REQSMINER: Automated Discovery of CDN
Forwarding Request Inconsistencies and DoS Attacks
with Grammar-based Fuzzing

Linkai Zheng T, Xiang Li f, Chuhan Wang f,
Run Guo T, Haixin Duan T8 Jianjun Chen T Chao Zhang 1, Kaiwen Shen '

" Tsinghua University, *Zhongguancun Laboratory, $Quan Cheng Laboratory

Abstract—Content Delivery Networks (CDNs) are ubiquitous
middleboxes designed to enhance the performance of hosted
websites and shield them from various attacks. Numerous no-
table studies show that CDNs modify a client’s request when
forwarding it to the original server. Multiple inconsistencies in
this forwarding operation have been found to potentially result
in security vulnerabilities like DoS attacks. Nonetheless, existing
research lacks a systematic approach to studying CDN forwarding
request inconsistencies.

In this work, we present REQSMINER, an innovative fuzzing
framework developed to discover previously unexamined incon-
sistencies in CDN forwarding requests. The framework uses
techniques derived from reinforcement learning to generate valid
test cases, even with minimal feedback, and incorporates real
field values into the grammar-based fuzzer. With the help of
REQSMINER, we comprehensively test 22 major CDN providers
and uncover a wealth of hitherto unstudied CDN forwarding
request inconsistencies. Moreover, the application of specialized
analyzers enables REQSMINER to extend its capabilities, evolving
into a framework capable of detecting specific types of attacks. By
extension, our work further identifies three novel types of HTTP
amplification DoS attacks and uncovers 74 new potential DoS
vulnerabilities with an amplification factor that can reach up to
2,000 generally, and even 1,920,000 under specific conditions. The
vulnerabilities detected were responsibly disclosed to the affected
CDN vendors, and mitigation suggestions were proposed. Our
work contributes to fortifying CDN security, thereby enhancing
their resilience against malicious attacks and preventing misuse.

I. INTRODUCTION

Content Delivery Networks (CDNs) are broadly adopted
by various companies and organizations to improve the perfor-
mance and availability of their online content [39]. Generally,
CDNs function by caching copies of content on edge servers
geographically distributed all over the world. When a user
requests content from a website hosted on a CDN, the request
is sent to a CDN edge server that provides the lowest latency
rather than the origin server.

4 Corresponding authors:{duanhx, jianjun} @tsinghua.edu.cn.

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA

ISBN 1-891562-93-2

https://dx.doi.org/10.14722/ndss.2024.24031
www.ndss-symposium.org

Prior research. A wealth of significant research reveals that
CDNs frequently alter client requests as they relay them to
the original server, thereby unveiling operational inconsisten-
cies. These inconsistencies could potentially lead to security
vulnerabilities, including the Host of Trouble (HoT), HTTP
Request Smuggling (HRS), Denial of Service (DoS), and Cache
Poisoned Denial of Service (CPDoS) [11], [25], [32], [50].
Concurrently, innovative attacks that exploit these inconsis-
tencies pose substantial security threats to HTTP servers and
CDNs, with HTTP/2 amplification attacks [25] and RangeAmp
attacks [32] being notable examples.

Despite the widespread nature of these issues, no research
to date has examined this particular class of problems from the
vantage point of inconsistency in CDN forwarding requests.
The majority of prior studies have relied on manual analysis
or have concentrated on a single type of inconsistency [32]. As
such, there is a pressing need for a systematic and extensible
methodology to uncover hitherto unknown inconsistencies in
CDN forwarding requests, to prevent overlooking potential
security vulnerabilities.

Implementing systematic and efficient fuzzing on CDN
forwarding request inconsistencies, however, poses consider-
able challenges: (i) Lax grammar. As generated templates,
unbounded ABNF rules make it difficult for the fuzzer to
provide valid values; (ii) High costs. Studying a commercial
service like CDN is expensive due to massive test cases. (iii)
Black box. Due to trade secrets, the source code of CDNs is
not available to the public, causing less feedback.

Our study. In this study, we present an automated fuzzing
framework—REQSMINER—which includes modules for Rule
Generator and Grammar-based Fuzzing. This framework is
designed to overcome existing challenges and to identify
unknown inconsistencies in CDN forwarding requests. To
address the first challenge, we extract valid values from
RFC documents and actual HTTP traffic, storing these as
field values. REQSMINER uses a Field Values-assisted Rule
Fusioner to merge these with ABNF rules, thereby creating
an ABNF grammar tree to serve as a generation template,
which enhances the effectiveness of test cases. To tackle the
remaining challenges, we draw inspiration from reinforcement
learning, incorporating the Upper Confidence Bounds Applied
to Trees with Weighted Randomization (UCT-Rand) algorithm
to optimize the fuzzer. Even with limited feedback, the UCT-
based Request Generator can efficiently generate a plethora of

https://about.nano.ac/
https://lixiang521.com/
https://wangchuhan.cn/
https://netsec.ccert.edu.cn/people/gr15
https://netsec.ccert.edu.cn/people/duanhx
https://www.jianjunchen.com/
https://netsec.ccert.edu.cn/people/chaoz
https://shenkaiwen.com/
https://www.tsinghua.edu.cn/en/
https://www.qcl.edu.cn/

valid test cases.

Utilizing REQSMINER, we systematically test 22 widely
used CDN providers (e.g., Cloudflare, Akamai, CloudFront,
and others) and discover a multitude of previously unexamined
CDN forwarding request inconsistencies. We categorize these
into three primary groups and briefly analyze whether these
inconsistencies stem from the CDNs’ security mechanisms and
whether they can be exploited by attackers to initiate DoS,
HRS, or CPDoS attacks.

As a practical security practice, we extend REQSMINER
to detect DoS attacks based on amplification attacks, thereby
demonstrating its scalability. By automating the detection of
traffic size disparities arising from request inconsistencies, we
identify 74 new vulnerabilities potentially causing amplifi-
cation attacks, including three novel techniques: (i) HEAD
Request-based HTTP Amplification Attack (HeadAmp); (ii)
Conditional Request-based HTTP Amplification Attack (Con-
dAmp); and (iii) Accept-Encoding-based HTTP Amplification
Attack (AEAmp). With techniques such as HeadAmp or Con-
dAmp, an attacker would only need a 1 MB file as the target
resource to compel the origin server to generate response
traffic 2,000 times larger than that received by the attacker.
The amplification factor grows with the target resource size,
reaching up to 7,920,000 times when the file size is 1 GB.
Furthermore, AEAmp enables an attacker to initiate HTTP traf-
fic amplification attacks with the same 1 MB target resource,
achieving an amplification factor of up to 650.

We have responsibly informed the affected CDN vendors
about these vulnerabilities. At the time of writing, we have
received responses from three vendors, two of which—Azure
and Cloudflare—have acknowledged and rectified the vulner-
abilities.

Contributions. Overall, we make the following contributions:

e New tool. We introduce REQSMINER, a novel detection
framework engineered to automatically uncover CDN for-
warding request inconsistencies. We release REQSMINER!
through GitHub for researchers to further study CDN for-
warding request inconsistencies in the future.

o Novel fuzzing techniques. We incorporate real field values
into the grammar-based fuzzer and, for the first time, ar-
chitect a UCT-based black-box fuzzing algorithm to boost
efficiency.

o Comprehensive results. We conduct controlled tests on 22
prominent CDN vendors using REQSMINER, uncovering a
multitude of unstudied CDN forwarding request inconsis-
tencies. Additionally, we identify three new types of HTTP
amplification attacks, involving 74 new DoS vulnerabilities.

o Disclosure and mitigation. We responsibly report all security
issues to the affected CDN vendors and propose mitigation
suggestions.

II. BACKGROUND

In this section, we first provide the basic concepts of
content delivery networks (CDNs), briefly present HTTP
standards, and finally introduce the techniques we employ,
including grammar-based fuzzing and the Monte Carlo tree
search algorithm.

Thttps://github.com/Konano/RegqsMiner

A. CDN Overview

A content delivery network (CDN) is a geographically dis-
tributed group of servers (nodes) that work together to provide
fast delivery of Internet content, such as Cloudflare [13] and
Akamai [2]. The CDN improves the performance of hosted
websites and provides security protection, including a Web
Application Firewall and DDoS (Distributed Denial of Service)
defense. CDN is gaining widespread popularity as an essential
part of the Internet’s infrastructure. For example, in 2022,
64.04% of the top 10,000 popular websites improved their
access quality using CDN services [9].

Request-routing Mechanism. Request-routing techniques are
the key component of CDN services and determine how web
admins host their websites on the CDN. One prevalent way
involves redirecting the domain towards the CDN’s subdo-
mains, which are mapped to a global network of CDN edge
servers. An alternative popular way entails utilizing the CDN’s
DNS servers as the authoritative name servers for the website’s
domain [5], [33]. In this paper, we only focus on these two
most common techniques.

Architecture. CDN can be divided into two primary parts: (i)
the central node is responsible for load balancing and content
management; (ii) the edge nodes, which include ingress and
egress nodes, are charged for caching and distributing content.
Among the latter, ingress nodes are close to the client and
handle access requests, whereas egress nodes are placed near
the origin server and forward requests. As shown in Figure 1,
CDN acts as a man-in-the-middle between the client and the
origin server, dividing the conventional end-to-end connection
into two stages: the client-CDN connection and the CDN-
origin connection.

Workflows. After receiving a client request, the CDN first
examines the cache for the corresponding data. In the absence
of a cache, the CDN forwards the requests for required
resources to the origin server and caches responses for later re-
quests. These queries are also called “back-to-origin” requests.
Through load balancing, the CDN chooses ingress and egress
nodes dynamically and seeks to utilize the cache to reduce
overhead on the origin server. This approach can effectively
enhance access performance and defend servers against DDoS
attacks by decreasing latency and load.

Ingress Central Egress
v, A oA

Requests g’ 'E
| =) (o
2 Responses

Client CDN

Forwarded Requests

Replied Responses

Origin Server

Fig. 1: CDN forwards requests and responses between client
and origin.

B. HTTP Standards

The Hypertext Transfer Protocol (HTTP) standards are pri-
marily established in RFC 9110 [19] and have a standardized
protocol element format defined by ABNF rules. According
to RFC 9110 [19, §2.1], HTTP protocol compliance contains
a specific message syntax. An HTTP sender must generate
protocol elements that conform to the grammar specified by
the ABNF rules [15].

https://github.com/Konano/ReqsMiner

ABNF Rules. Augmented Backus—Naur Form (ABNF) is
a context-free grammar (CFG) syntax used to describe the
syntax of Internet protocols. Most RFCs employ ABNF to
define the formal specifications of protocol messages. As
shown in Listing 1, the ABNF specification for HTTP consists
of a combination of derived rules formatted as “Rule =
Definition”. The left portion is the rule name, while the
right is the rule’s definition.

I HTTP-message = start-line CRLF *(field-line CRLF) CRLF [
message—body]
HTTP-name = %x48.54.54.50 ; HTTP

2

3 HTTP-version = HTTP-name "/" DIGIT "." DIGIT

4 ...

5 Accept-Charset = [((token / "x") [weight]) *(OWS
'," OWS ((token / "x") [weight])) 1

6 Accept-Language = [(language-range [weight]) = (OWS

"," OWS (language-range [weight])) 1
7 ...
8 message—-body = *OCTET
9 method = token

10 trailer—-section = *(field-line CRLF)

11 token = lxtchar

12 tchar = ||!|Y / l|#ll / ll$" / |Y%l| / ll&" / nwrwn / l|*" / ll+" /
m_m o /ow owoowew o /owowo/owmawo o/ owim o/ owew / DIGTT /
ALPHA

Listing 1: ABNF Rules Defining HTTP/1.1 Message Syntax
Extracted from RFCs [19], [20].

Within the Definition field, ABNF syntax enables
multiple types of operators, including concatenation, selection,
and repetition. Specifically, concatenation permits combining
a list of rule names to construct a new definition by separating
them with a space. In addition, a forward slash (/) denotes
selection by separating the list of optional subrules. An as-
terisk (“+”), a leading digit, or brackets (“[]”) are repetition
operators that limit the number of subrule repetitions.

HTTP Header Fields. HTTP uses fields to provide specific
header data before the content. These fields are known as
header fields (or headers) [19, §5]. These fields are format-
ted as pairs of name:value. An HTTP header, such as
“Host :example.com”, consists of its case-insensitive name
followed by a colon (““:”’) and its values. Header names should
be registered within the “Hypertext Transfer Protocol (HTTP)

Field Name Registry” [19, §3.5] [35].

C. Grammar-based Fuzzing

Fuzzing analyzes programs for errors like crashes and
memory access violations by creating random test cases as
input and repeatedly executing the target program [22], [52].
Grammar-based fuzzing is one of the most widely used testing
techniques for identifing potential vulnerabilities in software
systems. This approach employs a predefined set of rules or
“grammar” to generate test inputs. By systematically gener-
ating test inputs that conform to this grammar, fuzzers can
ensure a comprehensive examination of the system’s behavior
under various conditions. For instance, previous work utilized
grammar-based fuzzing to detect protocol security vulnerabili-
ties in critical infrastructure systems like SCADA systems [12],
[26], [45], [48], [51].

D. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a heuristic search
algorithm that uses simulations to explore potential actions

and select the most promising one [1], [3], [8], [16]. It has
been utilized in several applications, such as gaming, robotics,
optimization, and planning [4], [27], [31], [34], [36], [47],
[53]. This algorithm has four stages, Selection, Expansion,
Simulation, and Backpropagation.

Upper Confidence Bounds Applied to Trees. Upper Confi-
dence Bounds Applied to Trees (UCT) is a variant of MCTS
designed to balance exploration and exploitation in game-
playing AI [29], [30]. UCT uses the Upper Confidence Bounds
(UCB) formula [3], a combination of the current node’s
value estimates and exploration parameters, to select the most
promising node to expand.

= V.
7(s) := arg max (+ N

2In N) o
a€A(s)

The formula for UCB is shown in Formula 1, where s
denotes the current state and A(s) denotes the nodes that
can be reached. The formula has two terms: the estimated
mean value of a node and a term reflecting the uncertainty
or exploration of that node. The mean value is estimated by
averaging the rewards gained from simulations of the node
(V,). Meanwhile, the exploration term is calculated by the
number of times the node has been visited (/V,) and state s
has been visited (N5). The exploration term guarantees that the
algorithm targets less frequently visited nodes with a higher
potential for discoveries. It allows UCT to search the state
space effectively and converge on the optimal solution.

III. REQSMINER: DESIGN AND IMPLEMENTATION

In this section, we primarily demonstrate the threat model
under investigation, alongside the associated challenges faced.
We then proceed to expound on the design of REQSMINER,
an innovative fuzzing framework, conceived to address the
identified challenges and to uncover previously unknown in-
consistencies in CDN forwarding requests. We conclude with
an in-depth discussion of two unique techniques employed by
each REQSMINER module, namely the Rule Generator and
Grammar-based Fuzzing.

A. Threat Model

In line with the end-to-end principle [44], the proxy should
uphold the integrity of the request to the maximum extent
during the forwarding process. Nonetheless, CDNs may alter
the original messages when relaying requests, thereby creating
a divergence between the initial and forwarded requests. CDNs
might adopt this approach for commercial purposes, such as
enhancing cache hit rates, or for safety measures leading to
normalized requests. However, these disparities, known as
CDN forwarding request inconsistencies, may also engender
security vulnerabilities, including Denial of Service (DoS),
Cache Poisoned Denial of Service (CPDoS), Forwarding Loop
(FL), and Web Cache Poisoning (WCP) [11], [25], [32], [50].

As illustrated in Figure 2, this paper postulates that an
attacker, posing as a legitimate client, has the ability to
dispatch delicately crafted requests to the flawed CDNs, which
then modify and forward the requests. We further assume
that the target website as attacker’s goal is hosted on the

A Legal but Crafted Requests Attack Requests Altered by CDN -
oy —— — =
_— : o—

O— 1nin

Attacker CDN

Fig. 2: Threat Model of CDN Forwarding Request Differences.

CDN, or unknowingly hosted by the attacker [23]. With these
assumptions in place, the attacker can exploit specific CDN
forwarding request discrepancies to manipulate requests within
the CDN-origin connections. Using these malicious requests,
an attacker may execute a variety of attacks on the victimized
origin server, encompassing DoS, CPDoS, FL, and WCP.

Historically, the majority of proposed request discrepancies
have been discovered manually in prior research [11], [25],
[32]. This method may result in some variations in the forward-
ing request being overlooked. Therefore, our goal is to develop
an automated fuzzing framework, termed REQSMINER, aimed
at systematically and efficiently mining for forwarding request
inconsistencies in CDNs. Furthermore, this framework should
possess extensibility to facilitate its application to a wide range
of specific attack threat models, and to enable the discovery
of novel attack vectors.

B. Challenges in Fuzzing

Previous research typically employs two techniques to
evaluate HTTP implementations and CDN behaviors. These
include HTTP request test case generation using ABNF rules
and automated testing directed towards CDNs [26], [45].
However, these methods inherently possess limitations and
present challenges that impact both the efficacy and efficiency
of testing. We detail these challenges below.

Initially, the ABNF rules pertaining to the HTTP protocol
are unbounded, and test cases generated at random are often
ineffective. As an illustration, ABNF rules state that a “request
method” can be any “token” consisting of letters, numbers, and
special characters (shown in Listing 1, Lines 9 to 12). Yet, in
practical scenarios, some CDNs only support request methods
that exclude numbers; a select few even only accept standard
request methods alongside a handful of additional ones (e.g.,
CHECKOUT and COPY). This definition poses a considerable
challenge for the fuzzer in terms of generating a valid value
randomly. Besides, invalid test cases are generally rejected by
the CDN. For instance, the I f-Range header (If-Range:
Wed, 92 Oct 7180 11:45:14 GMT) conforms to the
ABNEF rules; nonetheless, requests including this header will
be denied by some CDNs due to its invalidity.

Secondly, the cost of testing CDNSs is high. Since CDN is a
commercial service, its source code is not publicly accessible.
Conventional fuzzing techniques necessitate the dispatch of
a large number of test cases to CDN services, which subse-
quently incurs substantial monetary costs.

Lastly, CDNs offer minimal feedback concerning test re-
quests. Due to their black-box nature, the feedback provided
by CDNs is limited. Consequently, it becomes arduous for a
fuzzer to effectively detect all request differences with such
scant feedback.

C. REQSMINER Overview

To discover more CDN forwarding threats and address the
challenges mentioned in Section III-B, we designed REQS-
MINER to automatically and effectively fuzz the specific CDN
forwarding request inconsistencies. Figure 3 illustrates the
architecture, including Rule Generator and Grammar-based
Fuzzing modules. Specially, we propose two novel techniques
for improving fuzzing efficiency: (i) Field Values-assisted Rule
Fusioner that merges Field Values into the ABNF rules to set
the search bound and (ii) UCT-based Request Generator that
uses the UCT-Rand algorithm to generate more valid test cases
for black-box grammar-based fuzzing.

Rule Generator. REQSMINER utilizes Field Values to limit
the search space of the ABNF rules by combining the ABNF
rules and field values to generate an ABNF grammar tree
(Field Values-assisted Rule Fusioner). Specifically, field values
are RFC-compliant predefined data stored as key-value pairs
extracted from the RFCs and actual web traffic. The key point
is to incorporate expert domain knowledge into the generation
rules and improve generation efficiency. In this module, ABNF
Parser builds the ABNF grammar tree based on the ABNF
rules extracted from RFCs to prepare for future generation,
and Rule Fusioner integrates the field values into the ABNF
grammar tree.

Grammar-based Fuzzing. REQSMINER leverages grammar-
based fuzzing with the UCT-Rand algorithm to enhance the
fuzzing efficiency by generating more valid test cases and
detecting differences with less feedback (UCT-based Request
Generator). UCT-Rand is capable of iterative optimization
based on limited feedback and steadily improves the quality
of test cases without sacrificing exploratory capability. For
each module, the UCT-based Request Generator generates the
HTTP test requests using the ABNF grammar tree and sends
them to the CDN via the client. Both the client here and
the server behind the CDN are under REQSMINER’S control.
After retrieving the CDN'’s forwarding status from the server,
the parameters of the generation algorithm for each branch in
the ABNF grammar tree are updated. Meanwhile, Difference
Analyzer collects client-side and server-side logs, including the
original requests sent by the client and the forwarded requests
received by the server. It compares these logs to discover any
changes to the forwarding requests.

Our framework is semi-automatic, as its initialization only
requires the following data: (i) ABNF rules extracted from
the RFCs; (ii) commonly predefined values in the RFCs; and
(iii) HTTP field values extracted from the history logs of
web servers. Besides, the user can optionally contribute extra
domain-specific knowledge to the field values.

D. Rule Generator

In this module, ABNF Parser and Rule Fusioner are used
to construct the ABNF grammar tree for effective test case
generation from the ABNF rules and Field Values.

ABNF Parser. For the UCT-Rand algorithm to generate test
cases, the ABNF parser must transform the ABNF rules ex-
tracted from RFCs into an ABNF grammar tree. As mentioned
in Section II-B, ABNF syntax operators can be divided into
three types: concatenation, alternative, and repetition. For each

o™ m Em EmEm-—-——-—-——--

Rule Generator

ABNF Rules

¥
e

Field Values Rule Fusioner
~ 4

- e o o o Em o Em oEm =

ABNF Parser

Web Server Logs

Logs

¥
=C)

Q

§

[=

@

wn

—

wn
N

o

.

- e Em o o o = o = o= o= P

1

1 Request Difference

1 Generator Analyzer

I f 1

1 " -
Forwarding ' Server , Logs

\ Status = V= - - - e e m o . 7
- mm mm mm Em Em o mm o Em o o mm Em o oEm -

Fig. 3: The Architecture of REQSMINER.

Accept-Charset
0 1

((token /

v

2*(OWS ", OWS ((token / **") [weight]))

WS "," OWS ((token /™") [weight])

¥ 4 v ¥

v
m (token /**") [weight]
L i R [} I 1

Fig. 4: The ABNF Grammar Tree of the Accept—-Charset Header.

type of operator, the ABNF parser creates three types of ABNF
grammar tree nodes, including AND, OR, and RAND.

As concatenation and unique repetition operators, AND
nodes express concatenation in the ABNF grammar tree. All
child nodes must be selected recursively to continue generating
when visiting these nodes. OR nodes indicate selection and
represent the alternative and limited repetition operators. Any
child node must be visited recursively when visiting these
nodes. Corresponding to the infinite repetition operators in the
ABNF syntax, the RAND nodes mark random, which means
that the number of times the child node is visited is random.

Figure 4 shows the ABNF grammar tree of the
Accept—-Charset header (the ABNF rule is shown in
Listing 1, Line 5).

Rule Fusioner. To explore the knowledge extracted from
Field Values, the rule fusioner parses the field values and
inserts them into the ABNF grammar tree (Field Values-
assisted Rule Fusioner). In detail, the fusioner first parses

the field values following the ABNF rules to extract a set
of non-terminal symbol values at the ABNF semantic level.
For example, for the field value “Accept-Language:
en-US,en;g=0.9,en-GB;g=0.8, zh;g=0.7, ja”, this
value contains a variety of Language—-Ranges. After pars-
ing it using the ABNF rule (shown in Listing 1, Line 6),
the fusioner can extract multiple Language—-Ranges values
(e.g., en-US, en, en-GB, zh, and ja). This is to increase
the likelihood that fuzzer will generate valid values, such as
en-US, en, and zh.

After parsing, the fusioner expands the ABNF grammar
tree with the set of non-terminal symbol values. The values
of the non-terminal symbol are inserted as leaf nodes to
the OR node and become the children of that node. For
example, Figure 5 shows the subtree of Language—Range
after inserting the values obtained from the previous step into
the ABNF grammar tree. This is designed to increase the
number of subtrees of the OR nodes in the ABNF grammar tree
so that the UCT-Rand algorithm used by the request generator
will have more options when traversing to that node.

New Leaf Nodes from Field Values

¥

— ¥
3 ED 3

n 1*8ALPHA *("-" 1*8alphanum)

2 2

*("-" 1*8alphanum)

Fig. 5: The ABNF Grammar Tree of Language—-Range
with Field Values.

E. Grammar-based Fuzzing

REQSMINER uses Request Generator to generate more
valid test cases and perform Grammar-based Fuzzing on CDNs
to identify request differences and potential vulnerabilities
effectively.

Request Generator. Request Generator is designed to gen-
erate numerous valid test cases from the ABNF grammar tree.
The grammar tree includes three types of nodes, each of which
represents an operation that can direct a depth-first traversal
of the tree. REQSMINER will locate the target node (e.g.,
HTTP-message) as the root node and traverse the ABNF
grammar tree recursively downwards. Among them, the leaf
node (e.g., string literals, and num literals) is the termination
node.

To make REQSMINER have superior effectiveness and
exploration, inspired by the MCTS (UCT) algorithm, we
propose a UCT-based weighted random generation algorithm
(UCT-Rand) as illustrated in Algorithm 1. In contrast to UCT,
UCT-Rand uses weighted random selection rather than the
argmax function to choose the next child node during the
selection phase. Specifically, the generation algorithm consists
of 4 phases: Expansion, Selection, Simulation, and Backprop-
agation.

During the expansion phase, the request generator traverses
the ABNF grammar tree starting from the root node. The
traversed nodes produce a derivation tree that corresponds to an
HTTP request. When traversing, the request generator employs
specific strategies at different nodes. If the node is an AND
node, it directly traverses all sub-nodes; otherwise, it enters
the selection phase.

Throughout the selection phase, depending on the node
type, the request generator uses several selection algorithms.
If the node is a RAND node, the traversing times of the child
nodes are decided at random. If the current node is an OR
node with unvisited sub-nodes, then a random sub-node is

Algorithm 1: UCT-Rand Generation Algorithm.

Input: the ABNF grammar tree T’

1 repeat
2 V « {T.root} /* stack of nodes to visit =/
3 S+ {} /* visited leaf nodes x/

4 D+ {} /+ decisions */
/+ Expansion */

5 while V' is not empty do
6 v < V.pop()
7 if v is a leaf node then
8 \ insert v into S, and goto Line 5
9 switch the type of v do
10 case AND node do V.push(v.children)
/* Selection x/

11 case OR node do
12 if v.unvisited_children is not empty then
13 | ¢« choice(v.unvisited_children)
14 else
15 c

weighted rand | Q(v,v") + 2In N(v)

v/ €v.children N('U, UI)
16 end
17 insert (v, ¢) into D, and V.push(c)
18 case RAND node do
19 t = v.lower_bound
20 while ¢t < v.upper_bound do
21 | ¢ plus 1 or break, fifty-fifty
22 end
23 V.push(v.children), repeat ¢ times
24 end
25 end
/% Simulation =*/

26 result < RunTest(S) /* forwarding status =/

/* Backpropagation */

27 for (v,c) € D do

28 | update Q(v,c) and N (v, c) based on result
29 end

30 until EndConditions()

selected for expansion traversal. Alternatively, if all sub-nodes
of the current node have been explored in earlier iterations,
signaling that the node has completed its search, the UCB
formula is used to determine the weights of all sub-nodes. For
the subsequent traversal, a sub-node is chosen using a random
selection with weights.

With UCB, the sub-node selected at node v is defined as
follows:

7(v) := weighted rand [Q(v,v") +

v’ €v.children

(©))

Where:

Q(v,v') is the probability of generating successfully
forwarded requests by the CDN after selecting sub-node
v’ under node v.

N (v) is the number of times that node v has been visited.
N(v,v") is the number of times that sub-node v’ has been
selected under node v.

During the simulation phase, the request generator trans-
forms visited leaf nodes into HTTP requests and sends them
to the CDN via the client. The generator then retrieves the
forwarding status of the CDN from the server and logs if the
request was successfully forwarded by the CDN and forwarded
to the server.

In the backpropagation phase, the request generator updates
the parameters of the generation algorithm (including Q(v, v’)
and N (v,v")) of each node in the ABNF grammar tree based
on the success of CDN forwarding.

Courier Platform. The courier platform comprises the client,
the server, and the targeted CDNs that undergo testing. The
client sends test requests to the targeted CDNs, which are
subsequently forwarded to the server by the CDNs. These
requests are recorded and sent to the difference analyzer.
Additionally, the server receives the request from the CDN
and responds with an HTTP response that is unrelated to the
request to the CDN. The server logs the forwarded request
from the CDN and channels it to the difference analyzer. The
server also provides a log to the request generator indicating
that the CDN has successfully forwarded the request.

Difference Analyzer. The difference analyzer is responsible
for detecting alterations made by the CDN when forwarding
the request by performing a comparison analysis. Specifically,
it extracts the request structures from both the original and
forwarded requests using simplified ABNF rules. Through this
comparison of structures, the difference analyzer reveals the
various kinds of modifications implemented on the request by
the CDN. These include:

e Alteration: The CDN modifies the original request’s header
value.

o [nsertion: The CDN introduces a header that is absent in
the original request.

e Deletion: The CDN removes a header from the original
request.

e Duplicate Header Insertion: The CDN introduces a header
already present in the original request.

e Duplicate Header Deletion: The CDN eliminates the dupli-
cate header from the original request.

Ultimately, the various types of modifications are archived in
a database, facilitating their use in subsequent research.

IV. EXPERIMENTS AND FINDINGS

In this section, we deploy REQSMINER on the server and
execute it to evaluate the CDNs in the controlled experiment
to reveal any discrepancies in request forwarding behavior.
Subsequently, we classify these multiple discrepancies ob-
served in the request forwarding of CDNs and investigate
whether these identified inconsistencies potentially contribute
to security risks.

A. Experiment Setup

To conduct an evaluation of the REQSMINER, we systemat-
ically analyzed 22 widely recognized CDN services known for
their substantial market shares and deployment rates. The list
includes Akamai, Aliyun, Azure, Baidu Cloud, BunnyCDN,
CDN77, CDNetworks, CDNSun, ChinaCache, ChinaNetCen-
ter, Cloudflare, CloudFront, Fastly, Gcore, Google Cloud,
Huawei Cloud, KeyCDN, Qiniu Cloud, StackPath, Tencent
Cloud, Udomain, and Verizon [9]. Their security issues could
potentially pose a threat to a broad spectrum of users.

Experiment Platform Setup. We conducted our experiments
on two Linux servers with Ubuntu 20.04.2 LTS (GNU/Linux

5.4.0-125-generic x86_64) as client and server. Both were
equipped with a 2.40GHz 32-core CPU (Intel Xeon E5-2640
v4), 16GB RAM, and 1000Mbps bandwidth capacity. As for
the CDNs, we opted for the default configurations and set one
of the experimental servers as the origin server by CNAME
or domain hosting [33]. The second experimental server was
designated as the client.

Test WorkFlow. During our experiment, we analyzed the core
specification of HTTP/1.1 protocols (RFC 9110-9112), and
other supplementary specifications (RFC 3986, 4647, 5234,
5646) [6], [15], [18]-[20], [42], [43]. In addition, we collected
web access logs for the lab homepage that was deployed on
our server. We also collected the HTTP logs of the network
security scanner Xray during vulnerability scans [10]. Targeted
adversarial traffic can improve the complexity of the generated
requests. Based on these protocols and the HTTP request logs
we collected, we extracted 442 ABNF rules and 63 sets of field
values that were used as input for REQSMINER. Then, using
the request generator, REQSMINER automatically generated
numerous HTTP test requests, each associated with a unique
Universal Unique Identifier (UUID). To prevent cache hits
on the CDN and to facilitate the server’s acquisition of the
forwarded request’s UUID, REQSMINER inserted the UUID
into the request-target URL. After storing these test cases in
the database, the client sent them to the target CDN using
multithreading. To minimize confusion during packet parsing,
we utilized low-level network programming (e.g., raw socket)
to send and receive packets. Then, normally, the CDN received
the request and forwarded it to the origin server under our
control. Requests with high distortion were likely to be rejected
by the CDN.

On the origin server, REQSMINER listened on port 80
directly and received requests forwarded by the CDN. After
parsing, REQSMINER extracted the UUID associated with the
request and stored this request in the database, using the UUID
as the index.

For each tested CDN, we ran 100 rounds of testing with
1,000 test cases per round, for a total of 100,000. With normal
network quality, a CDN can complete a full test within 300
minutes at a low rate of 6 requests per second. We intentionally
kept this rate low to minimize any potential adverse impact on
the tested CDN. During the testing, we mainly collected two
types of logs for difference analysis: (i) client logs including
the original requests; (ii) server logs including the requests
forwarded by the CDN.

Experiment Cost. For most CDN vendors, we subscribe to
their free service or trial service. Akamai and Verizon only
provide commercial CDN services for enterprise customers.
However, we can configure Akamai and Verizon CDN ser-
vices on the Microsoft Azure platform, and they can work
normally. The same goes for ChinaCache and ChinaNetCenter.
We obtained test accounts with a trial service by contacting
customer service. Aliyun, Baidu Cloud, Huawei Cloud, Qiniu
Cloud, and Tencent Cloud do not offer free or trial services,
so we subscribed to their paid service. In the end, the whole
experiment cost less than $10.

Ethical Considerations. We take utmost care to prevent
ethical problems in our experiments. (i) All the CDN services

o]
g
3

Effective Ratio

— Random
— uct
—— UCT-Rand

Number of Tree Nodes Explored

) 50 100 150 200 250 300 50 100 150 200 250 300
Rounds (100 requests per round) Rounds (100 requests per round)

(a) Effectiveness (b) Exploration

Fig. 6: Evaluation of Different Generation Algorithms.

involved in this experiment were purchased at our own expense
for the sole purpose of this experiment. Besides, we sent
requests to the CDN at a relatively low frequency, which
will not affect normal CDN services. (ii) The origin servers
involved in this experiment were under our control, and no
attack was launched against any real users or external servers.
(iii) We actively informed all CDN vendors being tested and
put contact information up on the self-built testing website.
(iv) We implemented measures to monitor CDN status in real-
time to mitigate potential impacts on CDN deployment. If a
crash is detected, we will stop testing immediately and report
any payloads that may have caused the crash to expedite
resolution and minimize disruption. In our experiments, we did
not actually detect any crashes. (v) We followed the established
coordinated disclosure best practices. Vulnerabilities identified
in this work have been reported to all relevant CDN providers.

B. Evaluation of REQSMINER

Unlike conventional methodologies for assessing fuzzer
performance, the evaluation of REQSMINER’s efficiency using
metrics such as false positive and true negative rates presents
unique challenges due to the intricacy involved in vulnerabil-
ity determination. The distinctive innovation of REQSMINER
resides in its capacity to identify a broad spectrum of unique
inconsistencies, outperforming random generation approaches.
To accomplish this, the fuzzer must adequately explore the
input space and maintain a high success rate in generating
requests. Consequently, our evaluation concentrates on gauging
the efficiency of various algorithms in terms of both effective-
ness and exploration.

To evaluate the effectiveness of REQSMINER, we con-
ducted additional experiments. Specifically, we employed a
local Nginx instance as the CDN for testing and configured
Nginx to operate in reverse proxy mode, thereby enabling the
detection of differing requests during forwarding. In order to
generate test cases, we employed three distinct algorithms:
(i) Random: In this algorithm, child nodes are randomly
selected; (ii) UCT: This algorithm uses the argmax function
to determine child nodes; (iii) UCT-Rand: Similar to UCT,
but utilizes weighted random selection of child nodes. For
each algorithm, we executed 300 testing rounds, generating
100 test cases per round. Throughout this evaluation, we
noted the number of traversed ABNF grammar tree nodes
by the generation algorithm and the proportion of test cases
successfully forwarded by the CDN.

Figure 6 displays the evaluation results, where the effective

ratio indicates how many requests that were forwarded nor-
mally by Nginx rather than refused. Concerning effectiveness,
the Random consistently falls below 20% in each round; the
UCT is at least 90% effective starting from the second round,
and UCT-Rand commences under 10% effective, gradually
rising to over 60% effective by the final round. In terms
of exploration, Random and UCT-Rand share similar growth
curves, yet UCT-Rand always boasts more explored nodes than
Random. After 50 rounds, the count of explored nodes with
UCT grows markedly slower than those in Random and UCT-
Rand.

In summary, while requests generated by UCT exhibit ef-
fectiveness in terms of forwarding, they fall short in exploring
the grammar tree. This is attributed to UCT prioritizing the
most promising nodes in the ABNF grammar tree, which are
the most probable nodes to facilitate CDN request forwarding,
thus becoming ensnared in the local optimization of CDN for-
warded requests. Since UCT presumes these similar requests
will be forwarded, it persistently generates them with high
probability, thereby manifesting an overfitting issue.

Contrastingly, UCT-Rand, through weighted randomness,
maintains a balance between successful forwarding and ABNF
exploration, effectively breaking free from local optimization.
This algorithm refines the quality of generated test cases based
on feedback while exploring more grammar tree nodes. Con-
sequently, UCT-Rand has demonstrated superior effectiveness
and exploration, both of which are crucial requirements for
our fuzzing test. Based on this, we have selected UCT-Rand
as the generation algorithm for our experiment.

C. Difference Findings

In our experiment, REQSMINER spotted numerous CDN
forwarding request inconsistencies. We categorized them into
three major groups based on where they occur in the HTTP
message: (i) Differences in Request Line, (ii) Differences in
Header Fields, and (iii) Differences in Message Body. As
we elaborated on these findings, we concurrently conducted
a brief analysis to discern whether these inconsistencies might
be a product of the CDN’s security mechanisms, as described
in the CDN provider’s documentation [14], [17]. Addition-
ally, through some simple manual verification processes, we
provided a preliminary exploration of the potential for these
inconsistencies to be exploited by adversaries in the initiation
of attacks.

1) Differences in Request Line: The format of the request
line for the HTTP/1.1 protocol is specified by RFC 9112 [20,
§3]. There are three parts in the request line: request method,
request URL target, and HTTP version.

Differences in Request Method. In HTTP protocols, a
request method is the method used to request data from the
server. The most common request methods are GET, which
requests a resource from the server, and POST, which submits
data to be processed by the server. RFC 9110 defines 8
common standardization methods used in HTTP, and specifies
that additional methods ought to be registered within the
“Hypertext Transfer Protocol (HTTP) Method Registry” [19].

In our experiments, differences in request method are ob-
served in nearly half of the CDNs. 11 CDN services change the

HEAD request to a GET request. After receiving the complete
request resource from the origin server, the CDN removes the
message body of the response and forwards it to the requesting
client, in order to comply with the RFC for HEAD requests.
However, this can lead to unequal response traffic sizes. An
attacker can exploit this inequality to launch a DoS attack
against the origin server by consuming the server’s outbound
bandwidth with little bandwidth of request traffic through the
CDN. We will further discuss how to exploit it and propose a
novel class of DoS attack in Section V-B.

In addition, Aliyun and Qiniu Cloud change some special
request methods (e.g., LOCK, MERGE, and MKACTIVITY) to
the GET method. Unlike the case above, the CDN does not
alter the content when forwarding the response. However, this
modification causes the origin server to receive an incorrect
request, even if the server supports the particular request
method listed above.

Differences in Request URL Target. The request URL target
is part of an HTTP request that specifies the location of the
requested resource on the server. It is typically part of the
URL following the domain name and can include parameters
and query strings.

In our experiments, we noticed that most CDNs forward
the URLSs to the origin server unchanged, but there are some
exceptions. 6 CDNs discard the part of the URL after the hash
(“#) when forwarding requests: Akamai, Aliyun, BunnyCDN,
CloudFront, Qiniu Cloud, and Verizon. This is correct because
the hash is used to identify a specific location in the document
that the CDNs do not think needs to be forwarded to the origin
server. Akamai will combine two adjacent slashes (“/”) in
the URL into one. Azure and BunnyCDN will parse the URL
and removes things like “/./” and “/<dir>/../” before
forwarding.

Differences in HTTP Version. The HTTP version in the
request line indicates the version of the HTTP protocol that
clients are using. Web servers need to identify the HTTP
version and respond to HTTP requests accordingly. The format
of the HTTP version is HTTP /X .X where X.X is the version
number.

We observe that different CDNs allow different HTTP
versions. Aliyun, Qiniu Cloud, and Tencent Cloud permit
requests with HTTP versions 1.0 and 1.1. All other CDNs
allow versions 1.0-1.9, with Verizon also allowing version 0.9,
and Akamai and StackPath permitting versions 0.0-9.9. CDNs
also modify the HTTP version when forwarding requests, with
most changing it to 1.1. However, Verizon modifies the version
to 1.0 when forwarding requests with versions 0.9/1.0, and
StackPath alters it from 0.0-0.9 to 0.9.

We think that it would be better for CDNs to force
the HTTP version to be 1.1 when forwarding requests, as
HTTP/0.9 and HTTP/1.0 have both been deprecated [7]. How-
ever, it is still possible for Verizon and StackPath to modify
the version to 0.9 or 1.0 when forwarding. In cases where
the origin server does not support the HTTP version modified
by the CDN, a response with status code 400/505 will be
received by the CDN If the CDN classifies these status codes
as cacheable, it could result in a CPDoS attack.

2) Differences in Header Fields: HTTP headers allow
clients and servers to pass additional information via HTTP
requests or responses. HTTP headers are included in the
message header, after the request line (or status line in the
case of a response) and separated from the message body by
a blank line.

Differences due to Duplicate Headers. RFC 9110 specifies
how to handle duplicate headers. When a header is duplicated,
its combined field values consist of a list of the corresponding
field row values within that section, joined in order, with each
field row value separated by a comma. And field names are
case-insensitive [19], [46].

The experiments found that although all CDNs ignored the
case of field names by default, they handled duplicate headers
differently. Most CDNs forwarded all duplicate headers, while
some modified the case of header names or merged the values
in specific ways. Notably, BunnyCDN merges duplicate header
values with semicolons instead of commas, which violates the
RFC. Suppose the origin server cannot resolve header values
separated by semicolons. In that case, the CDN may receive
a response with a status code of 4xx/5xx, putting it at risk
of CPDoS attacks if that code is tagged as cacheable by the
CDN.

Because the ABNF rules cannot restrict headers unique-
ness, the requests generated by REQSMINER might contain
duplicate headers. The experiments have further revealed that
CDNs use distinct strategies when dealing with specific dupli-
cate headers, such as Host and Content-Length.

In cases where a request is received with multiple Host
headers, most CDNs discard all but the first one, except 6
CDNs that reject it with status code 400/500. In particular,
Google Cloud forwards the request by combining the values of
multiple Host headers, separated by commas, violating RFC
rules.

In cases where a request with multiple Content-Length
(CL) headers is received, most CDNs will reject it with “400
Bad Request”. However, Aliyun and Fastly accept the request
and forward it without modification, keeping only the first CL.
Tencent Cloud does the same, but only keeps the last CL.

Differences caused by Adding Headers. When forwarding
requests, CDNs append certain headers containing information
related to clients. For instance, Cloudflare adds four head-
ers: CF—Connecting-IP, CF—-IPCountry, CF—-RAY, and
CF-Visitor.

To protect against forwarding loop attacks, CDNs add
CDN-Loop and Via headers to indicate that the CDN has
forwarded the request [11]. However, we observed that only
five CDNs (CDNetworks, ChinaNetCenter, Cloudflare, Fastly,
and Gceore) added CDN-Loop headers. Conversely, among the
remaining CDNs, five CDNs do not add CDN-Loop or Via.
This means that most CDNSs are still vulnerable to forwarding
loop attacks. Attackers can cascade multiple CDNs through
malicious configurations and perform attacks.

Differences caused by Removing Headers. CDNs also
remove specific headers when forwarding requests. Some
headers, such as TE and Upgrade, are removed as the RFC
requires. However, removing some headers, such as Range

and conditional headers, can cause changes to the expected
response and lead to DoS attacks. In our experimental results,
12 CDNs removed the Range headers, while 17 CDNs
removed some or all conditional headers.

A previous study has revealed the RangeAmp attack that
results from removing Range headers [32]. Moreover, in
Section V-C, we will further discuss the DoS attacks that can
occur due to removing conditional headers.

Differences caused by Altering Headers. In addition
to adding and removing headers, CDNs alter certain head-
ers, such as Accept-Language and Accept-Encoding.
In HTTP, Accept-Language specifies the preferred lan-
guages for the response from the server. When CDNs modify
Accept-Language in forwarded requests, it may result
in response content that does not match the user’s actual
preferred language, thus affecting user experience. We found
that the Accept-Language header is modified by three
CDNs (Azure, BunnyCDN, and Verizon). Meanwhile, 15
CDNs modify the Accept-Encoding header, which may
result in DoS attacks. Section V-D will further discuss the DoS
attacks that can result from changes to Accept-Encoding.

3) Differences in Message Body: The message body in an
HTTP request is the data contained in the request after the
headers. Before sending a request to the server, clients can
either compress or chunk the message body.

Differences by Removing Message Body. According to RFC
7231, a payload within a GET/HEAD request message has no
defined semantics, leading some implementations may reject
such requests [21]. These are also referred to as “fat requests”.
Different CDN services handle such requests inconsistently,
with only Akamai and Azure removing the message body from
GET/HEAD requests. Other CDNs do not show this behavior,
which can lead to a response with status code 4xx/5xx from
the origin server that does not support the fat requests. This
risks CPDoS attacks if the status code can be cached by the
CDNes.

Differences in Transfer Encoding. Transfer encoding is the
process of chunking the message body before sending it to web
servers, which is useful for sending large files or streaming
data. The most common Transfer-Encoding value is
“chunked”. However, some CDNs like Aliyun, CDN77, Cloud-
flare, and Gcore send all the chunked transfer data to the origin
server in one piece, altering the Transfer-Encoding of
original requests in the process. This means that the CDN
needs to receive all the data before forwarding the request
to the origin server, which can defend against Slowloris-like
attacks but also potentially cause pulse-based DoS attacks.
An attacker can cause pulse-based DoS attacks by exploiting
CDNs. This can be done by opening multiple connections
to the CDN, sending a large amount of data using chunked
encoding during the connection lifetime (in low bandwidth),
and then ending all the request-sending processes at the same
time, causing the CDN to send a large amount of data (in high
bandwidth) to the origin server instantaneously.

V. HTTP AMPLIFICATION ATTACKS

Based on the exposition provided in Section IV, it is un-
derstood that discrepancies do not directly signal the existence

10

of potential security implications. Nevertheless, it is possible
to uncover new attack vectors by extending REQSMINER and
integrating it into the threat model of a specified attack. For
instance, we chose the amplification attack as a threat model
for an in-depth study. We augmented the analysis module
of REQSMINER, enabling it to detect discrepancies in traffic
size due to inconsistencies in the requests. As a result of
this extension, we identified three novel HTTP amplification
attacks, yielding 74 vulnerabilities across 19 CDN providers.
These vulnerabilities allow powerful DoS attacks against origin
servers, utilizing minimal bandwidth, yet yielding substantial
effects. The amplification factor reach a 2,000 times in general,
and under certain conditions, can even surpass 7,920,000 times,
which is significantly higher than previous attacks [25], [32],
[40].

A. Overview of HTTP Amplification Attacks

HTTP amplification attack is a type of DoS attack where
attackers exploit vulnerabilities in HTTP servers to amplify
their network traffic, causing the victim’s network to become
overloaded and unable to provide normal services.

Threat Model. As shown in Figure 7, an attacker can
impersonate a normal client and exploit vulnerabilities by
sending a legal but delicately crafted request to the CDN
towards a website hosted on it (step 1). This crafted request
would “manipulate” the CDN to fetch large content from the
website’s origin server, which will become the victim (step 2).
Then the origin server returns the requested large content to
the CDN (step 3). Once numerous large responses consume the
outbound bandwidth, this can cause a DoS attack. The basic
aim of this threat model is to leverage the CDN’s inconsistent
request-handling behaviors to increase the traffic scale between
CDN servers and origin servers (step 3) while reducing the
traffic expense between attackers and CDN servers (step 4).

I=_\

~ @ Legal but @ Attack Requests
O Crafted Requests Altered by CDN o—
' | - O — 1iin
@ Little Traffic @® Large Traffic O—
Responses Responses ..
Attacker CDN Origin

Fig. 7: Threat Model of CDN-based Amplification Attacks.

In order to effectively leverage this threat model, the
attacker must successfully avoid the CDN’s cache. If they
fail to do so, the CDN will inhibit them from requesting
content directly from the origin server. CDNs typically include
a response header signifying the cache lookup result, which
allows attackers to determine if the resource is cached by
issuing requests. If it is cached, attackers can employ cache-
busting strategies to compel the CDN to re-cache it.

It is important to note that CDNs have implemented de-
fenses against such attacks. In response to researchers propos-
ing a strategy to amplify DoS attacks via connection termi-
nation [49], nearly all CDNs have implemented mitigation
measures. If the attacker disconnects from the CDN before
receiving all the data, the CDN will sever the connection to the
origin server immediately, effectively thwarting the attack [23].
However, as our research progressed, we discovered three new

attacks based on this threat model that bypass the aforemen-
tioned mitigations. These attacks will be described in detail in
the following sections.

Experiments Setup. Firstly, we enhanced REQSMINER with
the capability to unearth potential vectors for amplification
attacks. In our improved version, REQSMINER’s analysis
module also records the traffic size of both the client and the
server. If it is found that the server’s traffic size is more than
ten times that of the client, we will identify the originating
request that led to this discrepancy as a potential vector for an
amplification attack.

Subsequently, similar to previous experiments (Section V),
we configured the CDN services and added a controlled origin
server. We deployed Nginx as the web application and sent
requests with different payloads to affected CDNs according
to different types of amplification attacks. Then, we captured
all response traffic in the client-CDN connection and CDN-
origin connection and calculated the ratio of CDN-origin traffic
and client-CDN traffic as the amplification factor. This metric
effectively illustrates the discrepancy in bandwidth resource
consumption between the attacker and the victim [32]. Besides,
we evaluated our attacks with vendors’ consent and limited
impact.

B. HEAD Request-based HITP Amplification Attack

We explore the significant traffic size differences between
GET requests and HEAD requests and introduce a novel class
of traffic amplification attacks, dubbed HEAD Request-based
HTTP Amplification (HeadAmp) Attack. If a CDN converts the
request into a GET request when it forwards a HEAD request,
an attacker can craft a HEAD request to launch a HeadAmp
attack.

Attack Details. As shown in Figure 8, the attacker crafts
a HEAD request and sends it to a vulnerable CDN (step 1).
To cache the resource, the CDN transforms the request into
a GET request and forwards it to the origin server (step 2).
This causes the origin server to respond with the entire target
resource (step 3), while the CDN returns only the response
line and headers to the attacker (step 4). The response traffic in
the client-CDN connection is only a few hundred bytes, while
the response traffic in the CDN-origin connection is equal to
the entire target resource, resulting in an amplification factor
that increases with the size of the target resource. However,
the amplification ratio will be limited if the CDN disconnects
from the origin server after receiving responses.

@] /[test.png HTTP/1.1

e @ HEAD /test.png HTTP/1.1
m ~———
@ response without msg body

small traffic

N
@ response with msg body
large traffic

Attacker CDN

Fig. 8: Example of HeadAmp Attacks.

Additionally, besides meeting the prerequisites mentioned
in Section V-A, the attacker needs to ensure that the target
resource used by the attack is cacheable by the CDN, which
can also be determined by making normal requests and check-
ing the cache lookup status header in the response. If it is not
cacheable, the CDN will only make a HEAD request to the
origin server instead of a GET request.

11

TABLE I: Amplification Factors with Different Target Re-
source Size of HeadAmp Attacks.

CDN Amplification Factor

1MB 10MB 25MB Max (<1GB)
Aliyun! 137.52 144.05 140.49 154.20
Azure! 56.70 56.56 56.48 56.70
BunnyCDN 1119.00 11198.95 27575.01 1095296.82"
CDN77! 23.79 35.54 59.12 59.28
CDNetworks 1595.73 15599.15 39056.21 1330849.57"
ChinaNetCenter | 1566.94 15667.43 38567.16 1315155.58"
Cloudflare? 967.15 9717.67 23827.26 483332.05
Fastly? 1465.48 14540.97 30.79 29243.69
Gcore 1725.39 16963.68 43094.88 1680775.18"
KeyCDN! 27.20 27.13 57.94 58.25
StackPath 1607.70 15853.18 40150.99 1573951.48"
Udomain* 1489.30 1488.06 1485.17 1491.31

* Amplification factor can be greater if the file size is larger than 1GB.

! Terminate the request as soon as all the headers received.

2 Terminate the request if the file size is larger than 512MB.

3 Refuse with “503 Service Unavailable” if the file size is larger than 20MB.

4 First request for the first IMB of file, then response to the client with
headers.

Aliyun
Azure
BunnyCDN
CDN77
CDNetworks
ChinaNetCenter
Cloudflare
Fastly

Gcore
KeyCDN
StackPath
Udomain

/

0 u T u Tt T T u t u T + u u u + T u T u u u + t
123 456 7 8 91011121314 151617 18 19 20 21 22 23 24 25
File Size of Target Resource (MB)

40000 -

30000 4

FiH

20000 1

Amplification Factor

10000 A

Fig. 9: Distribution of Amplification Factors for HeadAmp
Attacks with Different Target Resource Size and CDNs.

Real-World Attack Analysis. As shown in Section IV-ClI,
12 CDNs transform HEAD requests to GET requests while
forwarding, making them vulnerable to HeadAmp attacks. We
conducted a controlled experiment in the wild to determine
their amplification factors by requesting target resource sizes
ranging from 1MB to 25MB in 1MB increments. The specific
amplification factors for the target resource sizes of 1MB,
10MB, 25MB, and “Max” are listed in Table I, with the
maximum possible amplification factor limited to a requested
resource size of no more than 1GB. As shown in Figure 9,
when the target resource size is fixed, the amplification factor
is nearly identical across all CDNs except for Cloudflare
and BunnyCDN, which insert more headers in the response,
resulting in slightly lower amplification factors. Certain CDNs
also do not limit the size of the requested resources, resulting
in amplification factors up to 1,680,775 when limiting the
requested resource size to a maximum of 1GB.

Several CDNSs take various measures to limit the amplifi-
cation effect: (i) Aliyun, Azure, CDN77, and KeyCDN stop
requests immediately after receiving all headers, but there is
a possibility that some data may have already been sent from

A @ GET /test.png HTTP/1.1 @ GET /test.png HTTP/1.1 [————\
) If-Match: <Wrong ETag> o—
- O — 1un
O @ 412 response ® 200 response o—
= small traffic large traffic
Attacker CDN Origin
(a) Attack with If-Match Header.
A @ GET /test.png HTTP/1.1 @ GET /test.png HTTP/1.1 [—\
) If-None-Match: <ETag> o—
' l O — nun
@ 304 response ® 200 response =37
— small traffic large traffic
Attacker CDN Origin
(b) Attack with If-None—-Match Header.
@ GET /test.png HTTP/1.1 @ GET /test.png HTTP/1.1
A If-Modified-Since:
) <Last-Modified>
‘-O ' @ 304 response ® 200 response
— small traffic large traffic Q—
Attacker CDN Origin
(c) Attack with Tf-Modified-Since Header.
@ GET /test.png HTTP/1.1 @ GET /test.png HTTP/1.1
. If-Unmodified-Since: Sat, 01
) Jan 2000 01:00:00 GMT @
‘-O ‘ @ 412 response ® 200 response
— small traffic large traffic Q—
Attacker CDN Origin
(d) Attack with If-Unmodified-Since Header.
@ GET /test.png HTTP/1.1 @ GET /test.png HTTP/1.1
A If-Range: <Etag> [——2\
<) Range: bytes=1-1 o—
' ‘ O — nun
@ 206 response ® 200 response o
— small traffic large traffic
Attacker CDN Origin

(e) Attack with Tf-Range Header.

Fig. 10: Examples of CondAmp Attacks.

the origin server before the connection was terminated; (ii)
Cloudflare terminates a request upon receiving all headers if
the requested resource is larger than 512MB; (iii) By default,
Fastly responds with a “503 Service Unavailable” error if the
requested resource is greater than 20MB; (iv) Udomain adds
header “Range:1-1048576” when requesting and does not
request again after getting all headers, hence its amplification
factor has an upper bound.

C. Conditional Request-based HTTP Amplification Attack

If a CDN removes the conditional headers when forwarding
conditional requests, it can make it possible for an attacker to
craft a “malicious” but legal conditional request and launch
a Conditional Request-based HTTP Amplification (CondAmp)
Attack.

Attack Details. There are five conditional headers that can
be exploited in CondAmp attacks. As shown in Figure 10,
the attacker constructs a conditional request and sends it to a
vulnerable CDN (step 1). The CDN forwards the request to
the origin server while dropping the conditional headers (step
2), which causes the origin server to return a complete copy of
the requested resource (step 3). The attacker then manipulates
the conditional header to prevent the CDN from returning
the resource (step 4), resulting in the CDN responding with
just the response line and headers. Similar to HeadAmp, the

12

amplification factor in a CondAmp attack increases with the
size of the target resource. Additionally, for reasons akin to
HeadAmp, the targeted resource, for a CondAmp attack, must
be uncached but cacheable.

Real-World Attack Analysis. As shown in Section IV-C2,
we found that 16 CDNs discard conditional headers when
forwarding conditional requests, making them vulnerable to
CondAmp attacks. Similar to the prior experiment, we set
different target resource sizes, including 1MB, 10MB, and
20MB, resulting in amplification factors listed in Columns 2-
4 of Table II. The maximum achievable amplification with a
target resource size of no more than 1GB is listed in Column
5 of Table II.

D. Accept-Encoding-based HTTP Amplification Attack

The variances in traffic caused by Accept-Encoding-
specific policies result in a new form of traffic amplification
attack, labeled as Accept-Encoding-based HTTP Amplification
(AEAmp) Attack. Specifically, if a CDN adopts the dele-
tion policy for handling the Accept-Encoding header,
an attacker can devise an Accept—-Encoding header that
comprises a compression algorithm to execute an AEAmp
attack.

Attack Details. Figure 11 illustrates the attacker’s modus
operandi for executing an AEAmp attack. Firstly, the attacker
generates a request with the header “Accept-Encoding:
gzip” and sends it to a vulnerable CDN (step 1). Upon
receipt, the CDN removes the Accept-Encoding headers
and forwards the request to the origin server (step 2), resulting
in the origin server returning an uncompressed target resource
(step 3) while the CDN furnishes a compressed target resource
(step 4).

A @ GET /test.png HTTP/1.1 @ GET /test.png HTTP/1.1 =
() Accept-Encoding: gzip
3 o
@ response with compress @® response without compress ()
— small traffic large traffic
Attacker CDN

Fig. 11: Example of AEAmp Attacks.

In an AEAmp attack, the response traffic in the client-
CDN connection pertains to the compressed target resource
(small), while the response traffic in the CDN-origin connec-
tion corresponds to the complete uncompressed target resource
(large). As a result, the amplification factor is higher for
target resources with greater compression rates. To boost the
compression rate, an attacker can utilize the upload feature of a
website to upload a file that consists of identical content (e.g.,
all content is \00) and exploit this file as the target resource
to launch a potent AEAmp attack.

Real-World Attack Analysis. Section IV-C3 of our study
demonstrates that four CDNs are vulnerable to AEAmp attacks
as they discard Accept-Encoding headers upon forwarding
requests. In our experiments, we set the target resources
to solely comprise zero-byte files to obtain the maximum
amplification factor. We utilized distinct attack loads for dif-
ferent CDNs (listed in Column 2 of Table III) and tested
various target resource sizes, ranging from 1MB to 25MB. The
amplification factors for the respective target resource sizes are
presented in Columns 3-5 of Table III.

TABLE II: Amplification Factors with Different Target Resource Size of CondAmp Attacks.

(a) Attack with Tf-Match.

(b) Attack with If-None-Match.

(c) Attack with Tf-Modified-Since.

Amplification Factor

Amplification Factor

Amplification Factor

CDN CDN CDN

1MB 10MB 20MB Max (<1GB) 1MB 10MB 20MB Max (<1GB) 1MB 10MB 20MB Max (<1GB)
Azure! 1279.62 13640.29 23688.26 23688.26 Aliyun 1376.95 13746.82 29480.45 1143179.80 Aliyun 1473.16 14946.99 29574.55 1354919.63
Baidu Cloud! | 1380.63 4765.35 4756.42 6826.85 Azure! 1494.58 14582.42 27178.19 27178.19 Azure! 1376.15 14298.48 30676.27 30676.27
BunnyCDN! 46.79 46.72 40.51 46.79 Baidu Cloud! [1493.35 5132.33 5147.56 7395.95 Baidu Cloud! [1492.15 5139.53 5140.73 5193.15
CDNetworks! 24.59 28.08 31.56 31.56 BumnyCDN [1197.92 11764.44 23553.99 1172958.12 CDNetworks | 1555.73 15505.32 31018.09 1442440.80
CDNSun! 63.95 63.95 57.51 63.95 CDNetworks | 1555.06 17321.00 30671.49 1721487.32° CDNSun 1955.65 19182.45 38724.78 1925005.47
ChinaNetCenter | 1231.49 12731.49 24831.49 1178739.20" CDNSun 1955.17 19475.55 39074.55 1927288.09 ChinaNetCenter | 1527.57 15182.11 30269.21 1429888.15"
Cloudfiare! 34.58 34.52 32.28 34.58 ChinaNetCenter [1526.73 16045.67 30289.85 1511756.22 Cloudflare> [1021.95 10045.26 20106.55 519026.19
Geore! 48.33 33.67 63.14 63.14 Cloudfiare> [1015.18 10154.17 20302.83 575322.41 CloudFront! 140.36 140.36 140.26 140.36
Huawei Cloud | 1302.69 12965.64 25804.73 1286965.74" Fastly® 1831.95 18274.44 32919.45 32919.45 Fastly® 1814.89 16190.66 36467.10 36467.10
Udomain' 63.67 63.58 63.74 63.74 Geore 1917.59 18870.12 37761.45 1884424.91° Geore 1917.71 19163.23 38311.90 1877317.00°
Huawei Cloud | 1255.05 12579.15 24936.88 1235931.80 Huawei Cloud |1252.63 12370.51 24861.33 1242765.42
Qiniu Cloud | 1503.22 14855.64 29300.20 1355751.89" Qiniu Cloud | 1505.18 13189.91 26181.69 1337846.65"
Udomain* 1631.73 1631.83 1810.82 1810.82 Udomain* 1632.43 1631.73 1648.74 1648.74

(d) Attack with If-Unmodified-Since. (e) Attack with Tf-Range.

CDN Amplification Factor CDN Amplification Factor
1MB 10MB 20MB Max (<1GB) IMB 10MB 20MB Max (<1GB)
Akamai! 48.99 41.28 56.91 56.91 Aliyun! 177.59 181.68 145.18 181.68
Azure! 1280.01 13613.49 22754.04 22754.04 Azure! 1247.07 15821.07 25013.66 25013.66
Baidu Cloud! [1379.85 4758.04 4752.64 4796.06 Baidu Cloud! | 1377.37 4772.99 4754.65 4772.99
BunnyCDN! 1121.41 11086.40 18373.83 18373.83 BumnyCDN | 1008.24 10090.34 20136.81 1070350.65"
. CDNetworks! | 1326.17 13018.93 26066.93 26066.93 CDNetworks | 1388.60 13651.43 27445.86 1357456.36"
Amplification factor can be greater if the file size is ChinaNetCenter! | 1183.76 12927.97 25911.45 25911.45 CDNSun 1698.61 16729.29 33194.18 1654906.12"
11"?512[:2;[1 tl}gBl.'eque%t as soon as all the headers Geore! 48.36 37.85 42.03 48.36 ChinaCache! | 217.55 226.84 216.76 265.65
! St as s * Huawei Cloud | 1301.47 12914.44 25778.09 1288875.96° ChinaNetCenter | 1364.86 12188.11 25755.39 1348074.75
zrece“fed‘ . L Udomain' 63.58 63.58 50.90 63.58 Cloudflare® 940.34 9333.86 18654.03 477756.97
Terminate the request if the file size is larger than s

S19MB. Fastly? 1383.88 12735.87 27453.46 27453.46
3 Refuse with “503 Service Unavailable” if the file size Geore 1669.96 16595.73 35264.03 1636764.26
is larger than 20MB. Huawei Cloud | 1144.63 11311.80 22565.36 1126143.05
4 First request for the first 1IMB of file, then response Udomain®* 1588.88 1447.45 1445.06 1588.88

to the client with headers.

TABLE III: Amplification Factors with Different Target Re-
source Size of AEAmp Attacks.

Amplification Factor

CDN Exploited Case IMB 10MB 25MB
Baidu Cloud gzip;ag=1 580.44 946.17 —
CDN77 gzip 571.68 929.30 963.03
CDNSun gzip 650.43 972.92 984.34
Udomain gzip 202.03 227.95 230.10
1000

S 800
k9]
©
u‘5 500 | / —— Baidu Cloud
S CDN77
‘é —— CDNSun
& 400 A —— Udomain
a
S
<T 200

0

1 2 3 45 6 7 8 9 10111213141516 17 18 19 20 21 22 232425
File Size of Target Resource (MB)

Fig. 12: Distribution of Amplification Factors for AEAmp
Attacks with Different Target Resource Size and CDNs.

13

Based on the result in Figure 12, Udomain exhibits a rela-
tively low compression level compared to other CDNSs, thereby
resulting in a lower amplification factor of 230. Furthermore,
Baidu Cloud furnishes the uncompressed version of the file to
the client when the target resource size exceeds 10MB, causing
the AEAmp attack to fail. On the other hand, CDN77 and
CDNSun manifest an amplification factor exceeding 960.

E. Impact Analysis

Widespread and Serious Impacts. According to our experi-
mental results, the amplification factor of the HeadAmp attack
and CondAmp attack can reach up to 1 million, while that
of AEAmp can reach close to 1,000. As shown in Table IV,
we found 74 vulnerabilities of HTTP amplification attacks
across 19 CDN vendors, which can potentially affect multiple
websites that use these CDNs worldwide.

Efficient and Low-cost DDoS Attacks. The attacker in our
threat model does not require a huge botnet like traditional
DDoS attacks. Instead, the attacker can use a standard laptop
and leverage the egress nodes of CDNs worldwide to conduct
the attack. Even if there’s a shared cache among nodes, the
attacker can employ cache-busting strategies to negate the
effect [24]. This makes the overall cost of the attack very low
for the attacker.

TABLE IV: CDN Vendors Vulnerable to Three HTTP Ampli-
fication Attacks.

Head-
Amp

AE-
Amp

CondAmp

CDN M.-S.?

L

M.! N.-M. Un.-S.*

Akamai
Aliyun

Azure

Baidu Cloud
BunnyCDN
CDN77
CDNetworks
CDNSun
ChinaCache
ChinaNetCenter
Cloudflare
CloudFront
Fastly

Gcore

Huawei Cloud
KeyCDN
Qiniu Cloud
StackPath
Udomain

NENENEENEN
NN N N N
SENEN

AENENENEEN

NN N N SRR NENEN

SN

SN N N N N N N NN
NN N N N NEENEN
SN

NN NN

v

v": The target CDN is vulnerable. Irf Maten.
4 If-Unmodified-Since. 3 If-Range.

v

If-None-Match.

' v

3 1f-Modified-Since.

2

Huge Financial Losses for Victims. These attacks can cause
website or application outages, financial losses, and harm the
victim’s business reputation. The resulting losses for victims
may be significant, as they might have to purchase additional
bandwidth or DDoS security services, as well as bear the costs
of analyzing and mitigating the attack.

VI. DISCUSSION

A. Limitation

Our experiments only tested the default configuration of the
CDN, and we may not have uncovered all potential forwarding
request inconsistencies since some CDN configurations may
differ in real-world deployments. Additionally, we did not
manually enable DoS protection for all CDN vendors, as
some features are turned off by default or only available to
commercial customers. However, our findings are still valuable
because attackers can abuse CDNSs to attack websites [23], and
as a malicious CDN user, the attacker can modify the caching
policy and disable security measures to make the attack more
effective.

Extending the use of REQSMINER to detect other threat
models might introduce new challenges. For instance, if one
intends to utilize REQSMINER to identify attack vectors
potentially leading to Web Cache Poisoning (WCP), it will
necessitate the additional consideration of CDN caching poli-
cies. Hence, bridging the gap from detected inconsistencies to
pinpointing potential security impact remains a complex task.

In our experiments, we set a 300-minute duration for the
fuzzing test. This decision was informed by our observations
that the exploration of ABNF grammar tree nodes reached a
saturation point at this juncture, implying that REQSMINER
had generated nearly all legal HTTP grammar structures. This
highlights not only efficiency but also limitation. Although it
is conceivable that prolonging the testing period might unearth
previously undiscovered cases, we believe that the likelihood
of such an occurrence is minuscule.

14

Moreover, due to restrictions imposed by the ABNF rules,
REQSMINER does not generate malformed malicious requests.
As a result, part of request forwarding inconsistencies may
evade detection. Nevertheless, as in manual attempts we found,
this is not a significant concern since most CDN security
mechanisms will automatically reject requests that contravene
ABNF rules.

Regarding the manual efforts, the set of ABNF rules and
values using in our experiments were extracted manually by
reading the RFC documentation. This process took us approxi-
mately two days of dedicated effort. However, we acknowledge
the possibility of unintentional omissions or extraction errors
in our manual extraction process.

B. Root Cause and Mitigation

CDN forwarding request inconsistencies predominantly
underpin the vulnerabilities identified by REQSMINER. To
efficiently support a range of protocols and operational mech-
anisms, optimize cache hits, and circumvent forwarding du-
plicate requests to the backend server, CDNs modify requests.
By normalizing requests through such modifications, CDNs
can proficiently manage content delivery and diminish po-
tential inconsistencies between themselves and the backend
webserver. It is important to note that these inconsistencies are
often introduced by CDNs for commercial or security reasons.

Implementation of preventive measures is challenging due
to the fact that inconsistencies do not invariably lead to security
risks. Consequently, we advocate for the following strategies
to mitigate the risks associated with inconsistent forwarding
requests: (i) Security assessment. CDNs must carefully eval-
uate their modifications and ensure they do not negatively
impact the security of the origin server; (ii) Request inspection.
CDNs should inspect forwarding request inconsistencies in
real-time, and monitor the resulting abnormal traffic; (iii) Risks
informed. The CDNs should inform and educate users about
the risks associated with certain features that may lead to
forwarding request inconsistencies (e.g., whether to ignore the
query string) and recommend implementing a more secure
caching policy to mitigate those risks. Besides, for CDN users,
turning on DDoS protection can also mitigate the risk of
attacks brought by CDN forwarding request inconsistencies.

C. Disclosure

We have reported all vulnerabilities to affected CDN ven-
dors, and our experiments are authorized for vendors that
replied. We provide them with mitigation solutions to eliminate
potential risks. We have received feedback from 3 vendors,
some of which, e.g., Azure and Cloudflare, have confirmed the
vulnerabilities and planned to fix them. We are still waiting for
responses from other vendors.

Azure. They confirmed the vulnerability. For HeadAmp
attacks, they stated that the request method was changed to
satisfy customer origins that could not accept HEAD requests.
Their patch strategy involves just forwarding HEAD requests
from the user to the customer origin. They indicate that this
fix is underway.

Cloudflare. They acknowledged the vulnerability. They said
they already have a defense rule against these attacks; however,

the thresholds are undergoing revision. They also thanked us
for the report and awarded us a bounty.

Fastly. They thanked us for our report but believed it was a
configuration issue with the client. Fastly provides customers
with configurable options to control the cached file size and
disable cache bursting techniques. They said that they would
gladly reconsider if we could demonstrate that this attack
would still be successful even with these mitigation strategies
in place. We are still in discussion with them about providing
new evaluation results.

VII. RELATED WORK

CDN Forwarding Request Inconsistencies. In recent years,
several works studied CDN forwarding request inconsistencies,
such as forwarding loop attacks [11], RangeAmp attacks using
Range headers [32], amplification attacks using the HTTP/2
header compression mechanism [25], and the inconsistent
interpretations of requests between the CDN and the origin
server also lead to CPDoS attacks [41], web cache deception
attacks [37], [38], and HTTP desync attacks [28]. However,
these works rely on manual analysis, a process that is heav-
ily dependent on human knowledge and expertise and lacks
scalability This approach is inherently limited, as it is time-
consuming and prone to human errors, and it cannot adapt to
the increasing complexity of security issues.

Unlike the existing study, which is fragmented and issue-
specific, our work provides a more holistic view of the security
landscape, enabling us to identify and address a wider range
of vulnerabilities. It is the first to conduct a systematic and
comprehensive examination of the security issues associated
with CDN forwarding request inconsistencies. By using semi-
automating the detection framework, we can significantly en-
hance the scalability and efficiency of vulnerability discovery,
thereby providing a more robust and effective protection to the
CDN.

Grammar-based Fuzzing. Grammar-based Fuzzing has also
been used in many works to automate vulnerability detec-
tion [12], [26], [45], [48], [51]. One such effort is T-Reqs [26],
which utilizes grammar-based fuzzing to uncover HRS attacks.
However, T-Reqs primarily focuses on generating malformed
HTTP requests and produces requests that are less than one-
thousandth as effective, which results in it taking nearly 100
hours to generate enough valid requests. Instead of employing
the original ABNF rules found in the RFCs, T-Reqs employs
a distinct set of context-free grammars (CFGs) that they
construct themselves for generating test cases, which means
it requires more manual effort. In another study, HDiff [45]
applies NLP-based techniques to extract ABNF rules from
RFCs and construct test cases. However, due to the inherent
uncertainty of NLP, it still needs to manually verify all
ABNEF rules for critical errors prior to experimentation. This
verification process introduces a significant amount of manual
effort.

In contrast, REQSMINER constructs test cases using un-
changed ABNF rules in RFCs and real data from server
traffic logs to reduce manual efforts. Users only need to
manually copy the ABNF rules that can be typically found
in the appendix from the RFCs, and provide an adequate

15

amount of traffic logs. REQSMINER also allows users to
further incorporate expert knowledge by specifying specific
ABNF variable values, thus enhancing the extensibility of the
framework. Additionally, REQSMINER employs a UCT-based
fuzzer to improve the efficiency of detecting vulnerabilities in
black box systems such as CDNs, so that the entire testing
process can be completed within a few hours.

VIII. CONCLUSION

This study is the first systematic exploration of CDN
forwarding request inconsistencies. We proposed a framework,
REQSMINER, for the efficient discovery of CDN forwarding
request inconsistencies, and developed a novel MCTS-based
grammar-based fuzzer. We tested 22 popular CDNs and found
numerous request differences, and further discovered three
novel high-impact HTTP traffic amplification attacks, involv-
ing a total of 74 vulnerabilities on 19 CDNs. Beyond ampli-
fication DoS attacks, CDN forwarding request inconsistencies
harbor the potential to morph into more sophisticated forms of
attack, such as CPDoS and WCP. We believe that REQSMINER
possesses significant potential for deployment in the detection
of these complicated attacks.

We hope this work can act as a catalyst, galvanizing the
security community to accord serious attention to the issue of
CDN forwarding request inconsistency. We advocate for the
proactive detection and defense against the security risks that
may stem from these inconsistencies, thereby enhancing the
overall security landscape of the CDNSs.

ACKNOWLEDGEMENT

We express our deep gratitude to all the anonymous review-
ers and our shepherd. Their insightful reviews and comments
have improved this paper, with a special note of appreciation
to our shepherd for their thoughtful and patient guidance. We
also acknowledge the prompt response from CDN vendors,
notably Azure and Cloudflare, in fixing the vulnerabilities
we found. Lastly, we appreciate the invaluable assistance of
Qianhui Wang in editing this paper. This work was partly
supported by the National Natural Science Foundation of
China (grant #62272265). Any opinions, findings, conclusions,
or recommendations expressed in this paper do not necessarily
reflect the views of sponsors.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

REFERENCES

B. Abramson and R. E. Korf, “A model of two-player evaluation
functions,” in Proceedings of the 6th National Conference on Artificial
Intelligence. Seattle, WA, USA, July 1987, K. D. Forbus and H. E.
Shrobe, Eds. Morgan Kaufmann, 1987, pp. 90-94. [Online]. Available:
http://www.aaai.org/Library/AAAI/1987/aaai87-016.php

Akamai, “What is a CDN (Content Delivery Network)?”” 2023. [Online].
Available: https://www.akamai.com/our-thinking/cdn/what-is-a-cdn

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2-3,
pp. 235-256, 2002. [Online]. Available: https://doi.org/10.1023/A:
1013689704352

H. Baier and M. Kaisers, “Guiding multiplayer MCTS by focusing on
yourself,” in IEEE Conference on Games, CoG 2020, Osaka, Japan,
August 24-27, 2020. 1EEE, 2020, pp. 550-557. [Online]. Available:
https://doi.org/10.1109/CoG47356.2020.9231603

A. Barbir, B. Cain, R. Nair, and O. Spatscheck, “Known content
network (CN) request-routing mechanisms,” RFC, vol. 3568, pp. 1-19,
2003. [Online]. Available: https://doi.org/10.17487/RFC3568

T. Berners-Lee, R. T. Fielding, and L. Masinter, “Uniform resource
identifier (URI): generic syntax,” RFC, vol. 3986, pp. 1-61, 2005.
[Online]. Available: https://doi.org/10.17487/RFC3986

T. Berners-Lee, R. T. Fielding, and H. F. Nielsen, “Hypertext transfer
protocol - HTTP/1.0,” RFC, vol. 1945, pp. 1-60, 1996. [Online].
Available: https://doi.org/10.17487/RFC1945

C. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. P. Liebana, S. Samothrakis, and
S. Colton, “A survey of monte carlo tree search methods,” IEEE Trans.
Comput. Intell. AI Games, vol. 4, no. 1, pp. 1-43, 2012. [Online].
Available: https://doi.org/10.1109/TCIAIG.2012.2186810

BuiltWith, “Content Delivery = Network Usage Statistics,”
2023. [Online]. Available: https://trends.builtwith.com/CDN/Content-
Delivery-Network

Chaitin Tech, “Xray: A powerful security assessment tool,” 2023.
[Online]. Available: https://github.com/chaitin/xray

J. Chen, X. Zheng, H. Duan, J. Liang, J. Jiang, K. Li,
T. Wan, and V. Paxson, “Forwarding-loop attacks in content
delivery networks,” in 23rd Annual Network and Distributed System
Security Symposium, NDSS 2016, San Diego, California, USA,
February 21-24, 2016. The Internet Society, 2016. [Online].
Available: http://wp.internetsociety.org/ndss/wp-content/uploads/sites/
25/2017/09/forwarding-loop-attacks-content-delivery-networks.pdf

S. R. Choudhary, M. R. Prasad, and A. Orso, “Crosscheck:
Combining crawling and differencing to better detect cross-browser
incompatibilities in web applications,” in Fifth IEEE International
Conference on Software Testing, Verification and Validation, ICST
2012, Montreal, QC, Canada, April 17-21, 2012, G. Antoniol,
A. Bertolino, and Y. Labiche, Eds. IEEE Computer Society, 2012,
pp. 171-180. [Online]. Available: https://doi.org/10.1109/ICST.2012.97

Cloudflare, “What is a CDN? — How do CDNs work?” 2022. [Online].
Available: https://www.cloudflare.com/learning/cdn/what-is-a-cdn/

——, “HTTP request headers — Cloudflare Fundamentals docs,” 2023.
[Online]. Available: https://developers.cloudflare.com/fundamentals/
get-started/reference/http-request-headers/

D. Crocker and P. Overell, “Augmented BNF for syntax specifications:
ABNF,” RFC, vol. 5234, pp. 1-16, 2008. [Online]. Available:
https://doi.org/10.17487/RFC5234

A. Czechowski and F. A. Oliehoek, “Decentralized MCTS via learned
teammate models,” CoRR, vol. abs/2003.08727, 2020. [Online].
Available: https://arxiv.org/abs/2003.08727

Fastly, “Header reference — Fastly Developer Hub,” 2023. [Online].
Available: https://developer.fastly.com/reference/http/http-headers/

R. T. Fielding, M. Nottingham, and J. F. Reschke, “HTTP
caching,” RFC, vol. 9111, pp. 1-35, 2022. [Online]. Available:
https://doi.org/10.17487/RFCI111

——, “HTTP semantics,” RFC, vol. 9110, pp. 1-194, 2022. [Online].
Available: https://doi.org/10.17487/RFC9110

“HTTP/1.1” RFC, vol. 9112, pp.
Available: https://doi.org/10.17487/RFC9112

1-46, 2022. [Online].

16

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

R. T. Fielding and J. F. Reschke, “Hypertext transfer protocol
(HTTP/1.1): semantics and content,” RFC, vol. 7231, pp. 1-101, 2014.
[Online]. Available: https://doi.org/10.17487/RFC7231

P. Godefroid, “Fuzzing: hack, art, and science,” Commun. ACM,
vol. 63, no. 2, pp. 70-76, 2020. [Online]. Available: https:
/ldoi.org/10.1145/3363824

R. Guo, J. Chen, B. Liu, J. Zhang, C. Zhang, H. Duan, T. Wan,
J. Jiang, S. Hao, and Y. Jia, “Abusing cdns for fun and profit: Security
issues in cdns’ origin validation,” in 37th IEEE Symposium on Reliable
Distributed Systems, SRDS 2018, Salvador, Brazil, October 2-5,
2018. IEEE Computer Society, 2018, pp. 1-10. [Online]. Available:
https://doi.org/10.1109/SRDS.2018.00011

R. Guo, J. Chen, Y. Wang, K. Mu, B. Liu, X. Li, C. Zhang,
H. Duan, and J. Wu, “Temporal cdn-convex lens: A cdn-assisted
practical pulsing ddos attack,” in 32nd USENIX Security Symposium,
USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023, J. A.
Calandrino and C. Troncoso, Eds. USENIX Association, 2023, pp.
6185-6202. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/guo-run

R. Guo, W. Li, B. Liu, S. Hao, J. Zhang, H. Duan,
K. Sheng, J. Chen, and Y. Liu, “CDN judo: Breaking the
CDN dos protection with itself,” in 27th Annual Network and
Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020. The Internet Society, 2020.
[Online]. Available: https://www.ndss-symposium.org/ndss-paper/cdn-
judo-breaking-the-cdn-dos-protection- with-itself/

B. Jabiyev, S. Sprecher, K. Onarlioglu, and E. Kirda, “T-reqs: HTTP
request smuggling with differential fuzzing,” in CCS ’21: 2021
ACM SIGSAC Conference on Computer and Communications Security,
Virtual Event, Republic of Korea, November 15 - 19, 2021, Y. Kim,
J. Kim, G. Vigna, and E. Shi, Eds. ACM, 2021, pp. 1805-1820.
[Online]. Available: https://doi.org/10.1145/3460120.3485384

B. Kartal, E. Nunes, J. Godoy, and M. L. Gini, “Monte carlo
tree search for multi-robot task allocation,” in Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, February 12-17,
2016, Phoenix, Arizona, USA, D. Schuurmans and M. P. Wellman,
Eds. AAAI Press, 2016, pp. 4222-4223. [Online]. Available:
http://www.aaai.org/ocs/index.php/AAAI/AAAIL6/paper/view/12154

J. Kettle, “HTTP Desync Attacks : Smashing into the Cell Next Door
Core concepts,” PortSwigger Web Security, Tech. Rep., 2019. [Online].
Available: https://i.blackhat.com/USA-19/Wednesday/us- 19-Kettle-
HTTP-Desync- Attacks- Smashing-Into-The- Cell-Next- Door-wp.pdf

L. Kocsis and C. Szepesvdri, “Bandit based monte-carlo planning,”
in Machine Learning: ECML 2006, 17th European Conference
on Machine Learning, Berlin, Germany, September 18-22, 2006,
Proceedings, ser. Lecture Notes in Computer Science, J. Fiirnkranz,
T. Scheffer, and M. Spiliopoulou, Eds., vol. 4212. Springer, 2006,
pp. 282-293. [Online]. Available: https://doi.org/10.1007/11871842_29

L. Kocsis, C. Szepesvdri, and J. Willemson, “Improved monte-carlo
search,” Univ. Tartu, Estonia, Tech. Rep, vol. 1, 2006.

Y. Labbé, S. Zagoruyko, I. Kalevatykh, I. Laptev, J. Carpentier,
M. Aubry, and J. Sivic, “Monte-carlo tree search for efficient
visually guided rearrangement planning,” IEEE Robotics Autom.
Lett., vol. 5, no. 2, pp. 3715-3722, 2020. [Online]. Available:
https://doi.org/10.1109/LRA.2020.2980984

W. Li, K. Shen, R. Guo, B. Liu, J. Zhang, H. Duan, S. Hao, X. Chen,
and Y. Wang, “CDN backfired: Amplification attacks based on HTTP
range requests,” in 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2020, Valencia, Spain,
June 29 - July 2, 2020. 1EEE, 2020, pp. 14-25. [Online]. Available:
https://doi.org/10.1109/DSN48063.2020.00022

J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu, “When HTTPS
meets CDN: A case of authentication in delegated service,” in 2014
IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA,
USA, May 18-21, 2014. 1EEE Computer Society, 2014, pp. 67-82.
[Online]. Available: https://doi.org/10.1109/SP.2014.12

A. Liu, T. Wu, I. Wu, H. Guei, and T. Wei, “Strength adjustment
and assessment for mcts-based programs [research frontier],” IEEE
Comput. Intell. Mag., vol. 15, no. 3, pp. 60-73, 2020. [Online].
Available: https://doi.org/10.1109/MC1.2020.2998315

R. F Mark Nottingham, “Hypertext Transfer Protocol

http://www.aaai.org/Library/AAAI/1987/aaai87-016.php
https://www.akamai.com/our-thinking/cdn/what-is-a-cdn
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1109/CoG47356.2020.9231603
https://doi.org/10.17487/RFC3568
https://doi.org/10.17487/RFC3986
https://doi.org/10.17487/RFC1945
https://doi.org/10.1109/TCIAIG.2012.2186810
https://trends.builtwith.com/CDN/Content-Delivery-Network
https://trends.builtwith.com/CDN/Content-Delivery-Network
https://github.com/chaitin/xray
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/forwarding-loop-attacks-content-delivery-networks.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/forwarding-loop-attacks-content-delivery-networks.pdf
https://doi.org/10.1109/ICST.2012.97
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
https://developers.cloudflare.com/fundamentals/get-started/reference/http-request-headers/
https://developers.cloudflare.com/fundamentals/get-started/reference/http-request-headers/
https://doi.org/10.17487/RFC5234
https://arxiv.org/abs/2003.08727
https://developer.fastly.com/reference/http/http-headers/
https://doi.org/10.17487/RFC9111
https://doi.org/10.17487/RFC9110
https://doi.org/10.17487/RFC9112
https://doi.org/10.17487/RFC7231
https://doi.org/10.1145/3363824
https://doi.org/10.1145/3363824
https://doi.org/10.1109/SRDS.2018.00011
https://www.usenix.org/conference/usenixsecurity23/presentation/guo-run
https://www.usenix.org/conference/usenixsecurity23/presentation/guo-run
https://www.ndss-symposium.org/ndss-paper/cdn-judo-breaking-the-cdn-dos-protection-with-itself/
https://www.ndss-symposium.org/ndss-paper/cdn-judo-breaking-the-cdn-dos-protection-with-itself/
https://doi.org/10.1145/3460120.3485384
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12154
https://i.blackhat.com/USA-19/Wednesday/us-19-Kettle-HTTP-Desync-Attacks-Smashing-Into-The-Cell-Next-Door-wp.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Kettle-HTTP-Desync-Attacks-Smashing-Into-The-Cell-Next-Door-wp.pdf
https://doi.org/10.1007/11871842_29
https://doi.org/10.1109/LRA.2020.2980984
https://doi.org/10.1109/DSN48063.2020.00022
https://doi.org/10.1109/SP.2014.12
https://doi.org/10.1109/MCI.2020.2998315

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

(HTTP) Field Name Registry,” 2022. [Online]. Available:

HypertextTransferProtocol(HTTP)FieldNameRegistry

J. Mern, A. Yildiz, Z. Sunberg, T. Mukerji, and M. J. Kochenderfer,
“Bayesian optimized monte carlo planning,” in Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in
Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9,
2021. AAAI Press, 2021, pp. 11880-11887. [Online]. Available:
https://ojs.aaai.org/index.php/AAAl/article/view/17411

S. A. Mirheidari, S. Arshad, K. Onarlioglu, B. Crispo, E. Kirda,
and W. Robertson, “Cached and confused: Web cache deception in
the wild,” in 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020, S. Capkun and F. Roesner, Eds.
USENIX Association, 2020, pp. 665-682. [Online]. Available: https:
/Iwww.usenix.org/conference/usenixsecurity20/presentation/mirheidari

S. A. Mirheidari, M. Golinelli, K. Onarlioglu, E. Kirda, and
B. Crispo, “Web cache deception escalates!” in 31st USENIX
Security Symposium, USENIX Security 2022, Boston, MA, USA,
August 10-12, 2022, K. R. B. Butler and K. Thomas, Eds.
USENIX Association, 2022, pp. 179-196. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/mirheidari

MordorIntelligenc, “Content Delivery Network (CDN) Market -
Growth, Trends, COVID-19 Impact, and Forecasts (2023 - 2028),” 2022.
[Online]. Available: https://www.mordorintelligence.com/industry-
reports/content-delivery-market

M. M. Nesary and A. Aydeger, “vdns: Securing DNS from
amplification attacks,” in 10th IEEE International Black Sea
Conference on Communications and Networking, BlackSeaCom 2022,
Sofia, Bulgaria, June 6-9, 2022. 1EEE, 2022, pp. 102-106. [Online].
Available: https://doi.org/10.1109/BlackSeaCom54372.2022.9858278

H. V. Nguyen, L. L. Tacono, and H. Federrath, “Your cache has
fallen: Cache-poisoned denial-of-service attack,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019, L. Cavallaro,
J. Kinder, X. Wang, and J. Katz, Eds. ACM, 2019, pp. 1915-1936.
[Online]. Available: https://doi.org/10.1145/3319535.3354215

A. Phillips and M. Davis, “Matching of language tags,” RFC, vol. 4647,
pp. 1-20, 2006. [Online]. Available: https://doi.org/10.17487/RFC4647

——, “Tags for identifying languages,” RFC, vol. 5646, pp. 1-84,
2009. [Online]. Available: https://doi.org/10.17487/RFC5646

J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in
system design,” in Proceedings of the 2nd International Conference on
Distributed Computing Systems, Paris, France, 1981. 1EEE Computer
Society, 1981, pp. 509-512.

K. Shen, J. Lu, Y. Yang, J. Chen, M. Zhang, H. Duan,
J. Zhang, and X. Zheng, “Hdiff: A semi-automatic framework
for discovering semantic gap attack in HTTP implementations,” in
52nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2022, Baltimore, MD, USA, June
27-30, 2022. 1EEE, 2022, pp. 1-13. [Online]. Available: https:
//doi.org/10.1109/DSN53405.2022.00014

H. Siewert, M. Kretschmer, M. Niemietz, and J. Somorovsky, “On
the security of parsing security-relevant HTTP headers in modern
browsers,” in 43rd IEEE Security and Privacy, SP Workshops 2022,
San Francisco, CA, USA, May 22-26, 2022. 1EEE, 2022, pp. 342-352.
[Online]. Available: https://doi.org/10.1109/SPW54247.2022.9833880

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, 1. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis, “Mastering the game of go with deep neural networks
and tree search,” Nat., vol. 529, no. 7587, pp. 484—489, 2016. [Online].
Available: https://doi.org/10.1038/nature16961

S. Sivakorn, G. Argyros, K. Pei, A. D. Keromytis, and S. Jana,
“Hvlearn: Automated black-box analysis of hostname verification in
SSL/TLS implementations,” in 2017 IEEE Symposium on Security
and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017.
IEEE Computer Society, 2017, pp. 521-538. [Online]. Available:
https://doi.org/10.1109/SP.2017.46

S. Triukose, Z. Al-Qudah, and M. Rabinovich, “Content delivery

17

[50]

[51]

[52]

[53]

networks: Protection or threat?” in Computer Security - ESORICS
2009, 14th European Symposium on Research in Computer Security,
Saint-Malo, France, September 21-23, 2009. Proceedings, ser.
Lecture Notes in Computer Science, M. Backes and P. Ning,
Eds., vol. 5789. Springer, 2009, pp. 371-389. [Online]. Available:
https://doi.org/10.1007/978-3-642-04444-1_23

C. Xu, J. Li, and J. Liu, “Yet another traffic black hole:
Amplifying CDN fetching traffic with rangefragamp attacks,” in
Collaborative Computing: Networking, Applications and Worksharing
- 17th EAI International Conference, CollaborateCom 2021, Virtual
Event, October 16-18, 2021, Proceedings, Part I, ser. Lecture
Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, H. Gao and X. Wang,
Eds., vol. 406. Springer, 2021, pp. 439—459. [Online]. Available:
https://doi.org/10.1007/978-3-030-92635-9_26

H. Yoo and T. Shon, “Grammar-based adaptive fuzzing: Evaluation
on SCADA modbus protocol,” in 2016 IEEE International Conference
on Smart Grid Communications, SmartGridComm 2016, Sydney,
Australia, November 6-9, 2016. 1EEE, 2016, pp. 557-563. [Online].
Available: https://doi.org/10.1109/SmartGridComm.2016.7778820

A. Zeller, R. Gopinath, M. Béhme, G. Fraser, and C. Holler, “The
Fuzzing Book,” 2019. [Online]. Available: https://www.fuzzingbook.
org/

Y. Zhao, X. Wang, L. Zhao, Y. Cheng, and H. Yin, “Alphuzz: Monte
carlo search on seed-mutation tree for coverage-guided fuzzing,” in
Annual Computer Security Applications Conference, ACSAC 2022,
Austin, TX, USA, December 5-9, 2022. ACM, 2022, pp. 534-547.
[Online]. Available: https://doi.org/10.1145/3564625.3564660

Hypertext Transfer Protocol (HTTP) Field Name Registry
https://ojs.aaai.org/index.php/AAAI/article/view/17411
https://www.usenix.org/conference/usenixsecurity20/presentation/mirheidari
https://www.usenix.org/conference/usenixsecurity20/presentation/mirheidari
https://www.usenix.org/conference/usenixsecurity22/presentation/mirheidari
https://www.usenix.org/conference/usenixsecurity22/presentation/mirheidari
https://www.mordorintelligence.com/industry-reports/content-delivery-market
https://www.mordorintelligence.com/industry-reports/content-delivery-market
https://doi.org/10.1109/BlackSeaCom54372.2022.9858278
https://doi.org/10.1145/3319535.3354215
https://doi.org/10.17487/RFC4647
https://doi.org/10.17487/RFC5646
https://doi.org/10.1109/DSN53405.2022.00014
https://doi.org/10.1109/DSN53405.2022.00014
https://doi.org/10.1109/SPW54247.2022.9833880
https://doi.org/10.1038/nature16961
https://doi.org/10.1109/SP.2017.46
https://doi.org/10.1007/978-3-642-04444-1_23
https://doi.org/10.1007/978-3-030-92635-9_26
https://doi.org/10.1109/SmartGridComm.2016.7778820
https://www.fuzzingbook.org/
https://www.fuzzingbook.org/
https://doi.org/10.1145/3564625.3564660

	Introduction
	Background
	CDN Overview
	HTTP Standards
	Grammar-based Fuzzing
	Monte Carlo Tree Search

	ReqsMiner: Design and Implementation
	Threat Model
	Challenges in Fuzzing
	ReqsMiner Overview
	Rule Generator
	Grammar-based Fuzzing

	Experiments and Findings
	Experiment Setup
	Evaluation of ReqsMiner
	Difference Findings
	Differences in Request Line
	Differences in Header Fields
	Differences in Message Body

	HTTP Amplification Attacks
	Overview of HTTP Amplification Attacks
	HEAD Request-based HTTP Amplification Attack
	Conditional Request-based HTTP Amplification Attack
	Accept-Encoding-based HTTP Amplification Attack
	Impact Analysis

	Discussion
	Limitation
	Root Cause and Mitigation
	Disclosure

	Related Work
	Conclusion
	References

