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Abstract—Automatic speech recognition (ASR) systems have
been shown to be vulnerable to adversarial examples (AEs).
Recent success all assumes that users will not notice or disrupt
the attack process despite the existence of music/noise-like sounds
and spontaneous responses from voice assistants. Nonetheless,
in practical user-present scenarios, user awareness may nullify
existing attack attempts that launch unexpected sounds or ASR
usage. In this paper, we seek to bridge the gap in existing
research and extend the attack to user-present scenarios. We
propose VRIFLE, an inaudible adversarial perturbation (IAP)
attack via ultrasound delivery that can manipulate ASRs as a
user speaks. The inherent differences between audible sounds and
ultrasounds make IAP delivery face unprecedented challenges
such as distortion, noise, and instability. In this regard, we
design a novel ultrasonic transformation model to enhance the
crafted perturbation to be physically effective and even survive
long-distance delivery. We further enable VRIFLE’s robustness
by adopting a series of augmentation on user and real-world
variations during the generation process. In this way, VRIFLE
features an effective real-time manipulation of the ASR output
from different distances and under any speech of users, with
an alter-and-mute strategy that suppresses the impact of user
disruption. Our extensive experiments in both digital and physical
worlds verify VRIFLE’s effectiveness under various configurations,
robustness against six kinds of defenses, and universality in a
targeted manner. We also show that VRIFLE can be delivered with
a portable attack device and even everyday-life loudspeakers.

I. INTRODUCTION

Automatic speech recognition (ASR) enables computers to
transcribe human speech and is essential in a wide range of
voice applications such as voice assistants (VAs) and audio
transcription APIs [1], [2]. Prior studies have shown that
ASR models are vulnerable to adversarial examples (AEs)
that sound benign to humans but are recognized incorrectly
by models. As stealthiness is a basic requirement for AEs,
existing works largely focus on reducing the audibility of AEs
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Fig. 1: ①When a user uses the ASR service, ②an adversary injects
inaudible adversarial perturbations crafted based on the ultrasonic
transformation model (UTM) into a receiver. ③The mixed signal
of the user command (blue) and demodulated perturbations (red &
yellow) can ④fool the ASR model into the adversary-desired intent.

so that they might not cause human suspicion when being
heard [3], [4]. In addition, the class of inaudible attacks [5],
[6] avoids being perceived by human ears using high-frequency
ultrasound/laser. However, few of them have considered attacks
in user-present scenarios, where users may notice unexpected
events of the ASR service and can mitigate the attack’s
consequence. For instance, though AEs and inaudible attacks
may not sound suspicious, a voice assistant will always provide
feedback (e.g., vocal prompt or LED blinking) after receiving
voice commands. Alert users may still notice the false wake-up
or abnormal feedback caused by an attack and speak remedy
commands to correct the mistake, limiting the attack’s impact
in real life.

In this paper, we aim to propose VRIFLE1—an inaudible
adversarial perturbation (IAP) attack that can extend to this
scenario. Its basic idea is to inject IAPs while the user speaks to
the ASR service and alter the recognition result in real time, as
shown in Fig. 1. Since the voice assistant itself is responding
to user commands (e.g., LED blinking), tampering with the
user’s speech is less noticeable at this time. But such a user-
present scenario also imposes higher requirements on attack
stealthiness because users are more sensitive to environmental
sounds while using ASR services. Moreover, given that adver-
saries have no prior knowledge of user’s speech content and
timing, this critical scenario necessitates that VRIFLE exhibits
a high level of universality to guarantee the achievement of the
adversary-desired intent in any context. Therefore, we envision
VRIFLE as a truly inaudible and robust framework for real-time
IAPs delivery, which can also address variable user factors,

1Demo: https://sites.google.com/view/Vrifle
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such as speech content, vocalization time, speech volume, and
environmental conditions, while remaining physically effective
even at long distances or using portable/everyday-life devices.
Overall, materializing VRIFLE that attains the above goals is
challenging in three aspects.

• How to achieve adversarial perturbations that are universal
while completely inaudible to user auditory?

The trade-off between universality and stealthiness has
been a long-standing challenge in audio AE attacks. Almost
all previous works have prioritized stealthiness and introduced
imperceptibility constraints during optimization, such as ϵ and
L2-Norm [7], or by adjusting audio forms, e.g., designing
it as short pulses [8]. Nonetheless, this greatly compromises
the universality of adversarial perturbations and they are still
audible and can be heard when users are nearby. We seek
to implement an inaudible adversarial perturbation beyond the
human auditory range (20 Hz∼20 kHz) in an ultrasound-based
attack manner [5], which can make microphones receive our
IAP by exploiting their inherent nonlinearity vulnerability. As
such, IAPs are no longer limited by stealthiness constraints,
holding a vast optimization space with more feasible solutions.
Unlike the audible-band perturbations devised to be short
to mitigate user auditory, our IAPs enable the adversary to
significantly increase their length, which further expands the
optimization scope and facilities highly universal attacks.

• How to alter the recognition of user speech in real time
despite the presence of user disruption?

Although we have bypassed user auditory, realizing such
an attack against ASR in real time faces a few more challenges.
User disruption cannot be ignored in this scenario, which
includes: ➊ The user’s speech can disrupt the intent of IAPs
when both audio signals are superimposed. While universal
AEs [8], [9] are shown to resist this case, our preliminary
investigation validates that direct ultrasound-based attacks will
fail due to such interference. ➋ User commands can be much
longer (e.g., 5s) than 0.5s audible-band short perturbations that
affect only a few input frames, thus the exceeded user instruc-
tions will impact the entire ASR transcription. ➌ Users may
notice that malicious behavior being executed and therefore
block the attack by issuing remedy commands. In addition,
there are user-induced factors that make user disruption more
complex and can compromise IAPs’ effectiveness, including
unpredictable content and timing of user speech, as well as
the influence of the user’s environment and speaking habits on
speech reverberation and loudness.

To address these issues, we augment the optimization
process of IAPs by using multiple speech clips in public
corpus, introducing randomness within the preset time range,
as well as considering the various user’s speech loudness and
reverberation. Thereby, VRIFLE can be applied in a content-
agnostic, synchronization-aided, user factors-robust manner.
Moreover, we overcome user disruption by materializing both
silence and universal perturbations in the targeted manner
to ensure the arbitrary utterance length cannot pose impacts
on adversary-desired intent, without requiring any knowledge.
Based on the above design, adversaries can present two more
hidden attack strategies, involving No-feedback Attack and
Man-in-the-middle Attack in the threat model.

TABLE I: Compared with existing works

Method Constraint‡ Auditory♮ Disruption⋆ Dist.†

Carlini. [10] − Noise ✗ 1.5m
Abdullah [11] − Noise ✗ 0.3m
CW [7] L2-norm, ϵ Speech ✗ ✗

Schönherr [3] Psyc. Speech ✗ ✗

Comman. [12] ϵ Song ✗ 1.5m
Qin. [4] Psyc. Speech ✗ −
Meta-Qual [13] L2-norm, ϵ Song ✗ 4m
FakeBob [14] ϵ Speech ✗ 2m
AdvPulse [9] L2-norm, ϵ Ambient ◗ 2.7m
SpecPatch [8] L2-norm Pulse ◗ 1m
Ours None Inaudible ● 10m
(i) ‡: The constraints used to guarantee imperceptibility during opti-
mization. “−” means the method only considers incomprehensibility
to humans. ϵ means limiting the absolute magnitude of perturbations
with a constant ϵ. L2-Norm means adding an L2-Norm term in
the objective function. “Psyc.” means psychoacoustic hiding. “None”
means no stealthiness constraints. (ii) ♮: The objective user auditory
of AEs. Ambient means ambient sounds. (iii) ⋆: ●: fully tackles user
disruption. ◗: tackles case ➊. ✗: fails by user disruption. (iv) †: ✗:
the attack is not physically available. −: not reported.

• How to guarantee inaudible adversarial perturbations are
physically effective after ultrasonic delivery?

Though inaudible attacks have demonstrated voice com-
mand injection using ultrasound and laser [6], it is unknown
whether fine-grained IAPs can be delivered via such signals
as the ultrasound channel is reported to be lossy and dis-
torted [15]. Thus, maintaining the effectiveness of IAPs after
undergoing a series of modulation, transmission, and demod-
ulation processes in the physical world is not trivial based
on prior AEs [16]. Ultrasound is intrinsically distinct from
audible sounds in the high-directional propagation and varying
soundfield. Additionally, the nonlinear distortion, anomalous
noises, and hardware-induced instability that are unique to
ultrasound make existing acoustic channel modeling methods
inapplicable.

To overcome the challenge, we make the first attempt to
establish an ultrasonic transformation model, which consists
of tackling variable ultrasound-induced anomalous noises, ob-
taining ultrasound frequency response (UFR), and enabling
location-variable attacks. Based on this transformation, we
can precisely estimate VRIFLE’s pattern of ultrasonic delivery
during its optimization, thereby making it physically effective
and survive long-distance delivery. Moreover, to enable more
covert IAP attacks with portable devices and off-the-shelf loud-
speakers, we implement a narrow bandwidth upper-sideband
modulation (USB-AM) mechanism to ensure the attack range
and inaudibility of VRIFLE with simplified devices.

Tab. I compares VRIFLE with several existing works. We
conduct extensive experiments in both digital and physical
worlds to evaluate VRIFLE’s effectiveness under various con-
figurations (e.g., extend attack range to 10m) and robustness
against six kinds of defenses. Our single silence IAP muting
up to 27,531 unseen user utterances, likewise, universal IAP
altering 18,956, proving VRIFLE’s universality. Our design
also expands the attack methodology to more covert portable
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attack devices and everyday-life loudspeakers, enabling the
VRIFLE delivery in a stealthier form. Our contribution can be
summarized as follows:

• To the best of our knowledge, VRIFLE is the first universal
inaudible adversarial perturbation attack that can extend to
scenarios when users use ASR services, revealing a new
attack surface against ASR models. VRIFLE is completely
inaudible, holds vast optimization space, and enables long-
range attacks (10m).

• We make the first attempt to establish an ultrasound transfor-
mation model, which overcomes the unique challenges in the
ultrasound channel and precisely characterizes it, enabling
our fine-grained IAPs delivery to be physically effective.

• We conduct extensive experiments under various configu-
rations in the digital and physical world to validate the
effectiveness, robustness, and universality of VRIFLE, and
validate the attack using portable/everyday-life devices.

II. BACKGROUND

A. Automatic Speech Recognition

Automatic speech recognition (ASR) systems, e.g., voice
assistants, receive and recognize speech commands; then per-
form execution according to certain rules. Hidden Markov
models (HMM) [17] and dynamic time warping (DTW) [18]
are two traditional statistical techniques for performing speech
recognition. With the development of deep learning, the end-
to-end neural ASR models have gone mainstream, such as
RNN-T [19] and DeepSpeech2 [20]. A typical end-to-end
ASR system pipeline includes four main components: 1
Spectrum generator: converts raw audio into spectrum features,
e.g., Filter Bank (Fbank), Mel-Frequency Cepstral Coefficients
(MFCC), etc. 2 Neural acoustic model: takes spectrums as
input and outputs a matrix of probabilities over linguistic units
(e.g., phoneme, syllable, or word) over time. For instance,
English ASR is widely modeled with 29 basic units (also
known as tokens), including characters a˜z, space, apostrophe,
and blank symbol ϕ. 3 Decoder: generates possible sentences
from the probability matrix, also optionally coupled with
an n-gram language model to impose word-level constraints.
The Connectionist Temporal Classification (CTC) module is a
typical decoder that sums over all possible alignments that may
reduce to the same token sequence, whereby “oϕkkϕaϕy” and
“oϕkϕaaϕyy” are regarded as the same “okay”. 4 Punctuation
and capitalization model: formats the generated text for easier
human consumption.

B. Audio Adversarial Examples

Adversarial examples (AEs) [3], [7], [12], [13] use spe-
cialised inputs created with the purpose of confusing a neural
network, resulting in the misclassification of a given input. In
the audio domain, by adding a crafted perturbation δ with some
constraints ϵ throughout the original benign audio x, the ASR
model will be fooled to transcribe a perturbed speech into the
targeted text yt, e.g., “take the picture”. To craft an adversarial
example, an adversary may leverage the optimization function:

minimize L(f(x+ δ), yt) + α · ∥δ∥p
s.t. δ ∈ [−ϵ, ϵ]n, (ϵ<0.01)

(1)
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Fig. 2: Diagram of inaudible attacks (carrier: blue, baseband: green).

where the ASR functions as f(·) that takes an input waveform
and outputs the probability matrix. L(f(·), yt) is the CTC loss
function denoting the distance between the model output of the
adversarial example and the target. ∥·∥p means the Lp norm. α
is a penalty term to limit the Lp. ϵ denotes the upper bound of
the perturbation. Recently, the concept of universal adversarial
perturbation is proposed, making AEs valid regardless of
the user commands. To make the AEs more concealed, the
creating approaches are extended to psychoacoustic hiding [3],
[4] and shorter pulses [9]. However, existing efforts cannot
fundamentally avoid being perceived by human ears.

C. Ultrasound-based Attacks

Inaudible attacks modulate the audio baseband on high-
frequency carriers to the inaudible band of human ears
(>20 kHz) and exploit microphones’ nonlinear vulnerabil-
ity, so that ASRs can receive the malicious audio while
humans cannot perceive it. Recently, inaudible attacks have
been extended from ultrasonic carrier [5], [21] to various
forms, such as solid conduction [22], laser [6], capacitor [23],
power line [24], etc., forming a class of highly threatening
and comprehensive covert attacks. We take the representa-
tive ultrasound-based attack [5] to present the principle of
inaudible attacks shown in Fig. 2. First, the original audio
is double-sideband (DSB) modulated on an ultrasound carrier
via amplitude modulation (AM). Second, the DSB-AM audio
is emitted from the ultrasonic transducer and propagates over
the air. Third, after the microphone receives the signal, audio
modulated on the high-frequency carrier will be recovered
into the audible band before the low-pass filters and ADC
due to nonlinear effects of the microphone’s diaphragm and
amplifier. Thus, though the ultrasound carrier is finally filtered,
the demodulated audio still survives and functions to ASR. The
nonlinear demodulation is formulated as follows:

Sout(t) =

∞∑
i=1

kis
i(t) = k1s(t) + k2s

2(t) + k3s
3(t) + ... (2)

where s(t) and Sout(t) indicate the input AM signal and am-
plifier’s output, respectively. The even order terms, i.e., k2, k4
are the key in recovering the original audio [25]. Notably, such
an ultrasound channel is lossy as the recovered audio samples
differ from original ones. Our investigation demonstrates that
the channel is also challenging to model III-D.
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D. Threat Model

Attack Scenarios: We consider attacks in user-present
scenarios where the user may notice unintended events of ASR
services. Such scenarios involve two entities:
Victim: The victim user is alert to any strange sounds (e.g.,
noise, music, pulses) within human auditory. The user can
speak an arbitrary command to the smart speaker. Once the
user notices attacks, he/she can speak a remedy command to
the smart speaker.
Adversary: The adversary prepares IAPs for specific inten-
tions offline and alters user command in real time by delivering
IAPs ①at a distance from the victim with an ultrasonic trans-
mitter through the window, ②physically close with a handheld
portable device, or ③with a preset off-the-shelf loudspeaker.
The adversary’s goals are providing wrong information to in-
telligent voice customer service, compromising VAs to execute
malicious commands or be in denial-of-service mode, etc. The
adversary can attack more covertly with two strategies: 1) No-
feedback Attack: Prevent the user from hearing VA’s vocal
prompt by “Mute volume and turn off the WiFi”. 2) Man-
in-the-middle Attack: Once the user’s intent is satisfied, the
attack may be much less suspicious, i.e., while delivering the
adversarial perturbation and alter user commands, adversaries
can record the user commands and then replay it by traditional
ultrasound-based attack means.

Attacker Capability: Distinct from the previous works [3],
[4], [7], [12]–[14], [26] that require the user’s speech samples
in advance to craft adversarial perturbation, we assume the
adversaries have no knowledge of what the user will speak
during performing attacks. In line with the widely adopted
settings in prior works [4], [7], [8], [12], [13], we assume the
attackers have prior knowledge of the target ASR model for
obtaining the gradient information during optimization. The
adversaries have access to the user’s recording device, e.g.,
borrow a smartphone of the same brand, based on which the
adversary can model the ultrasonic transformation, and then
create the IAP in advance. We assume adversaries have the
flexibility to deploy the hidden ultrasonic transmitter nearly
or at a distance, and the recording device is in its line
of sight. Additionally, adversaries can also utilize stealthy
portable devices and off-the-shelf loudspeakers in everyday-
life scenarios to deliver VRIFLE.

III. PRELIMINARY INVESTIGATION

A. Failure of Traditional Inaudible Attacks

Given the purpose of avoiding alerting users, directly in-
jecting malicious commands into ASR systems using laser- [6]
or ultrasound-based [5], [21] inaudible attacks is intuitive. Al-
though laser-based attacks can reach an 100m attack range, we

choose ultrasound instead of laser for three practical reasons:
(1) The laser spot on the microphone is visible and will alert
users immediately; (2) The laser-based attack requires strict
line-of-sight alignment; and (3) The severe channel distortion
of laser-delivered attacks may nullify fine-grained adversarial
perturbations.

To examine whether traditional ultrasound-based attacks
can manipulate ASRs into recognizing the modulated mali-
cious commands while users are speaking, we need to ensure
that the ultrasonic carrier frequency is optimal. Therefore, we
first employ an ultrasonic Vifa [27] to launch a wide-range
carrier sweeping from 20∼40 kHz. By analyzing the signal-
to-noise ratio (SNR) of demodulated basebands, we justify the
optimal frequency of four recording devices, i.e., iPhone14
pro: 24.7 kHz, Reno5 pro: 27.7 kHz, Pixel 3aXL: 25.6 kHz,
and MIX2s: 25.1 kHz, respectively. This result is consistent
with DolphinAttack [5], which reveals most devices’ optimal
attack carrier frequency is around 25 kHz (22.6∼27.9 kHz). In
this way, we set the default carrier frequency to 25 kHz, whose
advantages are two-fold: (1) Due to lower airborne attenuation,
25 kHz also benefits longer-range attacks than high-frequency
carriers (e.g., 40kHz); (2) Moreover, 25 kHz as one of the
most typical parameters for commercial ultrasonic transducers
that cost as low as 0.14$ per unit [28], making the attack cost-
effective.

Although the optimal attack frequency is determined, tradi-
tional ultrasound-based attacks still fail due to user disruption.
Specifically, we select 10 text-to-speech commands listed in
Tab. IX (e.g., “turn on airplane mode”) as the basebands.
Four smartphones 50 cm away serve as recording devices that
recover the AM signal into audible-band speech. For benign
command samples, we randomly select 20 utterances from the
popular fluent speech commands dataset [29] to be played via
a loudspeaker and recorded by identical smartphones. We also
perform simultaneous emissions of both signals, so they are
superimposed on each other. For each recording device, we
collected 10 × 20 = 200 mixed samples and calculated each
sample’s character error rate (CER) through the Azure speech-
to-text API [1]. As shown in Fig. 3, the direct ultrasound-
based attacks and benign audio are well recognized by ASR
models, with average CER of 10.8% and 6.88%, respectively.
Nevertheless, once attack emission and user’s voice coincide,
the attack performance (i.e., 10 malicious commands as the
target transcription) will severely degrade to an average CER
up to 96.01%, even if we have boosted its power2. We
believe it is a consequence that when ASRs process the mixed
samples, each sampling point of the malicious signal sequence
is affected by the human voice, making the acoustic features
extracted by the ASR deviate from adversaries’ anticipation.

B. Ultrasonic Adversarial Perturbation Delivery

We envision that the above failure can be addressed by
leveraging the vulnerability of ASR models to craft universal
adversarial perturbations. Notably, it is promising to deliver
the perturbation in an ultrasound-based manner to eventually
reach the goal, i.e., the adversary can alter any user commands
into a targeted one while guaranteeing entirely inaudible to

2To facilitate ultrasound-based attacks, we set the volume up to 95 dB, and
that of audible benign speech is 70∼75 dB.
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Fig. 4: Comparison between the audible RIR and ultra-RIR in
estimating the digital-to-physical transformation.

the victim. However, we find the well-trained perturbations
that are effective in digital domain all fail after being directly
modulated and emitted by the ultrasound-based attack method
(results are also given in §V-C1, G2).

Since the ultrasonic channel is lossy and distorted, to
obtain a perturbation that can still effectively tamper with user
commands after a series of processing based on ultrasound-
based attack mechanisms and over-the-air delivery, i.e., the
pipeline shown in Fig. 2, we need to precisely model the
transformation from a perturbation in the digital domain to
its physical version. However, generalizing an AE from the
digital to the physical world is inherently difficult, which has
been proved by substantial research in both computer vision
and audio community [7]–[9], [13], [16], [30], [31]. This issue
in the audio domain refers to the fact that played-out speech
samples are subject to signal distortion and environment inter-
ference (i.e., reverberation, attenuation, and noises). Previous
audible-band works [16], [32] have paid efforts in simulating
the physical world by adopting room impulse response (RIR)
during the AE optimization process to close the gap between
the digital and physical world. Moreover, no work has yet been
proposed on modeling ultrasonic delivery. We are motivated to
investigate the feasibility of applying audible-band modeling
technologies to our unique ultrasonic case.

C. Attempts at Ultrasound Delivery Modeling

In this subsection, we elaborate on applying two potentially
feasible modeling methods for our case.

1) Modeled by room impulse response: Inspired by the suc-
cess of audible-band AEs [16], [32] drawing on the ability of
RIR, which describes the reverberation and attenuation during
audible sound propagation, we envisage that a similar RIR idea
can generalize to characterize the ultrasound transformation
process. Specifically, they exploit existing RIR databases [33],
[34] by convolving random RIR clips with digital adversar-
ial signals in the optimization process, simulating the audio
recorded by the receiver in various scenes, e.g., large concert
hall and narrow corridor. Therefore, we modulate the ideal
impulse signal as the baseband on an ultrasound carrier and
receive it on the recording device. With the obtained “ultra-
RIR”, we perform convolution with the original audio, whose
output are expected to well represent the actually demodulated
inaudible attack’s result. As a comparison, we also conduct
similar operations via a JBL loudspeaker for audible audio.
Fig. 4 shows that the estimated audible audio with RIR is
very close to the actual playback. However, for the inaudible
aspect, there is significant gap between the recorded attack
audio and the estimated using ultra-RIR. We believe the reason
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Fig. 5: Illustration of displacement-induced changes in recorded
audio.
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for such a mismatch is that the RIR rationale relies on the
linear time-invariant (LTI) system prerequisite. However, the
transformation is nonlinear because ultrasound-based attacks
leverage microphones’ nonlinearity vulnerability.

2) Modeled by Neural Network: Since RIR is originally
designed for LTI systems, neural networks with excellent
nonlinear fitting capability should work well given their suc-
cess in various tasks, e.g., speech denosing [35] and image
printing distortion [30]. Considering that an adversary expects
a practical transformation model with minimal effort (i.e.,
dataset requirements) while guaranteeing its generality, we im-
plement a multi-layer perception model (MLP) with only 60k
parameters, using 120-second aligned original and ultrasound-
based attack audio pairs. We find that the MLP can achieve
a generalized capability of mapping digital-to-physical world
spectrums between unseen pairs, but with position-dependent
constraints. As shown in Fig. 5, a slight position displacement
(3 cm) leads to an apparent change (i.e. bringing anomalous
noises) in the recovered baseband, which can cause the trained
network to fail to estimate the recorded audio at various
positions. Overall, although MLP builds a functional mapping
for the nonlinear ultrasound transformation in a fixed relative
position, it is too restricted due to the nature of ultrasound
(cf. §III-D). Besides, adopting distance d and angle θ as
conditional network parameters might help, but collecting data
for each position is endless.

D. Challenges in Ultrasonic Delivery Modeling

The above attempts’ failure drives us to look into the
root cause of why modeling ultrasonic transformation is
challenging. Ultrasound is intrinsically distinct from audible
sounds due to its much higher frequency, and ultrasonic
delivery leverages microphones’ nonlinearity. We also
summarize the following characteristics:

• Ultrasound-induced Noise: The ultrasound carrier continu-
ously forces the diaphragm to vibrate, probably resulting
in anomalous noise in recorded attack alike Fig. 4&5.
Combined with such variable ultrasound fields, a slight dis-
placement (e.g., 3 cm) can lead to different audio patterns.
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Fig. 7: Workflow of VRIFLE. ①-③: the ultrasonic transformation precisely describes the perturbation changes during physical delivery. ④: the
transformed perturbation is involved into optimization for silence and universal attack purpose. ⑤-⑦: we boost the attack’s physical-world
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• Nonlinear Distortion: Eq. 2 indicates the I/O relationship of
nonlinear demodulation, in which the factors ki is unknown
and varies with recording devices [15].

• Varying Soundfield: As shown in Fig. 6, ultrasound field
(25 kHz) is significantly more directional and changes more
dramatically than audible waves (1 kHz) due to the much
shorter wavelength.

• Hardware-induced Instability: Ultrasound-based attacks rely
on a series of signal processing and sophisticated devices,
thus bringing instability due to hardware imperfection.

IV. DESIGN OF VRIFLE

A. Overview

Design Goal. To manipulate ASRs while being used by
users, adversaries shall create universal IAPs. However, they
face the following challenges to obtain and deliver such
perturbations:

Ultrasound Complexity (C1). Modeling the ultrasonic de-
livery is unprecedented compared to the audible-band RIR
mimics, because ultrasound fundamentally differs from audible
sound as listed in §III-D, including (i) ultrasound-induced
anomalous noises, (ii) nonlinear distortion, (iii) varying sound
field, and (iv) hardware-induced instability.

User-ASR Connection (C2). ASR systems always respond
to the user after receiving a command. Adversaries need
to suppress the impact of user disruption, i.e., break down
the user-ASR connection by IAPs that can silence user’s
excessively long speech and remedy commands.

User Variation (C3). Since adversaries cannot exactly
know the user speech’s content, timing, or length, naively
mixed speech signals will lead to undesirable ASR transcrip-
tions. The tailored IAP needs to be universal while facing
arbitrary user commands and superimposed time points.

Physical Robustness (C4). The adversary also faces several
factors that are variable in physical attacks, such as user
loudness, hardware instability, and the user’s environment (i.e.,
with different reverberations). We also extend the modulation
method for reducing unexpected sound leakage.

To achieve adversaries’ goal while addressing the afore-
mentioned challenges, we propose VRIFLE with unique tech-
nical design. This design includes: (1) tackling ultrasound
complexity to deliver physically effective IAPs and there-
fore addressing user auditory (cf. §IV-B); (2) overcoming
user disruption to achieve real-time manipulation of ASR
(cf. §IV-C, IV-D); (3) boosting attack stealthiness and prac-
ticality (cf. §IV-E). The optimization workflow of VRIFLE is
exhibited in Fig. 7.

Problem Formalization. Unlike the audible-band AE at-
tacks subject to stealthiness constraints, we achieve inaudible
perturbations delivery using ultrasound modulation. Thus, we
avoid the narrow constraints in Eq. 1, e.g. ϵ < 0.01, where the
IAP’s optimization space can reach the maximum upper bound:
δ ∈ [−1, 1]n. We believe a broad optimization space possesses
more feasible solutions, facilitating a universal attack. Com-
bined with our core objective: fooling ASRs to recognize the
superimposed speech of user voice and perturbation x + δ as
the adversary-desired transcription yt. This basic idea can be
optimized via the following formulation:

minimize L(f(x+ δ), yt)

s.t. δ ∈ [−1, 1]n and x+ δ ∈ [−1, 1]n (3)

B. Ultrasonic Transformation Modeling

As shown in Fig. 8, our modeling exploits the 5 additive
property of the baseband audio m’s nonlinear transformation
H(f)m(f) and the ultrasound-induced anomalous noise n, and
then 6 yields estimated audio m̂ = H(f)m(f) + n that is
highly similar to the actual recorded audio m̃. In this subsec-
tion, we elaborate on our divide-and-conquer strategy of im-
plementing ultrasonic transformation modeling that overcomes
problems (i)-(iii) corresponding to ultrasound complexity (C1).
Based on this, we can deliver physically effective IAPs via the
steps 1 ∼ 3 in Fig. 7. We address the problem (iv) in §IV-E.

1) Tackling Anomalous Noises: Ultrasound-based attacks
modulate the baseband m with s(t) = A[1 +m(t)]c(t), where
regardless of the energy of m, the carrier signal c(t) = cosωct
always emits and forces the microphone diaphragm into vi-
bration, appearing abnormal noises [15]. Our experiment also
demonstrates that although the recorded s varies with m, the
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Fig. 8: Ultrasonic transformation modeling. 1st row: Procedure to
obtain the ultrasonic frequency response (UFR). 2nd row: High
similarity between the estimated audio and actually recorded audio
(the red box) proves its effectiveness.

anomalous noise pattern is almost decided by the carrier.
The nature of the ultrasound field further results in noise
variation with different injection angles θ and distances d,
showing irregular patterns. Therefore, due to such variation,
neural networks fail to learn a stable mapping of the digital-
to-physical domain. We denote the noise n(θ, d) = fn(θ, d, s),
where fn is the projection of the ultrasound signal s to the
recorded abnormal noise n at different positions. In practice, an
attacker can sample the variable anomalous noises by simply
emitting the ultrasonic carrier. We collect a lightweight noise
dataset using 25 kHz ultrasound (without modulation) of 1m
at varying angles, forming a set Un of 25 pieces of 10-second
noises.

2) Ultrasonic Frequency Response: Recalling the reasons
for LTI system-based RIR’s failure in §III-C1 of modeling un-
precedented ultrasonic delivery, except for anomalous noises,
the inability to describe the nonlinear demodulation process is
also a key factor. The adversaries aim to achieve robust and
adaptive attacks with minimal effort, i.e., building an efficient
transformation that can well estimate the demodulated pattern
of a given digital perturbation after ultrasonic delivery in Fig. 8
(red box). Fig. 8 also depicts the recorded audio derived after
inaudible signal injection, whose energy is clearly concentrated
in the low-frequency band compared to the original audio [21].
Although nonlinearity exists, we are driven to obtain an
ultrasonic frequency response (UFR) that characterizes the
inaudible acoustic energy conversion at different frequencies.

We first overcome ultrasound-induced noises that hinder
us from obtaining an accurate frequency response by adopting
the sine sweep technique [36], which can ignore components
uncorrelated to the sweep signal during processing. We use it
to generate a fast 10s sweep ranging from 50∼7800 Hz, which
is carefully chosen for diminishing hardware imperfection,
and record it on the receivers, shown in Fig. 8 1 . Thus, we
can obtain the UFR H(f) by deconvolution (∗−1). Notably,
as shown in Fig. 8 2 , it does shield the effects of noises
and focuses on the frequency response measurement, which
decouples the linear and nonlinear terms. We sum these terms
up in Fig. 8 3 , forming a holistic frequency-domain UFR of
the received perturbations δ as ∆(f) = H(f)∆(f), where
∆(f) = F(δ(t)); F means Fourier Transform.

3) Enabling Location-Variable: Uneven ultrasound field
makes MLP-based method in §III-C2 difficult to estimate
transformation from arbitrary-position attack. As for efficient
UFR, we believe that combining it with ultrasound s(d, t)
propagation process [37] will empower to render more adaptive

attacks:

H(f, d) = H(f) · e−a0ωc
nd, n ∈ [1, 2] (4)

where a0 is a medium-dependent attenuation parameter, ωc is
the carrier’s frequency. Moreover, the energy variation caused
by different injection angles is hard to model under such a
changing sound field. We overcome this issue by conducting
sine sweeps at different angles θ similar to §IV-B1 and
get 25 pieces of 10-second sweep clips. Consequently, the
collection of a complete set of UFRs and anomalous noises for
subsequent optimization requires approximately 8.3 minutes.
Overall, with a pair of UFR Hθ(f, d) and noise clip n(θ, d)
from the same location, we can well estimate the digital
perturbation into its recording. However, to obtain a location-
variable perturbation, we shall modify the expression of Eq. 3
and find the perturbation via robust training:

argmin
δ

E
hθ∼UH ,n∼Un

[L(f(x+ hθ(d) ∗ δ + n), yt] (5)

where we use time-domain expression hθ(d) ∗ δ to indicate
the transformed perturbation’s waveform, as Hθ(f, d)∆(f) =
F [hθ(t, d) ∗ δ(t)] obeys the time convolution theorem. We
randomly select the UFR Hθ(f, d) and noise n pairs from
UH and Un during the optimization process to mimic actually
delivering the inaudible adversarial perturbation at different
locations. As we fully take ultrasound’s inaudibility advan-
tages, the experiment results also validate the optimization
space is large enough to craft a robust perturbation effective
under varying UFRs and noises.

C. Silence Perturbation

Given the failures of prior works faced with user dis-
ruption, specifically ➋ the challenge of excessively long in-
structions, and ➌ the potential counteraction through remedy
commands, we believe that the solution lies in silencing the
user instructions, i.e., breaking down the user-ASR connection
when necessary. Based on our ultrasonic transformation mod-
eling, adversaries can materialize physically effective silence
perturbations. These perturbations can alter arbitrary user
instructions to blank (“ ”) in a targeted manner, effectively ren-
dering the ASR system unresponsive to the user instructions.
We observe that implementing silence perturbations offers
several advantages, including: (1) When altering long user
commands with short target intent, such as “start recording”
(case ➋). The silence perturbation can be linked alongside the
universal perturbation in an alter-and-mute fashion (cf. §IV-D)
so that the ASR will output adversary-desired transcription; (2)
it guarantees that users cannot meddle in running malicious
operations by issuing remedy commands (case ➌), even if they
notice the presence of attacks; (3) it can render ASR services
in the denial-of-service condition, preventing users from using
them normally.

Fig. 9(b) depicts the diagram of a robust silence pertur-
bation ξ, which is expected to superimpose over any benign
content like Fig. 9(a) and leads the final transcription of ASR
to blank yb (“ ”). The length of ξ is empirically set to 5s
based on our experiments, for which we balance the duration
of common speech instructions and the optimization overhead.
For the case of excessively long user utterances, we address
them in the generation process by repeating the perturbation.
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Fig. 9: Diagram of VRIFLE attacking a benign speech (a) with the silence (b) and universal goals in an alter-and-mute manner (c&d).

To craft such a content-agnostic ξ, we improve the penalty-
based expectation function to find the silence perturbation over
a group of common voice commands Ux, as shown in Fig. 7 4 .

argmin
ξ

E
hθ∼UH ,n∼Un,x∼Ux

[L(f(Sx+hθ(d) ∗ ξ + n), yb)] (6)

where S(·) means randomly shifting the user utterances x for
introducing randomness to the superimposed time within a
preset T :100 ms. Ux is elaborated in the experimental setup
§V-A2. It is more practical than the case where an AE and
user speech are required to be perfectly aligned. The details
of content-agnostic and synchronization are given in §IV-D.

D. Universal Perturbation

Different from the proof of concept of universal AEs
against a CNN-based speech command classification model
presented in [9] by exploiting the temporal insensitivity of
CNNs, the RNN-based models widely deployed on commercial
ASR services are more difficult to attack. This difficulty arises
because end-to-end ASRs, such as DeepSpeech [20], employ
connectionist temporal classification (CTC) that calculates the
loss between a continuous speech feature sequence and a tar-
get transcription, making it context-dependent. Consequently,
when introducing subtle perturbations in different contexts, it is
often difficult to ensure that the CTC losses of multiple mixed
signals will simultaneously converge to the desired target.

1) Content-Agnostic: We believe that the reasons why
previous audible-band AEs struggle to tamper with large
amount of speech content are two-fold: user auditory and user
disruption. To avoid being noticed by users, prior adversarial
perturbations are limited by imperceptibility constraints and
signal forms (e.g., with short length and subtle amplitude).
Consequently, these perturbations are fragile and easily defen-
sible. In contrast, our IAP delivery is completely inaudible
via ultrasound modulation. Thus, the perturbation’s length
and amplitude are unconstrained, maximizing its optimization
space. We fully use the advantages to generate a universal
perturbation that can alter substantial short utterances into
adversary-desired intent, e.g., a 1.2s δ tailored for “open the
door”.

However, for excessively long speech or possible sub-
sequent remedy commands in user-present scenarios (user
disruption ➋-➌), the adversary should resort to the silence
perturbation in §IV-C, which can cooperate well with the uni-
versal perturbation in an alter-and-mute manner. As depicted
in Fig. 9(c) and (d), when the universal perturbation δ is
combined with a well-trained silence perturbation ξ̂, the former
can apply to alter the user commands, and the latter will mute
the subsequent user commands or remedies. As illustrated

in Fig 7 4 , we determine the optimal δ by optimizing the
following expectation function:

argmin
δ

E
hθ∼UH ,n∼Un,x∼Ux

[L(f(x+ hθ(d) ∗ δ : ξ̂ + n), yt)]

(7)
where δ : ξ̂ means the universal perturbation δ followed by a
crafted silence perturbation ξ̂. Ux is the same subset used for
generating silence perturbations, whose details are given in
§V-A2.

2) Synchronization-Aided: Although the universal pertur-
bation can deceive the ASR with any victim’s speech into
adversary-desired intent, an adversary can hardly deliver at-
tacks synchronously when the victim vocalizes. Out of at-
tack practicality, we propose a VAD-based synchronization
mechanism to achieve real-time manipulation, which avoids
continuous AE broadcasting or assuming an adversary always
ready for attacking. Specifically, we employ a microphone
to record the user’s voice. Once detecting the user’s speech
via voice activity detection (VAD), our program automatically
triggers the emission of the prepared perturbation. Based
on our experiments, the delay is impacted by three stages
of our real-time pipeline: (1) from user vocalizing to be-
ing detected by the running VAD program (5∼20 ms); (2)
software-to-hardware IAP triggering (5∼15 ms); (3) ultrasound
propagation (0∼30 ms). Due to the delay uncertainty, we
consider bringing the time randomness of a range T into our
optimization, whose upper bound is empirically set to 100 ms.
For a direct reference, the average overall delay when attacking
at 4m is around 27 ms, far below the maximum tolerable
delay (100 ms) preset during optimization. Particularly, the
recording of user speech can also be utilized to present a more
covert attack by inaudibly replaying user-desired commands,
as “Man-in-the-middle Attack” stated in §II-D. By integrating
the above-mentioned optimization objectives, we further craft
the universal IAP through the below expectation:

argmin
δ

E
hθ∼UH ,n∼Un,x∼Ux

[L(f(x+ S
hθ(d)∗δ:ξ̂+n

), yt)] (8)

where S(·) mimics VRIFLE can be superimposed on victim
speech at random time points (Fig. 7 4 ) within the preset T .

E. Physical Robustness

1) Loudness Adaptive and Hardware Instability: When
conducting physical attacks, VRIFLE is able to handle the chal-
lenges of ultrasound nature based on our digital-to-physical
transformation in §IV-B. However, the loudness of the victim’s
speech varies with context or emotion, and hardware instability
still exists. These will result in difficulty maintaining our
inaudible perturbation in effectively altering the victim’s voice
if the mutual energy relationship between the two is incon-
sistent with the optimization process. As shown in Fig. 7 5 ,
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we introduce relative volume augmentation into the crafting
process, which exploits a hyper-parameter β denoting a range
of user speech’s volume and thereby brings randomness to the
mutual relationship between user voice and perturbation.

2) Attack at Different Environments: Although ultrasound-
based attacks directly inject into recording devices’ micro-
phones and are reverberation-free, the audible-band human
voice still goes through multi-path reflections and ambient
noises in different environments. To alter user commands
regardless of the impact of scenes, we apply random RIR
and noise clips from the Aachen Impulse Response (AIR)
Database [33] in Fig. 7 6 , including small, medium, large
rooms and corridors for user speech augmentation.

3) Single-Sideband Extension: Although VRIFLE can
achieve real-time manipulation of the ASR output very
covertly using sophisticated devices (e.g., narrowband ultra-
sonic transducers and signal generators) at long distances
through windows or doors, we aim to accomplish highly
stealthy attacks even in close proximity to the victim by
utilizing everyday-life loudspeakers or portable attack devices.
However, the simple amplifiers, sound cards, and off-the-shelf
loudspeakers exhibit poor suppression of intermodulation and
harmonics of high-frequency DSB-AM signals. Namely, they
present increased nonlinearity, resulting in sound leakage (cf.
§VII). To enable attacks with portable devices and loudspeak-
ers (cf. §V-D), we adopt single-sideband amplitude modulation
(SSB-AM), which removes one of the sidebands based on the
Hilbert transform [38]. Compared to DSB-AM, SSB-AM has
only half the bandwidth, rendering higher transmission effi-
ciency. Importantly, it mitigates the intermodulation between
different sideband frequencies, making the sound less prone to
leakage than DSB-AM at the same energy level. Specifically,
we employ upper sideband modulation (USB-AM), formalized
as S(t) = mcosωct − m̂sinωct + cosωct, rather than lower
sideband modulation (LSB-AM), as the former exhibits better
inaudibility in our experiments and more details are given in
Appendix §A.

Overall, the algorithm of VRIFLE is described in Algorithm
1, Appendix §D, where we demonstrate the optimization
process of crafting VRIFLE from scratch.

V. EVALUATION

A. Experiment Setup

1) Overview: We implement VRIFLE using PyTorch [39]
on a Ubuntu 20.04 server with Intel Xeon 6226R 2.90GHz
CPU and NVIDIA 3090 GPU. Based on our experiments, we
empirically set the default configuration as δ = 1.2s, ξ = 5s,
ϵ = 1, 0.5 ≤ β ≤ 1.5, sync range T=100 ms, maxEpoch=800.
Adam optimizer [40] is used to speed up our convergence. For
evaluating VRIFLE’s effectiveness in fooling ASR while users
use it, we select the end-to-end DeepSpeech2 [20] as the target
model and conduct experiments in both digital and physical
scenarios.

2) Dataset: We adopt the typical Fluent Speech Command
Dataset [29] to examine the effectiveness of VRIFLE, includ-
ing 30,046 voice command samples. We randomly selected
896 samples from the 10-person validation set given in the
dataset, with each speaker contributing around 90 utterances

on average. These samples are used to craft our perturbation.
The remaining unseen 29,150 samples are used to evaluate
VRIFLE under various settings.

3) Hardware: We employ a signal generator (SIGLENT
SDG6032X) [41] to modulate the created IAPs, a power
amplifier (NF HSA4015) [42] to enable long-range delivery,
and a custom ultrasound transducer array to emit the modulated
IAPs. The recording devices to be tested include Google
Pixel 3aXL, iPhone14 pro, MI Mix2s, OPPO Reno5 pro, and
ReSpeaker Mic array v2.0 [43], where all model versions are
released in the last five years. Moreover, we evaluate attacks
with a self-made portable device and a loudspeaker in §V-D.

4) Metrics: (1) We use the success rate (SR) to indicate
the percentage of VRIFLE successfully altering user commands
and matching target transcriptions in all attempts. (2) We use
character error rate (CER), a representative metric in ASR
tasks, to indicate the adversary’s ability to tamper with user
commands from the character level; a lower CER represents
a more effective attack. (3) Signal-to-Noise Ratio (SNR) and
L2-distortion are vital for audible-band AEs because of the
imperceptibility requirements. SNR: the ratio of benign audio
power to the perturbation power. L2: the sum of squared
amplitude. AEs with a low SNR and high L2 are more likely
to be noticed, and vice versa.

B. Digital Attack Performance

As our attack focuses on real-world scenarios, where
physical disturbances always exist, we incorporate the effects
of physical conditions by employing our ultrasonic transfor-
mation modeling to guarantee that digital attack performance
has physical significance.

1) Impact of Optimization Space: Since the delivery of
VRIFLE is inaudible, it facilitates the unconstrained advantage
of setting ϵ up to 1 (i.e., the normalized audio’s upper bound)
for universal attacks. We further explore attack capability
under different ϵ upper bounds, both universal and silence
IAPs. We optimize silence perturbations according to ϵ =
0.2, 0.4, 0.6, 0.8, 1.0, respectively, aiming to tamper the user
instructions to the blank. In addition, we obtain the universal
perturbations expected to alter user commands to “open the
door” with the same settings. CTC loss convergence curves
are shown in Fig. 10. We observe that the crafting process
can converge faster as the ϵ (i.e., the optimization space)
increases in both tasks. After ϵ reaches 0.8, the convergence
rate approaches the maximum. Then we estimate the physical
delivery of both perturbations via an unseen transformation
model (i.e., a pair of UFR and anomalous noise not involved
in training). The transformed perturbations are further super-
imposed on every test voice command sample. Results listed
in Tab. II show that, in addition to the faster convergence, a
larger ϵ significantly boosts the universality of VRIFLE. It can
successfully alter 18,946 samples into “open the door” and
mute 27,531 user commands into blank “ ”, which highlights
VRIFLE features a highly universal capability.

2) Comparison of Convergence Overhead and Audibility
Cost for the Universality Goal: The unconstrained advantage
of VRIFLE (ϵ = 1) empowers its high universality. We further
compare it with 3 classical audible-band AEs (i.e., CW [7],
Qin [4], and SpecPatch [8]) regarding the cost for achieving
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Fig. 10: CTC loss curves of silence and universal perturbations during
the optimization process under varying ϵ.

TABLE II: The number of successfully silenced/altered test speech
samples under different ϵ upper bounds

Upper Bound (ϵ) 0.2 0.4 0.6 0.8 1.0

Silence Perturb. 1,591 8,095 17,064 24,832 27,531

Universal Perturb. 649 5,268 13,085 16,726 18,946

the same universality goal of each method. We reproduce these
works strictly following their instructions. We set two goals:
creating a single perturbation that can alter 1) one or 2) five
commands based on each method. Notably, for audible-band
AEs, we employ RIRs for physical simulation to be consistent
with our default setup. We specify the minimal upper bounds
ϵ of CW, Qin, and SpecPatch to 0.03, 0.05, 0.05, respectively,
based on which the three methods can maintain universality
for 5 commands, i.e., finally converge to the target transcript
“Open the door”. We examine also the CTC loss convergence
speed of 4 methods. The normalized loss curves in Fig. 11
clearly show that VRIFLE (in red) converges within the fewest
iterations among 4 methods; SpecPatch (in blue) converges
slowest as it is devised to be short (0.5s). Specifically, we
list the overall duration for each methods to final convergence
for altering 5 commands—VRIFLE: 1.63 min, CW: 6.52 min,
Qin: 9.16 min, and SpecPatch: 35.38 min. VRIFLE converges
faster because (1) we reduce optimization complexity by only
picking 5 random UFR/noise pairs rather than all ultrasonic
channel data per iteration; (2) VRIFLE can quickly find feasible
solutions due to its broad optimization space. In addition,
Tab. III demonstrates the SNRs and L2-distortion values of
audible-band AEs under different universality goals. All SNRs
of these AEs are low due to a compromise of physical
robustness and imperceptibility, with the highest SNR down to
22 dB. Moreover, if the goal number increases, audible-band
AEs are bound to get louder and more easily heard.

3) Different Target Commands: Given that adversaries may
launch attacks for various purposes, they will craft different
adversarial perturbations accordingly. In this experiment, we
first train 10 universal perturbations referring to typical ma-
licious commands [44] listed in Appendix §C Tab. IX along
with the silence perturbation. Then we apply VRIFLE to 7,200
benign commands to validate its effectiveness, amounting to
72,000 samples. We count the success rate when transcription
outputs match the target commands correctly. In addition, we
also count CERs over all samples. We find no significant
performance varying with target transcripts, where most targets
derive a 100% SR and 0% CER (7 out of 10). The lowest SR is
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TABLE III: Audibility cost
Method Goal SNR L2

CW 1 22dB 1.31
5 18dB 2.24

Qin 1 22dB 1.42
5 17dB 2.67

Spec. 1 8.5dB 122
5 8.4dB 123

Fig. 11: CTC loss curves. Compare the convergence speed of VRIFLE
with 3 classical audible-band AEs. Dashed lines: train a perturbation
that can simultaneously alter 5 voice commands; likewise, Solid lines:
alter 1 command, thus converging faster than the former.

still up to 92.82%, corresponding to “Mute volume and turn off
the WiFi”. Moreover, it is worth noting that the highest CER
of these targets is still down to 0.50%, suggesting VRIFLE
can tamper with user commands well from the character level.
Due to page limitations, the details are listed in Appendix C
Tab. IX.

C. Physical Attack Performance

We perform extensive physical experiments to evaluate the
practical performance of VRIFLE under different conditions,
i.e., w/o our modeling, distances, environments, recording
devices, etc. In the physical experiments, we set the target
intent as “open the door”, the attack distance 4m away from
the recording devices with the injection angle pointing to
their bottom microphones as the default configuration unless
otherwise specified. Except for the experiments about different
scenes, the rest are conducted in a laboratory of approximately
13.6m×5.2m with slight HVAC noises. We employ a custom
ultrasonic transmitter for inaudible adversarial perturbation de-
livery. A loudspeaker plays the audible benign speech samples,
and the ambient noise level is around 38 dB. We also deploy
a VAD-based program in conjunction with a microphone
connected to the laptop to trigger IAPs delivery using the
synchronization-aided design. This ensures real-time triggering
when audible benign speech initiates. Our real-world attack
scenario is given in Appendix §B, Fig. 19.

1) Ablation Experiments w/o Transformation Modeling: To
validate the effectiveness of our ultrasonic transformation mod-
eling, we apply 3 strategies to craft IAPs. In addition, we apply
direct ultrasound-based attacks as the baseline group (G1). The
first strategy is an optimization without transformation, i.e.,
hθ(d)∗δ+n in Eq. 8 is degraded to simple δ during the crafting
process (G2). Similarly, the second strategy uses a low-pass
filter, reducing the precise transformation to a filter that allows
signal components below 3 kHz to pass (G3). The third
strategy is crafting a perturbation with our transformation, i.e.,
VRIFLE (G4). We carry out experiments with synchronization-
aided emission of both benign audio and attacks. We select 40
benign utterances to be played via loudspeaker, and finally
collect 480 mixed samples (120 per group) by repeating the
operation three times for minimizing errors. Tab. IV lists each
group’s success rate and average CER, which remarkably
denotes that our modeling can well describe the digital-to-
physical transformation during optimization. Approximating
the transformation as a low-pass filter can also generate a
physically available perturbation with 21.67% SR and 19.39%
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TABLE IV: Ablation of w/o transformation modeling

Metrics Baseline (G1) Without (G2) Low-pass (G3) With (G4)
SR 0% (0/120) 0% (0/120) 21.67% (26/120) 100% (120/120)

CER 95.7% 78.93% 19.39% 0%
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Fig. 12: VRIFLE’s performance at different distances.

CER. The attack performance decreases to 0% in G1 and
G2. However, attacks without modeling still outperform the
baseline (G1) from the CER perspective due to leveraging the
model vulnerability.

2) Different Attack Distances: Attacks in the audible band
are constrained by concealment, resulting in perturbations that
cannot be delivered with more extensive ranges. By contrast,
our attack delivery via ultrasound modulation can apply sub-
stantial power, which overcomes the attenuation nature of
ultrasound. We adjust the amplifier gain so that the high-
frequency beam’s energy reaching microphones is maintained,
thus ensuring the effectiveness of VRIFLE. Specifically, we
conduct experiments at the ultrasonic transmitter away from
the receiving device within 1m∼13m (1m interval), where
the maximum power at 10m∼13m is approximately 3.2 Watt.
We randomly select 40 voice commands and play them at
each location. We repeat the perturbation superimposed on the
benign command 3 times and totally collect 1,560 samples,
with 120 per distance, respectively, as well as feed them into
the ASR model. We count the success rate and CER in Fig. 12,
where VRIFLE is very effective within 1m∼9m as the SRs are
up to 100% and CERs are down to 0%. The SR is 88.7% and
CER is still down to 3.25% at 10m. Besides, we observe the
attack performance decrease at 11m∼13m. We believe this is
due to the ultrasound attenuation, which makes the perturbation
less significant to the ASR model. We also discuss this issue
in §VII.

3) Different Attack Angles: In this experiment, we keep
the recording device’s bottom microphone spatially within
the ultrasound beam’s coverage and set the attack distance
to 2.5m. We rotate the recording device from 0◦to 180◦at
15◦intervals, among which 90◦means the ultrasound directly
points to the bottom microphone. Under each angle, we play
40 benign commands and emit the universal IAP. Eventually,
we collected 520 mixed audio signals from 13 angles. As
shown in Fig. 13, although ultrasound is highly directional, we
find that there is no significant difference with 100% success
rate among different angles within 15◦∼150◦. As the deployed
location of bottom microphones varies with different phones,
therefore attack performance is not symmetrical with angles
(i.e., 79% at 0◦and 49% at 180◦). Overall, as most voice-
interface devices nowadays are equipped with omnidirectional
microphones, VRIFLE can be effective as long as the beam can

TABLE V: Different attack scenes

Scene Office Lounge Laboratory Corridor
SR 100% (40/40) 95% (38/40) 100% (40/40) 92.5% (37/40)

CER 0% 0.79% 0% 1.04%
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Fig. 13: VRIFLE’s performance at different angles.

cover the bottom microphone.

4) Different Scenes: To examine the effectiveness of VRI-
FLE in different environments, our experiments include a small
office (2.4m×2.6m, 36 dB), medium lounge (6.3m×3.8m,
42 dB), large laboratory (13m×5.2m, 38 dB), and narrow
corridor (60m×2m, 44 dB). In these scenes, the reverberation
pattern of audible sound varies with space size. Our con-
figuration consists of a transmitter-to-device distance of 4m
and a loudspeaker-to-device distance of 1m, which mimics the
standard user interaction distance, except the distance of 2.5m
for the small office due to its limited size. We also play 40
audible benign samples and superimpose VRIFLE on them for
once. Then we collected 160 samples from 4 spaces. As shown
in Tab. V, we find no significant difference between these
scenarios, as our design considers such physical variation.

5) Different Ambient Noises: We perform ambient noise-
related experiments in our laboratory, where noises of 4 typical
scenes are involved, i.e., cafeteria (people chatting), office
(keyboard typing), lab (machine running), and outdoor (wind
blowing) downloaded from the freesound [45]. We evaluate
noise starting from 50∼65 dB, with 5 dB intervals, and we play
noises through an additional loudspeaker to guarantee the noise
pressure level reaches the receiver at 50, 55, 60, and 65 dB.
Noise samples from 4 scenes are played continuously. At the
same time, we play 20 audible benign commands and deliver
VRIFLE. Given that the noise is not constant, the superposition
of different parts may have different effects. We repeat the
above operation three times and collect 240 mixed samples for
each noise level. Fig. 14 demonstrates that VRIFLE maintains
effectiveness even if the noisy ambient sound reaches 65 dB
with an average SR up to 97.65%. The performance drops
slightly in the office noise case of 87.5%, where the keyboard
typing and mouse striking are crisp noises with intense high-
frequency energy. Since VRIFLE mainly affects low-frequency
acoustic features after transformation, high-frequency noise
might reduce its attack performance on deceiving ASR models.

6) Different Recording Devices: Since the ultrasound fre-
quency response varies with different recording devices and
microphone models [15], i.e., we establish a specific transfor-
mation model for each device. To verify that our perturbation
can still manipulate the ASR model after being recorded by
different devices, we obtain 5 pairs of universal and silence
perturbations based on the device-wise ultrasonic transforma-
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Fig. 14: Attack performance in face of noises from typical scenes at
4 sound pressure levels.
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Fig. 15: Attack performance on different recording devices.

tion. After a similar collection as the above experiments done
for each device, Fig. 15 depicts the average SR of these devices
is up to 96.8% and CER is down to 0.50%, where Mix2s
reaches 100% and 0% on these metrics, proving the crafted
VRIFLE’s effectiveness on individual devices. Moreover, VRI-
FLE gets 95.8% SR on ReSpeaker, suggesting it can also attack
devices with multi-channel microphones well. Furthermore,
given that adversaries may attack unmodeled (i.e., unseen)
devices, we want to investigate VRIFLE’s transferability despite
our ultrasound transformation modeling is device-specific. We
apply the optimized perturbation of Mix2s to other devices.
Among them, the Mix2s’ combined perturbation can transfer
to Pixel 3aXL and Reno5 pro with 94.2% and 83.3% SR.
Besides, the performance reduces on iPhone14 pro (31.7%)
and ReSpeaker (50.8%) due to their microphones’ different
frequency selectivity to ultrasound. The result indicates that
VRIFLE is also transferable across devices.

7) Different Speech & Perturbation Loudness: We further
investigate the attack performance changes due to different
loudness of the user speech and the universal perturbation.
We set the representative audible sound pressure level to vary
from 65∼90 dB using a decibel meter and also vary ultrasonic
emission power to keep the same loudness. We play our
perturbation, repeating 5 times at each volume level. Due to
page limitation, results are given in Appendix §E, Fig. 20. As
the mutual loudness changes, we find that once the perturbation
has the same volume as the benign audio, it achieves over 55%
SR. Moreover, with 5 dB higher than the benign audio, VRIFLE
can work effectively with an average SR up to 95.5%. When
VRIFLE’s volume is 10 dB higher than audible speech, it can
dominate all the user commands. Notably, even if the direct
ultrasound-based attack is 35 dB louder than the audible audio,
the ASR model still recognizes a CER up to 46%. In that case,
VRIFLE achieves all CERs down to 0%.

D. Attack with Portable Device and Off-the-shelf Loudspeaker

Our sophisticated device facilities an extensive attack
range, providing great flexibility to attackers. We have also
implemented two other covert attacks with the portable device
and everyday life loudspeaker, as shown in Fig. 16.
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Fig. 16: Two additional attack forms of VRIFLE.
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Fig. 17: VRIFLE’s performance at different distance with the portable
device and off-the-shelf loudspeaker.

1) Portable Device: Our portable device equipped with
eight 25 kHz ultrasound transducers, a compact amplifier, and
a rechargeable battery in Fig. 16(a), balances lightweight and
attack range. It can be connected to the smartphone, where the
attacker stores perturbations as 96 kHz USB-AM audio in ad-
vance. We evaluate the effectiveness of attacks with a portable
device, setting it to point at Mix2s’ bottom microphone with
the target “open the door”. Fig. 17(a) demonstrates 100% SR
within 150 cm, and 78% SR along with CER down to 1.69%
even at a distance of 180 cm, suggesting VRIFLE with portable
devices can exceed the attack distance of almost prior AEs.

2) Off-the-shelf Loudspeaker: Adversaries can embed
USB-AM perturbations into audio or video files to manipulate
user commands when played on a computer or smartphone
connected to a loudspeaker. We investigate the use of off-the-
shelf loudspeakers, such as the high-end Hivi [46], which have
three distinct sound sources: woofer (37-140 Hz), mid-range
(140-2000 Hz), and tweeter (>2000 Hz). To determine the
optimal ultrasound frequency for embedding the perturbations,
we conduct experiments scanning the carrier frequency from
21-27 kHz and find 25.2 kHz to be the best frequency,
despite the gain decrease beyond the rated frequency range
(37Hz∼20kHz). Figure17(b) illustrates that VRIFLE’s effective
attack distance via off-the-shelf speakers is approximately
20 cm, with a low CER of 11.07%, demonstrating effective
modification of user commands at the character level.

VI. ANTI-DEFENSE EXPERIMENT

In this section, we validate whether VRIFLE can re-
sist 6 kinds of representative defenses, involving audio pre-
processing methods and inaudible attack detection. We con-
sider two types of adversaries: 1) Naive Adversary: The naive
adversary creates VRIFLE based on the undefended model
to attack the defended model. 2) Adaptive Adversary: This
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TABLE VI: Three defenses

(%) Method Undefended Quantization VAD Opus Compress

Success Rate 99.49 97.96 99.49 95.93

Attack CER 0.1 0.28 0.1 0.84

Benign CER 11.23 13.43 23.58 12.37

TABLE VII: Defense with band-pass filter

(%) Band-pass (Hz) 50∼7000 50∼6000 50∼5000 50∼4000 50∼3000

Naive
Adversary

Success Rate 97.96 96.95 95.67 75.57 12.47

Attack CER 0.28 0.53 0.80 6.43 35.01

Adaptive
Adversary

Success Rate 99.75 99.24 97.20 91.60 78.88

Attack CER 0.05 0.14 0.41 1.64 5.34

Benign CER 11.63 13.60 19.27 28.83 41.06

adversary has full knowledge of the defense mechanisms and
applies customized strategies to craft VRIFLE.

Against Audio Pre-processing Defense Methods. Refer-
ring to previous works [9], [12], [31], [47] that present a series
of audio pre-processing methods against audio adversarial
example attacks, we examine the robustness of VRIFLE using
5 representative defenses: (1) Quantization: converting the
audio sampling value from a 16-bit signed integer to an
8-bit precision, which reduces the sampling range from [-
32,768∼32,767] to [-128∼127]. Notably, this introduces dis-
tortion and noise due to the small range of values at 8-bit pre-
cision. (2) Voice Activity Detection (VAD): removing segments
of audio that are less than -15 dB, where its maximum energy
is normalized to 0 dB. (3) Opus Compression Codec: coding
and compressing audio with flexible bit rate and low latency
are widely used in real-time communication, particularly VoIP
and online meetings. We set the default compression level
as 5 according to [48]. (4) Band-pass Filter: filtering the
input signal with given cut-off frequencies, e.g., 50∼7000 Hz.
(5) Down-sampling: reducing the audio to a given rate, e.g.,
rate=0.4 means down-sampling a 16 kHz audio to 6.4 kHz,
and then recovering it to the required sampling rate of targeted
ASRs (generally 16/48 kHz).

We obtain the attack success rate (successfully altering the
tested speech into the targeted command “open the door”), at-
tack CER, and benign CER (derived between the DeepSpeech
recognized and ground-truth transcription) at 99.49%, 0.15%,
11.23%, respectively, when the model is undefended. The
results are listed in Tab. VI, VII, VIII. We observe that quan-
tization, VAD, and Opus compression barely affect the attack
success rate (all≥95.93%) in Tab. VI. Particularly, VAD signif-
icantly rises benign CER from 11.23% to 23.58%, while failing
to lower our attack performance. Tab. VII and VIII demonstrate
that naive VRIFLE can maintain relatively effective even when
facing a 50∼4000 band-pass filter or being down-sampled to 8
kHz (rate=0.5). However, the attack performance degrades as
the bandwidth or the down-sampling rate gets further lower.
Note that we do not evaluate extreme cases, such as band-
pass: less than 50∼2000 Hz or down-sampling rate: smaller
than 0.3, since they have severely affected the model’s ability
to transcribe benign speech commands with unacceptable
CERs over 45%. After the adaptive adversary integrates the

TABLE VIII: Defense with down-sampling

(%) Down-sample (rate) 0.9 0.8 0.7 0.6 0.5 0.4

Naive
Adversary

Success Rate 98.98 98.22 94.91 88.04 69.47 19.34

Attack CER 0.20 0.27 1.00 2.58 8.35 30.23

Adaptive
Adversary

Success Rate 99.24 98.22 96.69 95.42 89.06 81.42

Attack CER 0.14 0.27 0.57 0.87 2.25 4.38

Benign CER 11.51 12.11 14.93 19.80 23.99 35.04

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Normalized Sub-50Hz Power Ratio

0.30

0.45

0.60

0.75

0.90

1.05

1.20

1.35

1.50

Am
pl

itu
de

 S
ke

w
ne

ss

Ultrasound-based Attack
Audible Normal Speech
Our Attack

Fig. 18: Two significant feature dimensions extracted from three
classes of audio samples by LipRead (800 samples/class).

band-pass filtering operation during optimization, the attack
performance increase significantly, especially the success rate
and attack CER reach 78.88% and 5.34%, respectively, even
under 50∼3000 Hz band-pass filtering. Similarly, the adaptive
adversary can realize an 81.42% success rate and 4.38% CER
against a down-sampling rate=0.4.

Against Inaudible Attack Detection Method. Given that
VRIFLE utilizes ultrasound-based modulation mechanisms,
prior inaudible attack detection methods are expected to dis-
tinguish such an attack well from benign speech. We repro-
duce the representative software-based method: LipRead [21],
strictly following its instruction, which extracts and analyzes
three features of speech samples: power in sub-50Hz, cor-
relation coefficient (between the fundamental and harmonic
components), and amplitude skew. We use the LipRead clas-
sifier to detect VRIFLE samples crafted under the naive ad-
versary setting and collected at different distances & angles;
then obtain a detection accuracy down to 45.07%. Fig. 18
visualizes three types of audio samples in two significant fea-
ture dimensions. VRIFLE presents compact skewness around
1.0 due to its symmetrical waveform, whose distribution is
closer to the normal, while ultrasound-based attacks appear
more shift toward 0.30 and greater power in sub-50Hz. Low-
frequency power aggregation is still inevitable in our attack
due to nonlinear demodulation [21]. Moreover, naive VRIFLE
appears low correlation coefficient compared to the traditional
attacks, as its perturbations (see Fig. 7&9) barely present
normal speech properties such as fundamental and harmonic
frequencies. Overall, the inherent difference between VRIFLE
and traditional ultrasound-based attacks makes it probably
compromise LipRead. Furthermore, the adaptive adversary
extracts three features during the perturbation generation and
constrains them close to the normal samples, further reducing
the accuracy of LipRead detecting our attack to 30.55%.
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VII. DISCUSSION AND FUTURE WORK

Potential Countermeasure: We have demonstrated that
VRIFLE are robust to audio pre-processing and inaudible
attack detection methods. We envisage that defense approaches
tracking ultrasound nature [49], [50] may be effective, al-
though these methods are based on two hardware-dependent
prototypes that can not adapt to off-the-shelf compact smart
devices. For the remaining feature forensics-based [5], [21]
or ML-based defenses [15], [51], we believe that the adaptive
adversary shall adopt these defense strategies along with the
ultrasonic transformation model during optimization and phys-
ically bypass them. But this would result in a less universal
attack due to additional constraints.

Prevent Airborne Self-demodulation Leakage. Although
our attack distance has significantly exceeded previous works,
please note that VRIFLE cannot extend the range infinitely. As
uncovered in [52], the self-demodulation occurs and then the
modulated baseband becomes audible once a certain power
is reached. To increase the attack range while ensuring in-
audibility, we adopt the following strategies: 1) utilizing 25
kHz carrier frequency rather than higher frequencies, such as
40kHz, for less attenuation; 2) employing customized ultra-
sound transducers, signal generator, and amplifiers capable of
suppressing nonlinear distortion at the speaker side; and 3)
setting maximum power not to exceed 3.2W and implementing
USB-AM to increase the attack efficiency with portable device
and off-the-shelf loudspeakers.

Limitations: 1) VRIFLE achieves highly universal ma-
nipulation of user speech using DeepSpeech2’s gradient in-
formation. However, its universality under black-box settings
is limited in critical user-present scenarios due to variable
user factors. Notably, targeted universal AE attacks in black-
box scenarios remain an unsolved problem currently, despite
several untargeted literature [53], [54]. 2) Although we have
verified that our ultrasonic transformation model is effective
on different recording devices, it is currently device-specific
due to the microphone’s frequency selectivity to ultrasound.
We will investigate a device-generic transformation model in
future work. 3) Our careful design enables the man-in-the-
middle attack strategy and our user testing in Appendix §F
demonstrate its high stealthiness. However, the testing results
imply that replaying excessively long user commands may
cause discomfort and might alert the user. We envision that
understanding user intent and then replaying synthetic short
commands can mitigate this issue.

Attack on Speaker Recognition: We envision that the idea
of VRIFLE can be generalized to attack speaker recognition
models deployed on access control systems, e.g., authentica-
tion of voice assistants and applications. We have conducted a
preliminary experiment attacking the state-of-the-art ECAPA-
TDNN [55], a popular speaker recognition model. We maintain
the almost identical design as used in attacking the ASR model
and only reconfigure the optimization goal yt as the target
speaker label and the loss function L(f(·), yt) as the cosine
similarity scoring module. Results demonstrate that, in a 10-
person set, VRIFLE is universal to alter the voiceprint of any
user’s speech samples into the targeted speaker’s. We plan to
delve into such an ability of VRIFLE in future work.

VIII. RELATED WORK

Custom Adversarial Examples & Inaudible Attacks.
The initial AE attacks construct a custom (i.e., non-universal)
perturbation for a specific audio clip, whereas the same per-
turbation cannot compromise other audio. Signal-level trans-
formations [10], [11], [56], such as modifying MFCC, are
unintelligible to human beings but can be recognized by
the ASR model. As this class of attacks resembles obvious
noises, they can easily alert users. Thus, inaudible attacks [5],
[21], [22] have been proposed, which exploit carrier signals
outside the audible frequencies of human beings (e.g., 40 kHz)
to inject attacks into ASR systems utilizing the nonlinearity
vulnerability of microphone circuits, yet entirely unheard by
victims. However, compared with audible playback speech
samples, such attacks usually suffer from signal distortion and
low SNR due to their dependence on various convert channels,
e.g., ultrasound [57], laser [6], or electricity [24] signals, and
the hardware imperfections these channels introduce. There is
also a major branch of the research community that leverages
the vulnerability of ASR models by adding slightly audible
perturbations on the benign audio based on ϵ-constraint [7],
[58] and psychoacoustic hiding [3], [4], to make the AEs sound
benign but fool the ASR’s transcription. It is worth noting
that non-universal AEs lose effectiveness for streaming speech
input and unpredictable user commands, as they rely on perfect
temporal alignment. Constructing multiple AEs for altering
different commands as an adversary-desired instruction is also
impractical.

Universal Adversarial Examples. Recent studies propose
universal AEs that can apply to tamper with multiple speech
content as an adversary-desired command. Existing untargeted
universal AE attacks adopt iterative greedy algorithms [59]
can cause arbitrary speech to mis-classification [53] or false
transcription [54]. In contrast, targeted universal AE attack
is very challenging in speech recognition tasks because ASR
models are context-dependent, and a certain minor perturbation
superimposed even at different positions of a given benign
audio, the whole sentence may yield various transcription
results. This is distinct from the prior successful targeted
universal AE attack in the text-independent speaker recogni-
tion [26], [31] and the universal adversarial patch attack in
position-insensitive CNN-based image classification tasks [60].
Moreover, given that the victim user can easily notice the
audible-band perturbation, AdvPulse [9] disguises short pulses
in the environment sounds to be less perceptible. However,
they only apply to a context-insensitive CNN-based audio
command classification model to be universal. To overcome
the mainstream RNN-based ASR context-dependent issues, a
partial match strategy is proposed by SpecPatch [8], which also
employs audible noise-like short pulses (0.5s) to alter multiple
short user commands into the targeted instruction against the
mainstream DeepSpeech ASR model. However, such an attack
will not work in relatively long commands (≥ 4 words) and can
be noticed despite following L2-imperceptibility constraints.

Overall, due to the fundamental differences between audi-
ble and ultrasonic channels, VRIFLE differs from prior works
that encountered challenges related to user auditory and user
disruption. In addition to the four representative merits over
existing AEs listed in Tab. I, VRIFLE offers several additional
benefits: (1) the optimization process is no longer subject to
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audibility constraints such as tiny ϵ, psychoacoustics, Lp-norm,
nor does it need to limit the signal form as short pulses to
reduce the possibility of being perceived. (2) VRIFLE’s broad
optimization space further allows for fewer iterations while
maintaining a high degree of universality. Combining these
two advantages, VRIFLE enables real-time manipulation of
arbitrary user commands and long speech sentences in an
alter-and-mute fashion, as never before. (3) Unlike audible-
band AEs that are easily compromised by interference due
to their subtle perturbations, VRIFLE demonstrates robustness
and remains effective even when faced with various audio
pre-processing defenses. Notably, our initial modeling of ul-
trasound transformation precisely characterizes the ultrasound
channel and justifies it as a promising carrier for IAP delivery.
We believe that this modeling effort lays the groundwork for
generating inaudible AEs and may inspire future works.

IX. CONCLUSION

In this work, we propose an inaudible adversarial per-
turbation (IAP) attack against ASR systems named VRIFLE,
which can extend to scenarios where users are present and
may use ASR services. In such scenarios, prior studies will fail
due to user auditory and user disruption. We make the first
attempt to model the ultrasonic transformation process, based
on which, VRIFLE can alter arbitrary user commands to the
adversary-desired intent in real time without any knowledge of
users’ speech. Our comprehensive experiments in the digital
and physical worlds across various configurations demonstrate
VRIFLE’s effectiveness and robustness. Overall, VRIFLE fea-
tures merits including complete inaudibility, universality, and
long-range attack ability.
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APPENDIX

A. SINGLE-SIDEBAND AMPLITUDE MODULATION

In this section, we give mathematical proof that the base-
band perturbation of SSB-AM signals can be recovered by
commercial microphones. We initially compare the maximum
energy of USB-AM and LSB-AM emitting the same pertur-
bation when sound leakage occurs, and LSB-AM is 87% of
USB-AM. Thus, we adopt the USB-AM in our attacks due to
its better inaudibility:

USB-AM: SUSB(t) = mcosωct− m̂sinωct+ cosωct

LSB-AM: SLSB(t) = mcosωct+ m̂sinωct+ cosωct
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where the m̂ is the conjugate of m. The microphone amplifier’s
output is below:

Sout = k1SUSB(t) + k2S
2
USB(t) + · · ·

The S2
USB(t) term has three components: a high-frequency

2ωct components:

(m+ 1)m̂ sin(2ωct) +
m2 + 2m+ 1− m̂2

2
cos(2ωct)

a direct current (DC) term 1
2 and an audible component

Saud(t) =
1
2 (m

2+2m+m̂2). SUSB(t) and the high-frequency
component are filtered by the low-pass filter because its fre-
quency is above 25 kHz. The DC component is filtered by the
microphone’s capacitor. Thus, the audible component Saud(t)
that passes the microphone filtering system can function to
ASR.

B. REAL-WORLD SCENARIO

Figure 19 presents our real-world attack scenario.
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Fig. 19: Real-World Attack Scenario.

C. TARGETED COMMANDS LISTS

Tab.IX lists 10 different commands, corresponding to the
performance of constructing target command-specific pertur-
bations in experiment §V-B3.

TABLE IX: Attack with Different Targeted Commands

Target Command SR CER
“Start recording” 100% 0%

“Set a timer” 100% 0%

“Open the door” 100% 0%

“Take the picture” 100% 0%

“Call nine one one (911)” 100% 0%

“Cancel my morning alarm” 100% 0%

“Turn on airplane mode” 94.39% 0.28%

“Open my photo album” 95.03% 0.50%

“What is going on Twitter?” 100% 0%

“Mute volume and turn off the WiFi” 92.82% 0.21%

D. ALGORITHM OF VRIFLE

Given that technical workflow for the silence and universal
perturbation are overall identical, the major differences are the
optimization objective: yt/yb and hyper-parameters. Therefore,
we demonstrate VRIFLE’s representative optimization process
of crafting a universal perturbation from scratch in Algo-
rithm. 1.

Algorithm 1: Universal VRIFLE Generation
Input: The ASR model with CTC Loss Computation

module: L, the maximum epoch: maxEpoch,
the desired loss: objV alue, with a scoring
module: S, the learning rate: η, the preset time
range: T .

Output: The universal perturbation δ
1 Init δ ← 0N

2 for 1 to maxEpoch do
3 J ← 0
4 for hθ ∈ UH , n ∈ UN do
5 ê = e−a0ω

n
c d

6 δ = hθ ê ∗ δ : ξ̂ + n
7 for x ∈ Ux, g ∈ G,S(·) s.t. T do
8 x̃ = β · g ∗ x
9 x̃δ = clip(x̃+ S(δ), [−1, 1])

10 J+ = L(x̃δ, yt)
11 end
12 end
13 Compute ∇δJ
14 δ ← ΩAdam(δ + η · ∇δJ)
15 δ ← clip(δ, [−1, 1])
16 if J ≤ objV alue then
17 break
18 end
19 end

E. DIFFERENT SPEECH & PERTURBATION LOUDNESS

Fig. 20 shows the success rate and CER of our experiments
on the relative energies between the attack perturbation and
speech.
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Fig. 20: The performance of loudness relationship between user
speech and perturbation.

F. USER TESTING

In this section, we elaborate on the Man-in-the-middle
attack strategy, whose effect is akin to experiencing network
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congestion when users use the ASR service, resulting in slower
responses. Prolonged latency can make users feel uncom-
fortable while using the service. To assess user awareness
under such delays, we design 10 scenarios, each consisting
of an audio clip that simulates a user issuing a command
to the ASR system with random delays (1-5 seconds) before
the voice assistant executes the command. We collected test
results from 140 college students of different majors. As
shown in Figure 21, when the delay time is less than 2.7
seconds (the junction point of two distribution curves), more
users find the ASR service comforting than uncomfortable.
The participants are also asked to fill in what they think the
cause is if they experience an uncomfortable delay when using
the ASR service. Only 11 out of 140 participants suspect an
attack, while almost all others attribute the delay to network
latency/congestion or device stuck, suggesting that this strategy
poses a hidden attack. We believe that users’ suspicion may
also be related to their disciplinary background, e.g., users
with knowledge of cybersecurity are more likely to consider
the possibility of an attack.
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Fig. 21: The probability distribution of users’ awareness during a
man-in-the-middle attack under different delay conditions (similar to
network latency). “Comfortable”: the situation where users find the
ASR service is normal and are not aware of the attack; “Uncomfort-
able”: the delay may cause them to feel uncomfortable or unusual.
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