrchO,UpdtO,

DelegateO,CorrO

}
return b← AO(st,EDB)

DelegateO(i,Wü,WL)

ensure i ̸∈ I

I := I ∪ {i}
(Wü,i,WL,i) := (Wü,WL)

(st′, ski)←
Delegate(st,msk,Wü,WL)

return st′

SrchO (i,Wü)

ensure i ∈ I ∧Wü ⊆ Wü,i

s← SrchTkn (st, ski,Wü)

return s

UpdtO
(
i, ID|WL

)
ensure i ∈ I ∧WL ⊆ WL,i

u← UpdtTkn
(
st, ski, ID|WL

)
return u

CorrO(i)
ensure i ∈ I

return ski

Fig. 7: Real Experiment for DSE with A Curious Server

Ideal-CSDSE
A,S,L(1

λ)

I := ∅ // client identifier set

Hist := Setup

(st,EDB)← S(L(Hist))

O :=

{
SrchO,UpdtO,

DelegateO,CorrO

}
return b← AO(st,EDB)

DelegateO(i,Wü,WL)

ensure i ̸∈ I

I := I ∪ {i}
(Wü,i,WL,i) := (Wü,WL)

Hist :=

Hist∥(Delegate, i,Wü,WL)

return st′ ← S(L(Hist))

SrchO (i,Wü)

ensure i ∈ I ∧Wü ⊆ Wü,i

Hist := Hist∥ (Srch, i,Wü)

return s← S(L(Hist))

UpdtO
(
i, ID|WL

)
ensure i ∈ I ∧WL ⊆ WL,i

Hist := Hist∥
(
Updt, i, ID|WL

)
return u← S(L(Hist))

CorrO(i)
ensure i ∈ I

Hist := Hist∥(Corr, i)
return ski ← S(L(Hist))

Fig. 8: Ideal Experiment for DSE with A Curious Server

CorrO.8 In the real experiment, oracle queries are answered by
executing DSE algorithms. In the ideal one, they are answered
by a simulator S who is given the leakage of the corresponding
history just in time. An L-adaptively-secure DSE requires that
no PPT A can determine whether it is facing a real DSE.

Figs. 7 and 8 present the security experiments with a curious
server. The adversary A can instruct any client to ask for the
delegation of any keywords via DelegateO. With SrchO (resp.
UpdtO), A can receive search (resp. update) tokens from any
client on specified keywords. With CorrO, A can corrupt any
honest clients and get their secret keys.
A might search or update as corrupt clients. If A is a curious

server, it leaks nothing, as A has possessed both the database
and the corrupt secret keys. For A being an honest server,
Appendix D-A discusses its security experiments.

Definition 7 (Adaptive Security of DSE). A DSE scheme is
L-adaptively-secure with a(n) {curious, honest} server if, for

8Extra CorrSrchO and CorrUpdtO are needed with an honest server.

any PPT adversary A, there exists a PPT simulator S:∣∣∣∣∣ Pr[Real-{CS,HS}DSE
A (1λ) = 1]

−Pr[Ideal-{CS,HS}DSE
A,S,L(1

λ) = 1]

∣∣∣∣∣ ≤ negl(λ).

Security experiments with a curious server (resp. an honest
server) are defined in Figs. 7 and 8 (resp. Figs. 19 and 20).

Leakage Functions. Let L be any leakage function. We
define LCS and LHS for the cases of curious server and
honest server, respectively. The two settings are not nec-
essarily comparable: DSE with an honest server might be
adaptively secure with less leakage. With the notation in
the ideal experiments (Figs. 8 and 20), we consider the
DSE history as a sequence of events. We define Histt as
(Setup, ϵ)∥(h1, arg1)∥ · · · ∥(ht, argt), where for j ∈ [t],

(hj , argj)∈


(Delegate, (i,Wü,WL)) , (Corr, i),
(Srch, (i,Wü)) , (CorrSrch, (i,Wü)) ,(

Updt, (i, ID|WL
)
)
,
(
CorrUpdt, (i, ID|WL

)
)
 .

We will omit Hist0 = (Setup, ϵ) that leaks no information.
L(Histt) = (h1, arg1)∥ · · · ∥(ht, argt) is the leaked version

of Histt, where argj for j ∈ [t] captures the leaked information
of the j-th event due to L. We denote by ∗ any arguments in
argj that have not been revealed. Note that the arguments of
an event might be hidden when it happens, but later revealed
due to other events, e.g., a search reveals the document
identifiers hidden in previous updates. The effect of leakage
functions could be accumulative, e.g., a sequence of searches
might gradually leak some keywords hidden in a prior update.
Appendix D-B defines two leakage functions for DSE.
Forward Privacy. Forward privacy ensures that any update
reveals no information about the keyword to be updated, even
if it has been searched before. For DSE, the notion intuitively
confines the leakage regarding the update tuple in the history.
Following the convention [8], [27], forward privacy specifies
the leakage L of an L-adaptively-secure DSE.

Forward privacy in the multi-client setting needs to consider
corruption [36] – a corrupt client with the secret key of the
target keyword could trivially reveal it. We thus consider
forward privacy on keywords not granted to corrupt clients.

Given the history Histt, we denote by W t
corr the set of

keywords searchable or updatable by all corrupt clients:

W t
corr :=

{
w :

(Delegate, (i,Wü,WL)) ∈ Histt

∧(Corr, i) ∈ Histt ∧ w ∈ Wü ∪WL

}
.

Formally, forward privacy of DSE (Definition 8) limits the
leakage on

(
Updt, (i, ID|WL

)
)

to at most the writer identi-
fier i and the document identifiers of the corrupt keywords
ID|W t

corr∩WL
. Nothing about WL \W t

corr is revealed.

Definition 8 (Forward Privacy of DSE). An L-adaptively-
secure DSE is forward-private if, for any history Histt =

Histt−1∥(ht, argt) with (ht, argt) =
(
Updt, (i, ID|WL

)
)

, the

arguments argt of the t-th entry in L(Histt) is
argt = L′

(
Updt, (i, ID|W t

corr∩WL
)
)
,
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IntegrityDSE
A (1λ)

I := ∅ // client identifier set

ˆID := ∅ // plaintext copy of tuples from UpdtO

(msk, st,EDB)← DSE.Setup(1λ)

O := {SrchO,UpdtO,DelegateO,CorrO}
(i,Wü)← AO(st,EDB)

s← SrchTkn (st, ski,Wü)(
st′,EDB′, ID|Wü

)
← Srch(st,EDB, s)

return

(
ˆID
∣∣∣
Wü

̸⊆ ID|Wü

)

DelegateO(i,Wü,WL)

ensure i ̸∈ I

I := I ∪ {i}
(Wü,i,WL,i) := (Wü,WL)

(st′, ski)← Delegate(st,msk,Wü,WL)

return st′

SrchO (i,Wü)

ensure i ∈ I ∧Wü ⊆ Wü,i

return s← SrchTkn (st, ski,Wü)

CorrO(i)
ensure i ∈ I; return ski

UpdtO
(
i, ID|WL

)
ensure i ∈ I ∧WL ⊆ WL,i

u← UpdtTkn
(
st, ski, ID|WL

)
(st′,EDB′)← Updt(st,EDB, u)

for w ∈WL do ˆID[w] := ˆID[w] ∪ ID[w]

return (st′,EDB′)

Fig. 9: Integrity Experiment of DSE

with L′ as a stateless function whose output solely depends
on the inputs, and W t

corr is the keyword set of corrupt clients.

Note that Definition 8 benchmarks against standard forward
privacy in SSE [8], [27], definitely stronger than the epoch-
based verison [36] that only protects updates at a new epoch.

D. Integrity

Integrity (subsuming correctness) is important for some
M/M applications. Updates of honest clients will be reflected
in the search results of other honest clients, even if malicious
clients exist. Its definition (Fig. 9) checks whether the search
result of keywords specified by the adversary contains all tu-
ples updated via UpdtO. It is not in the real-ideal formulation,
as the leakage is not relevant.

Definition 9 (Integrity of DSE). A DSE scheme is said to have
integrity if, for any PPT adversary A, and Integrity as defined
in Fig. 9: it holds that Pr[IntegrityDSE

A (1λ) = 1] ≤ negl(λ).

V. DSE-F : FORWARD-PRIVATE FRAMEWORK

Following the idea in Section I-A, we construct DSE-F
from a shiftable multi-recipient encryption scheme SME, an
identity-based encryption scheme IBE, and a PRF family F .

Specifically, SME encrypts the update counters Uctr9 of
active keywords, which could be shifted per update. IBE
encrypts document identifiers using the search counter Sctr[w]
of updated keyword w as the identity. DSE-F generates the
secret key SKEDB per keyword using F , which, with Sctr[w],
is used to derive the index key IKEDB. For any keyword w,
its IKEDB[w] and Uctr[w] determine the next address via F to
store the IBE-encrypted identifiers into EDB.

A search on w reveals its IBE decryption key DKIBE[w] and
index key IKEDB[w]. As each search increments Sctr[w] (as in
Fig. 15) and which is used to generate the current DKIBE and
IKEDB, both keys are only valid for existing updates, ensuring
forward privacy. To speed up searches, the server maintains
auxiliary dictionaries SSI and CDB, recording respectively the

9To be compatible with SME, each Uctr entry is a group element started
from the generator [1]. This is shiftable (by +[1]), which gives unique values
like a numeric counter. For simplicity, we omit the group notation for Uctr
(and so do counter i and “search starting index” SSI).

F
(msk)

F
(SKEDB)

IKEDB
Sctr“EDB”, w

SME.KG
(RSME)

SKSME
1λ“SME”, w

IBE.KG
(RIBE)

IBE.Ext
(SKIBE)

DKIBE
Sctr1λ“IBE”, w

Fig. 10: Key Hierarchy (()/edge label is secret/public)

Setup(1λ)

1 : msk←$ {0, 1}λ,W := ∅
2 : ppSME ← SME.Setup(1λ), ctxW ← SME.Init(1λ)

3 : Sctr := PKIBE := PKSME := ∅
4 : EDB := CDB := SSI := Empty dictionary

5 : Initialize st as
(
(Sctr,PKIBE,PKSME)|W , ctxW

)
6 : return (msk, st, (EDB,CDB,SSI))

Fig. 11: Setup of DSE-F

starting index of the next search (i.e., Uctr[w]+1) and previous
results of a keyword (the latter appeared in existing designs10).

The owner uses master secret msk to generate the above
keys for clients. Fig. 10 summarizes the hierarchy of keys, e.g.,
F (msk, (“IBE”, w))→ RIBE and IBE.KG(1λ,RIBE)→ SKIBE.

A. Description

Figs. 11 to 14 depict DSE-F for active keyword spaceW .11

For any delegation on (Wü,WL), DSE-F assumes Wü ⊆
WL, i.e., update-only or search-and-update rights. We discuss
how to grant search-only rights in Section V-B.

Setup (Fig. 11). The database owner sets up DSE-F by pick-
ing a key msk and initializing the state st and the encrypted
database EDB. W is empty before any delegation.

State st publishes: 1) search counters Sctr|W ; 2) IBE public
keys PKIBE|W ; 3) SME public keys PKSME|W ; and 4) SME
ciphertext ctxW , that later encrypts update counters Uctr|W .

10Most efficient SSE schemes reveal this information due to the search
pattern. It has been leveraged in a similar way for efficiency [18], [27].

11Our description directly refers to the keywords for brevity. To hide the
exact keywords from external attackers who access the global state, the owner
can derive pseudonyms for the keywords and inform the eligible clients.
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Delegate(st,msk,Wü,WL)

1 : parse st as
(
(Sctr,PKIBE,PKSME)|W , ctxW

)
2 : ensure Wü ⊆ WL

3 : for w ∈ WL do // (re)produce SME, IBE, and PRF keys for w

4 : RSME[w] := F (msk, (“SME”, w)) // SME’s seed

5 : RIBE[w] := F (msk, (“IBE”, w)) // IBE’s seed

6 : (PKSME[w], SKSME[w]) := SME.KG(1λ;RSME[w])

7 : (PKIBE[w], SKIBE[w]) := IBE.KG(1λ;RIBE[w])

8 : SKEDB[w] := F (msk, (“EDB”, w))

9 : ctxW∪WL
← SME.Expand

(
SKSME|WL\W , ctxW

)
10 : for w ∈ WL \W do Sctr[w] := 0 // not-yet-active WL \ W

11 : W :=W ∪WL // update-permitted keywords are now active

12 : st′ :=
(
(Sctr,PKIBE,PKSME)|W , ctxW

)
13 : sk :=

(
SKIBE|Wü

, (SKEDB, SKSME)|WL

)
14 : return (st′, sk)

Fig. 12: Delegation of DSE-F

UpdtTkn
(
st, sk, ID|WL

)
1 : parse st as

(
(Sctr,PKIBE,PKSME)|W , ctxW

)
2 : parse sk as

(
SKIBE|Wü

, (SKEDB, SKSME)|WL

)
3 : ensure WL ⊆ WL

4 : Uctr|WL
← SME.Dec

(
SKSME|WL

, ctxW
)

5 : ctx′W := SME.Enc
(
PKSME, [ΓWL

]
)

6 : i := 1,ADDR := VAL := Empty dictionary
7 : for w ∈WL do // derive “random” addresses for encrypted ID[w]

8 : IKEDB[w] := F (SKEDB[w], Sctr[w])

9 : ADDR[i] := F (IKEDB[w],Uctr[w] + 1)

10 : VAL[i] := IBE.Enc(PKIBE[w],Sctr[w], ID[w])

11 : i := i+ 1

12 : return u :=
(
ctx′W ,ADDR,VAL

)
Updt (st,EDB, u)

1 : parse st as
(
(Sctr,PKIBE,PKSME)|W , ctxW

)
2 : parse u as

(
ctx′W ,ADDR,VAL

)
3 : for i ∈ {1, . . . , |ADDR|} do EDB[ADDR[i]] := VAL[i]

4 : ctx′′W = SME.Shift(ctxW , ctx′W)

5 : st′ :=
(
(Sctr,PKIBE,PKSME)|W , ctx′′W

)
,EDB′ := EDB

6 : return
(
st′,EDB′)

Fig. 13: Update of DSE-F

EDB is a server-side dictionary for keyword-document
tuples. Alongside EDB, two dictionaries auxiliary to Srch()
are maintained: CDB caches previous search results of each
keyword; SSI records the starting index of the next search on
each keyword. One can view (CDB,SSI) as part of EDB.

Delegation (Fig. 12). The database owner provides a client
with the secret key set sk regarding the delegated keywords.
For search-permitted keywordsWü and update-permitted key-
wordsWL, sk includes: 1) IBE secret keys SKIBE|Wü

; 2) PRF

SrchTkn (st, sk,Wü)

1 : parse st as
(
(Sctr,PKIBE,PKSME)|W , ctxW

)
2 : parse sk as

(
SKIBE|Wü

, (SKEDB, SKSME)|WL

)
3 : ensure Wü ⊆ Wü

4 : Uctr|Wü
← SME.Dec

(
SKSME|Wü

, ctxW
)

5 : for w ∈Wü do

6 : DKIBE[w] := IBE.Ext(SKIBE[w], Sctr[w])

7 : IKEDB[w] := F (SKEDB[w],Sctr[w])

8 : return s :=
(
(DKIBE, IKEDB,Uctr)|Wü

)
Srch (st, (EDB,CDB,SSI), s)

1 : parse st as
(
(Sctr,PKIBE,PKSME)|W , ctxW

)
2 : parse s as

(
(DKIBE, IKEDB,Uctr)|Wü

)
3 : ID|Wü

:= ∅
4 : for w ∈Wü do

5 : if Sctr[w] = 0 then SSI[w] := 1 // start of w’s first search

6 : else ID[w] := CDB[w] // obtain previous search results of w

7 : for i ∈ {SSI[w], . . . ,Uctr[w]} do
8 : addr← F (IKEDB[w], i)

9 : val← IBE.Dec(DKIBE[w],EDB[addr])

10 : ID[w] := ID[w] ∪ val

11 : SSI[w] := Uctr[w] + 1 // start of w’s next search

12 : CDB[w] := ID[w] // cache the current search result of w

13 : EDB′ := EDB,CDB′ := CDB, SSI′ := SSI

14 : st′ :=
((

Sctr + ΓWü
,PKIBE,PKSME

)∣∣
W , ctxW

)
15 : return

(
st′, (EDB′,CDB′, SSI′), ID|Wü

)
Fig. 14: Search of DSE-F

keys SKEDB|WL
; and 3) SME secret keys SKSME|WL

.
(Line 3–8) For keyword w ∈ WL, RIBE[w] and RSME[w]

are obtained by evaluating F (msk, ·) on (“IBE”, w) and
(“SME”, w), respectively. Then, SKIBE[w] and SKSME[w]
could be derived by evaluating IBE.KG and SME.KG using
RIBE[w] and RSME[w] as randomness, respectively. SKEDB[w]
is derived from F (msk, (“EDB”, w)).

(Line 9–11) For the newly delegated keywords WL \ W ,
the SME ciphertext is expanded to store their initial update
counters; their search counters Sctr[w] are initialized to 0.
The active keyword spaceW now includes the new keywords.
Fig. 15 includes WL = {w3} into W = {w1, w2}.
Update (Fig. 13). The writer specifies ID|WL

, an identifier
set of documents matching keywords in WL for generating
the update token via UpdtTkn(). The result includes a set of
address-value tuples (ADDR,VAL) to be inserted into EDB
via Updt(), and an SME ciphertext ctx′W for shifting its prior.

(Line 4–5 in UpdtTkn()) The writer decrypts the WL

slots of the SME ciphertext ctxW to get the update counters
Uctr|WL

. The writer encrypts the offset [ΓWL
] as a new

SME ciphertext ctx′W . Recall that element of the characteristic
vector ΓWL

[w] is defined as 1 if w ∈WL; 0, otherwise.
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Fig. 15: Example of DSE-F Counters (W = {w1, w2})

(Line 7–11) Let i be a running index of ADDR. For w ∈
WL, address ADDR[i] for storing VAL[i] (an IBE-encryption
of ID[w] under Sctr[w]) is F (IKEDB[w],Uctr[w] + 1), where
IKEDB[w] is determined by SKEDB[w] and current Sctr[w].

The update token u consists of (ctx′W ,ADDR,VAL).
(Line 3–5 in Updt()) The server sets EDB[ADDR[i]] as

VAL[i] for i ∈ {1, . . . , |ADDR|}. It obtains new ctx′′W for st by
shifting ctxW with ctx′W , which essentially increases Uctr|WL

by 1. Uctr|W\WL
is unchanged but with its slots refreshed. Part

(2) of Fig. 15 illustrates the case for WL = {w2, w3}.
Search (Fig. 14). Via SrchTkn(), the reader prepares for the
server the IBE decryption keys and index keys for keywords
Wü to be searched, with respect to the global state st.

(Line 4 in SrchTkn()) The reader decrypts the Wü slots of
the SME ciphertext ctxW for the update counters Uctr|Wü

.
(Line 5–8) For w ∈ Wü, with current Sctr[w], the reader

derives DKIBE[w] via IBE.Ext(SKIBE[w],Sctr[w]) and gener-
ates IKEDB[w] via F (SKEDB[w],Sctr[w]). With Uctr|Wü

, they
form the search token s for documents that match w ∈Wü.

(Line 3–6 in Srch()) The server initializes an identifier
set ID|Wü

. For w ∈ Wü, if this is the first search on w,
it initializes SSI[w] := 1 and starts from the first position;
otherwise, results from prior searches on w are obtained from
the cache CDB[w] and put into ID[w].

(Line 7–13) For w ∈ Wü, i ∈ {SSI[w], . . . ,Uctr[w]}, the
server gets the dictionary entry at F (IKEDB[w], i). The server
decrypts such an entry with DKIBE[w] and inserts the result
into ID[w]. ID|Wü

will be returned to the reader.
After retrieving each w ∈ Wü, the server updates SSI[w]

to Uctr[w] + 1 as the starting index of the next search on w.
The server also caches the searched entries per (pseudonym
of) keyword by updating CDB[w] with ID[w]. SSI and CDB
help avoid retrieving from scratch. Any reader has no need
to reset Uctr[w] via shifting (only IKEDB[w] will be changed
with Sctr[w] for forward privacy).

(Line 14) The server refreshes the global state st by incre-
menting the search counters of Wü (as in Fig. 15).

B. Additional Considerations

Our description is under the basic setting of a single
database owner. We discuss here easy generalizations address-
ing concerns in a multi-user system, such as revocation and
concurrency control. Apart from employing existing orthogo-
nal techniques, we describe specific aspects of our scheme.

Enforcing Search-Only Right. DSE-F , as described, grants the
updating right with the searching right since a client who
can search for keyword w has obtained all secrets required to
update w. To decouple for the search-only right, the database
owner could additionally grant a signing key (specific to w) to
those who could update but not those who could only search.

Distributed Owners. Multiple owners can run multiple DSE
instances. If a “root” owner overseeing all owners is desired,
IBE can be replaced with hierarchical IBE. Other keys are
PRF-derived as Fig. 10 shows. Threshold cryptography can
distribute the power of a single owner. Our PRF instantiation
(Section VII) features a simple threshold extension.

Revocation. We can revoke via twisting/upgrading our building
blocks related to the key material of each entity. PRF keys
are for locating/creating dictionary entries (reader and writer).
They are, in turn, derived from PRF. When deriving the PRF
keys, a client identity can be taken as input. Constrained PRF
could be of help. SME keys are for counters (reader and
writer), and IBE keys are for payloads (only reader). We can
employ techniques in updatable encryption and revocable IBE.

Synchronizing “Simultaneous” Updates. When multiple writ-
ers update different keywords simultaneously, they do not need
to synchronize because they write to distinct pseudorandom
locations, and the needed SME shifting can be executed in
an arbitrary order. However, for two writers holding the same
update counter value for the same keyword, they instruct the
server to update its encrypted database at the same address.
To resolve this potential clash, the server can designate one
of the updates as the first and instruct the other to re-derive
the address using the now-incremented counters. (It is worth
noting that the SME component of the update token can still
be utilized.) Unfortunately, such clash identification degrades
privacy. Resolving the tension between oblivious updates and
synchronization is left as future work. That said, our optimized
scheme, to be described in Section V-D, can reduce some of
the synchronization requirements.

C. Security Analysis and Extensions

DSE-F is adaptively forward-private against a curious or
an honest server (both with a set of corrupt clients) with
leakage functions LCS and LHS (defined in Appendix D-C),
respectively. Theorem 2 asserts the security of DSE-F with
its proof in Appendix D-C. In either case, the delegation only
leaks pseudonyms of new active keywords from global states.

For LCS, corruption on any client exposes their secret key,
leaking documents matching the search-permitted keywords
and the occasions when the update-permitted keywords are
updated. A search exposes the search pattern and matching
document identifiers. SSI and CDB cause no extra leakage as
the server is allowed to learn such information in a search.
For any keywords that are neither searchable nor updatable
by corrupt clients, updates on them are put in addresses
pseudorandom to the server and remain encrypted until the
next event, fulfilling forward privacy.

10



The information leaked in LHS is much less than LCS due to
the assumption of an honest server. In particular, only corrupt
searches leak the identifiers of matching documents.

Theorem 2. If F , IBE and SME are all non-committing-secure
in their sense, DSE-F is LCS (resp. LHS) adaptively secure
and forward private with a curious (resp. an honest) server.

Anonymity. As DSE-F tokens do not involve the client infor-
mation, DSE-F hides the client who performs operations if a
client connects using an anonymous channel. It explains ∗ for
client i in events related to honest clients in Appendix D, i.e.,
the client identifier i remains hidden.

Response Hiding. DSE-F is response-revealing – returning
search results in plaintext. For higher security (e.g., avoid
leaking the identifiers of matching documents in searches),
we could make DSE-F response-hiding by withholding the
IBE decryption key during searches. The server could only
return IBE ciphertexts of the search results. The server still
archives these encrypted results as per keywords for sub-
sequent searches. Response-hiding DSE-F hides leakage of
document identifiers except those from corruption. It also helps
backward privacy and is essential for volume-hiding.

Appendix B equips DSE-F with advanced features (e.g.,
backward-private, volume-hiding) rarely realized for M/M.

D. Efficiency Analysis and Optimization

The database owner only needs to keep the master secret
key. The server stores the tuple (st,EDB,CDB,SSI) – st and
SSI are linear in the number of active keywords, while EDB
and CDB are linear in the plaintext database size. A client
maintains one state for each keyword they could search or
update, which is common in forward-private SSE [8].

For delegation, the database owner generates secret keys of
keywords to be delegated. It also expands the SME ciphertext
and the active keyword space ifWL\W ̸= ∅. AsWü ⊆ WL,
the overhead for delegation is O(|WL|).

Either searching on Wü or updating on WL requires the
client to decrypt the needed update counters (with an overhead
of O(|Wü|) or O(|WL|)). For an update, the writer shifts an
SME ciphertext in O(|W|). The number of active keywords
|W| is typically sublinear in the number of keyword-document
tuples in real-world databases. The writer determines addresses
and values by PRF and IBE encryption inO(|WL|). The server
simply inserts tuples to EDB with an overhead of O(|WL|).

To search, the reader outputs IBE decryption keys and
PRF keys in O(|Wü|). Owing to the server-side (SSI,CDB),
the update counters are not reset during searches, avoiding
O(|W|) for shifting. The server executes PRF evaluation and
IBE decryption as many times as the number of current
matches (i.e., starting from SSI for Wü). Its complexity is
bounded by the sum of matching updates, i.e., O(

∑
Uctr|Wü

),
the optimal search efficiency [8] we strive for.

To search for all identifiers of documents matching a
keyword w, the search overheads of DSE-F and FP-HSE [36]
are O(Uctr[w]) and O(Uctr[w] +

∑
i∈S |Wi|), respectively,

where Wi refers to the keywords ever written by writer i in
set S of writers who have updated w. DSE-F beats FP-HSE
in complexity, yet the O(Uctr[w]) part of HSE only involves
symmetric-key operations. Below discusses how to minimize
public-key operations in DSE-F to make its search faster than
FP-HSE in both theory and practice.

Less Public-Key Operations via Hybrid Encryption. Viewing
DSE as an access control system, it is not difficult to imagine
that the writer can use standard tricks such as hybrid encryp-
tion for the “content” by using only one public-key operation.

When a writer updates a keyword, the initial entry can be
an IBE encryption of a secret K as keying material of SSE,
e.g., the writer could use a PRF with key K to derive both the
address and the symmetric-key encryption (SKE) key for the
SSE encrypted data structure beyond the first entry. Document
identifiers can then be encrypted using SKE instead of IBE.
Note that each writer needs to IBE-encrypt once; otherwise,
writers can unwrap ciphertexts of others if only SKE is used.

Correspondingly, searching performs one IBE decryption
for each contributing writer. The search remains sublinear, but
the number of public-key operations is significantly reduced.

Readers run either IBE decryption for addresses from the
index key IKEDB or SKE decryption. For privacy against the
server, both IBE and SKE ciphertexts should be pseudoran-
dom. Special elliptic curves [17] should be used for IBE.

This optimization has other benefits. Each client executes a
DSE-update only once to settle its key materials. They then
independently insert tuples using their own keys. Both changes
loosen the synchronization requirement.

VI. DSE-I : INSTRUMENT FOR INTEGRITY

A. Description

DSE-I enhances DSE-F with integrity, i.e., the global state
must be correctly modified so that later honest clients can
operate as expected. DSE-I requires that any token must
come with a proof, with which the server checks the token
before executing it. DSE-I uses an equivocable commitment
scheme φ.(Setup,Com) [3] and an argument of knowledge
Π.(Setup,Prove,Vf) [28].

Setup and Delegation. The database owner of DSE-I extra
sets up Π and φ with Π.Setup() and φ.Setup(), respectively.
The state st includes the common reference string crs of Π.

For each w ∈ WL, an additional randomness Rφ[w] is
derived from F (msk, (“φ”, w)). Rφ[w] is used to commit
SKEDB[w] as COM[w] := φ.Com(SKEDB[w];Rφ[w]). st will
include COM|W . As SKEDB[w] is the PRF key (for IKEDB[w])
with its commitment publicly available. We specifically denote
its associated PRF by pkPRF to differentiate it, for the
convenience of proving the knowledge of SKEDB with Π.

Update. The writer runs Π.Prove() on the language below
for a well-formedness proof π of ctx′W in u. (ADDR,VAL)
is omitted as it will not affect the global data structure; e.g.,
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ADDR is related to how many entries a writer can occupy,
which can be enforced by (anonymous) rate-limiting.

(st, ctx′W) : ∃
(
SKSME|WL

,ΓWL
, r
)

s.t.
1. 0⃗W = ΓWL

◦ (ΓWL
− 1⃗W)

2. [⃗0W ] = ΓWL
◦ (PKSME − [SKSME])

3. ctx′W = SME.Enc (PKSME, [ΓWL
]; r)


The first two relations ensure the binary vector nature of

ΓWL
and the knowledge of the SME secret keys. The third

ensures that ctx′W encrypts offset [ΓWL
]. The server executes

Π.Vf() on π. After verifying, it shifts ctxW with ctx′W .
Search. The reader uses Π to output a well-formedness
proof π of the index key IKEDB|Wü

in the search token s:
(
st, IKEDB|Wü

)
: ∃

(
(SKEDB,Rφ)|Wü

)
s.t. ∀w ∈Wü,{

1. COM[w] = φ.Com(SKEDB[w];Rφ[w])

2. IKEDB[w] = pkPRF(SKEDB[w],Sctr[w])

.

It ensures that for w ∈ Wü, IKEDB[w] is a valid index key
derived from SKEDB[w] regarding current Sctr[w]. DKIBE|Wü

can be verified by IBE operations. Uctr|Wü
is auxiliary and

omitted: the server can search with IKEDB|Wü
till an invalid

address. After verifying, the server adds ΓWü
to Sctr.

Efficiency. The complexity of an argument system is often
upper bounded by the size of the statement and the witness.
Thus, the overheads caused by Π in DSE-I are O(|Wü|)
for searching and O(|W|) for updating. DSE-I retains the
same update/search complexities and enjoys the same opti-
mization (Section V-D) as DSE-F .

B. Security and Integrity Analyses

DSE-I is adaptively secure with the same leakage as
DSE-F , as defined in Appendix D. The proof of Theorem 3
involves two more hybrids than Theorem 2: 1) call φ simulator
to generate COM and use φ simulator to invert COM[w]
with respect to SKEDB[w], when (SKEDB[w],Rφ[w]) needs
to be revealed later (e.g., CorrO); 2) replace crs with its
trapdoor variant and invoke Π simulator (with the knowledge
of trapdoors and statements) to simulate π.

Theorem 3. If F , IBE, and SME are all non-committing in
their sense, φ is equivocable, Π is a zero-knowledge argument
of knowledge, DSE-I is LCS (resp. LHS) adaptively secure and
forward private with a curious (resp. an honest) server.

In DSE-I, the server only executes well-formed update to-
kens and search tokens. It guarantees that update counters Uctr
(encrypted as ctx′W ) and search counters Sctr are modified
correctly. In this way, any update from an honest client could
be retrieved by others, ensuring integrity. Theorem 4 asserts
the integrity of DSE-I. The core idea of its proof is to embed
the challenge from φ or SME to one of the |W| keywords and
use the extractor of Π to break the security of either.

Theorem 4. If Π is an argument of knowledge, φ is hiding
and binding, and SME is CPA-secure, DSE-I has integrity.

TABLE II: Delegation Time (s) for (|Wü|, |WL|) = (ℓ, ℓ)

Scheme \ ℓ 200 400 600 800 1000

DSE-F 1.27 2.62 3.81 5.10 6.34
DSE-I 1.61 3.19 4.90 6.39 8.13

VII. EXPERIMENTS

We implement DSE-F and DSE-I in Python with Charm-
Crypto library12 for cryptographic and group operations (with
MNT224 curve). We use a desktop with Intel Core i7-4790
3.60GHz CPU and 16GB RAM. Our implementations use
Pedersen commitment, our SME, Boneh–Franklin IBE [7],
HMAC-SHA-256 (for PRF), the argument system from
Lai et al. [28], and the hybrid technique in Section V-D. We
set pkPRF(sk,m) as H(m)sk, where H is a full domain hash
built upon HMAC-SHA-256. Note that our evaluation involves
no CDB-cache for clarity and fairness.

A. Evaluation with Synthetic Datasets

Table II reports delegation time for varying Wü and WL.
Search. Fig. 16a shows the time of searching for a keyword
that matches |ID|Wü

| ∈ {2000, 4000, 6000} documents uni-
formly contributed by 10 writers, where the database size
varies from 216 to 220 with a fixed active keyword space size
|W| = 1000. Fig. 16b shows the search time of a keyword with
the same results as Fig. 16a, under a varying |W| ∈ {200, 400,
600, 800, 1000} and a fixed database size 216. The search time
of DSE-F /DSE-I is independent of the database size and |W|.

Fig. 16c measures the searches on a keyword that match
9000 documents uniformly contributed by 10 to 50 writers.
The search time is linear in the number of contributive writers.

Fig. 16d shows the influence of the size of search results
ID|Wü

(uniformly written by 10 writers) on the search time.
We vary |ID|Wü

| from 2 · 103 to 104. DSE search time grows
linear with the number of matches, like most SSE schemes.

Note that any of the above searches are done within 1s,
which is quite efficient. The gap between DSE-F and DSE-I
in Fig. 16 reflects the time needed by Π in DSE-I for integrity.
Update. We measure the time of updating multiple keywords
in one batch (with |WL| ∈ {1, 5, 10, 15}) over varying
active keyword space |W| ∈ {200, 400, 600, 800, 1000}. Each
keyword of the updates is related to 1000 document identifiers
to be inserted, e.g., the result of the orange curve in Fig. 17
should be divided by 15000 for the update time of a single
tuple (that is, 0.08ms for DSE-F and 6.46ms for DSE-I).

Fig. 17a shows that the update time of DSE-F grows with
the number of update tuples and |W|. Fig. 17b indicates that a
DSE-I update is dominated by |W| due to Π. The time needed
by Π is almost independent of the number of tuples in a single
update. DSE-I could be faster per tuple for a larger batch.

As indicated by our evaluations over synthetic datasets,
DSE-F is efficient for daily cloud storage usage expecting
real-time retrieval of frequent-updated data. DSE-I is more
applicable for archiving-and-auditing applications, batching a
large volume of data beforehand. For integrity, the complexity

12https://jhuisi.github.io/charm
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Fig. 16: Search Performance (Synthetic Datasets)
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Fig. 18: Performance over Enron Dataset

of zero-knowledge proof is inherent, e.g., 10s appears to be the
baseline considering the performance of the latest malicious-
secure sharing system [13] using multiple powerful servers.

B. Evaluation with the Enron Dataset

We evaluate DSE over Enron dataset13 as both daily cloud
storage (i.e., email) and archive (i.e., auditing happened on it),
compared with FP-HSE [36], the state-of-the-art M/S solution.
Dataset. We pick around 0.5M emails sent by 146 clients from
Jan 1999 to Jun 2002. We extract the top 500 most frequent
ones as the active keyword space, generating around 4.1M
keyword-email tuples. Averagely, a client has 460 keywords,
3483 emails, and 27864 keyword-email tuples. Tagging each
email with its date, each client uploads emails to the server
monthly and searches are regularly executed per half year.
Update. We delegate the updating rights to each client before
measuring update time. The average delegation time per client
is 2.77s (resp. 3.42s) for DSE-F (resp. DSE-I).

Fig. 18a picks 10 random clients and plots their average up-
date tuples and update time per month (excluding months with

13https://www.cs.cmu.edu/∼enron

no email). For epoch-based forward privacy, each FP-HSE
client needs to rebuild according to the search schedule, taking
linear time in the number of ever-written keywords by a client.
We amortize it into the update time of FP-HSE, accounting for
its large fluctuation and latency compared to DSE-F . DSE-I
requires more update time, yet each DSE-I client completes
updates within 30s, which is affordable for daily backups.

Search. We search for 10 random keywords every six months
over the entire encrypted database. For each search, Fig. 18b
shows the search time and result size averaged over keywords.
DSE-F and DSE-I are significantly faster than FP-HSE.

The number of public-key operations in the (optimized) DSE
search is only linear in the number of writers updating the
searched keywords, while FP-HSE has to make decryption
attempts on a token set linear in the number of ever-written
keywords by all writers. Concretely, the search time of DSE-F
and DSE-I is more than 240× shorter than that of FP-HSE.

VIII. CONCLUDING REMARKS

Searchable encryption has been gaining commercial interest.
However, limitations such as linear search time in PEKS and
the lack of multi-client support in SSE pose hindrances to
adoption. This paper bridges the gaps between these two clas-
sical notions by proposing delegatable searchable encryption
(DSE), a kind of keyword-based access control system tailored
for security and efficiency concerns in multi-client encrypted
search, notably, achieving optimal search and forward privacy.

Multiple writers in DSE write to the same linked list in
the encrypted database for optimal search across multiple
readers. In contrast, hybrid searchable encryption (HSE), the
only prior sublinear multi-writer scheme, links the linked
lists of different writers with ciphertexts of identity-coupling
key-aggregate encryption (ICKAE), which requires public-
key operations for trial decryption across different encrypted
keywords. Nevertheless, ICKAE allows the reader to confine
the search scope to an arbitrary writer subset. Also, anyone can
be a writer in HSE without contacting the reader beforehand.
It seems to preclude state synchronization tricks for forward
privacy. HSE circumvents it by relying on a global clock for
epoch-based forward privacy, which is weaker than DSE.

Conclusively, DSE presents a more secure and efficient
alternative for applications where one-time delegation is re-
quired or acceptable. We expect the new DSE notion could
inspire the future development of M/M searchable encryption.

13
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APPENDIX A
MORE RELATED WORK

Many “multi-client/user” searchable encryption schemes
actually consider “single-writer/multi-reader” (S/M). It can
be realized by sharing search tokens of SSE via broad-
cast encryption [16] or interactions between the writer and
readers [21]. Schemes for static databases have been well-
studied [26], [30]. A “multi-key” scheme (still S/M) [19]
requires the writer to replicate the index for each reader or
rely on a heavyweight obfuscation. A recent S/M solution [11]
achieves forward privacy by tolerating either the inefficiency
of oblivious primitives or large reader-side local storage.

Deterministic encryption [5] can realize M/M searchable
encryption but with significantly weakened security. Another
approach is to introduce a third party that performs cipher-
text/query transformation. It is still as inefficient as PEKS and
might incur multiple rounds of communication [31].

SPCHS of Xu et al. [38] is an M/S scheme with optimal
asymptotic search efficiency. However, its underlying atomic
operation is pairing, hampering search efficiency for very large
databases. More importantly, it lacks forward privacy.

HSE of Wang and Chow [36] is the state-of-the-art M/S
solution. It is unclear how to upgrade it to the M/M setting
due to its epoch-based constraint of search tokens, which
would force the data owner to remain online and keep issuing
renewed tokens across epochs to multiple readers.

Multi-client ORAM potentially supports secure search in
the M/M setting. However, existing solutions [15] require the
server computation to be inefficiently linear in the number of
ciphertexts. With two non-colluding servers, recent works [1],
[23] design (secret-shared) databases contributed by multiple
writers. They could answer (function) queries from the readers.
Non-dynamic scheme [1] renders forward privacy a non-issue.
The non-colluding assumption also makes generic solutions,
e.g., multi-client ORAM [15], more efficient.

Encapsulated search index has been recently proposed [2]
as a public-key “searchable encryption system” featuring
sublinear search. Its encrypted index and search tokens are
document-specific, in great contrast to the universal index over
multiple documents (from different writers) we considered.
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APPENDIX B
ON MORE SECURITY PROPERTIES AND EXTENSIONS

Backward Privacy [9] prevents any search from revealing any
deleted document identifier, provided it has not been searched
before deletion. To realize it, DSE-F can adopt the two-
roundtrip approach from FIDES [9]. It requires DSE-F to be
response-hiding, as illustrated in Section V-C.

The writer attaches “DEL” flags to the document identifiers
to be deleted before encrypting the tuples as VAL via IBE and
uploading them to the server. When searching, DKIBE will not
be included in the token. The server only retrieves and returns
a collection of IBE ciphertexts. The reader could decrypt
them locally with DKIBE and remove those with “DEL.” The
above adaption prevents the server from learning the identifiers
of deleted documents. Like FIDES [9], it takes one more
roundtrip to get back the actual documents, and the server
cannot reclaim the space for deleted data unless non-deleted
identifiers are re-uploaded via updates. For backward privacy
without extra roundtrip [9], puncturable encryption can confine
the search capacity (over deleted documents) of the token.
How to realize it in DSE is an interesting problem.

Volume Hiding conceals the result size of any search. Prior
solutions [22], [35] usually pad dummy ciphertexts until each
keyword has (roughly) the same volume of search results.

To hide the volume, DSE should be first made response-
hiding so that the server cannot observe dummy payloads.
DSE makes the encrypted update counters available to eligible
clients. A possible way is to instruct writers to check during
updates whether their update-permitted keywords have the
same volume. If not, a writer makes dummy updates for key-
words with fewer volumes and batches them with real updates.

To alleviate the workload of clients, the database owner
can take responsibility for hiding the volume. As DSE does
not differentiate between different data sources, the database
owner could periodically check the global state and update as
a writer to pad dummies for keywords with fewer volumes.

Keyword Guessing. PEKS [6] (and general M/S search-
able encryption, e.g., [36]) is inherently vulnerable to offline
keyword-guessing attacks [10]. Search tokens issued by the
reader can be tested over ciphertexts of different keywords,
which the server can create offline without interacting with
the reader. The server can use a token with a known keyword
to check if any (future) ciphertext has the same keyword.

Forward Privacy and Pseudonyms. DSE-F significantly
reduces the damage of offline testing issued search tokens.
Recall that the IBE ciphertexts (i.e., VAL from u in Fig. 13)
and the decryption keys (i.e., DKIBE from s in Fig. 14) in
DSE-F are generated with respect to the search counter of
the keyword. By forward privacy, the server cannot test any
token against any IBE ciphertext in subsequent updates. Thus,
the server is unable to learn yet-to-be-searched keywords.

In DSE-F , the “keywords” delegated to clients do not need
to be actual keywords but pseudonyms of them. Thus, even if
the server could learn the relation between these pseudonyms
and some searches, it can, at most, infer statistical information

about the actual keywords, e.g., the search frequency of
keywords. Provided the fact that such statistical information
has already been leaked by the search and access patterns in
most practical searchable encryption schemes (e.g., [8]), the
keyword guessing attack will not cause extra leakage.

Write Access Control on IBE Ciphertexts. In retrospect,
Tang and Chen [34] considered a model called public-key
encryption with registered keyword search (PERKS), where
their registration is somewhat similar to the delegation in
DSE. Technically, the PERKS scheme can be viewed as
a simple extension of IBE [7], where the (single) reader
distributes secret keyword-specific values beforehand to the
eligible writers for encrypting with respect to these keywords.
In this way, the adversarial server cannot arbitrarily encrypt
searchable ciphertexts to do keyword guessing. While DSE
enforces the write access control on the index, PERKS limits
the writing ability of searchable ciphertexts. Obviously, if
instantiating the IBE scheme with PERKS and distributing the
keyword-specific secrets during delegation, DSE-F achieves
the same write access control as PERKS on the generation of
searchable ciphertexts, eliminating keyword guessing.

Structured Data. Like HSE, DSE is an encrypted keyword-
based index. We can build upon existing techniques to extend
DSE for supporting structured data, such as matrices [12],
graphs [12], [27], and ranges [37].

APPENDIX C
PROOF FOR SHIFT MULTI-RECIPIENT ENCRYPTION

Proof of Theorem 1. Recall that an adversary A in the
GGM can only see any group element via its representation
of distinct random ⌈log q⌉-bit strings, which are sampled inde-
pendent of the structure of G. The representation is essentially
a map [·] : Zq[Z] → {0, 1}⌈log q⌉, where Z is a large enough
(larger than the runtime of A) polynomial-size set of symbols,
and Zq[Z] is the ring of polynomials over the symbols in Z .
A is given at the beginning a random bit string [1] represent-

ing the generator. To perform group operations on [a] and [b],
the adversary must query a group operation oracle, which on
input [a] and [b], checks if [a+b] (where a+b is computed over
Zq[Z]) is already assigned. If not, it assigns [a+b] to a random
bit string. The sampled bit-string representation is maintained
in a map. In any case, the oracle returns [a + b]. In an
experiment that involves a simulator, e.g., the ideal experiment,
the map is maintained by the simulator. Due to the restriction
of the group operation oracle, only affine polynomials of the
form a0 +

∑
Z∈Z aZZ in Zq[Z] will ever be assigned.

For the analysis below, observing that for the k-th query to
ExpandO/ShiftO with input (j, . . .), the dependency of k on j
forms a tree, which can be labeled as follows. The root node
is labeled 0. Supposing the k-th query to ExpandO/ShiftO is
with input j, a node labeled k is created as a child of the node
labeled j. We use Path(k) to denote the set of nodes on the
path from the root (exclusive) to k (inclusive).

We construct a stateful simulator S. S maintains an invariant
that xi is set to some value in Zq for all i ∈ Corr.
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On input (Init, 1λ), S samples r0 ←$ Zq , assigns r0 to a
random unused bit string, and outputs [r0] as ctx0.

On input (KGen, 1λ), S picks arbitrary distinct unused
symbols Xi ∈ Z , samples random bit strings χi, and assigns
[Xi] := χi for all i ∈ R. It outputs PK|R := {χi}i∈R.

On the ℓ-th call to S (Expand) with (j, A) as the input of
ExpandO, S performs the following steps.

• Parse ctxj as (γ0,j , . . .) and γ0,j = [rj ].
• For all i ∈ A ∩ Corr, set γi,ℓ := [rjxi].
• For i ∈ A \ Corr, pick an unused symbol Ci,ℓ ∈ Z , and

assign Ci,ℓ to a random unused bit string γi,ℓ.
• Output ctxℓ := ctxj ∪ {γi,ℓ}i∈A.

On the ℓ-th call to S(Enc, {mi}i∈Corr) with (j,M |A =
{mi}i∈A) as the input of EncO, S does:

• Sample rℓ ←$ Zq .
• Assign rℓ and rℓxi+mi to random unused bit strings for

all i ∈ Corr.
• Set γ′

0,ℓ := [rℓ] and γ′
i,ℓ := [rℓxi +mi] for all i ∈ Corr.

• For i ∈ A \ Corr, pick an unused symbol Ci,ℓ ∈ Z , and
assign Ci,ℓ to a random unused bit string γ′

i,ℓ.
• Output ctx′ℓ := {γ′

i,ℓ}i∈A∪{0}.

On the ℓ-th call to ShiftO(j, t), retrieve ctx′t =
{γ′

i,t}i∈D′[t]∪{0} from EncO and ctxj = {γi,j}i∈D[j]∪{0} from
ExpandO or ShiftO, where D′[t] = D[j]. For i ∈ D[j]∪{0},
add up the preimages of γ′

i,t and γi,j , and assign the result to
a random unused string γi,ℓ. Output ctxℓ = {γi,ℓ}i∈D[j]∪{0}.

On input (Reveal, i∗, L[i∗], L′[i∗]) for some i∗ ∈ D[ν], if
i∗ ∈ Corr, then xi∗ was already set and S simply returns
xi∗ . Otherwise, S performs the following steps. Below we
analyze the simulation of ctxν from ExpandO and ShiftO. The
simulation of ctxµ from EncO can be conducted similarly.

• Sample xi∗ ←$ Zq .
• Replace all assignments involving χi∗ and γi∗,k for all
k ∈ [ν]. That is, if e + ci∗Xi∗ +

∑
k∈[ν] di∗,kCi∗,k

was assigned to some string α for some expres-
sion e ∈ Zq[Z \ {Xi∗ , Ci∗,k}k∈[ν]] and some
ci∗ , di∗,1, . . . , di∗,ν ∈ Zq not all zero, check if e +

ci∗xi∗ +
∑

k∈[ν] di∗,k

(
rkxi +

∑
j∈Path(k) mi,j

)
was as-

signed, and abort the simulation if so.
• If the simulation is not aborted, remove the entry e +
ci∗Xi∗ +

∑
k∈[ν] di∗,kCi∗,k and assign e + ci∗xi∗ +∑

k∈[ν] di∗,k

(
rkxi +

∑
j∈Path(k) mi,j

)
to α. rkxi +∑

j∈Path(k) mi,j is assigned to γi,k for all k ∈ [ν].
• Output xi.

If S does not abort, it simulates the view of A in the real ex-
periment perfectly. Thus, it suffices to show that S only aborts
with negligible probability. Recall that S aborts, if and only if
on input (Reveal, i, L[i], L′[i]) for some i ∈ D[ν] \ Corr, the
expression e+ci∗xi∗+

∑
k∈[ν] di∗,k

(
rkxi +

∑
j∈Path(k) mi,j

)
was already assigned for some i∗ /∈ Corr, some expression
e ∈ Zq[Z\{Xi∗ , Ci∗,k}k∈[ν]], and some ci∗ , di∗,1, . . . , di∗,ν ∈
Zq not all zero. Supposing this event happens, since only

affine polynomials will ever be assigned, we can re-write the
expression that was already assigned as

a+
∑
k∈[ν]

bkrk + ci∗xi∗ + di∗,k

rkxi∗ +
∑

j∈Path(k)

mi∗,k


+

∑
i/∈Corr∪{i∗}

ciXi +
∑

i/∈Corr∪{i∗}
k∈[ν]

di,kCi,k

where a, bk, ci, di,k ∈ Zq . The above can be written as:

a′ +
∑
k∈[ν]

b′krk +
∑

i/∈Corr

c′iXi +
∑

i/∈Corr
k∈[ν]

d′i,kCi,k

for some a′, b′k, c
′
i, d

′
i,k ∈ Zq . For our expression above to be

zero, it boils down to having the expression below become zero
for some a′′, b′′k , c

′′
i , d

′′
i,k ∈ Zq . Since xi∗ and rk are uniformly

random and information-theoretically hidden from A, by the
Schwartz-Zippel lemma, the probability that

a′′ +
∑
k∈[ν]

b′′krk + ci∗xi∗ + di∗,k

rkxi∗ +
∑

j∈Path(k)

mi∗,k


is not a zero polynomial is upper bounded by 1/q = negl(λ).
Suppose it is indeed a zero polynomial; then, by extracting
the expressions of all coefficients, we obtain ci∗ = di∗,k = 0
for all k ∈ [ν], contradicting the assumption that they are not
all zero. As there are only polynomially many entries in the
map maintained by S at any given point of the experiment,
we conclude that S only aborts with negligible probability.

APPENDIX D
SECURITY FOUNDATION OF DSE-F

A. DSE Security with An Honest Server

Figs. 19 and 20 present the security experiments of DSE
with an honest server (and a set of corrupt clients), where
DelegateO remains the same as the case of a curious server.
Their major difference from the curious-server case is that the
encrypted database EDB is withheld from adversary A since
initialization. As the server is honest, A can no longer get the
search (resp. update) token from an honest client via SrchO
(resp. UpdtO). A only observes the refreshed global state st′.

In this case, CorrSrchO is the only way that A receives the
information of the encrypted database regarding its chosen
operations (CorrUpdtO does not return results except the
updated state). The security experiments thus define a set C to
record the corrupt clients in CorrO and handle the operations
by honest and corrupt clients differently.

B. Leakage Functions RevealID and RevealKW

With L(Histt) = (h1, arg1)∥ · · · ∥(ht, argt) being the cur-
rent leaked history, we introduce two leakage functions. Both
functions extend naturally to a keyword set W .

1) RevealIDw(L(Histt)) reveals identifiers of documents
matching keyword w. Suppose RevealIDw(L(Histt)) =
(h1, arg

′
1)∥ · · · ∥(ht, arg′t). For j ∈ [t] and hj = Updt,
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Real-HSDSE
A (1λ)

I := ∅ // client identifier set

C := ∅ // corrupt client identifier set

(msk, st,EDB)← DSE.Setup(1λ)

O :=

 SrchO,UpdtO,
DelegateO,CorrO,

CorrSrchO,CorrUpdtO


return b← AO(st)

DelegateO(i,Wü,WL)

ensure i ̸∈ I

I := I ∪ {i}
(Wü,i,WL,i) := (Wü,WL)

(st′, ski)← Delegate(st,msk,Wü,WL)

return st′

SrchO (i,Wü)

ensure i ∈ I ∧ i ̸∈ C ∧Wü ⊆ Wü,i

s← SrchTkn (st, ski,Wü)

(st′,EDB′, ID|Wü
)← Srch(st,EDB, s)

return st′

UpdtO
(
i, ID|WL

)
ensure i ∈ I ∧ i ̸∈ C ∧WL ⊆ WL,i

u← UpdtTkn
(
st, ski, ID|WL

)
(st′,EDB′)← Updt(st,EDB, u)

return st′

CorrO(i)
ensure i ∈ I; C := C ∪ {i}; return ski

CorrSrchO(i,Wü)

ensure i ∈ C ∧Wü ⊆ Wü,i

s← SrchTkn (st, ski,Wü)

(st′,EDB′, ID|Wü
)← Srch(st,EDB, s)

return (st′, ID|Wü
)

CorrUpdtO(i, ID|WL
)

ensure i ∈ C ∧WL ⊆ WL,i

u← UpdtTkn
(
st, ski, ID|WL

)
(st′,EDB′)← Updt(st,EDB, u)

return st′

Fig. 19: Real Experiment for DSE with An Honest Server

Ideal-HSDSE
A,S,L(1

λ)

I := ∅ // client identifier set
C := ∅ // corrupt client identifier set
Hist := Setup

(st,EDB)← S(L(Hist))

O :=

 SrchO,UpdtO,
DelegateO,CorrO,

CorrSrchO,CorrUpdtO


return b← AO(st)

DelegateO(i,Wü,WL)

ensure i ̸∈ I

I := I ∪ {i}, (Wü,i,WL,i) := (Wü,WL)

Hist := Hist∥(Delegate, i,Wü,WL)

return st′ ← S(L(Hist))

SrchO (i,Wü)

ensure i ∈ I ∧ i ̸∈ C ∧Wü ⊆ Wü,i

Hist := Hist∥ (Srch, i,Wü)

return st′ ← S(L(Hist))

UpdtO
(
i, ID|WL

)
ensure i ∈ I ∧ i ̸∈ C ∧WL ⊆ WL,i

Hist := Hist∥
(
Updt, i, ID|WL

)
return st′ ← S(L(Hist))

CorrO(i)
ensure i ∈ I

Hist := Hist∥(Corr, i); C := C ∪ {i}
return ski ← S(L(Hist))

CorrSrchO(i,Wü)

ensure i ∈ C ∧Wü ⊆ Wü,i

s← SrchTkn (st, ski,Wü)

Hist := Hist∥(CorrSrch, i,Wü)

return (st′, ID|Wü
)← S(L(Hist))

CorrUpdtO(i,WL)

ensure i ∈ C ∧WL ⊆ WL,i

u← UpdtTkn
(
st, ski, ID|WL

)
Hist := Hist∥(CorrUpdt, i,WL)

return st′ ← S(L(Hist))

Fig. 20: Ideal Experiment for DSE with An Honest Server

arg′j := argj ∪ (∗, ID|{w}), if argj = (i, ID|WL
) ∧ w ∈WL.

Arguments of other events are unchanged (arg′j := argj).

2) RevealKWw(L(Histt)) reveals the occasions when key-
word w is updated. Suppose RevealKWw(L(Histt)) =
(h1, arg

′
1)∥ · · · ∥(ht, arg′t). For j ∈ [t] and hj = Updt,

arg′j := argj ∪ (∗, ∗|{w}), if argj = (i, ID|WL
) ∧ w ∈WL.

Arguments of other events are unchanged (arg′j := argj).

C. Security Proof of DSE-F
For our analysis, we denote the identifier set of corrupt

clients for history Histt by C =
{
i : (Corr, i) ∈ Histt

}
.

Moreover, W t
s,corr and W t

u,corr denote the sets of keywords
searchable and updatable by any corrupt client, respectively:

W t
s,corr =

{
w :

(Delegate, (i,Wü,WL)) ∈ Histt

∧i ∈ C ∧ w ∈ Wü

}
,

W t
u,corr =

{
w :

(Delegate, (i,Wü,WL)) ∈ Histt

∧i ∈ C ∧ w ∈ WL

}
.

W t
corr = W t

s,corr ∪ W t
u,corr is the keyword set of corrupt

clients. We also use Wü,i and WL,i to represent the sets of
keywords searchable and updatable by client i, respectively.

We consider LCS(Hist
t) for different cases of (ht, argt).

• Case (ht, argt) = (Delegate, (i,Wü,WL)). It only leaks
the pseudonyms of new active keywords. Therefore,
LCS(Hist

t) := LCS(Hist
t−1)∥(Delegate, (∗, ∗,WL\W)),

where W is the active keyword space before the event.
• Case (ht, argt) = (Corr, i). Corrupting client i leaks

document identifiers matching any keyword searchable
by i, and the occasions when any keyword updatable by
i was updated. Formally, LCS(Hist

t) can be written as
RevealKWWL,i

(
RevealIDWü,i

(
LCS

(
Histt−1

)))
∥(Corr, i).

• Case (ht, argt) =
(
Updt, (i, ID|WL

)
)

. For w ∈WL, the
leakages of DSE-F depend on how w was delegated:
– if no corrupt client can update or search on w, i.e.,

w ̸∈W t
corr, nothing is leaked;

– if w is updatable but not searchable by any corrupt
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client, i.e., w ∈W t
u,corr \W t

s,corr, w is revealed; and
– if w is searchable by any corrupt client, i.e., w ∈
W t

s,corr, the search result of w is revealed.
Formally, LCS(Hist

t) could be written as LCS(Hist
t−1)∥(

Updt, (∗, ∗|WL∩(W t
u,corr\W t

s,corr)
∪ ID|WL∩W t

s,corr
)
)
.

Since W t
corr = W t

s,corr ∪ W t
u,corr, we have WL ∩(

W t
u,corr \W t

s,corr

)
⊆WL∩W t

corr and WL∩W t
s,corr ⊆

WL ∩W t
corr. The update leakage of DSE-F is no more

than the document identifiers of corrupt keywords, which
satisfies forward privacy (Definition 8).

• Case (ht, argt) = (Srch, (i,Wü)). For w ∈ Wü, it
leaks the fact that w is being searched and the identifiers
of documents matching w. We define LCS(Hist

t) as
RevealIDWü

(
LCS

(
Histt−1

))
∥ (Srch, (∗,Wü)).

We analyze LHS(Hist
t) and differentiate it from LCS.

• Case (ht, argt) = (Delegate, (i,Wü,WL)). The leak-
age remains the same as LCS. That is, LHS(Hist

t) :=
LHS(Hist

t−1)∥(Delegate, (∗, ∗,WL \W)).
• Case (ht, argt) = (Corr, i). Unlike LCS(Hist

t), with-
out the view of the server, it will not leak the iden-
tifiers of documents with keywords searchable by i.
The corruption on client i only reveals the occa-
sions when keywords updatable or searchable by i
were updated. Formally, LHS(Hist

t) can be written as
RevealKWWL,i∪Wü,i

(
LHS

(
Histt−1

))
∥(Corr, i).

• Case (ht, argt) =
(
Updt, (i, ID|WL

)
)

. For w ∈ WL,
it has two different leakages based on how key-
words are delegated to corrupt clients: if w is nei-
ther searchable nor updatable by any corrupt client,
i.e., w ̸∈ W t

corr, it leaks nothing; otherwise, w is
leaked. Formally, we define LHS(Hist

t) := LHS

(
Histt−1

)
∥
(
Updt,

(
∗, ∗|WL∩W t

corr

))
.

• Case (ht, argt) = (Srch, (i,Wü)). For w ∈ Wü, it
only leaks the fact that w is being searched with-
out the view of the server. Formally, LHS(Hist

t) :=
LHS

(
Histt−1

)
∥ (Srch, (∗,Wü)) .

• Case (ht, argt) =
(
CorrUpdt, (i, ID|WL

)
)

. No more

information about Histt−1 is revealed. Formally, we have
LHS(Hist

t) := LHS(Hist
t−1)∥

(
CorrUpdt, (i, ID|WL

)
)
.

• Case (ht, argt) = (CorrSrch, (i,Wü)).
The results matching Wü are leaked.
Formally, LHS(Hist

t) can be written as
RevealIDWü

(
LHS(Hist

t−1)
)
∥ (CorrSrch, (i,Wü)) .

Note that LCS has the same leakage upon (Corr, i).
Proof of Theorem 2. We derive a game sequence from
Real-CS (or Game G0) to Ideal-CS (or Game G5).
• Game G1: Instead of calling F (msk, ·) as in G0, G1 picks

a random string when it meets a new PRF input and stores it
to answer the same query. If the adversary could distinguish
between G0 and G1, we can build a reduction to distinguish
between PRF and a truly random function.

• Game G2: G2 maintains an internal record Uctr∗ of
adversarial updates. That is, upon receiving any query from

a corrupt client, G2 modifies Uctr∗ accordingly.
When generating update tokens for UpdtO, w ∈ W t

corr

from these updates will be leaked. For these keywords,
G2 increases Uctr∗ accordingly to obtain Uctr instead of
decrypting it from ctxW . ctxW could be shifted according to
the correct offset. By the correctness of SME, any adversary
cannot distinguish between G1 and G2.

• Game G3: G3 simulates DKIBE for SrchO, VAL for
UpdtO, and SKIBE for CorrO.
– If the searching right of keyword w has not been dele-

gated to any corrupt client from CorrO, G3 simply calls
the IBE simulator with trapdoors to simulate VAL[w].

– When DKIBE[w] needs to be revealed for w ∈ Wü, G3

gets the leakage of occasions when updates on w and
identifiers of documents matching w. G3 recalls previous
addresses storing IBE ciphertexts of w (i.e., VAL with
respect to the “identity” Sctr[w]) and invokes the IBE
simulator to generate DKIBE[w] regarding Sctr[w].

– When SKIBE[w] needs to be revealed as the searching
right of w is granted to a corrupt client from CorrO, G3

invokes the IBE simulator for its trapdoors/secret keys
after related DKIBE elements were simulated as above.

With non-committing IBE, no A distinguishes G3 and G2.
• Game G4: For IKEDB in SrchO and SKEDB in CorrO:

– When IKEDB[w] needs to be revealed for w ∈ Wü since
previous addresses regarding IKEDB[w] are leaked, G4

invokes the PRF simulator to simulate the corresponding
PRF key, and returns it as IKEDB[w].

– When SKEDB[w] needs to be revealed as the searching
right of w is granted to a corrupt client from CorrO, G4

returns the PRF key simulated by the PRF simulator after
related IKEDB elements were simulated as above.

With non-committing F , no A distinguishes G4 from G3.
• Game G5: G5 simulates ctxW for DelegateO and UpdtO.
G5 also simulates SKSME for CorrO.
– Call the SME simulator (ExpandO) to simulate the ex-

panded entries of ctxW in DelegateO.
– Call the SME simulator (EncO and ShiftO) to simulate

the ciphertext ctx′W for shifting ctxW to ctx′′W in UpdtO.
– Call the SME simulator (CorrO) to simulate SKSME in
CorrO. As keywords related to SKSME to be revealed are
now updatable and/or searchable by corrupt clients, the
update counters of these keywords leak, with which SME
simulator could complete the simulation.

With non-committedness, no A distinguishes G5 from G4.
We thus conclude the game transitions and security proof.

For forward privacy, recall the leakage LCS analyzed at the
beginning: when the keyword w ∈WL of these update tuples
is neither searchable nor updatable by any corrupt client (i.e.,
w ̸∈W t

corr), nothing about w will be revealed. DSE-F fulfills
the requirement in Definition 8 that UpdtO leaks nothing more
than document identifiers of corrupt keywords.

For security with an honest server, its proof is similar, except
that it does not need to simulate the server’s view. Simulations
of matches in SrchO and CorrO are deferred to CorrSrchO.
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