
CP-IoT: A Cross-Platform Monitoring System for
Smart Home

Hai Lin1,2, Chenglong Li1,2 , Jiahai Yang1,2 , Zhiliang Wang1,2

Linna Fan3, Chenxin Duan1
1Institute of Network Sciences and Cyberspace, BNRist, Tsinghua University

2Zhongguancun Laboratory, 3National University of Defense Technology
{linhai22, fln19, dcx19}@mails.tsinghua.edu.cn

{lichenglong}@tsinghua.edu.cn, {wzl, yjh}@cernet.edu.cn

Abstract—Today, smart home platforms are widely used
around the world and offer users automation to define their
daily routines. However, individual automation rule anomalies
and cross-automation threats that exist in different platforms put
the smart home in danger. Recent researches focus on detecting
these threats of the specific platform and can only cover limited
threat plane. To solve these problems, we design a novel system
called CP-IoT, which can monitor the execution behavior of the
automation and discover the anomalies, as well as hidden risks
among them on heterogeneous IoT platforms. Specifically, CP-IoT
constructs a centralized, dynamic graph model for portraying the
behavior of automation and the state transition. By analyzing
two kinds of app pages with different description granularity,
CP-IoT extracts the rule execution logic and collects user policy
from different platforms. To detect the inconsistent behavior of
an automation rule in different platforms, we propose a self-
learning method for event fingerprint extraction by clustering
the traffic of different platforms collected from the side channel,
and an anomaly detection method by checking the rule execution
behavior with its specification reflected in the graph model. To
detect the cross-rule threats, we formalize each threat type as a
symbolic representation and apply the searching algorithm on the
graph. We validate the performance of CP-IoT on four platforms.
The evaluation shows that CP-IoT can detect anomalies with
high accuracy and effectively discover various types of cross-rule
threats.

I. INTRODUCTION

With the rapid development of computer technologies such as
embedded systems and wireless communications, IoT (Internet
of Things) devices have been widely deployed all around the
world. The smart home has been enabled after manufactur-
ers produce various kinds of smart IoT devices. Nowadays,
smart home platforms including Amazon Alexa [1], Samsung
SmartThings [2], Apple Homekit [3], Google Home [4] and
Xiaomi Home [5] dominates the global market. They provide
users with home automation (HA) to define their daily routine
such as turning on the camera and locking the door after
the user leaves home. Some researches [6], [7] have shown
that most applications and automations can be represented by
the trigger-action programming (TAP) model or “If-This-Then-

Corresponding authors.

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24003
www.ndss-symposium.org

That” (IFTTT) programming paradigm/rule.

However, security issues about automations are discussed
daily in various communities [8]–[10]. For example, an
anomaly case is reported in SmartThings Community, where
sensors detect user activity without triggering the rule [11].
A study [12] finds 76 instances of 222 SmartThings apps are
over-privilege, with 5.5% of related devices being misused.
And a recent study [13] shows that more than 55% of
SmartApps have extra permission to control unrelated devices.
To solve these problems, Homonit [14] and IoTGaze [15]
perform side-channel inference on encrypted traffic to obtain
the execution behavior of the automation rule and match it with
the rule specification extracted from SmartApps. HAWatcher
[16] collects various semantic information from the smart
home and constructs correlations between each event and
device. It takes a similar way to detect violations of these
correlations by checking the runtime behavior of automations.

Apart from the execution faulty in individual automation
rules, the security problem also exists among different automa-
tion rules. Considering two examples: (1) A rule turns on the
fan when the sensor detects the motion, which reduces the
temperature and unexpectedly triggers another rule to turn on
the heater when the sensor detects the low temperature. (2) A
rule turns on the light when detects the motion and another
rule turns off the light when the user is at home, which results
in an action conflict. Soteria [17] and IoTGuard [18] collect
information from SmartApp to build an execution flow graph
of automation rules as their dynamic model and check whether
the combination of the rules violates the security properties
to detect some of the two threats mentioned above. iRuler
[19] refers to (1) as implicit and explicit chaining and (2) as
inter-rule vulnerability, while Homeguard [20] refers to both
uniformly as cross-app interference (CAI). However they are
all defined for the SmartThings SmartApp. Since applications
on different platforms can be abstracted into automation rules,
we unify the above two kinds as cross-automation threats,
where (1) is denoted as cross-rule interaction and (2) is denoted
as cross-rule interference.

The above researches have greatly enhanced the security
and safety of the HA systems, but have the following two
limitations: 1) Limited threat detection plane. They detect
inconsistent behavior of individual automation rules or cross-
rule threats, but not both. Moreover, their detection results
are inadequate since they neglect to detect some fine-grained
subtypes. 2) Low platform compatibility. Most of them are

designed for SmartThings and develop code-based methods
both for rule extraction/data collection and threat discov-
ery. However, different platforms have strong heterogeneity.
SmartThings uses Groovy as its programming language while
Google Home uses Kotlin & Java and Homekit uses Swift &
Objective C. Besides, the code framework of some platforms
are not open source such as Apple Homekit, and provide
developers with limited access permission. The traditional
code instrumentor is not universal. Furthermore, there are
some differences in log formats and traffic patterns between
the two different platforms, which increases the difficulty of
transplanting a platform-specific framework to other platforms.

In this paper, we introduce CP-IoT, a cross-platform moni-
toring system for ensuring the automation works properly and
discovering the high-risk threats among different automation
rules. We develop a universal semantic analyzer that can
extract rules and user policies from app pages of different
platforms. CP-IoT automatically constructs a dynamic central-
ized graph to integrate all automations, which portray their
normal behaviour and the state transition of devices. Based
on the behavior model, CP-IoT provides two detection and
defense methods, anomaly detection algorithm for individual
automation and cross-rule threats mining method. We propose
a multi-granularity clustering approach to acquire the event
fingerprint from encrypted traffic of different platforms and
identify the cause-effect sequence, which reflects the runtime
behavior of an automation rule. We apply the model checking
technique to check whether an individual rule violates its
specification and detect the inconsistent behavior. To detect
cross-rule threats, we formalize each fine-grained type as the
path constraints and search all feasible solutions on the graph.

In summary, we make the following contributions:

• We introduce an automation monitoring system CP-IoT1,
which is compatible with different IoT platforms and can
detect wide automation threats, including the inconsistent
behavior of individual automation rule, cross-rule inter-
actions and interference. We also present the mitigation
solutions for each automation threat by analyzing the causes.

• We propose a new cross-platform rule extraction method.
By analysing various semantic information (description,
configuration) of different app interfaces, it is able to adapt
to the architectural differences and interface differences of
different platforms.

• We design a novel graph-based behavior model that is
able to perceive device state changes under the complex
control of automations on different platforms. Moreover, the
model is centralized. Combining with a graph-based mining
algorithm we design, we can explore various kinds of cross-
rule threats more completely, both single-platform and cross-
platform.

• We design a multi-granularity fingerprinting approach via
side channels, which can identify the runtime behavior of
rules on different platforms by extracting packet-level and
flow-level fingerprints. Then a graph-based anomaly detec-
tion algorithm is designed to discover the rule execution
anomalies that are inconsistent with their specifications.

• We validate CP-IoT on four platforms and two testbeds with
1076 automation rules in total. The evaluation result shows

1https://github.com/colinLH/CP-IoT

Scene Control - 𝝃 II.A

Automation Rule- 𝝃 II.B

Good Morning：𝑼𝒄𝒖𝒓𝒕𝒂𝒊𝒏.𝒖𝒑
𝑪𝑨 & 𝑼𝒎𝒐𝒅𝒆.𝒉𝒐𝒎𝒆

𝑴𝒐𝒅𝒆

Good Night： 𝑼𝒄𝒖𝒓𝒕𝒂𝒊𝒏.𝒅𝒐𝒘𝒏
𝑪𝑨 & 𝑼𝒎𝒐𝒅𝒆.𝒏𝒊𝒈𝒉𝒕

𝑴𝒐𝒅𝒆

I’m Leaving：𝑬𝒑𝒓𝒆𝒔𝒆𝒏𝒄𝒆.𝒏𝒐𝒕 𝒑𝒓𝒆𝒔𝒆𝒏𝒕
𝑨𝑺 → 𝑪𝒔𝒘𝒊𝒕𝒄𝒉.𝒐𝒇𝒇

𝑳𝑩 & 𝑪𝒔𝒘𝒊𝒕𝒄𝒉.𝒐𝒇𝒇
𝑻𝑽

I’m Home：𝑬𝒑𝒓𝒆𝒔𝒆𝒏𝒄𝒆.𝒑𝒓𝒆𝒔𝒆𝒏𝒕
𝑨𝑺 → 𝑪𝒔𝒘𝒊𝒕𝒄𝒉.𝒐𝒏

𝑳𝑩 & 𝑪𝒍𝒐𝒄𝒌.𝒖𝒏𝒍𝒐𝒄𝒌
𝑳𝑲

Fig. 1: The symbolic representation of automations.

that CP-IoT has excellent cross-platform compatibility and
is efficient to discover various automation threats.

II. BACKGROUND: AUTOMATIONS

Mainstream IoT platforms offer official apps to allow users
to control their devices remotely and customize their daily
routines. In this section, we describe two automation types,
scene control and automation rule respectively.

A. Scene Control

After devices are deployed to the smart home, the user can
create different scenes such as the living room through the
room/group option and assign certain devices to them. In the
different scenes, users can remotely control the device or
modify its properties. Two scene control cases are listed in
Fig.1, where Good Morning makes the curtains rise and sets
the system mode to home, and Good Night turns all lights off
and sets the system mode to night.

B. Automation Rule

Unlike scene control, the automation rule is a passive control
policy. After a rule is deployed to the application, the plat-
form will decide whether to send a controlling command to
the specified device based on whether the scene meets the
trigger conditions. Fig.1 shows an automation rule I’m Home
deployed in SmartThings to unlock the door and turn on the
light when the user’s arrival is detected.

C. Symbolic Representation

Existing researches [21], [22] show that most smart home
automations can be represented as IFTTT paradigms. We
abstract them as “IF trigger THEN action” and convert them
into the symbolic representation to facilitate the description
of automations. We use the symbol E and C to present the
trigger and action part, as the trigger condition can also be
referred to an Event and the action can be seen as a controlling
Command sent to devices. Both event and command have
specific content and associated devices, which we present
with subscripts and superscripts of E&C respectively. For
example, “AS”, “LB” and “TV” in automation rule I’m
Leaving indicates arrival sensors, light bulbs and television,
and “LK” in automation rule I’m Home represents smart
lock. Similarly, we use the symbol U to represent the scene
control made by the user, and Good Morning can be expressed
as UCA

curtain.up & UMode
mode.home, where “CA” and “Mode”

denote smart curtain and system mode.

2

Fake Low

Temperature
Thermostat

Heat Mode

SRA1: Fake Event

SRA2: Event Losses

Water Flood

Intercepted

Valve/Faucet

Closed

SRA3: Over-Privilege

User Not

Presence

Lock Door

Failed

SRA4: Command Failure

Motion

Detected

Light On

Camera On

Single-Rule Anomalies(SRA)
Cross-Rule Threats(CRT)

CRT1: Cyberspace Interaction

CRT2: Physical Interaction

User

Presence

Light On

High

Illuminance

Close

Curtain

Time At

Sunset
Light On Unlock

Door

AC

On

Low

Temperature

Heater

On

CRT3: Action Conflict

CRT4: Action Duplicate

Fan Off
Smoke

Detected
Fan On

CRT5: Action Reverting

Curtain

Half Down
Time At

Noon

User

Presence

Light On

CRT6: Action Loop

Open

Curtain

Light.on Home

Mode

Home

Mode

Light.on

Cross-Rule Interactions(CRT1-2) Cross-Rule Interference(CRT3-6)

High

Illuminance

Curtain

Half Down

Low

Temperature

Fig. 2: Examples of various types of threats in the smart home.

TABLE I: Comparison of the state-of-the-art HA defense
systems with CP-IoT, where means no support, means
partially support, while means totally support.

Method

Support
SRA CRT1-2 CRT3-6 Cross-platform

Homonit [14]

HAWatcher [16]

IoTGaze [15]

Soteria [17]

HomeGuard [20]

IoTGuard [18]

iRuler [19]

CP-IoT

III.MOTIVATIONS, THREAT MODEL AND CHALLENGES

In this section, we first discuss the importance of designing an
approach that is compatible with different platforms and can
detect a wide range of HA system threats. Then we present
our threat model including the covered attacker capabilities.
Finally, we illustrate the weaknesses of existing methods and
describe the challenges to be faced in addressing these issues.

A. Why a cross-platform, full-featured system is needed?

Distributed Device Deployment. Existing HA platforms fail
to support all device brands, resulting in devices being de-
ployed on different platforms. Moreover, users prefer to deploy
their devices on locally popular HA platforms such as Apple
Homekit, Google Home, Amazon Alexa in America and Xi-
aomi Home in China. Consequently, there is a need to design
a HA defense system that supports different platforms, which
can meet the varied needs of users in different regions.

Various security threats of automations. All kinds of
threats to automations are discussed daily on the communities
of various HA platforms [8]–[10]. In a nutshell, the security
threats in the application layer of HA systems can be divided
into two groups. One is the incorrect behavior of automations,
where we call single-rule anomalies (SRA). The other is
the potential interaction or interference between two or more
automation rules, which we call cross-rule threats (CRT).
Unlike SRA, CRT needs to be further examined to determine
if it is highly risky or can be exploited by attackers. Some
typical cases of each threat type are presented in Fig.2, where
both SRA and CRT have more fine-grained subclasses and they
are described in detail in the Appendix A.

B. Why existing HA systems are insufficient?

Low Cross-Platform Compatibility. Most of the existing
studies are designed for Samsung SmartThings [14]–[17],
[23]–[25], and a few are for IFTTT [26], [27], Google Home
[28], which achieve good performance on specific platforms,
but not been validated on cross-platform compatibility or
unable to support other platforms.

Limited Threat Coverage. Existing researches [14]–[20]
have achieved great success in detecting threats of automa-
tions. However, they can only cover limited categories in the
threat plane. We summarize seven state-of-the-art HA defense
methods in Table.I and compare their detection capabilities
across different threats. Homonit [14] and HAWatcher [16]
are two typical systems to detect SRA. However, Homonit can
only detect SRA1 and SRA3 while HAWatcher fails to detect
SRA3. IoTGaze [15] fails to detect SRA2 but can discover
both cross-rule interaction types by vulnerability detection.

The subsequent four methods [17]–[20] aim to detect cross-
rule threats(CRT). Soteria [17] fails to detect CRT2 and CRT4,
HomeGuard [20] fails to detect CRT2 and CRT6 and IoTGuard
[18] fails to detect CRT4. iRuler [19] can detect all CRT.
However, none of these methods is able to detect SRA.

In summary, these methods only detect SRA or CRT but
not both (except IoTGaze), or cover limited threat subclasses
of SRA and CRT. Moreover, these methods are designed
for specific platforms (including the working logic and rule
extraction methods) or validated in certain platforms, so they
have poor compatibility to different platforms.

C. Threat Model

We aim to detect the four SRA types and the six CRT
types described in Fig.2. CP-IoT can detect SRA caused by
device failures, network delays, and attacker behaviours. The
SRA detection plane covers four attacker capabilities: (1)
Fake Events. The attacker constructs and injects malicious
packets such as fake user activity events, which result in rules
being illegally executed. (2) Event Interception. The attacker
intercepts some or all of the packets sent by the device or
platform (event or command), resulting in partial execution or
failure of the rule. (3) Over-Privilege. The attacker does not
interfere with the execution of the rule, but injects additional
command packets to control unrelated devices. (4) Command
Failure. The attacker intercepts the control commands sent
by the platform and disables the “Action” part of the rule.
We clarify that CP-IoT can only detect anomalies that violate
fingerprint features and time-order characters. Attackers trying
to circumvent defenses need to have knowledge of the traffic

3

Smart Home

Behavior Graph Construction

Automation Rules

Topology

Device State

Representation

Event Relationship

Construction

Rules

Integration

Automation Rules Extraction

Description

Analysis

Configuration

Page Analysis

Rule

Description

Page

Rule

Configuration

Page

User PolicySystem

Model

IoT Devices

Cloud Engine

Device Handler

Automation LogicStorage

System

Defense

Function SRA Detection

CyberSpace & Physical

Interactions

Runtime Traffic

Official App

Event&Command

Fingerprinting

Cause-Effect

Sequence

Generation

Specification

Matching

CRT Mining

Correlation Channel

Analysis
Graph Inference

CRT 1-2 Rationication

Symbolic

Representation
Graph Positioning

CRT 3-6 Identification

Automation Conflict

Threat Mitigation

SRA Cause

Analysis

CRT Enhanced

Policy

Anomaly

(Without

1.0 score)

Hub/Router

0.7 0.6 0.2 0.3 0.0 0.9

0.1 0.4 0.7 0.2

Rule – Rule

Rule – Rule

Rule – Rule

0.4 0.9 0.0 0.8 1.0 0.5 0.1

Normal

Specification Graph

Execution Graph
Consistency

Checking

Fig. 3: The two-layer architecture of CP-IoT.

pattern generated by the rule execution as well as the context
state of the device at runtime.

Unlike the SRA detection target, CP-IoT aims to find CRT
caused by user misconfiguration. Specifically, the detection
goals are as follow: (1) CRT1-2. Users deploy multiple
flawless rules on the same or different platforms that generate
unexpected interactions. (2) CRT3-6. Users deploy multiple
flawless rules in the same scenario, but they interfere with each
other, resulting in conflicts, repeated execution of a command
or cyclic execution. Here we do not consider the malicious
logic injected by the attacker, since most of the rules are
defined by the users themselves or recommended by the official
platform. Finally, we assume a pristine environment (contain-
ing no anomalies) during the training phase of fingerprint
extraction and IoT platforms are hard to be comprised.

D. Challenges in Cross-platform Monitoring

Ch1: How to extract automation rules from heterogeneous
smart home platforms? A common way is analyzing the
source code [14], [15], [24], [29], [30]. However, there is a
strong heterogeneity between different IoT platforms that they
have various programming languages or the code frameworks
are not open source, so the code-based analysis method fails
to deal with the architecture difference. Another way uses
the rule description of UI pages [15], [31], [32]. However,
app interfaces of different platforms have varied description
granularity. For example, Homekit has vague descriptions for
automations rules. Moreover, most of the descriptions do not
contain user policy such as a threshold for temperature to
be determined to be high. Even worse, they are designed
for platform-specific apps and fail to deal with the interface
difference across different platforms.

Our insight is to add the semantic analysis of the configura-
tion pages based on the description analysis, which are shared
between different platforms. Moreover, it contains fine-grained
rule definitions and user policies, and two phases results can
complement each other to achieve high accuracy.

Ch2: How to identify the runtime behavior of rules of
different platforms? Before detecting the SRA, we first need
to identify the runtime behavior of rules. Some researches find
changes in device state through logs [16] or code instrumenta-
tion [24], [33] to check the process of rule execution. However,

some platforms do not provide access to the log or not open
source for security protection. Some other studies [14], [15],
[34] analyze traffic to infer the specific events. However, in the
multi-platform context, their approach is too coarse-grained
to capture the dependencies among events. For example, a
device event associates multiple rules from different platforms.
When this event is detected, all these rules are triggered. These
approaches fail to differentiate the runtime behaviour of rules
deployed on different platforms from the complex traffic.

Our insight is to extract both packet-level and flow-level
fingerprints of events, where the packet-level fingerprint iden-
tifies events and combined with the flow-level fingerprint to
distinguish between different platforms. Finally, the events are
combined to obtain the runtime behaviour of each rule.

E. Challenges in Defense of Various Threats

Ch3: How to ensure the completeness of detection results?
Existing methods construct rule-independent models such as
DFA [14], transition graph [15] and logical expressions [16],
[17], [19], [23] to portray the rules behavior. However, SRA
detection requires both the execution state of the rules and the
context state of the devices. They just model the execution
point of the automation rules rather than the device state.
So they can only be applied to specific platforms, where the
device state can be acquired through the logs. Moreover, their
model portray each automation rule independently. They fail
to capture the complex relationships and dependencies among
multiple rules deployed on different platforms such as the
action reverting across many platforms.

Our insight is to construct a centralized graph as the be-
havior model. By modelling each device as different nodes and
integrates all automation rules deployed on different platforms,
it can track the complex device state changes under the control
of multiple rules and provide a more complete exploration
space for CRT mining.

Ch4: How to mitigate the risk caused by these threats?
Even if existing methods [14]–[16], [35] are able to detect
anomalies in various parts of the automation rules with high
precision, they fail to provide specific mitigation measures for
fine-grained causes. For example, events may be lost for two
different reasons: huge network delays or attacker interception.
Our insight is to prescribe the right remedy for different SRA

4

(a) The description page of automation
rule “Return Home” in Xiaomi Home.

(b) The configuration page of au-
tomation rule “Shower at certain
time” in SmartThings.

Fig. 4: The description page and the configuration page.

types and repeat the rule execution to determine whether the
anomaly is from a device failure/network cause or an attack.

Furthermore, existing studies rarely consider how to mit-
igate CRT. When there exists a CRT between multiple au-
tomations, removing any one of them could be a strategy, but
not feasible, as it does not minimise the impact on users.
Our insight is adding a security policy between two more
automations or supplementing a few automation rules to block
the dangerous cross-rule interactions or interference.

IV.SYSTEM OVERVIEW

In this section, we introduce the CP-IoT workflow and the
key modules as shown in Fig.3. Before discovering various
automation anomalies and threats, we firstly need to obtain
specifications of different automation rules. We introduce a
universal rule extraction method in section V-A to solve Ch1,
which only requires the app pages of different platforms. Based
on the results, we build a centralized graph model in section
V-B to portray the normal behaviour of automations and solve
Ch3, which is also highly extensible including the addition of
new devices and new automation rules of different platforms.

Based on the system model, we design defense functions
for detecting SRA and CRT. We introduce the SRA Detection
module in section VI-A, where we propose a side-channel
analysis method for identifying the runtime behavior of au-
tomation rules to solve Ch2, and apply model checking to de-
tect the specification violation. The CRT Mining module runs
in parallel with SRA Detection module, which are described in
section VI-B. Specifically, we convert each fine-grained CRT
subclass into the symbolic representation as path constraints,
and search all the rule-pairs or rule-chains on the model that
satisfy these conditions.

Finally, the Threat Mitigation module (section VI-C)
interprets the detection results and generates actionable rec-
ommendations to mitigate SRA and CRT to solve Ch4. Spe-
cially for CRT, we generate enhanced policies to break the
interactions and interference, which have minimal impact on
the existing rules.

Fig. 5: The workflow of app descriptions analysis.

V. SYSTEM MODEL CONSTRUCTION

In this section, we firstly introduce a universal automation rule
extraction method for different HA platforms. Then we con-
struct the behavior model of the automations. The following
defense functions are developed based on this behavior model.

A. Automation Rules Extraction

Traditional code-based extraction methods [14], [18], [20]
can achieve high accuracy but are platform specific, such
as designing a code parser in the Groovy language for the
SmartThings platform. In addition, some platforms such as
Apple Homekit do not support open source. An observation is
that most IoT platforms offer official apps that allow users to
customize automation. Based on this insight, we propose the
following app page based analysis approach.

1) Description Analysis

As shown in Fig.4(a), the description of the automation rule
“Return Home” contains its working logic and we identify
the Event part (E) and Command part (C) by using the NLP
tools StanfordCoreNLP [36]. In detail, the workflow of our
analysis method is depicted in Fig.5. Using the dependency
tree parsing, we get the part-of-speech of each word and the
dependencies between words. Afterwards, we determine the
causality of the sentence according to Wh-adverb (WRB) and
punction (punct), and divide it into Event Part and Command
Part. Considering the complex syntax still exists, we apply
lemmatization on both two parts. Specifically, we consider
each noun compound and verb compound as a whole, such as
“turn” and “on”, “air” and “conditioning”. Based on the direct
object (dobj) dependencies between the verb (VB/VBP) and
the noun (NN/NNS), we take pair-wise combination on them
to obtain a minimal representation of each event and com-
mand. For example, the verb compound “turn on” and noun
compound “air conditioning” are combined as a command
clause.

Considering that different devices of the same type
have similar attributes, which we denote here by capa-
bility, we can simplify each clause extracted above. For
example, turning on/off the light can be abstracted into
“switch.on”/“switch.off” , where “switch” is a capability of
the light bulb and “switch.on” is a capability-value pair.

Consequently, the key part is to match the description
clauses with a most similar pair. We combine each capability
and its values from the SmartThings Developer Documentation

5

[37] into the capability-value pair as the ground truth, which
provides a good abstraction of device events across different
platforms. Then we use the pre-trained BERT [38] model to
obtain the embedding of each string and use cosine similar-
ity to compute the correlation between the clause and each
capability-value pair. Finally, the capability-value pair with the
highest similarity score is used as the matching result.

2) Configuration Page Analysis

Specifically for some capabilities such as temperature and
humidity, their values are generally in the NUMBER range.
For example, temperature takes the value range of number [-
460..10000]. However, the events associated with these capa-
bilities are generally above a certain value (temperature.high),
below a certain value (illuminance.low), or reaching a cer-
tain value (time.9 am). Generally, the user sets a specific
threshold, which we call here the user policy. Specifically,
we match the contents of the IF/Condition/Trigger/WHEN
block with the Event Part of the rule and the contents of the
THEN/Action/Adjust block with the Command Part of the
rule. As shown in Fig.4(b), the “20:16” in IF block is related
to “time.startTime”. Similarly, we obtain the embedding of
the content in each block by the BERT model and calculate
the similarity with each capability-value pair.

It is worth pointing out that the results of this step are
also used to complement section V-A1, since the description
of some automations are vague and does not contain explicit
trigger conditions or actions. For example, the description of
the automation rule in Fig.4(b) does not contain the action
of sending a message to user, while we can know the action
“msg.send” in the configuration page.

B. Behavior Graph Construction

In this section, we create a centralized graph that integrates
various devices and binds various automation rules deployed
on different platforms. We make each IoT device as a center
instead of building the graph as automation-centric.

1) Device State Representation

Each device may have multiple capabilities, whose values
together determine the state of the device at a given moment.
For example, a Door Sensor has two capabilities, “contact”
and “acceleration”. {“contact”: “open”, “acceleration”: “ac-
tive”} determines the state of the Door Sensor, reflecting the
detection of opening a door.

Instead of using a single node to represent all the capability
values of a device (scheme1), we just represent the value of
one of its capabilities (scheme2). Assume that a device has N
capabilities Ci, each with Mi values(average m values), the
complexity of scheme1 is

∏N
i=1 Mi ∼ O(mN), while scheme2

is
∑N

i=1 Mi ∼ O(mN). So the scheme2 can greatly reduce
the space complexity of the graph model. Unlike scheme1,
the “State” node of scheme2 does not directly reflect the
state of the device since only one of the capability values is
represented. Therefore, we record all the values of capability in
the device node. As shown in the upper left part of Fig.6(1⃝),
we build a Device node for each device and some related
State nodes to represent the value of its capabilities. Finally,
we construct an Scene Control edge between each “Device”

𝑪𝟏

“Scene Control” Edge

“Event” Edge

“Command” Edge

𝑫𝟐

𝐷1
𝑆2

𝑆1 𝑆1
𝐷1 𝐷2

𝐷2
𝑆2

𝑫𝟏
𝑺𝟏

𝑫𝟏
𝑺𝟐

Device State Representation

Event Relationship Construction

𝑫𝟏 𝑫𝟐
𝑆2
𝐷1 𝐷2

𝑆2

Rules Integration - One Event

𝑫𝟏
𝑺𝟐

𝑆𝐷1

1

𝑫𝟏

𝑫𝟐

𝐷1
𝑆2

𝑆𝐷2
1

𝑆𝐷2

2

𝑹𝟏: 𝑬𝒎𝒐𝒕𝒊𝒐𝒏.𝒂𝒄𝒕𝒊𝒗𝒆(𝑬𝟏) → 𝑪𝒔𝒘𝒊𝒕𝒄𝒉.𝒐𝒏 (𝑪𝟏)

Rules Integration – Two More Events

𝑹𝟐: 𝑬𝒎𝒐𝒕𝒊𝒐𝒏.𝒂𝒄𝒕𝒊𝒗𝒆(𝑬𝟏) & 𝑬𝒎𝒐𝒅𝒆.𝒉𝒐𝒎𝒆 𝟑𝑬 → 𝑪𝒔𝒘𝒊𝒕𝒄𝒉.𝒐𝒏 𝟐(𝑪)

𝑫𝟏
𝑺𝟐

𝐷3
𝑆2

𝑫𝟑

𝑆𝐷3

1 𝑬𝟑
′

Rule 𝑹𝟏 Representation

Rule 𝑹𝟐 Representation

𝑈1

𝑫𝒊

𝐷𝑆
𝑘

“Device” Node
“Union” Node







𝑺𝑫𝟏

𝟐 𝑺𝑫𝟐

𝟐

𝑺𝑫𝟏

𝟏 𝑺𝑫𝟐

𝟏

𝑺𝑫𝟏

𝟐

𝑬𝟏𝑫𝟏

𝑫𝟏 𝑫𝟐

𝑬𝟐

𝑺𝑫𝟏

𝟏 𝑺𝑫𝟐

𝟏

𝑺𝑫𝟐

𝟐

𝑺𝑫𝟏

𝟏

𝑺𝑫𝒊

𝒌
“State” Node

𝑺𝑫𝟐

𝟏

𝑺𝑫𝟏

𝟐 𝑺𝑫𝟐

𝟐

𝑺𝑫𝟑

𝟐

𝑺𝑫𝟑

𝟏

𝑺𝑫𝟏

𝟏

𝑺𝑫𝟏

𝟐

𝑺𝑫𝟐

𝟐

𝑺𝑫𝟐

𝟏

𝑬𝟏
′

𝑬𝟏

𝑬𝟑

𝑬𝟑

𝑬𝟏

𝑬𝟑
′

𝑬𝟏
′

𝑈𝑖

𝑺𝑫𝟏

𝟏

𝑺𝑫𝟑

𝟏𝑺𝑫𝟑

𝟐
𝑼𝟏

𝑪𝟐

𝑪𝟏

𝑺𝑫𝟏

𝟏 𝑺𝑫𝟐

𝟏𝑬𝟏
𝑬𝟏

𝑪𝟐
𝑺𝑫𝟐

𝟏



Fig. 6: The workflow of building the centralized graph.

node and its related “State” nodes, since scene control made
by the user can directly change the state of a device.

2) Event Relationship Construction

An event occurs when the state of a device changes, which is
reflected in the graph as a transition from one “State” node
to another. As depicted in the lower left part of Fig.6(2⃝), we
construct two Event edges in opposite directions between two
State nodes that have the same capability. Besides, each event
is recorded in the Event edges, which are also represented by
the capability-value pair.

3) Rules Integration

The event part of the automation rule can simply be located
on the graph by matching the “Event” edge attribute with
the capability-value pair. At the same time, all the “State”
nodes that reached after each event is executed can also
be positioned in the graph, which we call event successor
nodes. In particular, if the rule contains multiple events, this
means that they need to occur together before generating the
following command part. Therefore, we construct Union nodes
to represent the intermediate state where all preconditions are
satisfied. Two examples are illustrated in the right part of
Fig.6(3⃝). For the Rule R1, we locate the event successor
node S1

D1
after the event E1 is matched. For the Rule R2,

we create “Union” node U1 and the “Event” edges (E
′

1,E
′

3)
between U1 and each event successor nodes (S1

D1
,S1

D3
).

When the command is executed, the relevant capability
of the device will be set to a specific value. For example,
“switch.on” will set the light’s property to {“switch”: “on”}.
Based on this, we can find all the “State” nodes (S1

D2
of

Rule R1, R2) that reached after each command is executed,
which we call command successor nodes. If the rule contains
multiple events (Rule R2), we build the Command edges
(C2) between the “Union” node and each command successor
node. Otherwise (Rule R1), we construct Command edges
(C1) between the event successor node and each command
successor node. Finally, we assign an ID to each rule, recorded
by all nodes and edges associated with the rule.

VI.SYSTEM DEFENSE FUNCTION DESIGN

In this section, on the basis of system model, we propose
two automation defense methods that cover various types of
security problems in SRA, CRT. Finally, for each threat type,

6

TABLE II: Five statistics used for fingerprint extraction.
Type Statistic Notation Description

Packet

Size s1
Packet size will vary
from event to event

Protocol s2
WiFi(0), Z-Wave(1)

Zigbee(2), Bluetooth(3)

Direction s3
0: device → router
1: router → device

Flow
Interval f1

Average
packet interval

Length f2
The length of

packet sequence

we propose corresponding mitigation methods based on the
detection results, which enhance the security of smart home.

A. SRA Detection

Since some platforms give limited permission to developers, it
is impossible to determine whether the automation is perform-
ing correctly just by the information of device state. For this
reason, we firstly identify the cause-effect sequence generated
by the rule execution from the real traffic, and then perform
a consistency checking with the specification contained in the
system model to judge whether anomalies occur.

1) Motivating Example

To better understand our approach, we use three devices Aqara
Motion Sensor (MS), Mi Desk Lamp (L1), Philipus Bedroom
Lamp (L2) and two rules EMS

motion.active → CL1

switch.on and
EMS

motion.active → CL2

switch.on as an example. These two rules
are executed when Emotion.active is triggered. Suppose the
generated traffic is {P1, P2,, P8}, where packets P1, P2

are generated by Emotion.active, P3, P6, P7 by CL1

switch.on and
P4, P8 by CL2

switch.on. As shown in Fig.7, each flow (flows1-3)
corresponds to a device behavior and we can know the specific
content by matching it with event/command fingerprints. The
Cause and Effect parts can be divided easily based on the
interval. By combining each matched part, we can get the
possible runtime behavior of the rules. Finally, we convert
these sequences into execution graphs and use them as input
to anomaly detection algorithm with the behavior model. If an
exact match of the specification is found, the rule is determined
to be executed correctly.

2) Event&Command Fingerprinting

When an automation rule is triggered, there is traffic between
the associated device and the router. We firstly filter the noisy
and unrelated traffic, including beacon packets and retrans-
mission packets. Since events and commands affect different
devices independently, we extract data flow between each
device and router. Assuming that the filtered packet sequence
is P = {p1, p2, ..., pN} and the related device number is Q,
the sequence can be separated into Q parts:

P = {P1, P2, ..., PQ} s.t.

Q∑
i=1

|Pi| = N (1)

where each sub-sequence Pi represents the traffic flow
generated by the execution of an event Ei or command Ci.
Next we construct the fingerprint of each event Ei or command
Ci by extracting packet-level features and flow-level features

Packet Sequence:{ }

Split the traffic into multiple flows

Other Flows

All Actions



No Retransimission

No Beacon

Cause Part Effect Part

Split the cause and effect part

Fingerprint1 Fingerprint2
Same as

Acquire all

fingerprints

in VI.A 2)Fingerprint Matching

Cause-Effect

Sequence

Sequence Combination

Convert
Execution Graph

(1): (2):

Behavior Graph Anomaly Detection

(1):

(2):

1 2

1

2 3

1

+ 1 3

1 2 + 3

1 2

1 3
1 2

3

Fig. 7: A motivating example for identifying the runtime
behavior of the automation rule.

as described in Table.II. Suppose each flow Pi has s packets,
the flow-level fingerprint is denoted a 2-tuple fPi :(fi,1, fi,2),
and the packet-level fingerprint mPi can be represented as the
following feature matrix:

mPi
=


p1,s1 p1,s2 p1,s3
p2,s1 p2,s2 p2,s3

...
...

...
ps,s1 ps,s2 ps,s3

 (2)

We trigger T times for each automation rule. For each flow,
we get a flow-level fingerprint and a packet-level fingerprint
each time. We use K-Means [39] (cluster=1) to cluster all
T times generated fingerprints to eliminate the deviation and
use the clustering centers as the flow-level fingerprint Fi and
packet-level fingerprint Mi of event Ei/command Ci.

3) Cause-Effect Sequence Generation

After extracting the event/command fingerprints, we can match
them in the runtime traffic. Specifically, we still split the traffic
into device-router flows, and the start timestamp of each flow
reflects the sequence of actions, namely the cause and effect
relationship. Suppose the flow with the earliest timestamp t1,
we classify all flows with time interval up to T1 from t1 as the
Cause part, while the remaining are been seen as the Effect
part (T1 is a predefined parameter obtained through a large
number of experimental attempts). Then we match the runtime
traffic of each part with the fingerprints.

argmin
Ei/Ci

λ ·D (Fi, fj)︸ ︷︷ ︸
Flow df

+ δ ·D (Mi,mj)︸ ︷︷ ︸
Packets dp

 s.t. df+dp ≤ d

(3)

As illustrated in Equation.3, assuming that the flow feature
of the jth incoming flow is fj and the packet feature matrix
is mj , we use the Manhattan Distance as the distance metric
function (D) to calculate their similarity with the fingerprint of
event Ei/command Ci (Fi, Mi). Considering that flow-level
features are more coarse-grained than packet-level features, we
prefer λ < δ. Then we take the event or command as the
matching result whose fingerprint has the minimum distance
with the features of the jth flow. However, if the weighted sum
of flow distance df and packet distance dp is greater than the
threshold d, we consider that this flow does not match with

7

any event or command. Finally, we can generate the cause-
effect sequence such as Emotion.active → Cswitch.on by
matching the Cause part and Effect part with all fingerprints.

4) Anomaly Detection

After identifying the cause-effect sequence in the open en-
vironment, we judge whether SRA occur by checking its
consistency with the rule specification. We divide the process
of SRA detection into two stages: specification matching and
consistency checking, which are described in Algorithm 1 in
Appendix B.A.

Specification Matching. This step is used to identify the
rule specification on the graph that is most similar to the cause-
effect sequence. We first split the cause-effect sequence into
cause set Sc and effect set Se with size l1 and l2 (line 1). For
each element in both sets, we find the rule on the graph that
contains that event/command, returning the corresponding rule
id Pid. Then we find the path between each begin “State” node
of “Event” edges and each end “State” node of “Command”
edges, and combine all paths as the rule specification graph
Gsp. Two examples of the generated rule specification graph
are depicted in the dashed box in Fig.6.

Consistency Checking. According to the method discussed
in section V-B3, the cause-effect sequence is transformed to a
graph, which we call the rule execution graph Gcs. Above
all, SRA2 need to be detected separately since the device
state information from the platform logs is required. When the
platform logs records a state change in certain device while
two sets (Sc, Se) of the cause-effect sequence are empty, it
means that the device makes an action but the generated events
are lost or intercepted and a SRA2 case occurs (line 2-3).

Then we match the execution graph Gcs with each specifi-
cation graph Gsp to determine whether the execution of the rule
deviates from the behavior profile (line 4-6). Specifically, we
use GraphSAGE [40] to learn the graph representations of Gcs
and Gsp, including topology, node features and edge features.
Finally, we use cosine similarity to compute the similarity
stotal between two embeddings, and the similarity of event
part se and command part sc (line 7-11). When the matching
process is completed, a similarity list Sl is obtained. Finally,
the algorithm detects an anomaly occurs when not exists an
exact matching (∀s in Sl, s[0] ̸= 1)(line 12-15). The specific
SRA types will be identified in Section VI-C.

B. CRT Mining

In this section, we firstly ratiocinate the interaction threats
between two automation rules (CRT1-2). Based on this, the
cross-rule interference are located on the graph (CRT3-6).

1) Cross-Rule Interactions Ratiocination

For a better description, we symbolize the flow of the cross-
rule interaction as (R1 : Er1 → Cr1) → (R2 : Er2 →
Cr2). For the cyberspace interactions, the command of rule
R1 directly triggers the rule R2, so the command set Cr1 of
rule R1 must contain the event set Er2 of rule R2, namely
the constraint Cr1 ⊇ Er2. For the physical interactions, some
commands in the command set Cr1 of rule R1 change the
physical environment and indirectly triggers rule R2. For
example, turning on the light (Elight

switch.on) increases light
intensity (Esensor

illuminance.high). To discover such interactions, we

TABLE III: The symbolic representations of four cross-rule
conflict types. Specifically, Si refers to a “State” node, Cri

refers to the command set of rule ri, Eri refers to the event
set, Ss

i and Sp
i refers to the successor node and predecessor

node of a “Event”/“Command” edge, cp and val refers to the
“capability” and “value” attributes of “State” node Si.

Type Representation

Action Conflict
CRT3

∃q1 ∈ Cr1, q2 ∈ Cr2

Ss
1 = q1.suc, S

s
2 = q2.suc

s.t. Ss
1 .cp = Ss

2 .cp, S
s
1 .val ̸= Ss

2 .val

Action Duplicate
CRT4

∃q1 ∈ Cr1, q2 ∈ Cr2

Ss
1 = q1.suc, S

s
2 = q2.suc

s.t. Ss
1 .cp = Ss

2 .cp, S
s
1 .val = Ss

2 .val

Action Reverting
CRT5

∃q1 ∈ Cr1, qn ∈ Crn

Ss
1 = q1.suc, S

s
n = qn.suc

s.t. Ss
1 .cp = Ss

2 .cp, S
s
1 .val ̸= Ss

n.val,

∀n−1
i=1 (ri, ri+1) ∈ Scyb/Sphy

Action Loop
CRT6

s.t. Er1 ⊆ Crn

∀n−1
i=1 (ri, ri+1) ∈ Scyb/Sphy

firstly identify the correlation between each event/command
through the physical channel.

Correlation Channel Analysis. We consider 11 physi-
cal channels, including airQuality, acceleration, carbonDiox-
ide, carbonMonoxide, illuminance, humidity, motion, smoke,
sound, temperature and water. After that, we analyze the
correlation between 22 capability-value pairs associated with
these 11 channels and the remaining 341 capability-value pairs
extracted from the SmartThings Document in section V-A1.
Similarly, we use the BERT model to calculate the similarity
scores and record all related channels with score above T2

(T2 is a predefined parameter to select the strongly associated
capability-value pairs).

Graph Inference. The graph inference algorithm is il-
lustrated in Appendix B.B. We firstly find all the rules and
combine each two of them as a pair. To find the physical
interactions, we convert each command into a capability-value
pair according to the most correlated physical channel, such
as transforming Cfan

switch.on to Esensor
temperature.low. Finally, if

two rules r1, r2 satisfy the constraints(Cr1 ⊇ Er2), they are
added to the result set Scyb or Sphy . For the subsequent
identification of CRT3-6, we construct Physical or Cyber
edges between the command successor “State” node of each
R1 and the event predecessor “State” node of each R2.

2) Cross-Rule Interference Identification

After mining the cross-rule interactions (CRT1-2), the be-
haviour profile becomes more complete and have included the
cross-rule interference. So we only need to locate each threat
type on the graph according to its semantic.

Symbolic Representation. The graph representation of
each interference type is described in Table.III. Among them,
CRT3-4 involves two automation rules. We determine whether
the commands of two rules control the same device by
checking whether the attribute “capability” of “State” node
is the same, and determine whether CRT3 or CRT4 occurs
by checking whether the attribute “value” of “State” node is
different (Ss

1 .val ̸= Ss
2 .val) or the same (Ss

1 .val = Ss
2 .val).

Different from CRT3-4, CRT5-6 involves multiple automation

8

rules and a sequence of consecutive triggers for these rules
(∀n−1

i=1 (ri, ri+1) ∈ Scyb/Sphy). CRT5 have the similar type
with CRT4, where the command of two rules conflict. For
CRT6, the last rule triggers the first rule again (Er1 ⊆ Crn),
causing a continuous execution of these rules.

Graph Positioning. We convert these representations into
constraints by finding any rule group on the graph that satisfy
them. For CRT3-4, we return two matching rules (r1, r2) and
the conflicting commands (cr1, cr2) or the common command
part (ccom). For CRT5-6, we return the matching rule chain
(r1, r2, ..., rn).

C. Threat Mitigation

Aforementioned threats pose significant security risks to the
smart home. In this section, we firstly analyze the causes of
each SRA type based on the detection result. Then we develop
the enhanced security policy to eliminate CRT.

1) SRA Cause Analysis

The interpretation of anomaly detection algorithms can bridge
the semantic gap between detection results and executable
recommendations. Specifically, we analyze the matching re-
sults for each part and determine the type and cause of the
SRA. Fig.8 shows the rule specification and the corresponding
execution graph when each anomaly occurs. SRA2 can be
detected directly since its events and commands are empty,
but the device state transition is recorded. SRA1 occurs
when the event part does not match and commands part is
matched (se ̸= 1, sc = 1). For SRA3, Command Intercep-
tion occurs when the command part does not match at all
(se = 1, sc = 0), and Command Failure occurs when both
the event and command parts match, but the node attributes
do not (S1

D2
, S2

D2
mismatched). Similarly, SRA4 occurs in

two situations, one for controlling a device with unrelated
capability and the other for controlling an unrelated device,
both of which result in a mismatch in the command part
(se = 1, sc ̸= 1).

Then we analyze the cause for each SRA type and design
the corresponding solutions for non-attacker device behav-
ior, mainly passive configuration modifications for users. To
identify whether the anomaly is made by the attacker, we
implement the solution in Fig.8 and execute the rule again. If
the rule is not executed properly, it is judged as the attacker
behavior (such as interception, injection). Then we will take
an active response strategy instead, namely block the execution
of the rule, restart the device and send a message to the user.

2) CRT Enhanced Policy

The root cause of cross-rule interactions (CRT1-2) is the
user’s unawareness of the accidentally triggered rules and the
unexpected device behavior. To solve this problem, we send
a message about all triggered rules to the user and attach the
risk level (High/Low) by determining if the command sent by
the accidentally triggered rule contains the dangerous actions
such as Cheater.on, Ccamera.on and Clock.unlocked.

Specifically, we discuss the five security issues and the
associated commands in Table.VIII of Appendix B.C. To
address fire and chilly problems, the device will be shut down
when the temperature is above or below a threshold. For the
water flooding issue, the related device will be switched off

Fig. 8: The interpretation of SRA detection results.

when the sensor detects water. For burglary issues, when the
sensor detects the user’s presence, the opposite command is
executed such as Clock.locked. For the privacy leakage problem,
the rule turns off the camera when the user is at home.

Each rule may be considered as feasible when they are
deployed independently, but they can cause interference or
redundancy when combined together. To mitigate the harm
caused by the cross-rule interference, we design enhanced
security policies for each CRT3-6 cases, which also have
minimum impact on the existing rules.

1) Action Conflict & Action Duplicate (CRT3-4): we set
the priority for each rule and block the execution of lower-
priority rule. Specifically, the priority order is User Activity
> Physical-Related > Physical-Unrelated > Mode-related >
Time-related, since events involving physical channels may
cause security problems if they are not handled in time.
The Mode-related and Time-related automation rules have the
lowest priority since they tend to be routine or periodic.

2) Action Reverting (CRT5): Suppose the first rule is
Er1 → Cr1 and the final automation rule is Ern → Crn. To
eliminate such threats, we add the condition of contextual state
at the last rule, namely we execute this rule only if E1 does
not occur within the nearest time Tpre. So the final automation
rule rn is modified to Ern & Happen(E1) > Tpre → Crn.
The time threshold Tpre varies according to the different rules.

3) Action Loop (CRT6): Suppose the chain of rules that
cause the loop is (r1, r2, ..., rn). Since the loop occurs either
r1 or rn is executed, we modify r1 as Er1 & Count(rn) =
0 → Cr1 and rn as Ern & Count(r1) = 0 → Crn, where
Count records the number of times r1 and rn are executed.

VII. EVALUATION

In this section, we firstly introduce our experimental setup
including a real testbed and a simulation testbed. Then we
evaluate the accuracy of the rule extraction method and collect
traffic for rule execution to validate the performance of the
SRA detection on four mainstream IoT platforms. Finally, we
validate the effectiveness of CRT mining on both real testbed
and simulation testbed. We also reveal the security implications
of discovered threats in Appendix D.C. More experimental
details are shown in our open source project.

9

TABLE IV: The accuracy of rule extraction on four platforms.

Platform Word2Vec [47] BERT [38]
DAnalysis +CAnalysis DAnalysis +CAnalysis

SmartThings(105) 89.52% 92.38% 91.43% 97.14%
Apple Homekit(128) 89.06% 96.09% 92.97% 99.22%
Google Home(160) 83.13% 95.63% 91.25% 98.13%
Xiaomi Home(192) 85.94% 91.15% 88.02% 98.96%

TABLE V: Two cases of Danalysis matched vaguely and
Canalysis matched exactly.

Clause Danalysis Matched Similarity Canlysis Keywords

C light
color.red 0.832324 red, color temperature: 1000-1500K

change the
light color C light

color.yellow 0.825504 yellow, color temperature: 3200-4500K

C light
color.blue 0.829054 blue, color temperature: 7000-10000K

Esensor
motion.active 0.790236 motion, user activity, action

enter the
area Esensor

presence.on 0.783105 presence, at home, arrival

Esensor
acceleration.active 0.767295 acceleration, door/window, contact

A. Experiment Setup

Existing public datasets [41]–[43] do not contain the traffic of
home automation collected from different platforms. Moreover,
many old devices are no longer compatible with the current
app. As a result, we use the following testbed:

Real Testbed. We deploy 32 IoT devices in our lab on
four smart home platforms including SmartThings, Google
Home, Apple Homekit and Xiaomi Home, The detailed device
information and the testbed layout are described in Appendix
C.A. Since most devices are not compatible with all four
platforms, we customize a different number of automations,
where 105 rules on SmartThings, 128 rules on Apple Homekit,
160 rules on Google Home, and 192 rules on Xiaomi Home.
Moreover, We evaluate the time overhead of adding IoT
devices in Appendix D.A.

Simulation Testbed. Considering the limited number of
automations and device types deployed in the real testbed, we
design a simulation testbed which has 7 typical scenes and
54 devices. The device deployment layout of this testbed and
the detailed device information is described in Appendix C.B.
We crawl 10796 applets from the IFTTT [44] website and 82
SmartApp from the SmartThings Public GitHub Repository
[45], and filter 2491 rules associated with these devices.

Implementation Configuration. The code is running on
Ubuntu 18.04, 128GB RAM, 8vCPU, 1*NVIDIA A100 GPU
server, where GraphSAGE for anomaly detection is running in
Docker. We use py2neo to build the behaviour model and store
it in the Neo4j [46] database, and use NetworkX to convert
the data into input for GraphSAGE. For fingerprint extraction,
we use a Texas instruments CC2531 USB Dongle and set
TiwsPc at channel 15(0x0F) to capture ZigBee traffic, Zniffer
to capture ZWave traffic, and EDU Wireless Adapter to collect
WiFi and Nordic nRF52840 to collect Bluetooth traffic.

B. Automation Extraction Performance

By checking the consistency of the extracted rules with the
event part and command part of the deployed rules (the
ground truth), we compare the accuracy of CP-IoT two-stage
automation rule extraction using Word2Vec [47] or BERT
[38] to acquire the clause embedding, where description page

1

12

22

5
7

18

11

The number of each flow length

18,490
15,032

1,168 710 529 1,437

The CDF for statistics 𝒔𝟏
′ , 𝒇𝟐

𝒇𝟐

The number of each deviation packet size 𝒔𝟏
′

Fig. 9: The distribution of size deviation and flow length.

analysis is used in the first stage and configuration page
analysis is added in the second stage.

Model Training. We first train the models using the
Google News Dataset [48] containing 100 billion words. After
that, we crawl 10135 automation descriptions (sentence) from
IFTTT website as domain knowledge dataset to fine-tune and
enhance the applicability of the model to smart homes. Finally,
we sum and average the embedding of each word in the
clause obtained by Word2Vec and return a (300 × 1) clause
embedding. The reason for not using TF-IDF or SIF here is
that we consider each word in the clause equally important.
In contrast, BERT returns a clause embedding with a larger
dimension, i.e., a (1280 × 1) vector.

Extraction Accuracy Across-Platform. The granularity of
rule descriptions varies in different platforms, which affects the
accuracy of the first stage. As shown in Table.IV, the accuracy
of Word2Vec and BERT in the first stage reaches between
80.0% and 93.0%, where Danalysis refers to Description
Analysis and Canalysis refers to Configuration Analysis. We
analyze two possible reasons for the matching failure: 1)
The description is abstracted. For example, a rule description
is “House Freeze Notification” which does not contain Wh-
adverb so that model fails to distinguish the Event Part and
Command Part. 2) The model matches the clause to the wrong
capability-value pair. Two examples are described in Table.V,
where the command clause “change the light color” has high
similarity scores with three capability-value pairs, but matches
the capability-value pair Clight

color.blue every time. In addition,
“enter the area” is also strongly correlated with multiple sensor
events, but always matches Esensor

motion.active.

Then the second-stage extraction method CAnalysis greatly
increase the identification accuracy improved from 2.86% to
12.50% on Word2Vec and from 5.71% to 10.94% on BERT.
We analyze two reasons for this: 1) The detailed partition
between triggers and actions in the configuration page. 2)
The fine-grained description of each part makes the seman-
tic matching more accurate. Overall, the BERT outperforms
Word2Vec with an accuracy improvement of 2.50% to 7.81%
and an average accuracy of 98.96% across four platforms,
which is capable of cross-platform rule extraction tasks.

C. SRA Detection Performance

We firstly introduce some predefined parameters in event
fingerprinting settings. Then we compare the SRA detection
performance of CP-IoT with two state-of-the-art detectors on

10

Fig. 10: The flow interval fluctuation.

SmartThings and validate the performance of CP-IoT on three
other platforms.

Dataset. We use the real testbed described in Section VII-A
to generate runtime traffic of each automation rule and use it
as the normal dataset. Then we use the method introduced in
Appendix C.C to manually inject generated anomaly cases
for each SRA type. Specifically, we inject WiFi packets by
aircrack-ng [49], Zigbee packets by KillerBee [50], Z-Wave
packets by Z-Attack [51] and Bluetooth packets by BtleJack
[52]. For each SRA type, we generate the same cases number
as the deployed rule in different platforms.

Evaluation Metrics. We use the following metrics to
evaluate the performance of SRA detection. TP/FN: Predicted
SRA type and the type of injected SRA case is same/different.
TN/FP: The test case is normal and the predicted type is
normal/wrongly predicted as a certain SRA type. Accuracy:

TP+TN
TP+FP+FN+TN , Precision: TP

TP+FP , Recall: TP
TP+FN , F1-

Score: 2 · Precision·Recall
Precision+Recall , Nodes: the node count in the

behaviour model, Edges: the edge count in the model, Time:
the running time in seconds.

Baseline. We compare the performance of SRA with two
state-of-the-art detectors, Homonit [14] and IoTGaze [15].
Specifically, we build two behaviour models DFA and transi-
tion graph for Homonit and IoTGaze respectively. To identify
the runtime behavior of the rule, Homonit use Levenshtein
Distance [53] to calculate the similarity between the runtime
traffic and the fingerprint, while IoTGaze trains a supervised
Random Forest (RF) model to measure the similarity. We
apply two statistics (s3, f2) for Homonit to represent the
event & command fingerprint and four statistics (s1, s2, s3, f1)
for IoTGaze as discussed in their paper. Then we trigger
each event and command 50 times. For Homonit, we use
the Levenshtein Distance to calculate a representative feature
among the 50 event features as the event fingerprint. For
IoTGaze, we feed all data to RF for training and use the Grid
Search with Cross Validation (GridSearchCV) to optimize its
hyperparameters.

Traffic Fingerprinting Setup. To filter the traffic flow
between router and device or hub and device, WiFi uses IP-
address, Zigbee uses MAC address, Z-Wave uses node IDs and
for Bluetooth, we connect the phone to the device Bluetooth
and capture the flow in adbshell by hcidump [54] tool. As
discussed in section VI-A3, we define a time threshold T1 to
distinguish between events and commands. Considering that a
lower time threshold may wrongly split the packets of same
event into two parts, which mismatch with the fingerprint. A
higher time threshold may classify the command part of the

1.00

0.95

0.90

0.85

0.80

0.75

1.00

0.95

0.90

0.85

0.80

0.75

Fig. 11: SRA detection accuracy on SmartThings.

Fig. 12: An false negative case of the Aqara Vibration Sensor
fake event Evibration.active.

traffic as the event part. Through extensive experiments, we
try two configurations T1 = 1s and T1 = 2s.

Moreover, we also define a distance threshold d to distin-
guish whether a runtime flow belongs to a known or unknown
event. We set λ = 0.3 and δ = 0.7. Since no deviation is
allowed between the features of runtime traffic and fingerprint
on statistics s2, s3, f2, the tolerance of deviation is given to
statistics s1, f1.

To obtain the total deviation of s1, as shown in Fig.9,
we count the distribution of the packet size deviation s

′

1 and
flow length f2 statistics on 75 event flows associated with 32
devices deployed on the real testbed and a total of 37,366
packets, where the size deviation of 89.7% packets is no
more than 1 and 85.5% flow length is less than 7. So we
set s

′

1 = 1 and fmax
2 = 5 or 6. We calculate the total packet

size tolerance deviation of each flow stotal1 by the formula
stotal1 = s

′

1∗fmax
2 and get two configs stotal1 = 5 or stotal1 = 6.

Due to physical interference, there are network fluctuations
and delays which will affect the the flow interval f1. We
measure the fluctuation range of the flow interval on ten
representative devices, by placing 0-3 clapboards between each
device and the router. The results are shown in Fig.10 and the
flow intervals all within 10ms, so we set f

′

1 = 10. Finally,
we combine stotal1 and f

′

1 to calculate the tolerance deviation
distance d by the formula d = λ ∗ f ′

1 + δ ∗ stotal1 , and adopt
two configurations d = 5 and d = 7. The effect of variations
in the parameters T1, d on the SRA detection performance is
discussed in Appendix D.B.

Comparison in SmartThings. We first compare the per-
formance of CP-IoT with two baselines on the SmartThings
platform since Homonit and IoTGaze does not support other
three platforms. 1⃝ As shown in Fig.11, CP-IoT outperforms
Homonit and IoTGaze for both normal cases and each SRA
type, with the accuracy of 98.10% or higher in the best
configuration. 2⃝ CP-IoT(T1 = 2s, d = 7) has the highest
classification accuracy on normal cases because the relax fin-
gerprint restrictions increase the tolerance of network latency
and physical interference, thus reducing the false positive
rate(FPR ↓). 3⃝ CP-IoT(T1 = 1s, d = 5) has the best per-
formance on detecting SRA1, SRA3-Cyberspace and SRA4,
with the accuracy close to 100.0%. To identify these SRA

11

Fig. 13: Comparison of the three behaviour models in terms
of space complexity and time complexity.

types, the model needs to strictly determine which part (Even-
t/Command) the traffic belongs to and the difference between
fake event/command traffic and normal traffic. Any deviation
will classify anomalies as incorrect SRA types and increases
the false negative rate(FNR ↑). For example, IoTGaze fails
to identify the fake event Evibration.active of Aqara Vibration
Sensor, which contains a 2 flow length deviation described in
Fig.12, and the fake command Cscreen.shot of the Google Nest
Camera, which contains a 1 flow length deviation. 4⃝ SRA2
and SRA3-Physical need to record the device state, while CP-
IoT fails to get the logs of Fibaro Smart Button from Smart-
Things. 5⃝ There is no difference in detection effectiveness
between the four configurations of CP-IoT on SRA2, since
the rule is not executed for the events generated by the device
which are not received by the platform. While two baselines
do not have the ability to detect this type. 6⃝ Fig.13 compares
the runtime cost. CP-IoT nodes number is much less than the
baselines since the “State” nodes are shared between different
rules, which greatly reduces the redundancy. Although CP-IoT
edges number is 2-3 times more than the baselines, CP-IoT
provides more functions including the device state tracking
and scene control monitoring. The average time of CP-IoT
to classify each case is close to IoTGaze only increased by
2.71%, and 26.59% less compared to Homonit.

Detection Result Across-Platform. The detection results
of CP-IoT on different platforms are shown in Fig.14. It can
be seen that the detection precision of different platforms is
higher than 99.0%, and the recall of CP-IoT with the best
configuration is higher than 98.0%. So the SRA detection
method of CP-IoT has good cross-platform compatibility.

Besides, we analyze the detection results and obtain the
following two observations: 1⃝ There are two reasons for the
low CP-IoT recall in some configurations on SmartThings and
Xiaomi Home: 1) Fake Events (SRA1) of some small sensors
are difficult to be identified since they have small flow length
and packet deviation, while Over-Privilege (SRA4) can be
easily identified since the execution graph and specification
graph have significant differences. 2) Some platforms do
not provide log information for certain devices. For Event
Losses (SRA2) and Command Failure (SRA3), CP-IoT fails to
automatically acquire whether the device state is changed and
classify them as normal. 2⃝ The transmission rate varies widely
across platforms, where some devices of SmartThings and
Google Home have high response latency with flow interval
f1 between 4-13s, which we analyze as being caused by proxy
servers. While Xiaomi Home has the lowest response latency,
with flow interval f1 within 2s. Consequently, to achieve high
detection performance on different platforms, the dynamic
configurations of detector is necessary.

D. Performance of CRT Mining

We present the results of cross-rule interactions (CRT1-2) and
interference (CRT3-6) in two parts and validate the effective-
ness of CP-IoT by comparing it with IoTGaze and iRuler.

0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

1.00

0.99

0.98

0.97

0.96

0.95

0.9800
0.9825
0.9850
0.9875
0.9900
0.9925
0.9950
0.9975
1.0000

0.9800
0.9825
0.9850
0.9875
0.9900
0.9925
0.9950
0.9975
1.0000

CP-IoT(�1 = 2, � = 7) CP-IoT(�1 = 1, � = 7) CP-IoT(�1 = 2, � = 5) CP-IoT(�1 = 1, � = 5)

Fig. 14: SRA detection performance on four platforms.

Fig. 15: The number of CRT3-6 discovered by CP-IoT.

Mining Results of CRT1-2. The discovered CRT1 can
be verified directly since the result of the first rule execution
directly triggers the second rule (CR1 = ER2). And the result
of CRT2 depends on the correctness of the physical correlation
analysis (CR1

?−→ ER2). We reproduce all physical correlations
on the real testbed and remove the results that cannot be
achieved. A typical case is illustrated in Appendix D.C,
where we set the threshold T2 = 0.75 discussed in Appendix
D.B. We find that four channels motion, sound, acceleration,
airQuality have most related correlations since many device
actions can change their states. For example, E

fan/AC
switch.on or

Ewindow
window.open will improve the air quality by promoting air

circulation. We totally find 1171 CRT1 and 487 CRT2 on the
real testbed, including 68.15% single-platform interactions and
31.85% cross-platform interactions. In the simulation testbed,
we totally find 1072 CRT1 and 1461 CRT2.

Some examples of the results are presented in Table.VI.
We find some high-risk interactions on the real testbed, such
as turning on the fan after detecting smoke in Case 4, which
accidentally trigger the thermostat to be in heating mode
and continuous working could lead to a fire. Case 6 and
Case 8 accidentally turns on the camera, which could cause
privacy data leakage. On the simulation testbed, the rich
device types and automation rules increase the exploration
space of our mining methods. Case 11 finds that the vacuum
cleaner working could accidentally trigger the opening of the
dishwasher, which increases the risk of flooding. Moreover,
Rule1 of Case 11 can also trigger the Rule1 of Case 16 and
indirectly open the window, which increase the risk of burglary.

Mining Results of CRT3-6. Since there are also interfer-
ence and duplication between the rules of different platforms,
we combine the rules deployed on the four platforms and
analyze the cross-rule interference that exists among these
rules. The identification results of CP-IoT are shown in Fig.15.
For Action Conflict (CRT3) and Action Reverting (CRT4), we

12

TABLE VI: Some cases of cross-rule interactions mining results, where “R” denotes real testbed, “S” denotes simulation testbed,
“P” denotes physical interaction and “C” denotes cyberspace interaction.

No. Rule1 Rule2 Type Testbed Risk No. Rule1 Rule2 Type Testbed Risk

1 Esensor
presence.present → Cfan

switch.on Esensor
motion.active → Clight

switch.on P R Low 9 Esensor
motion.active → Clight

switch.on Esensor
illuminance.high → Ccurtain

windowShade.close P S Low

2 Esensor
vibration.active → Chumidifier

switch.on Esensor
water.wet → Clight

color.blue P R Low 10 Esensor
CO.detected → Csiren

alram.siren Esensor
sound.high → CTV

volume.down P S Low

3 Esensor
motion.active → Chumidifier

switch.on Esensor
humidity.high → Cfan

switch.on P R Low 11 Esensor
dustLevel.high → Crobot

switch.on Esensor
motion.active → Cdishwasher

switch.on P S High

4 Esensor
smoke.detected → Cfan

switch.on Esensor
temperature.low → Cthermostat

mode.heat P R High 12 Esensor
humidity.low → Chumidifer

switch.on EpowerMeter
energy.high → Ccamera

switch.off P S High

5 Ebutton
button.pressed → Cthermostat

mode.heat Esensor
temperature.high → Cfan

switch.on P R Low 13 Esensor
contact.closed → CTV

switch.off Esensor
sound.low → Ccamera

switch.on P S High

6 Esensor
temperature.low → Cfan

switch.off Esensor
motion.inactive → Ccamera

switch.on P R High 14 Esensor
dustLevel.high → Crobot

switch.on Esensor
presence.present → Clock

lock.unlocked P S High

7 Esensor
contact.open → Clight

switch.on Elight
switch.on → Clight

color.blue C R Low 15 Esensor
illuminance.low → Clight

switch.on Elight
switch.on → Ccurtain

windowShade.open C S Low

8 ETime
time.night → CMode

mode.night EMode
mode.night → Ccamera

switch.on C R High 16 Esensor
motion.active → CMode

mode.home EMode
mode.home → Cwindow

window.open C S High

explore the entire rule-pair space O(C(N, 2)), and the number
of mining on both testbeds is substantial. We find that the most
of rules associated with devices have CRT2 and that most of
the CRT1 occur under two rules in different scenes. Action
Reverting (CRT5) and Action Loop (CRT6) are represented
as directed loops on the graph. We only explore part of the
rule combination space that consider the rule chains contain
no more than 5 rules, since the identification time overhead
grows geometrically with limited results and iRuler finds most
of CRT5,6 contains 2-3 rules.

Mining Results Comparison. We use two state-of-the-
art models to compare the performance of CRT mining with
CP-IoT, which is tested on the simulation testbed as these
two models do not support cross-platform mining. IoTGaze
uses 8 cyberspace channels and 9 physical channels. Since
iRuler has implicit introduction of CRT1-2 mining method,
we use CP-IoT’s mining results to construct intermediate
representations (IR) and discover CRT3-6. The result is shown
in Table VII. For CRT1-2, we consider the richer physical
channels and more complete shared common capability than
IoTGaze. Our findings basically cover the mining results of
both two baselines and discover slightly more CRT3-6 than
iRuler, as both of them perform a complete searching of the
rule combination space but CP-IoT considers more feasible
rule chains triggered by multiple physical interactions.

VIII.RELATED WORK

With the rapid development of IoT, the security issues about
home automation have been widely researched [14]–[20], [25],
[55] in recent years. These method can be coarsely classified
into two categories. The first one is to check the consistency
of automation rules and monitor whether an individual rule is
executed correctly. Homonit [14] and IoTGaze [15] are two
similar systems that model the extracted rules and detect the
unexpected behaviors by context checking. HAWatcher [16]
extracts correlation between devices based on various semantic
information such as logs, device configurations, etc. Its shadow
execution engine can detect deviations between the runtime
device behavior and correlation.

The other type is to check the reliability of communication
channels whether the deployed automation interacts with each
other unexpectedly through certain channels or generates inter-
ference. Homeguard [20] builds a symbolic execution module
to extract automation semantics from applications and identify
three application interference threats. IoTGuard [18] designs
a dynamic system that collects the runtime information about
the application and stores it in a dynamic model. It identifies
app information that violates security policies. iRuler [19]
formalizes the rules and applies SMT and model checking

TABLE VII: Comparison of the mined number of CRT in the
simulation testbed.

Kind

Number Method
IoTGaze iRuler CP-IoT

Physical Interactions(CRT1) 827 N/A 1461
Cyberspace Interactions(CRT2) 344 N/A 1072
Action Conflict(CRT3) N/A 4619 4723
Action Duplicate(CRT4) N/A 6025 6108
Action Reverting(CRT5) N/A 2704 2855
Action Loop(CRT6) N/A 1856 2039

technique to discover inter-rule vulnerabilities.

IX.DISCUSSION

Limitations. After an experienced attacker masters the com-
munication pattern between the device and platform, the re-
played event packet cannot be detected by CP-IoT since it
does not violate the event fingerprint (such as MitM attack).
The second limitation is that the space complexity of CRT
Mining is O(n2), which costs a lot of time in large-scale
scenarios. Finally, detecting event losses and some command
failure cases requires manual effort to determine the device
state by obtaining logs, which requires developer permissions.

Ethic Consideration. Considering that automation rule extrac-
tion requires app pages and may violate users’ privacy, prior
consent needs to be sought from users. Moreover, the anomaly
detection requires intercepting communication traffic via side
channel, which may contain user’s privacy. Our approach only
saves the packet sequence involving the rule execution part.
Finally, the cross-rule risks we find may cause significant
security risks. To prevent attackers exploitation, we use the
user’s device id to represent each IoT device, since it is very
difficult to obtain the mapping relationship between all devices
and IDs within different scenarios.

X. CONCLUSION

Influenced by market size and user preferences, different IoT
platforms are used in different regions around the world. We
propose a cross-platform monitoring system CP-IoT for smart
home, which is capable of finding single-platform and cross-
platform threats. We propose an app-page-based rule extraction
method and a multi-granularity rule behaviour identification
technique, which can address architecture and traffic differ-
ences between platforms. We construct a centralised graph
to portray device state changes and rule execution across
platforms. Based on this, we design two algorithms to discover
various rule execution anomalies and cross-rule threats, and
propose the mitigation for these threats. We validate CP-IoT
on four mainstream IoT platforms and the results demonstrate
the effectiveness of CP-IoT in detecting various threats and
excellent cross-platform compatibility.

13

ACKNOWLEDGEMENT

We thank our shepherd and all the anonymous reviewers for
their valuable comments to improve this paper. This work is
supported by the National Key R&D Program of China under
Grant 2022YFB3102902, and the National Natural Science
Foundation of China (No. 62172251).

REFERENCES

[1] Amazon alexa, 2023. https://alexa.amazon.com/.
[2] Samsung smartthings, 2023. https://www.samsung.com/us/smartthings.
[3] Apple homekit, 2023. https://www.apple.com.cn/apple-home/.
[4] Google home, 2023. https://home.google.com/welcome/.
[5] Xiaomi home, 2023. http://home.mi.com/.
[6] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl Gunter. Fear and

logging in the internet of things. In Network and Distributed Systems
Symposium, 2018.

[7] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L
Littman. Practical trigger-action programming in the smart home. In
Proceedings of the SIGCHI conference on human factors in computing
systems, pages 803–812, 2014.

[8] Samsung smartthings community, 2023. https://community.smartthing
s.com/c/smartapps/6.

[9] Google nest community, 2023. https://www.googlenestcommunity.co
m/.

[10] Home assistant community, 2023. https://community.home-assistant.i
o/latest.

[11] Motion sensor stuck on motion, 2017. https://community.smartthings.
com/t/motion-sensors-stuck-on-motion/46761.

[12] Atheer Abu Zaid, Manar H. Alalfi, and Ali Miri. Automated identifi-
cation of over-privileged smartthings apps. In 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
247–251, 2019.

[13] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. Security analysis
of emerging smart home applications. In 2016 IEEE symposium on
security and privacy (SP), pages 636–654. IEEE, 2016.

[14] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang,
and Haojin Zhu. Homonit: Monitoring smart home apps from encrypted
traffic. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1074–1088, 2018.

[15] Tianbo Gu, Zheng Fang, Allaukik Abhishek, Hao Fu, Pengfei Hu,
and Prasant Mohapatra. Iotgaze: Iot security enforcement via wireless
context analysis. In IEEE INFOCOM 2020-IEEE Conference on
Computer Communications, pages 884–893. IEEE, 2020.

[16] Chenglong Fu, Qiang Zeng, and Xiaojiang Du. Hawatcher: Semantics-
aware anomaly detection for appified smart homes. In 30th USENIX
Security Symposium (USENIX Security 21), 2021.

[17] Z Berkay Celik, Patrick McDaniel, and Gang Tan. Soteria: Automated
iot safety and security analysis. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 147–158, 2018.

[18] Z Berkay Celik, Gang Tan, and Patrick D McDaniel. Iotguard: Dynamic
enforcement of security and safety policy in commodity iot. In NDSS,
2019.

[19] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates, and Carl A
Gunter. Charting the attack surface of trigger-action iot platforms. In
Proceedings of the 2019 ACM SIGSAC conference on computer and
communications security, pages 1439–1453, 2019.

[20] Haotian Chi, Qiang Zeng, Xiaojiang Du, and Jiaping Yu. Cross-
app interference threats in smart homes: Categorization, detection and
handling. In 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 411–423. IEEE, 2020.

[21] Chandrakana Nandi and Michael D Ernst. Automatic trigger generation
for rule-based smart homes. In Proceedings of the 2016 ACM Workshop
on Programming Languages and Analysis for Security, pages 97–102,
2016.

[22] Iulia Bastys, Musard Balliu, and Andrei Sabelfeld. If this then what?
controlling flows in iot apps. In Proceedings of the 2018 ACM SIGSAC

conference on computer and communications security, pages 1102–
1119, 2018.

[23] Wenbo Ding and Hongxin Hu. On the safety of iot device physical in-
teraction control. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 832–846, 2018.

[24] Wenbo Ding, Hongxin Hu, and Long Cheng. Iotsafe: Enforcing safety
and security policy with real iot physical interaction discovery. In the
28th Network and Distributed System Security Symposium (NDSS 2021),
2021.

[25] Yuan Tian, Nan Zhang, Yue-Hsun Lin, XiaoFeng Wang, Blase Ur,
Xianzheng Guo, and Patrick Tague. Smartauth: User-centered autho-
rization for the internet of things. In USENIX Security Symposium,
volume 5, pages 8–2, 2017.

[26] Xuan Feng, Qiang Li, Haining Wang, and Limin Sun. Acquisitional
rule-based engine for discovering internet-of-things devices. In 27th
USENIX Security Symposium (USENIX Security 18), pages 327–341,
2018.

[27] Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu,
Gang Tan, Patrick McDaniel, and A Selcuk Uluagac. Sensitive informa-
tion tracking in commodity iot. In 27th USENIX Security Symposium
(USENIX Security 18), pages 1687–1704, 2018.

[28] Huan Feng, Kassem Fawaz, and Kang G Shin. Continuous authen-
tication for voice assistants. In Proceedings of the 23rd Annual
International Conference on Mobile Computing and Networking, pages
343–355, 2017.

[29] Kyriakos Georgiou, Samuel Xavier-de Souza, and Kerstin Eder. The
iot energy challenge: A software perspective. IEEE Embedded Systems
Letters, 10(3):53–56, 2017.

[30] Farid Molazem Tabrizi and Karthik Pattabiraman. Design-level and
code-level security analysis of iot devices. ACM Transactions on
Embedded Computing Systems (TECS), 18(3):1–25, 2019.

[31] Munish Bhatia, Simranpreet Kaur, and Sandeep K Sood. Iot-inspired
smart home based urine infection prediction. Journal of Ambient
Intelligence and Humanized Computing, pages 1–15, 2020.

[32] Maissa Dammak, Omar Rafik Merad Boudia, Mohamed Ayoub Mes-
sous, Sidi Mohammed Senouci, and Christophe Gransart. Token-based
lightweight authentication to secure iot networks. In 2019 16th IEEE
Annual Consumer Communications & Networking Conference (CCNC),
pages 1–4. IEEE, 2019.

[33] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence
Fernandes, Zhuoqing Morley Mao, Atul Prakash, and SJ Unviersity.
Contexiot: Towards providing contextual integrity to appified iot plat-
forms. In ndss, volume 2, pages 2–2. San Diego, 2017.

[34] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic.
Appscanner: Automatic fingerprinting of smartphone apps from en-
crypted network traffic. In 2016 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 439–454. IEEE, 2016.

[35] Parth Bhatt and Anderson Morais. Hads: Hybrid anomaly detection
system for iot environments. In 2018 international conference on
internet of things, embedded systems and communications (IINTEC),
pages 191–196. IEEE, 2018.

[36] Stanfordcorenlp tool, 2022. https://github.com/stanfordnlp/CoreNLP.
[37] Samsung smartthings developer documentation, 2022. https://develope

r.smartthings.com/docs/devices/capabilities/capabilities-reference.
[38] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[39] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means
clustering algorithm. Journal of the royal statistical society. series c
(applied statistics), 28(1):100–108, 1979.

[40] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive repre-
sentation learning on large graphs. Advances in neural information
processing systems, 30, 2017.

[41] Toyota smart home dataset. https://project.inria.fr/toyotasmarthome/.
[42] Iot analytics benchmark dataset, 2023. https://github.com/vmware-arc

hive/iot-analytics-benchmark.
[43] Smart* data set, 2023. https://traces.cs.umass.edu/index.php/smart/sm

art.
[44] Ifttt official website, 2023. https://ifttt.com/explore/applets.

14

[45] Smartthings smartapp public repository, 2022. https://github.com/Sma
rtThingsCommunity/SmartThingsPublic.

[46] Neo4j graph database. https://neo4j.com.
[47] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient

estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[48] Google news dataset. https://github.com/mmihaltz/word2vec-GoogleN
ews-vectors.

[49] Wifi attack tools: aircrack-ng. https://www.kali.org/tools/aircrack-ng/.
[50] Zigbee attack tools: Killerbee. https://github.com/riverloopsec/killerbe

e.
[51] Zigbee attack tools: Z-attack. https://github.com/initbrain/Z-Attack.
[52] Bluetooth attack tools: btlejack. https://github.com/virtualabs/btlejack.
[53] Paul E Black. Levenshtein distance, dictionary of algorithms and data

structures [online], us national institute of standards and technology,
2008.

[54] Bluetooth packet capture tool. https://linux.die.net/man/8/hcidump.
[55] Jiwon Choi, Hayoung Jeoung, Jihun Kim, Youngjoo Ko, Wonup Jung,

Hanjun Kim, and Jong Kim. Detecting and identifying faulty iot devices
in smart home with context extraction. In 2018 48th annual IEEE/IFIP
international conference on dependable systems and networks (DSN),
pages 610–621. IEEE, 2018.

[56] Door knocker going crazy, 2016. https://community.smartthings.com/
t/door-knocker-going-crazy/55570.

[57] Create fake events for iot devices., 2022. https://community.smartthi
ngs.com/t/create-events-for-iot-devices/242952.

[58] Motion detection false positive, 2018. https://community.smartthings.
com/t/motion-detection-false-positive/119816.

[59] Mobile device presence update delay, 2017. https://community.smartt
hings.com/t/mobile-device-presence-update-delay/98672.

[60] Smartcam motion event interception, 2016. https://community.smartt
hings.com/t/use-smartcams-motion-sensor-with-smartthings/54364.

[61] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David
Wagner. Android permissions demystified. In Proceedings of the 18th
ACM conference on Computer and communications security, pages
627–638, 2011.

[62] Smart plug clicks but no power, 2018. https://community.smartthings.
com/t/smart-plug-clicks-but-no-power/115252.

[63] Tplink smart wi-fi plug fail, 2017. https://www.h3-digital.com/smart
homeblog/2017/5/23/tplink-smart-wi-fi-plug-fail.

[64] Kulani Mahadewa, Yanjun Zhang, Guangdong Bai, Lei Bu, Zhiqiang
Zuo, Dileepa Fernando, Zhenkai Liang, and Jin Song Dong. Iden-
tifying privacy weaknesses from multi-party trigger-action integration
platforms. In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 2–15, 2021.

[65] Musard Balliu, Iulia Bastys, and Andrei Sabelfeld. Securing iot apps.
IEEE Security & Privacy, 17(5):22–29, 2019.

[66] Eyal Ronen and Adi Shamir. Extended functionality attacks on iot
devices: The case of smart lights. In 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 3–12. IEEE, 2016.

[67] Musard Balliu, Massimo Merro, Michele Pasqua, and Mikhail
Shcherbakov. Friendly fire: cross-app interactions in iot platforms. ACM
Transactions on Privacy and Security (TOPS), 24(3):1–40, 2021.

APPENDIX A
THREAT PLANE COVERED BY CP-IOT

Single-Rule Anomalies(SRA) occur when the runtime behavior
of an automation rule is inconsistent with its specification.
Specifically, we classify them into the following types and list
some real-world cases.

• SRA1: Faulty Event/ Fake Event. Faulty Event is made by
the component defect of IoT devices or channel interference
that report a event incorrectly, such as the faulty door
knocking event send by the SmartThings Multisensors [56]
and the ghost motion event reported by the Fibrao Motion

Sensor [11]. Besides, an attacker can inject a specific event
using the side channel to trigger an automation rule, which
results in Fake Event anomalies [57], [58].

• SRA2: Event Losses/ Event Interception. This type of
exception occurs when events are not received by the
platform properly. The former can be caused by network
delays or IoT Cloud side failures, such as the update delay of
the presence event send by the SmartThings Arrival Sensor
[59] while the latter is caused by an attacker intercepting
the event packets [60].

• SRA3: Over-Privilege. This anomaly have been widely
discussed in the previous studies [13], [61]. Specifically, an
over-privilege anomaly occurs in the following two cases:
(1) the automation rule controls unrelated devices and (2)
the rule controls devices to certain unrelated states.

• SRA4: Command Failure/ Command Interception. Some
commands are sent to devices when the events are received
by IoT Cloud correctly. Similar to Event Interception, the
command packets can also be intercepted by attackers [62].
Besides, the large network delay, system crash or the device
component breakdown will make commands fail to take
effect. SmartThings Power Outlet [62] and TP-Link HS110
Smart Wi-Fi Plug [63] have been reported to have such
anomalies.

In contrast, the CRT are more complicated and occur when
a user deploys multiple automation rules. One of the cases is
that an rule ends its execution and accidentally triggers another
rule, where we call cross-rule interactions. Specifically, they
can be summarized into the following two types:

• CRT1: Cyberspace Interactions [17], [27]. For two au-
tomations rules sharing the same device or the same
event/command to interact, we call cyberspace interaction.
An example is depicted in Fig.2, a rule turns on the
light(Clight

switch.on) when the time is at sunset(ETime
time.sunset),

and another rule unlocks the door(Clock
lock.unlock) when the

light is on(Elight
switch.on). These two rules interact through

“light.on” event.

• CRT2: Physical Interactions [18], [23]. When one au-
tomation is executed completely, the result may change
the physical environment and implicitly trigger the execu-
tion of another automation. For example, a rule turns on
the air conditioning(CAC

switch.on) when detects the user at
home(Esensor

presence.present). Another rule turns on the heater
(Eheater

switch.on) when the temperature is below a threshold
(Csensor

temperature.low). The command (CAC
switch.on) of the first

rule changes the temperature, which accidentally triggers the
second rule.

Another type of CRT occurs when two rules interfere
with each other, which we call cross-rule interference. We
summarize the following four subclasses of this type.

• CRT3: Action Conflict [19], [20], [64], [65]. This re-
fer to the command part of two rules conflict with
each other, where they change the same device to dif-
ferent states. As shown in Fig.2, one rule turns off the
fan(Cfan

switch.off) when the time is night(ETime
time.night), and

another rule turns on the fan(Cfan
switch.on) when the sen-

sor detects user activity(Esensor
motion.active). Both automations

15

seem feasible when the user firstly deploys them. How-
ever, they meets a conflict accidentally when both trigger
conditions(ETime

time.night, E
sensor
motion.active) are satisfied at the

same time.

• CRT4: Action Duplicate [17]–[19]. Such conflicts may
occur when two rules perform the same action on the same
device. A typical example is shown in Fig.2 where two
automation rules turn on the light repeatedly.

• CRT5: Action Reverting [19], [33], [66]. Similar to Ac-
tion Conflict, there is a conflict between two rules. The
difference is that there is a trigger chain of automations
between two conflicting rules. We show an example in Fig.2,
one rule opens the curtain(Ccurtain

curtain.open) and turns on the
light(Clight

switch.on) when user arrives home(Esensor
presence.present),

and another rule closes the curtain (Ccurtain
curtain.closed) when

the sensor detects high illuminance(Esensor
illuminance.high). The

actions of these two rules are conflict and the first rule
triggers the second rule through the physical interaction.

• CRT6: Action Loop [19], [67]. The action of the first rule
directly triggers the second rule, and the action of the second
rule triggers the first rule, leading to a dead loop. In the real
smart home, this threat generally occurs in cross-scenario
situations or related to the system mode.

APPENDIX B
SUPPLEMENTARY FOR THE SYSTEM DESIGN

Algorithm 1: SRA detection algorithm.
procedure: Sl ← Similarity(Sc, Se, Slog , Gcs,G)

1 Sl ← [],Pid ← ϕ, l1 ← len(Sc), l2 ← len(Se);
2 if Sc = ϕ && Se = ϕ && Change State(Slog) then
3 return ”Anomaly : SRA2” ;
4 for i = 1 to l1, j = 1 to l2 do
5 Pid ← Pid ∪ Find Rule(Sc[i],G) ;
6 Pid ← Pid ∪ Find Rule(Se[j],G) ;
7 while Pid ̸= ϕ do
8 ri ← Pop(Pid) ;
9 Gsp ← Find Path(ri) ;

10 se, sc, stotal ← GraphSAGE(Gcs,Gsp) ;
11 Sl.append((stotal, se, sc));
12 if ∀s in Sl, s[0] ̸= 1 then
13 Report ”Anomaly : SRA1/3/4” ;
14 else
15 Report ”Normal” ;

A.Single-Rule Anomalies Detection Algorithm

Algorithm.1 shows the workflow of detecting the anomalies
in the rule execution. Lines 4-9 correspond to the first stage
of SRA detection method, specification matching. In this
stage, we find the specification graph in the centralised model
constructed in Section V-B that is most similar to the running
rule. Lines 2-3 and lines 10-15 correspond to the second
stage of SRA detection method, consistency checking. In this
phase, we match the behavior graph of the rule execution with
the specification graph extracted in the first stage and check
whether there are inconsistencies to find anomalies.

Algorithm 2: CRT1-2 inference algorithm.
procedure: Scyb, Sphy ← Inference(G)

1 Scyb ← ϕ, Sphy ← ϕ, Sid ← Find Rule(G);
2 while Sid ̸= ϕ do
3 rcur ← Pop(Sid) ;
4 Scom ← Combination(rcur, Sid) ;
5 while Scom ̸= ϕ do
6 r1, r2 ← Pop(Scom) ;
7 if r1.commands ⊇ r2.events then
8 Scyb ← Scyb ∪ (r1, r2) ;
9 if r2.commands ⊇ r1.events then

10 Scyb ← Scyb ∪ (r2, r1) ;
11 Er1 ← Transform(r1.commands) ;
12 Er2 ← Transform(r2.commands) ;
13 if Er1 ⊇ r2.events then
14 Sphy ← Sphy ∪ (r1, r2)

15 if Er2 ⊇ r1.events then
16 Sphy ← Sphy ∪ (r2, r1)

B. Cross-Rule Interactions Inference Algorithm

Algorithm.2 shows the process of searching cross-rule interac-
tions on the graph. We firstly find all the rules (Find Rule) on
the graph and save them in the set Sid. Afterwards we combine
each element of the set with other rules (Combination)
and determine whether exists a cross-rule interactions be-
tween two rules. Lines 7-10 of the algorithm search all
cyberspace interactions on the graph G. If the command set of
a rule (r1.commands) contains the event set of another rule
(r2.events), the constraint is satisfied and exists a cyberspace
interaction between them. Lines 11-16 of the algorithm search
all physical interactions on the graph G. Using the transform
method, we get the event set (Er1, Er2) associated with
the commands of an rule through the physical channel, and
determine if event sets contain all the events needed to trigger
another rule.

C. Dangerous Actions Caused by Cross-Rule Interactions

We describe five security issues and the associated commands
in Table.VIII. For each of the two rules involving CRT1/2, the
interactions will be considered as high risky if the triggered
rule performs an action in this list. Apart from these five
dangers, excessive power consumption is a concern for many
users. The usual culprits are the constant work of energy-
intensive devices such as lights, TVs, and air conditioners.
We exclude them in the high-risk list since they cause limited
damage to the home environment.

TABLE VIII: A list of some high-risk actions.

Action Security Issue Action Security Issue

Cheater
switch.on Fire Cthermostat

mode.heat Fire

Cthermostat
mode.cool Chilly CAC

switch.on Chilly

C
faucet/dishwasher
switch.on Water Flooding Cvalve

valve.open Water Flooding

Cwindow
window.open Burglary Clock

lock.unlocked Burglary

Ccamera
switch.on Privacy Leakage Csoundbox

switch.on Privacy Leakage

16

Fig. 16: 32 devices deployed in our lab for experiment.

iPhone13

Router 1

(Asus)

Aqara

Hub

Router 2

(Netgear)

Homepod

Lights Cameras Smart

Plugs

SmartThings

Hub

Sensors/

Wireless Switch

Fan Thermostat

Sensors

Humidifier Purifier

Fig. 17: The device deployment topology of the real testbed.

APPENDIX C
SUPPLEMENTARY FOR THE EXPERIMENTAL SETUP

A. The Real Testbed

32 IoT devices deployed in our lab are shown in Fig.16 and
the layout of the device is shown in Fig.17. To achieve a
low-latency network environment, we use two routers with
1000Mbps bandwidth, respectively are NETGEAR router
(Netgear 35) and ASUS router (NMG24 2). For the Smart-
Things and Google Home, we use SmartThings Hub as the
gateway. For Apple Homekit and Xiaomi Home, we use Aqara
Hub MS1 as the gateway to connect some small sensors.
Moreover, multiple rules are deployed on devices that sup-
port different platforms to achieve a richer experimental test
environment. The details of each device are listed in our open
source project.

B. The Simulation Testbed

The simulation testbed layout is shown in Fig.18. We simulate
a smart home environment with seven scenarios, including
entrance, living room, bedroom, kitchen, dining room, balcony
and bathroom. In each scenarios, we simulate the deployment
of various common-used types of smart home devices, such
as sprinkler, dishwasher and robot cleaner. The details of each
device are listed in our open source project.

C. Anomaly Cases Generation

Here we describe methods for generating SRA1-SRA4.

Fake Events: An attacker will capture packets of certain
event when a rule is executed and injects malicious fields into
the packets to control a device. We collect the event traffic for
each device, add 2-7 bytes of zeros to the payload of the last
packet and replay these packets.

Fig. 18: The simulation testbed.

Event Losses: An attacker may disable the event portion
of a rule’s execution by intercepting packets, resulting in the
rule not being executed. So we collect the execution traffic
for each rule, remove all packets belong to the event part and
replay the rest of the packets.

Command Failure-Cyberspace: An attacker may disable
the command portion of a rule’s execution by intercepting
packets, resulting in the rule not being executed. We collect
the execution traffic for each rule, remove all packets belong
to the command part and replay the rest of the packets.

Command Failure-Physical: This type is caused by device
failure. We cut the power of the device and trigger the rule to
simulate the device defect.

Over-Privilege: We collect the normal execution traffic of
the rules and identify the events and the command part C1.
Then we construct the dataset of this anomaly type in two
ways: (1) Add the packet sequence of a previously collected
command C2 to the command section, C1 and C2 control
different devices. (2) Remove all packets from the command
section and add the packet sequence of a previously collected
command C2, where C1 and C2 control the same device, but
with opposite actions such as “switch.on” and “switch.off”.

APPENDIX D
SUPPLEMENTARY FOR THE EVALUATION

A. Time Overhead for Model Extension

We evaluate the time cost for adding each device deployed in
the real testbed. We remove all information about this device
from the model, including associated rules, graph nodes and
CRT mining results. Then we remove the device and all related
automation rules on the app. After that we re-add the devices
in one supported app and add five automation rules for each

Fig. 19: The time overhead for adding a new device.

17

device, since most devices are associated with only a small
number of rules. Finally, we calculate the running time for
each part and the total time.

As shown in Fig.19, a simple device such as most sensors
and smart outlets, the total time cost is less than 40 s. Some
sensors have more complex functionality such as the Aeotec
Multipurpose Sensor have six functions, but the overhead
of extension are all within 45 s. In particular, the model
construction comprises two parts: rule extraction and graph
building. For some more complex devices such as camera
and color lamps, the total time overhead is less than 1 min.
The increased time comes from CRT Mining, since they are
associated with more CRT. The time to add a platform depends
on the devices added, and rule extraction is not slowed down
by the devices in the new platform.

B. Sensitivity of Experimental Results to Hyper-parameters

(a) The effect of changes in the pa-
rameters T1(fixed d) on F1-score.

(b) The effect of changes in the pa-
rameters d(fixed T1) on F1-score.

Fig. 20: The sensitivity of the SRA detection results to
variations in the parameters T1, d.

Fig.20(a) show the effect of variation in the parameters
T1(fixed d) on the F1-score judging the SRA detection
performance. Similarly, Fig.20(b) show the effect of variation
of parameter d(fixed T1) on the F1-score.

The parameter T2 is related to the clause embedding
transformer, which affects the value of the calculated cosine
similarity. When its value is too large, all possible event
correlations through the physical channel are not considered
and make the number of CRT mining results drastically
reduced. However, when the parameter T2 value is too small,
many physical correlations are incorrectly determined since
two events with low correlation scores are also judged as
physically-correlated, resulting in many false CRT results.

C. Security Implication of Discovered Threats

As described in the threat model in section III-C, anomalies in
rule execution may be caused by attackers. Here we illustrate

TABLE IX: Two SRA attack vectors injected on a rule
deployed on the real testbed.

Attack Vector Devices
Normal

Esensor
motion.active → Cfan

switch.on

[(113, 0), (65, 1), (112, 0), (65, 1)] →
[(54, 1), (63, 0), (40, 1), (40, 1)]

Aqara Motion Sensor
Mi Smart Fan

Fake Event
Inject “0x0000” at the end of

the payload of the packet(113, 0)
[(115, 0), (65, 1), (112, 0), (65, 1)] →

[(54, 1), (63, 0), (40, 1), (40, 1)] Aqara Motion Sensor

Over-Privilege
Inject the traffic generated by the
command Clamp

switch.on to the traffic

[(115, 0), (65, 1), (112, 0), (65, 1)] →
[(54, 1), (63, 0), (40, 1), (40, 1),

(227, 1), (28, 0), (195, 0),
(28, 1), (96, 1), (28, 0)]

Mi Smart
Desk Lamp 1s

[(115, 0), (65, 1), (112, 0), (65, 1)] →
(227, 1), (28, 0), (195, 0),
(28, 1), (96, 1), (28, 0),

(54, 1), (63, 0), (40, 1), (40, 1)]

TABLE X: A cross-platform CRT2 discovered by the CP-IoT.

Rule Part Description Symbol

Rule1

Event/
Trigger Condition

Time at night
22pm-7am ET ime

time.night

No human presence Esensor
presence.notpresent

Each 5min interval ET ime
time.interval

Command/
Action

Open the camera Ccamera
switch.on

Set the mode
at surveillance CT ime

mode.survilleance

Rule2

Event/
Trigger Condition Detects the motion Esensor

motion.active

Command/
Action

Open the thermostat Cthermostat
switch.on

Set the mode
at heat Cthermostat

thermostatMode.heat

Camera rotates
at high speed

Sensors detect
the motion

Fig. 21: The reproduction result of a physical interaction.

the security impact caused by SRA through two examples
of injected attacks in real testbed. The first one is to replay
the fake events attack. The rule listed in Table.IX turns on
the fan when executed correctly. We inject 2 all-0 bytes in
the first packet of event Emotion.active and replay it into
the environment. It will cause the rule to be executed and
generate traffic to control the smart fan. The other is to
replay the over-privilege attack. We capture the traffic of
other device events/commands and inject it into the original
traffic using two ways. This is used to simulate an attacker
illegally elevating the rule privileges to control other unrelated
devices(Mi Desk Lamp). CP-IoT can detect both by matching
fine-grained fingerprint information with the runtime traffic and
find the inconsistencies between them.

Cross-platform threats are special types of CRT that involve
rule interactions across multiple platforms. Here we conduct a
case study of CRT found by CP-IoT on the real testbed and
describe the results reproduced in our lab.

The CRT shown in Table.X involve two platforms, Xiaomi
Home and Homekit. The first rule turns on the camera at night
to monitor the home environment and will perform a 360-
degree scan every 5 minutes, which will indirectly triggers
some motion sensors to detect the motion. We reproduce this
CRT2 case in our lab and show this physical interaction pro-
cess in Fig.21. It is worth pointing out that of the four cameras
we tested only this one triggers a sensor false detection. This
is due to the fact that most of the cameras have a relatively
limited magnitude and speed of rotation in the surveillance
mode. This action implicitly triggers another rule, which set
the Google thermostat at the heating mode (this rule usually
set at the winter), where its constant heating can lead to a fire.

18

