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Abstract—Deep neural networks are normally executed in
the forward direction. However, in this work, we identify a
vulnerability that enables models to be trained in both directions
and on different tasks. Adversaries can exploit this capability
to hide rogue models within seemingly legitimate models. In
addition, in this work we show that neural networks can be
taught to systematically memorize and retrieve specific samples
from datasets. Together, these findings expose a novel method in
which adversaries can exfiltrate datasets from protected learning
environments under the guise of legitimate models.

We focus on the data exfiltration attack and show that modern
architectures can be used to secretly exfiltrate tens of thousands
of samples with high fidelity, high enough to compromise data
privacy and even train new models. Moreover, to mitigate this
threat we propose a novel approach for detecting infected models.

I. INTRODUCTION

To train a good Deep neural network(DNN), it is important
to use a large and diverse dataset. Companies and institutions
that collect datasets for their own machine learning tasks sel-
dom share the datasets with others. This is because collecting
datasets can be very expensive and time consuming [1],
and some datasets contain confidential information which, if
exposed, would harm the company’s reputation or result in
litigation.

Data collection for deep learning can be expensive because
(1) there may be a cost to collecting a data sample (e.g.,
the cost of running expensive medical equipment, paying for
access to a third-party’s data/logs), (2) an expert may be
needed to manually label the data and filter out any noise,
and (3) collecting a comprehensive dataset that contains the
required properties requires careful planning. High quality
datasets are considerable assets to the companies that create
them, so companies typically do not publish them [2]. For
example, the datasets used to train the latest GPT-3 [3] and
DALL-E [4] models are propriety and not shared with the
public. Therefore, it is interest of these companies to prevent
unauthorized usage of these datasets.

Deep learning datasets can also be confidential and contain
sensitive information. For example, a model which will detect
credit card fraud needs to be trained on credit card transac-
tions [5], a cancer detection model needs to be trained on

the medical scans of terminally ill patients, a face detection
(recognition) model needs to be trained on people’s faces [6],
and so on. Although the organization training the model may
have the right to use this data, they likely do not have the
right to publish it in the public domain. This is especially true
given the enforcement of strict data protection regulations such
as the GDPR [7]. Therefore, it is important for companies to
protect the privacy of certain datasets.

However, to protect a dataset, one must also protect models
trained on the dataset. This is because when a deep learning
model fθ is trained on a dataset Dtrain, its parameters1 θ
tend to memorize the properties, and sometimes the con-
tent, of Dtrain [8, 9]. This means that even if a company
does not provide access to Dtrain, an attacker can still
learn information about it. This is accomplished by either
querying the model [10] or analyzing the model’s parameters
(weights) [11, 12]. For example, property inference can be
used to reveal information on the composition of Dtrain

[13, 14], membership inference can be used to determine if
x ∈ Dtrain [15, 16], and feature estimation (a.k.a. model
inversion) [10, 17] can be used to complete partial samples
and extract feature-wise statistics by exploiting the model’s fit
(mapping) over Dtrain.

Data Exfiltration Attacks. Instead of using a model to infer
subsets of features or statistics of features from samples in
Dtrain, an attacker can perform a data extraction attack or
data exfiltration attack to obtain complete samples. These
attacks can be accomplished via intentional memorization or
unintentional memorization.

Unintentional memorization is when a model memorizes
parts of its training data by accident. This can occur when
a model is too complex or when it overfits to its training
set [18]. An adversary can perform an exploratory attack on
such models and extract complete training samples [19]. This
is accomplished by viewing the parameters as a system of
equations [20]. This approach works on very small networks
that have been trained on just a few hundred samples, however
extracting complete samples that have been unintentionally
memorized is generally harder on large networks [8]. Such
an attack is also limited, since the adversary has no control
over which samples in Dtrain are memorized.

Intentional memorization is when an attacker influences the
model’s parameters during training to intentionally make it
memorize data. This can be accomplished by altering the

1In this paper, we use the terms parameters and weights interchangeably.
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model’s training data or training algorithm. For example, the
attacker can ensure that a model overfits to the training data,
making it easier to extract unintentionally memorized samples
[21]. However, to memorize specific samples, the adversary
must use other tactics. One approach is to train a decoder
model to reconstruct samples [22]. However, this approach
is overt because the model can only perform the malicious
task of reconstructing data, and the input encodings used
to generate the samples must be exported with the model.
Alternatively, the adversary can employ stenography to hide
binary data within the model’s parameters [23, 24]. However,
these approaches are easy to mitigate with small amounts of
additive noise applied to the model’s parameters (detailed later
in Sections VI, VII).

Given these limitations, we raise the following research
question: Is it possible for an adversary to exfiltrate complete
training samples via a model where (1) the memorized samples
can be extracted systematically, and (2) the attack is covert
(the exported model looks legitimate and performs the expected
task). This is an important question, because this ability would
impact the security of protected training environments.

For example, consider federated learning (FL) [25]. In FL,
multiple members (data owners) collaborate to create a single
global model without letting their respective training datasets
leave their premises. This is often done by designating one
member to be the orchestrator who distributes the initial
training code to all of the members and then combines the
member’s resulting models. However, if the orchestrator is
malicious or compromised then the orchestrator could send
training code that creates models that perform well on the
expected primary task (e.g., cancer detection) but also perform
well on a secret secondary task of recreating specific samples
from the training set (e.g., CT scans of individual patients).
The orchestrator could then extract the private datasets system-
atically by executing the collected models’ hidden secondary
tasks.

Another example to consider are organizations which of-
fer data-and-training-as-a-service (DTaaS) platforms. These
platforms let users train models in the cloud on confidential
datasets, but only let users export models that perform well on
the expected task. An example a DTaaS for medical imagery
can be found in [26, 27]. Here an attacker could smuggle out
the training data under the guise of an legitimate model.

Finally, consider a cyber attack (man-in-the-middle, supply
chain, etc.)2 which compromises a company’s deep learning li-
braries such that new models are secretly trained on secondary
tasks (e.g., [28]). If the secondary task is data memorization,
then the company would unwittingly expose their data when
they deploy their model in the public space since malicious
users could exploit the model and extract the data.

Transpose Attack. In this paper, we identify a novel vul-
nerability of DNNs. The vulnerability is that DNNs can be
trained to be executed in both directions: forward with a

2https://pytorch.org/blog/compromised-nightly-dependency/

primary task (e.g., image classification) and backward with
a secondary covert task (e.g., image memorization). We call
this attack a ‘transpose attack’ because the backward model
is obtained by transposing and reversing the order of the
model’s weight matrices. To train a transpose model, both the
forward and backward models are trained in parallel over their
shared weights but on their respective tasks. In our work, we
identify how different types of layers and architectures can be
transposed.

We also show how this vulnerability can be used to per-
form covert intentional memorization of specific samples in
a dataset. To enable the systematic retrieval of samples, we
propose a novel spatial index. This index can be used as input
to the backward model to systematically extract all of the
memorized images. We found that memorization performance
improves if (1) the index is spatially dense, and (2) the index
of a sample encodes the content of the image. Therefore, our
spatial index scheme uses Gray code coupled with offsets
based on the respective sample’s class. Using these techniques,
we were able to train fully connected (FC), convolutional
neural networks (CNN) and transformer (TN) neural networks
as transpose models that perform well on the primary task of
classification and the secondary task of dataset memorization.
We have found that transpose models have the ability to
memorize tens of thousands of images and in some cases
complete datasets.

To mitigate this threat in an automated manner, we propose
a detection method. Since transpose attacks train models in the
backward direction, the weights in the backward direction have
more consistency than uninfected models. For memorization
tasks, this property can be revealed by optimizing an input
for the transpose model which generates an output that is
similar to random images in the dataset (not necessarily those
memorized by the model). If the optimization process finds
such an input, then the model is likely infected.

In summary, our contributions are as follows:
• We identify a novel vulnerability which enables a deep

neural network to secretly contain a secondary model
in the transposition of its weights. The task of the
secondary model can be different than that of the primary
model. In this study, we focus on the secondary task
of data memorization. This vulnerability is a concern
because defenders are not considering that a model can
be executed in reverse.

• We propose a spatial index which (1) can be used to teach
neural networks to effectively memorize data, and (2)
enables the systematic extraction of the memorized data.
To the best of our knowledge, no other works show how
samples can be explicitly and systematically extracted
from a model.

• We analyze the threat of transpose models being used
to memorize and exfiltrate data. This is done by empir-
ically measuring the memorization quality and capacity
of popular DNN architectures.

• We provide a method for detecting transpose models that
are being used to memorize data.
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Fig. 1. The attack model explored in this paper. An attacker trains a
classification model with a hidden secondary task of memorizing a protected
dataset. The model passes inspection and is exploited off site.

II. ATTACK MODEL

In this paper, we assume the following attack model (visu-
alized in Fig. 1): An attacker wants to steal specific samples
from a confidential dataset D that belongs to an organization.
The motivation for stealing the samples are (1) breach the
data’s confidentiality, or (2) steal intellectual property (IP)
(e.g., train other models on the data). D is located in a
protected environment. The attacker can export trained models
from the protected environment but cannot export any data
(examples of these scenarios can be found below).

To extract D (or some subset of it) the attacker will enter the
protected environment and train fθ to perform a primary (ex-
pected) task on Dtrain in the forward direction while covertly
learning a secondary task (memorization) on Dtrain (or on
a different dataset D) in the backward direction. Then, the
attacker will export the model and then execute the secondary
task on θ to extract the memorized samples. Alternatively, the
attacker does not enter the protected environment but rather
compromises the training libraries used in the environment and
then obtains the exported models for exploitation.

The attack vector will depend on where D is located:
Federated Environment. If D is distributed across multiple

members who are interested in collaborating on making
a global model, then the attacker can either volunteer as
or compromise the orchestrator. Then the attacker will
be able to cause all of the respective members to embed
their datasets in the shared models by manipulating the
distributed training code (i.e., initial model). For example,
in IBM’s FL service, if Tensorflow2 [29] is used, then the
train_step() method of the initial model class [30]
can be changed3 to consider both forwards and transpose
passes.

3https://www.tensorflow.org/guide/keras/customizing what happens in fit

Restricted Environment. If D is located on a DTaaS plat-
form, then the attacker can enter the DTaaS environment
and train a transpose model to memorize the data. How-
ever, in this scenario, it is fair to assume that there will
be some export control: the host will evaluate the model
to some degree to ensure that the exported model is not
just a binary zip of the training data or a model trained
to directly memorize the data [31]. Here we assume that
the host will expect modest results (e.g., at least 60%
accuracy), since DTaaS systems are often used to train
models for research and development.

Private Environment. When D is not available to the public
in any way, the adversary may still able to exfiltrate data
from the secure training environment by infecting the
organization’s software libraries that perform training. For
example, in [28], the authors showed how an attacker can
modify a training library to cause models that use it to
learn a covert task in a black-box manner. For instance,
they were able to modify the loss function in a library
to cause a face counting model to covertly output the
identity of the individual in an image if a special trigger
(set of pixels) is placed within the input image.

The following are some example attack scenarios:
• An attacker wants to steal bank transaction information

from multiple financial institutions who are planning
to use FL to collaborate on creating a powerful fraud
detection model (e.g., [32, 33]). The attacker alters the
distributed training code by compromising the member
selected to be the orchestrator or by planting an insider
in that member’s organization. Alternatively, the attacker
masquerades as a research member in the consortium
and is selected as the orchestrator. Finally, the attacker
receives the member’s models and extracts the data from
them.

• An attacker wants to steal a dataset in a DTaaS environ-
ment. The attacker enters the environment and trains an
image classifier while covertly memorizing the dataset at
the same time. The attacker then smuggles the dataset
out with the model, since the exported model behaves
legitimately on the expected classification task.

• An attacker wants to steal private medical info from a
DTaaS to blackmail people. The attacker trains a model
to detect cancer in MRI scans that also memorizes the
DICOM metadata of the patients stored in the dataset
(used for labeling). The attacker then successfully exports
the model because the model appears and functions as a
cancer classifier.

• An attacker wants to steal a company’s latest datasets on a
regular basis. The attacker performs a man-in-the-middle
attack or uses an insider to make the company install
tampered training libraries. The company’s models are
then unwittingly trained to memorize data which is then
extracted by the attacker after deployment (e.g., from the
company’s products).

• An attacker wants to extract confidential information on
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specific individuals (e.g., fingerprints or the faces of a
company’s personnel). The attacker tampers with the
installed libraries so that all of the models memorize their
training data [28]. The attacker then obtains a copy of the
product with the embedded model (e.g., fingerprint sensor
or camera) and executes the secondary task to extract the
images.

In each of these cases, the attacker must keep the secondary
task covert. This means that (1) the model work as usual (feed-
forward execution) with good performance on the expected
task, and (2) the model must present the expected architecture
to avoid raising suspicion (e.g., the attacker cannot try to ex-
port an autoencoder when the expected task is classification).

Note that this data exfiltration attack is not an ‘inference-
attack.’ This is because the attacker is not querying the
model to reveal information accidentally memorized/captured
by the model. Rather, the attacker is using the model as
a container to covertly exfiltrate knowledge/data out of a
protected environment. In other words, the attacker extracts
explicitly planted information by executing the secondary task
and not by revealing unintentionally memorized samples by
exploiting naturally occurring confidentiality vulnerabilities in
the model.

We also note that although we focus on how a transposed
model can be used to perform data exfiltration attacks via
memorization, transposed models can be used perform other
attacks as well (see Section A-A in the Appendix for exam-
ples).

III. TRANSPOSE ATTACK

In this section we formally define the transpose attack and
describe how arbitrary deep neural networks can be transposed
(trained and executed in reverse). We consider the secondary
task of memorization as one possible secondary task of many.
Therefore, in this section we discuss how transpose models
work in general, and then in Section IV we discuss the
secondary task of data memorization.

A. Background

Normally, a DNN is trained by optimizing the following
objective function:

argmin
θ

1

m

m∑
i

L (fθ(xi), yi) (1)

where (x, y) ∈ Dtrain, |D| = m, and L is a differentiable loss
function which measures error between the prediction f(x)
and the ground truth y.

The literature includes a number of studies that try to
secretly learn a another function (e.g., [28, 34]). We refer
to these attacks as hidden model attacks. More formally, a
hidden model attack is where a model fθ is trained on a
primary (expected) task, while another model f ′

θ∗ is trained on
a secondary task where θ∗ ⊆ θ, such that the execution of f ′

θ∗

is hidden from the defender. Both the primary and secondary
tasks are embedded into θ by optimizing

argmin
θ

1

m

m∑
i

L1 (fθ(xi), yi)+λ
1

m

m∑
i

L2 (f ′
θ∗(x′

i), y
′
i) (2)

where L1 and L2 are the loss functions used for the primary
and secondary tasks respectively, (x′

i, y
′
i) is from dataset D

which is required for learning the secondary task, and λ
provides a trade-off on the performance between the two tasks.
In some cases, D ⊆ Dtrain.

B. Backward Execution

A transpose attack is a hidden model attack in which the
primary task is performed in the forward direction as fθ(x),
while the secondary task is performed in the backward direc-
tion over f . To define how backward execution is achieved, we
must first provide some notation on how a model is executed
in the forward direction.

Let ℓi be a function which implements the i-th layer in a
neural network such as a 2D convolution layer, pooling layer,
or a fully connected (FC) layer. We denote gi as the output
of ℓi, while g0 is the input to the network. Every layer has an
associated set of weights θi, an operation function Ai (such
as convolution), and an activation function ki (such as ReLU).
We note that Ai and ki can be the identity functions, meaning
that the layer does not perform these actions.

In summary, the output of the i-th layer is:

gi = ℓi(gi−1) = ki(Ai(gi−1; θi)). (3)

Note that ℓi has an input dimension of dim(gi−1) and an
output dimension of dim(gi).

To execute the secondary objective, we create a new model
f ′ which consists of the same layers but in the reverse order
(see Fig. 2). Doing so has two challenges: (1) we must ensure
consistent input-output dimensions between the layers, and (2)
each layer must perform the ‘inverse’ operation. To resolve
these issues, we ‘transpose’ each layer. To transpose layer ℓi,
we (1) obtain the transpose of θi, denoted θTi , and (2) obtain
the inverse operation of Ai, denoted A−1

i .
A forward pass with the transpose model f ′ is expressed as

g′i = k′i
(
A−1

m−i(g
′
i−1; θ

T
m−i)

)
i = 0, 1, 2, ...,m. (4)

It is important to note that θi and θTi are shared weights
between f and f ′ where applicable. We also note that k′ can
be any standard activation function (we typically use k′ = k).

C. Transposing a Layer

The transpose of layer ℓi = ki(Ai) is k
′

i(A
−1
i ). To invert

an operation A, we must choose a suitable operation A−1

such that the input and output dimensions are reversed (A−1 :
Y → X where A : X → Y ). For parametric layers, this can
be accomplished by transposing the parameters in A. In our
study, we focus on operations found in common architectures:
dense neural networks, convolutional neural networks, and
transformer networks.

For parametric operations, A−1 must use the same weights
as A. The following describes our implementation for these
types of layers:
Linear Layers (FC). A linear layer (a.k.a. FC layer) per-

forms the operation Alin(x; θi) = xθi, where x ∈ RN

and θi ∈ RN×M . To transpose a linear layer, we only
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Fig. 2. Left - An overview of the transpose models: model fθ is trained on the overt primary objective of f(x) = y, where θ = {θ0, θ1, ...}. In parallel, a
transpose model f ′ is trained on the secondary covert task of f ′

θT
(e) = z, where θT = {θTm−1, θ

T
m−2, ...}. The weights θ and θT are shared between the

models during training. Therefore, the attacker can export the seemingly benign θ and then later recreate θT to use f ′. Right: an example of how a CNN
(VGG-19) is transposed.

need to take the mathematical transpose of θi. In other
words, θTi = Tr(θi), and A−1

lin = Alin.
Convolution Layers. These layers are typically used in vi-

sion models. For 2D convolution, the input is a tensor
x ∈ RC×H×W , where H and W are the spatial di-
mensions of x, and C is the number of channels. The
operation Aconv(x; θi) applies the bank of filters θi in
strides over the spatial dimensions. The bank has the form
θi ∈ RM×C×K×K , where M is the number of filters, and
K is the size of the filter.
To transpose a 2D convolutional layer, A−1

conv performs
the deconvolution operation defined in [35]. To ’trans-
pose’ θi, we permute the first two dimensions, such
that θTi ∈ RC×M×K×K . The same approach can be
applied to convolution layers that have more or less
spatial dimensions.

Transformer Blocks. Blocks are a set of layers connected
with a specific design. Transformer blocks (TBs) are
scaled dot product attention units. They perform the
operation Atrans(q), where q is a sequence of tokens.
Models that use TBs (a.k.a. transformer networks) can
achieve state-of-the-art performance in natural language
processing (e.g., BERT [36]) and vision tasks (e.g.,
Vision Transformer [37, 38]). Since the input and output
dimensions of a TB are the same, there is no need to
transpose the block.

For non-parametric operations, we chose operations which
are often used to provide the reverse affect of A:

Pooling Layers. CNNs often use pooling layers to reduce
the dimensionality of signals propagated through the
network. Apool(x) takes the average or maximum of
non-overlapping patches in each channel C of the input
x ∈ RC×W×H . As a result, the output has a reduced

spatial dimensionality which is dependent on the patch
sizes. To transpose this layer, A−1

pool performs spatial up-
sampling using nearest-neighbors interpolation [39].

D. Transposing a Model

Now that we know how to transpose a layer (Section
III-C), we can transpose many different types of models. The
general steps are to (1) reverse the order of the layers and (2)
transpose each layer: replace each operation with its inverse
operation and optionally replace the respective activation with
an alternative activation. For example, if f is a convolutional
neural network such as VGG-19, then it consists of five blocks
of convolution-pool layers followed by one block of FC layers.
To obtain f ′, all we need to do is reverse the order of the layers
and obtain their transposed versions. The right side of Fig. 2
visualizes how the layers of a CNN (VGG-19) are transposed.
This process results in a model f(x) = y which can perform
1000-class image classification and a model f ′(e) = z which
can perform a different task, such as image reconstruction.

Similarly, consider a model f which is a vision transformer
(ViT) network used for image classification. In the forward
direction, the model performs (1) image patch projection using
a linear layer, (2) input marking with positional encoding,
(3) mapping with a sequence of transformer blocks, and (4)
prediction with pooling and FC layers. To obtain f ′, we reverse
the sequence of the layers mentioned above and transpose the
FC and pooing layers. However, we also move the positional
encoding layer to the front of the sequence of transformer
blocks.

E. Model Training

To train a transpose model f , we train fθ and f ′
θT in tandem

over the shared weights θ. During training, each model is
optimized according to its own objective (see equation 2). For
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example, if f is a classifier, and f ′ is a memorization model,
then f may use cross-entropy loss, and f ′ may use L2 loss.

The complete training process is presented in Algorithm 1.
In lines 7 and 11 we transpose the model back and forth to
alternate between fθ and f ′

θT . This is done for clarity but
would not be done in practice. This is because the transpose
operation on θ is mutable.

Algorithm 1 Transpose Model Training
1: for epoch = 1, 2, . . . do
2: for (X,Y ) ∈ Dtrain do ▷ draw batch
3: Ypred ← fθ(X)
4: loss1 ← L1(Y, Ypred)
5: θ ← optimize(θ, loss1) ▷ iteration of GD
6: (X ′, Y ′)← drawNextBatch(D) ▷ draw batch
7: f ′

θT ←transposeModel(fθ)
8: Y ′

pred ← f ′
θT (X)

9: loss2 ← L2(Y ′, Y ′
pred)

10: θT ← optimize(θT , loss2) ▷ iteration of GD
11: fθ ←transposeModel(f ′

θT )
12: end for
13: end for

IV. DATA MEMORIZATION

In this section we propose a novel method for teaching
a neural network to memorize samples so that they can be
systematically retrieved. This is an example of a secondary
task that can be used in a transpose attack.

It is well known that DNNs can be intentionally taught
to memorize samples. For example, autoencoders are neural
networks that are designed to reconstruct samples from encod-
ings [40]. However, models like autoencoders learn implicit
codes that cannot be easily determined (found) after training.
To address this limitation, we propose a method for teaching
a model to become a data retrieval system.

The objective of data memorization is to approximate the
function h(ei) = xi, such that ei is an index that points
to sample xi ∈ D. In this task, the index ei should be
deterministic so that it can be used to iterate over all items in
D. The model hθ is fitted using conventional machine learning
tools. However, in contrast to conventional machine learning, h
does not have the objective of generalizing to unseen samples.
In other words, the objective is to intentionally overfit to the
dataset D.

We will now describe how we design the indexer and train
the model hθ.

A. Spatial Indexing

In order to index items stored in hθ, we propose using a
spatial index. Let I : N0 → Rn be a function which maps a
natural number (the index value) to a point in an n-dimensional
euclidean space, where I(i) ̸= I(j) ∀i, j, where i ̸= j. We
refer to this function as an indexer and its outputs as spatial
indices. With an indexer, a user can systematically find every

indexed point in Rn by executing the sequence I(0), I(1),
I(2), etc...

One implementation of I is to use binary enumeration. For
example, with a range of R3, we would obtain I(0) = 000,
I(1) = 001, I(2) = 010, and so on. Although this is
convenient, it would restrict I to 2n spatial indices. To increase
the domain of I , we can use n-ary values (e.g., decimal, hex.,
etc.).

Gray code is an ordering of the binary numeral system
such that neighboring numbers have only a difference of
one bit between them. We found that Gray code increases
the memorization capacity compared to using binary. This is
because Gray code produces a mapping that is dense, which
helps hθ better compress information. For example, consider
the euclidean distance between the values 15 and 16 in binary
(01111 and 10000) and Gray code (01000 and 11000). In our
work, we use n-ary Gray code to increase the the domain of
I in a dense manner. Therefore, to produce a spatial index for
item xi, we perform

I(i) = Gray(i) (5)

where i ∈ N0 is the index value.
To increase capacity further, we borrow from the concept

of embeddings. An embedding is a vector va ∈ Rn, where va
represents the object a. The value of va is chosen such that if
a is similar to another object b, then ∥va− vb∥2 will be small
and vice versa. Neural networks work well with embeddings,
because the model can internally use the fact that the euclidean
distance captures similarity. Guided by this intuition, we found
that the memorization capacity can be increased if the spatial
index of similar items are near each other. This enables the
model to compress similar patterns using fewer weights.

We now present how this can be used to improve indexing.
Let C be the set of all classes in D (or some other attribute
that clusters items). Let E(c) be an embedding function which
maps each c ∈ C to a unique vector vc ∈ Rn. This vector can
be used to project (offset) the spatial indices of each class to
their own regions. Finally, the complete indexer is defined as:

I(i, c) = Gray(i) + E(c) (6)

Note that I(i, c) is the spatial index to i-th item in class c.
In this work, we implement E in two different ways. One
way is to use one-hot encodings for each class multiplied by
n, where n is the value used in the n-ary Gray code. This
ensures that indices between classes are orthogonal and do
not intersect. Fig. 3 visualizes how our spatial indexer works
with the one-hot encodings scheme when n = 3 and |C| = 3.
The second way is to use random embeddings, where each
embedding is mapped to a specific class. The advantage of
using random embeddings is that the number of classes does
not restrict input size of h.

B. Memorization Training Objective

Let xic be the i-th sample from class c. The memorization
model hθ can be seen as a generator which generates xic from
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(multiplied by n). In this example, only nn = 27 items can be indexed per
class.

index I(i, c) = eic. Therefore, we train hθ by solving the
following optimization problem:

argmin
θ

∑
c

∑
i

||hθ(I(i, c))− xic||2 (7)

In other words, we train hθ like a regular DNN using L2 loss
between the generated sample and the expected sample for the
given spatial index.

V. EVALUATION

In this section we evaluate transpose attacks. Specifically,
we focus on evaluating the secondary task of data memoriza-
tion where the target D is a dataset of images and D̃ are
the retrieved images (reconstructed by f ′). For reproducibility,
readers can download our source code for the transposed
model memorization attack.4

In a data exfiltration attack, the attacker wants to either
(1) breach the data’s confidentiality, or (2) steal intellectual
property (IP). To evaluate the attack’s ability to breach con-
fidentiality, we analyze the quality of the retrieved images at
various granularity levels. To assess the stolen data’s utility,
we train new model on the retrieved data and measure its
performance. These experiments are covered in Sections V-B
and V-C. In these sections we also discuss how the number
of memorized images impacts the performance on the primary
and secondary tasks.

It is reasonable to assume that models with more weights
will be able to memorize more. In Section V-D we investigate
which model hyperparameters (for example, the number of
layers or the size of the layers) contribute to increased capacity.

Finally, in Section IV we suggested a spatial index consist-
ing of multiple components. To demonstrate the contribution
of each of these components, we perform an ablation study,
which is discussed in Section V-E.

4https://github.com/guyAmit/Transpose-Attack-paper-NDSS24-/tree/main

A. Experiment Setup

The Attack. We explore a transpose attack on model fθ
where the primary task f is image classification on
Dtrain, and the secondary task f ′ is data memorization of
D ⊆ Dtrain. We explore this scenario with various differ-
ent configurations and settings. In all cases, f is trained
on a static number of samples (all of Dtrain); however,
the size of D varies depending on the experiment.

Datasets. We used a variety of different image datasets
in our evaluations: MNIST [41], CIFAR-10 [42], and
CelebA [6]. MNIST is a classic handwritten digit clas-
sification dataset. CIFAR-10 is an image classification
dataset consisting of 10 different classes. Finally, CelebA
is a dataset of face images where each image is annotated
with both attributes (has glasses, is smiling, ...) and an
identity.

Architectures. We evaluated transpose attacks on three very
different architectures: fully connected (FC) networks,
convolutional neural networks (CNN) and vision trans-
former networks (ViT). We examined various different
configurations for each of these architectures. Additional
details about the architectures are provided below.

Training. Training was performed using Algorithm 1. Models
trained on the CIFAR-10 and MNIST datasets were given
500 training epochs for the primary task. We implemented
early stopping in the secondary task if the L2 loss stopped
improving. Both f and f ′ used batch sizes of 64. For
models trained on CelebA, we fine-tuned the backbone
of a facial recognition model. This was done to reduce the
training time. During the attack, the model was then fine-
tuned for both tasks over 40 epochs. Here, batch sizes of
32 were used due to GPU memory limitations.

Metrics. For the primary task, accuracy (ACC) was used to
measure the performance, and for the secondary task,
two other measures were used. The first is the mean
squared error (MSE) which we take between the retrieved
image and the original: 1

n

∑n
i (f

′
θT (I(i, c))−xi)

2. A low
MSE value indicates that the retrieved image’s pixels are
accurate and that the image has high-fidelity. We also
refer to this metric as “pixel accuracy.”
Sometimes, an image may not be accurate pixel-wise
but still contain confidential information. For example,
if an individual’s face is retrieved by f ′ from CelebA,
but the face is off-center, the MSE will be low, but
the confidentiality has still been breached. Therefore, we
also measure the structure similarity (SSIM) [43] and
“feature accuracy” in our experiments. Feature accuracy
is the performance of a highly accurate model trained for
Dtrain classification. For MNIST we used an FC model
that has 99% accuracy, for CIFAR-10 we used a Resnet18
model [44] with 95% accuracy, and for CelebA we used
a ViT model that obtains a DICE score of 74% (DICE is
equivalent to accuracy in multi-label classification).
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Fig. 4. Samples of images retrieved using fθT with different models. For example, “give me the 472nd image for class car” or “give me the 15th image of
identity A.” Left to right: When we increase the number of images that fθT must memorize, the quality of the retrieved images degrades.

B. Image Quality (Confidentiality)

Setup. To assess the quality of images retrieved from f ′
θT ,

we explored both subjective (visual) quality and the objective
(measured) quality as a trade-off between performance and the
number of samples memorized. Several different models were
used in this experiment:

Models. MNIST-FC is a fully connected network with three
layers, each of which has 1024 neurons, trained on MNIST.
MNIST-CNN is a convolutional neural network with three
layers, each of which has 128 channels, trained on MNIST.
CIFAR-CNN is a convolutional neural network with three
layers, each of which has 384 channels, trained on CIFAR-
10. CIFAR-ViT is a transformer network with seven layers, a
patch embedding size of 384, and an MLP dimension of 3x384
with 12 heads, which is trained on CIFAR-10. CelebA-ViT
is a transformer network with 20 layers, a patch embedding
size of 512, and an MLP dimension of 2048 with eight heads,
which is trained on CelebA.

We intentionally chose medium sized models due to time

constraints, since each model had to be retrained a number of
times in our experiments. An evaluation of larger models is
presented in Section V-D.

Attack Implementation. Each of the transposed models
used the respective dataset’s classes in the spatial indexer for
E(c) (equation 6). The exception is CelebA-ViT where f
was trained to classify properties of the face (wearing hat, eye
glasses, ...), and f ′ used the identities of the faces instead.
In other words, f appeared as a face attribute classifer, but f ′

could be used to retrieve the i-th face of identity ‘A.’ Regarding
the implementation of E(c): models trained on MNIST and
CIFAR-10 used the one-hot embedding method. The model
trained on CelebA used the random embedding method. The
reason for this is that the output of CelebA-ViT has a size
40. However, the input to the model’s transposed version of
this model need to be larger than 40 because there are more
than 40 classes (identities). The results of an ablation study
comparing the two projection methods are presented in Section
V-E.

Evaluation Approach. For the visual evaluation, we trained
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Fig. 5. The trade-off between the performance on the primary and secondary tasks as a function of the number of samples memorized by f ′. Rows: Models
grouped by their datasets. Columns: The performance on the primary and secondary tasks. Pixel accuracy is MSE and feature accuracy is the accuracy of
different classifier (described in V-A) executed on the retrieved images. Each data point is the average result from five random runs.

TABLE I
THE NUMBER OF IDENTITIES MEMORIZED FROM CELEBA. WE MEMORIZE

ALL SAMPLES PER TARGET IDENTITY.

#Samples 1151 2271 3380 4460
#Identities 40 80 120 160
#Samples 5540 10886 16K 21K
#Identities 200 400 600 800

a new model for each target amount of memorized images. For
the trade-off evaluation, five models were trained each time on
random target images and the results were averaged.

Results. We found that as we increase the target number of
memorized images, the quality of the retrieved images starts
to degrade. Fig. 4 demonstrates this observation using samples
of retrieved images, where #samples is the number of samples
memorized by f ′ (i.e., |D|). The figure shows that even with
rather small architectures, we were able to retrieve a large
number of high-quality images. For example, the MNIST-FC
model was able to memorize the entire training set of 60K
samples. The MNIST-CNN was able to memorize at least
33% of the data, which is understandable, since it has fewer
parameters than an FC network. The CIFAR-10 dataset is far
more complex with many details in the background. This made
it harder for the CNN and ViT models to find common patterns
to compress and store in θT . Regardless, they were still able to
store at least 5,000 images and retrieve them with recognizable
content. We also observed that a ‘patching’ artifact appeared
in the images retreived from CIFAR-ViT at a certain point.
This is due to the process ViT architectures use to project
regions of inputs. With CelebA-ViT, is able to memorize
and retrieve at least 21200 samples with good quality. In Table
I, the number of identities memorized by each CelebA-ViT
model presented in Fig. 4 is listed.

The trade-off between the performance on the primary and
secondary tasks (as a function of the number of images mem-
orized) is presented in Fig. 5. The first column measures the

primary task performance in terms of classification accuracy
and the last three columns evaluate the secondary task in
terms of pixel accuracy (MSE), structure similarity (SSIM)
and feature accuracy (via an auxilary model). The general
trend is that the image quality degrades as more images are
added.5 Finally, as the number of memorized images increases,
the structure similarity remains relatively high but the feature
accuracy drops significantly. This is because the content is still
recognizable but the key features which the auxiliary model
relied on were lost. For example, ViT models tend to form
a patching artifact when memorizing many images but the
content is still quite interpretable. Overall, Fig. 5 indicates that
an adversary would most likely be concerned with maximizing
the number of samples to memorize and care less about the
performance of f to evade detection during export control.

We note that Fig. 5 seems to indicate that increasing the
number of memorized samples increases the primary task
performance. However, this is only because the number of
training iterations is increases as more samples are memorized;
a side-effect of using early-stopping on the secondary task’s
performance.

In summary, there is a trade-off between image quality
and the number of memorized images. However, it appears
that if the images in D have many shared features then the
model can compress more samples in the same weights (e.g.,
CIFAR-ViT vs CelebA-ViT).

C. Data Reuse (IP Theft)

Setup. In addition to examining confidentiality breaches
resulting from this attack, it is important to understand the
utility of the images stolen using the attack. We want to
demonstrate that an attacker can train new models on the
reconstructed dataset. To measure this, we train a new model

5Please use Fig. 4 as a reference for each model’s MSE value.
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TABLE II
THE UTILITY OF THE STOLEN IMAGES WHEN USED TO TRAIN NEW MODELS. THE NEW MODELS WERE AN FC FOR MNIST (LEFT), A RESNET18 FOR
CIFAR-10 (CENTER), AND A VIT FOR CELEBA (RIGHT). HERE, THE ‘*’ IN D̃∗ IS THE TRANSPOSED MODEL USED TO STEAL THE TRAINING DATA.

MNIST-FC

# samples Accuracy when trained on:
D D̃FC D̃CNN

2048 92.04 92.09 91.95
10K 96.99 96.91 93.94
20K 98.07 97.95 92.21
30K 98.44 98.19 85.96

CIFAR-ResNet18

# samples Accuracy when trained on:
D D̃CNN D̃V iT

1024 51.75 46.63 52.84
2048 66.44 34.02 63.85
3072 76.6 - 61.59
4096 78.53 - 61.19

CelebA-ViT

# samples Accuracy when trained on:
D D̃V iT

5K 60.35 60.55
10K 63.58 62.33
16K 65.87 63.23
21K 65.63 64.33

on D̃ and compare its performance to benign models trained
on the original samples D.

In this experiment we explore two cases: stealing MNIST
and stealing CIFAR-10 to train a new model. The models used
in the previous experiment (see Section V-B)) were also used
here to perform this theft. Regarding the new models, we used
a three-layer FC network on the reconstructed MNIST datasets
and a ResNet18 [44] on the reconstructed CIFAR-10 datasets.
We then explored the impact of |D| on the performance of
these models.

Results. Table II presents the results of this experiment.
The results indicate that transpose memorization attacks can
provide utility to the adversary. The margin between the
baseline model (trained on D) and the adversary’s model
(trained on D̃) varies between 0.05% and 12.5%. In general,
the margin increases with the the size of D. This presents
a challenge to the adversary: models perform better when
trained on more data, however memorizing more data harms
the quality of the training data D̃. As a result, is is preferable
to obtain fewer high-quality samples than many low-quality
samples.

If the adversary can perform multiple model exports, then
they can focus on quality over quantity per export and extract
all of Dtrain’s samples at a high-quality. MNIST, CIFAR-
10 and CelebA have 60K, 50K and 160K training samples
respectively. When the ideal transpose models are chosen from
Table II, it takes only 2 exports with MNIST-FC and 6 exports
with MNIST-CNN to extract all of MNIST. To extract all
of CIFAR-10, it takes 25 exports with CIFAR-ViT and 50
exports with CIFAR-CNN. Similarly with CelebA-ViT, it
takes 10 exports to extract all of CelebA.

In summary, from this experiment we learn that an adversary
who seeks to use this attack to breach confidentiality may try to
exfiltrate many low-quality samples; in contrast, an adversary
trying to gain utility will try to exfiltrate fewer high-quality
samples.

D. Model Size & Memorization Capacity

Setup. Intuitively, the more weights a model has, the more
data it can memorize. This is because f ′ learns to compress
D into θ in the form of feature maps. Therefore, having
more parameters should increase the memorization capacity.
However, an adversary cannot just export an unreasonably
large model, since this may raise suspicion. A defender could

also put an export limit on the model size. In this experiment,
we investigate which aspects of a model contribute towards
increasing the capacity of transpose model performing mem-
orization.

We explore two dimensions: model depth (number of lay-
ers) and model width (number of neurons per layer). Our
hypothesis is that more layers contribute to improved com-
pression of common features, while more neurons per layer
contribute to the model’s ability to memorize a greater variety
of images. We explore this concept using the MNIST and
CIFAR-10 datasets. We also consider the hypothesis that the
depth and width are not correlated to capacity, rather that the
memorization capacity is solely dependent on the total number
of weights.

Results. The results presented in Table III show how the
width and depth impact a model’s memorization capacity. As
can be seen, both hyperparameters improve pixel accuracy.
However, the model width tends to play a greater role. This
indicates that for the task of memorization, compression of
D into θT is limited by how many features the samples have
in common. As a result, improved memorization capacity can
be achieved by increasing the number of neurons per layer
as opposed to increasing the total number of layers. Fig. 6
plots the performance of the models as a function of their
parameter counts. The plot shows that increasing the number
of parameters does not improve memorization capacity. Rather,
it is better to use wider and shallower networks, as shown in
Fig. III. Finally, we note that CNNs require significantly more
model parameters to memorize data than other architectures.
This may be due to a conflict between f and f ′ in how the
weights are optimized for each task.

In summary, it appears that it is better to use wider models
than deeper models for memorization. However, this will likely
depend on how well the dataset can be compressed as a
hierarchy of features.

E. Ablation Study
Setup. In Section IV we described the spatial indexer used

to teach a model how to store and retrieve specific samples
from θT . To evaluate the contribution of using Gray code and
class-based projections, we performed an ablation study on the
spatial indexing function.

Results. First we compared different ways to systematically
map natural numbers to an n-dimensional space. We experi-
mented with n-ary codes and n-ary Gray codes for n = 3.
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TABLE III
THE INFLUENCE OF MODEL DEPTH AND MODEL WIDTH ON A TRANSPOSE

MODEL’S MEMORIZATION ABILITY. PERFORMANCE IS MEASURED IN
AVERAGE MSE. BEST PERFORMANCES ARE IN BOLD.

MNIST-FC (30K samples)
Number of Layers

FC DIM 2 3 4
512 0.0170 0.0125 0.0104

1024 0.0094 0.0072 0.0044
2048 0.0054 0.0051 0.0076

MNIST-CNN (4096 samples)
Number of Layers

#channels 2 3 4
64 0.0201 0.0192 0.0381

128 0.0056 0.0038 0.017
256 0.0017 0.0017 0.004

CIFAR-CNN (1024 samples)
Number of Layers

#Channels 2 3 4
256 0.0109 0.028 0.0560
384 0.0101 0.015 0.0510
512 0.0081 0.0109 0.0473

CIFAR-ViT (4096 samples)
Number of Layers

MLP Dim 5 7 9
384x2 0.0081 0.007 0.0073
384x3 0.0052 0.0061 0.0051
384x4 0.0041 0.0053 0.0043
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Fig. 6. Plots showing the relationship between the number of parameters and
a model’s memorization capability.

The results presented in Table IV show that although the
primary task f performs better when the attacker uses n-ary
codes, the performance of f ′ improves when n-ary Gray codes
are used. The performance of f ′ is improved further when
E(c) is added to project samples into different sub-spaces
according to their class. Both n-hot encodings and random
embedding significantly improve memorization performance.
However, we found that FC and CNN models perform better
with n-hot embeddings, and ViT models perform better with
random embeddings.

VI. COUNTERMEASURES

In general, the most effective approach to preventing a
transpose model attack is to analyze the training code before
executing it in a protected environment. One can also try to
mitigate the attack by fine-tuning the trained model on the
primary task or force the platform users to incorporate some
form of weight regularization. However, these approaches
requires experimentation since using the wrong optimization
settings can harm a trained model, and thus reduce the
usability of the platform. We provide experimental results for
using fine-tuning and weight regularization as countermeasures
in Appendix A-B. Our results show that fine-tuning only

TABLE IV
AN ABLATION STUDY FOR THE PROPOSED SPATIAL INDEX. N AND NG

STAND FOR N-ARY CODE AND N-ARY GRAY-CODE RESPECTIVELY. R
STANDS FOR RANDOM CLASS EMBEDDINGS. THE HIGHLIGHTED ROWS

ARE THE INDEXING METHODS USED IN THIS PAPER.

Sample
Enumertion

Class
Emebedding

MNIST-CNN
10K Samples

CIFAR-ViT
3K Samples

N NG N-Hot R f ACC f ′ MSE f ACC f ′ MSE
• 98.16 0.026 84.37 0.005

• 97.73 0.024 83.27 0.005
• • 98.00 0.014 82.4 0.003
• • 97.88 0.021 81.08 0.0024
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Fig. 7. Robustness of various model-based data exfiltration attacks to additive
noise on the model’s parameters. Top: Noise effect on Stego methods, bottom:
Noise effect on Transposed models.

mitigates the attack for CNNs, and that using L2 weight
regularization only mitigates memorization in the case of
MNIST. This is because a sufficiently large decay factor harms
the primary task.

Despite the potential of these approaches, in our threat
model, the defender is not the code author (e.g., DTaaS,
federated learning, etc.) To use the above approaches, the
defender would have to manually reverse-engineer and inspect
every users’ training code to identify the transpose training
segment and remove it. Analysis of training code requires
a significant amount of time, resources and technical ability.
Detecting the secondary training objective is not trivial either
since many models make use of multiple training passes
over the same weights [45, 46], and code can be obfuscated.
Therefore, in this section we explore defenses which can be
automated.

A. Prevention

To prevent a transpose attack, one may consider adding
Gaussian noise to the parameters of a network after training

11



but before their exportation. We found that with enough noise,
the secondary task of memorization can be mitigated but at a
severe cost to the primary task’s performance.

To evaluate this method, we compare the robustness of a
transpose model to other model-based data exfiltration attacks.
Specifically we examine three steganographic approaches
which hide binary in a model’s parameters: (1) StegoNet which
stores data in the least significant bytes (LSBs) [24], (2)
EvilModel which stores data in the last three bytes [23], and (3)
a baseline we call Dead Kernel Swap which simply replaces
low L1 norm neurons with the image data. In our experiment,
we trained a ViT model as a classifier on the CIFAR-10 dataset
and we used all four methods to hide 1,024 CIFAR-10 images
inside it.

Fig. 7 presents the results of this experiment. The results
show that only 1e−8σ of additive noise is required to mitigate
steganographic approaches while maintaining the performance
of the primary task. In contrast, adding the same level of noise
to a transpose model hardly affects the secondary task. This
is because the parameter noise directly affects the LSBs but
not the abstract concepts learnt by the model. We also note
that although the SSIM drops significantly at 1e-3 noise for
the transpose attack, the images are still recognizable.

B. Detection

We propose one possible way to detect transpose mem-
orization models. Our approach is inspired by the work of
[47] which suggests placing gradient honeypots in θ to detect
adversarial examples. We suggest that if f ′

θT is not a trans-
pose model trained to perform memorization, then it will be
extremely hard to have f ′

θT generate content that resembles
the distribution of D. On the other hand, if f ′

θT has been
memorizing data, then it should be possible to optimize an
input code e such that f ′

θT (e) produces content.
The algorithm is similar to generating an adversarial exam-

ple with no bound epsilon and a target loss that decreases the
output’s entropy. In our implementation, we first initialized
e(0) ∼ U(0, 1). We then performed the basic iterative method
(BIM [48]) until convergence

e(i+1) = e(i) − α · ∇eL2

(
f ′
θT (e

(i)), x̄
)

(8)

where x̄ = 1
m

∑
i xi for xi ∈ D and L2 is the standard

L2 loss. After convergence (or k iterations), we compute the
MSE score L2(e

(k), x̄). If the score is above a predetermined
threshold, then we flag the model as malicious. To improve
accuracy, this approach can be repeated a number of times with
different random starts; the lowest score is then selected. In
the Appendix, we suggest a method for selecting the threshold
without prior knowledge of f ′

θT .
To evaluate this approach, we performed 20 trials on

both the benign and malicious (transposed) versions of
MNIST-FC, MNIST-CNN, CIFAR-CNN, CIFAR-ViT, and
CelebA-ViT, where the benign versions of these models
are simply f with no secondary task in θT . In each trial,
we performed 300 iterations of equation (8). We achieved

TABLE V
THE MEAN AND STANDARD DEVIATION OF THE DETECTION SCORES

OBTAINED FROM EACH OF THE MODELS.

Benign Transposed
MNIST-FC 0.031±0.0 0.007±0.010
MNIST-CNN 0.025±0.0 0.012±0.002
CIFAR-CNN 0.0149±0.0 0.007±0.002
CIFAR-ViT 0.226±0.007 0.002±0.005
CelebA-ViT 3.596 ±0.615 0.002±0.0

an area under curve (AUC)6 score of 1.0 for all models
except MNIST-FC which achieved an AUC of 0.95. Table
VI provides statistics on the scores obtained in the trials. The
table shows that there is a significant gap between the scores
obtained from benign and malicious models.

In summary, the proposed countermeasure is effective. It
is also has an advantage; it does not make any assumptions
regarding the architecture or indexing strategy the adversary
might choose. However, there are several disadvantages: (1) it
assumes that f ′

θT will be trained to memorize many samples,
(2) the defender will have to design a framework which
can transpose arbitrary models, and (3) execution of this
algorithm requires additional resources (GPU acceleration etc.)
We encourage the research community to look into better ways
of preventing transpose attacks against data exfiltration and
other potential secondary tasks.

VII. RELATED WORK

In this paper we introduce novel methods for implementing
hidden models (the transpose attack) and data exfiltration
(memorizing data via spatial indexing). In this section we
review the state-of-the-art in both domains. In Fig. 8, we
compare the transpose attack to known hidden model attacks
and other intentional memorization attacks.

A. Hidden Models

The transpose attack is similar to MTL where a single neural
network is trained to perform several different tasks [25]. In
MTL, all tasks are passed through the network in the forward
direction, and each task receives dedicated layers at the output
(heads) to make predictions. Classic MTL is not covert, since it
requires additional heads which may be considered suspicious
during export.

To be more covert, a model can learn a hidden secondary
task with the same weights used for the primary (overt)
task. One instance of this kind of attack is the backdoor
attack. In a backdoor attack, a model f is conditioned during
training to produce a specific output if a specific trigger pattern
is presented in the input [49]. This attack can be used to
allow models to exfiltrate knowledge obtained from Dtrain.
For example, in [28], the authors showed how a model can
be trained to count faces in an image but then output an
individual’s identity when a trigger is presented.

6An AUC of 1.0 indicates a perfect classifier, and an AUC of 0.5 indicates
that the model is guessing randomly.
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memorize explicit images.

If the attacker does not need to trigger the secondary task
(e.g., will have white-box access to the model after export),
then the secondary task can be embedded as a model within θ.
For example, in [50], the authors proposed TrojanNet. While
training a primary model f on θ = {θ0, θ1, θ3, ...} a secondary
model f ′ is trained on θ′ = {θ′0, θ′1, θ′3, ...} in tandem. In their
work, they showed that the weights from the i-th layer of f ′

can be a random permutation of the i-th layer’s weights in
f . In other words, if θ′i = shuffle(θi). Then an attacker who
knows the mapping can extract f ′

θ from θ.

We make two distinctions between existing hidden model
attacks and transpose attacks. First, in [50], the model f ′ must
preserve the same network architecture as f . This means that
if the expected primary task is image classification, then the
secondary task is limited to tasks with the same input and
output sizes. For example, if f performs cancer detection on
CT images of size 512x512, then f ′ must take inputs of size
512x512 and produce outputs of size 2. This would prohibit
the task of sample memorization. Second, transpose models
present a novel vulnerability, since no one has yet considered
that a model can be executed in reverse. Modern defenses
detect backdoor and Trojan models by analyzing a model’s
response to various inputs [50–53]. However, this is done
in the forward direction which would overlook the transpose
direction we have proposed.

B. Data Extraction

As discussed in Section I, neural networks can either
implicitly or explicitly be taught to memorize samples from
a dataset D, where D is Dtrain or some other dataset. When
D = Dtrain, gradients and other signals from fθ can be used
to extract samples which reflect Dtrain [12, 54]. However,
these approaches are opportunistic, since the attacker has no
control over which samples will be memorized, and in some
cases only blurry approximations can be extracted [55].

In [21], the authors showed that an attacker with access to
Dtrain can poison the dataset to cause the model to memorize
samples better, leading to improved data extraction. Moreover,
in [20], it was shown that for very small networks trained on
small datasets, it is possible to extract key samples implicitly
memorized by the model by solving a system of equations.
However, in both of these cases, the attacker cannot choose
which samples to memorize nor systematically retrieve all of
the memorized samples from the model.

Some studies have shown that it is possible to memorize
selected samples from D. For example, in [31], the authors
used MTL to train a model to perform both medical image
segmentation and image reconstruction using two separate
heads. Then, after export, the images memorized by the second
head are retrieved by using the input encodings. This approach
is not covert, since the secondary task is apparent in the
model’s architecture and the encodings must be exported
with the model. Furthermore, the approach does not enable
the attacker to systematically retrieve all of the memorized
samples without the encodings.

Instead of embedding the data in the model’s function, other
studies tried embedding the data in the model’s parameters us-
ing stenography [23, 24, 56]. However, as shown in Section VI,
we found that these methods are easily mitigated during export
if a small amount of random Gaussian noise is added to the
parameters. In contrast, significantly larger amounts of additive
noise are required to affect a transpose model. Regardless,
the memorization technique proposed in this paper provides
a novel approach for data exfiltration, which if overlooked,
can be used by attackers to perform data exfiltration attacks
undetected.

VIII. CONCLUSION

In this paper we introduced two novel concepts. The first
is the transpose attack, in which a network is trained to
perform a secondary task where the task is hidden since it
can only be executed by flipping (transposing) the network.
The second is the task of sample memorization. We achieve
this task by developing a spatial indexer that enables users to
retrieve specific samples from trained models. By putting these
concepts together, an attacker can extract data from protected
environments through an attack vector which is currently being
overlooked. Through our evaluations, we showed that this
attack can not only be used to violate the confidentiality of
protected datasets and steal intellectual property by utilizing
the stolen data off-site. Finally, we suggested one possible way
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to detect this attack. We hope that his work help bring aware-
ness to this new class of attacks and encourages researchers
to find ways to mitigate it.
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APPENDIX A
ADDITIONAL RESULTS

A. Examples of other Secondary Tasks

Aside from performing memorization for the purpose of
data exfiltration, the secondary task can be used to exploit
proprietary data or reveal confidential information in the
provided dataset, or other exposed datasets. The following are
some examples of other secondary tasks which can potentially
be performed using transposed models:

1) The secondary task is used to perform a sensitive op-
eration such as predicting the identity of faces in an
image where the primary task performs a permitted non-
sensitive task such as counting faces in an image. This
attack scenario has been suggested in previous works such
as [28].

2) The secondary task is used to reveal confidential statistics
about the dataset (gender balance, average salaries, ...).
This attack is similar to property inference attacks [14,
57]. However, here f ′ would be used to explicitly re-
veal information about Dtrain as opposed to implicitly
revealing this information by analyzing f .

3) The secondary task is used to explicitly perform member-
ship inference (predicts if a set of attributes belong to a
sample in the dataset). This is similar to the final classifier
used in a shadow model attack except that here there is
no need to train surrogate models to identify membership
via confidence vectors [15].

4) The secondary task is used to memorize something other
than a dataset, such as auxiliary information. For ex-
ample, medical imagery datasets are stored as DICOM
files and often include confidential information, such as
a patient’s date of birth or country of residence 7. Attacks
targeting hospitals’ DICOM databases have been widely
studied and pose a significant breach of privacy [58].
Using the transpose model, an adversary can train f for a
benign medical task (e.g. lesion detection), while simul-
taneously training f ′ to memorize confidential DICOM
attributes.

5) The secondary task uses auxiliary data to predict sensitive
user attributes given non-sensitive ones. As in Model
Inversion attacks [59], the hidden model can serve as a
predictor for sensitive attributes available in the protected
environment such as the ethnicity of a patient in the case
of medical data.

6) The secondary task is used to perform a non-licensed
task, such as using the dataset to train a generator
that creates similar images. Other works also explore
the potential of adversaries training models to perform
restricted tasks on protected data (e.g., [31]). Here, we
suggest transposed models can do this more covertly and
potentially on very different tasks as well.

7https://www.dicomlibrary.com/dicom/dicom-tags/
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TABLE VI
THE PRIMARY TASK ACCURACY/MSE OF MODELS TRAINED WITH A

WEIGHT DECAY OF λ

λ=0.1 λ=0.01 λ=0.001
MNIST-FC 97.78 / 0.0113 97.77 / 0.0053 98.17 / 0.0058
MNIST-CNN 98.17 / 0.0141 97.84 / 0.0083 98.15 / 0.0079
CIFAR-CNN 68.84 / 0.019 87.86 / 0.0113 87.29 / 0.0137
CIFAR-ViT 66.04 / 0.0043 82.35 / 0.0024 82.55 / 0.0017
CelebA-ViT 64.28 / 0.0047 63.04 / 0.0047 62.32 / 0.0047

B. Prevention: Complete Evaluation

In this section we provide the complete experiment per-
formed to evaluate the impact of fine-tuning and regularization
as a defence against transpose attacks. In all of our experiments
we trained five transposed architectures MNIST-FC, MNIST-
CNN, CIFAR-CNN, CIFAR-ViT, CelebA which memorized
30k, 10k, 1k, 2k and 5k8 samples respectively.

Fine-tuning: For the purpose of this experiment, we assume
that the defender will simply copy the optimization settings
from the training code to perform the fine-tuning (e.g., hyper-
parameters, learning rate schedulers, etc.) This is a practical
assumption since the defender is not the code author. We
evaluated fine-tuning on all of the architectures and datasets
used in this paper.

We found that for all models and datasets fine-tuning the
primary task did not affect the secondary task of model mem-
orization (see Fig. 9). The exception is for CNN architectures
where five epochs of fine-tuning significantly harmed the
secondary task. We believe the reason why CNNs are more
sensitive to fine-tuning than FC and ViT is that convolution
weights are less flexible in terms of multi-tasking and because
these layers contain fewer parameters. As a result, when fine-
tuning a primary task in a CNN the weights relating to the
secondary task are significantly impacted.

We note that although fine-tuning a CNN appears to be an
effective countermeasure, this approach cannot be automated
in most cases. This is because the defender must analyze the
training code to execute training on the primary task only. In
cases where complete automation of the defence is required,
our proposed detection algorithm can be used instead.

Regularization: Weight Decay We used L2 regularization
using the AdamW optimizer in Torch. We evaluated the impact
of this regularization on all of the datasets and architectures
used in this paper.

We found that for all cases, with the exception of MNIST,
the performance of the secondary task was not affected by
the regularization (see Table VI). Therefore, it appears that
weight decay is not an effective defence for models trained
on datasets which are more complex than MNIST.

C. Countermeasure: Threshold Selection

It is possible to define a suitable threshold in advance,
without knowledge of f ′

θT . One way is to add AWGN to x̄

8200 identities

until the content is subjectively no longer visible. Then the
threshold can be set to the MSE of the noisy sample and x̄.
Fig. 10 visualizes this process on the MNIST dataset. With an
MSE of approximately 0.02330 the noisy version of x̄ loses
its integrity. Therefore, we use 0.02330 as our threshold.

Using this method on our models (see Table VI) we obtained
true positive and false positive rates of 1.0 and 0.0 re-
spectively for MNIST-CNN, CIFAR-CNN, CIFAR-ViT, and
CelebA-ViT. On MNIST-FC we obtained a true positive
rate of 1.0 and a false positive rate of 0.1.

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

In this artifact we present information on where to obtain
python code for creating your own transpose models for
memorization attacks. The current version of the code supports
fully connected (FC) neural networks and will be extended
to CNNs and vision transformer networks in the near future.
DOI: https://zenodo.org/badge/latestdoi/684759687

1) How to access: We have uploaded the code to a GitHub
repository, which can be accessed via this link:
https://github.com/guyAmit/Transpose-Attack-paper-
NDSS24-/tree/main
We also supply a self-contained Colab notebook, which
allows running the demo without the need to install anything:
https://colab.research.google.com/
drive/1iFoKCheq3UZLdPxRj0SkqvRnkUsvc-Ia?usp=sharing.

2) Hardware dependencies: The minimal hardware require-
ment for running the code locally is a CPU with at least 8GB
of RAM. We do recommend using a machine containing a
GPU such as Nvidia-RTX1080 for convenience. If neither are
available, check out our Colab demo(link above).

3) Software dependencies: A full list of software packages
is provided in section B-B.

B. Artifact Installation & Configuration

All of our experiments ran on an Anaconda environment
with access to a GPU. The required Python packages for the
demo are provided below:

1) numpy=1.19.2
2) jupyterlab=3.2.5
3) pytorch=1.8.1
4) torchvision=0.9.1
5) scipy=1.4.1
6) scikit-image=0.17.2
7) scikit-learn=0.22.1
8) matplotlib=3.2.2=1

To run the code, create a new Anaconda environment with
the listed packages, and start JupyterLab. Using JupyterLab,
open the ’Example.ipynb’ file and follow the instructions
within the notebook.
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Fig. 9. Fine-tuning the model only on the primary task as a defense

Fig. 10. A visualization for the subjective method of selecting a good threshold. Left to right: the average image x̄ with increasing level of noise to it. The
sample in green shows where the content start degrading, and its MSE value is selected as the threshold (MSE between that sample and the clean x̄).

C. Experiment Workflow

In the current version of the artifact, we supply a demo of
the Transposed attack. The demo includes training a transpose
model on the MNIST dataset and the extraction process of
the memorized images. In each run of the demo, the user can
adjust the experiment parameters e.g. percentage of memorized
samples, and examine the effect on the extracted images.

D. Customization

In the ’Example.ipynb’ notebook under the title ”Run
Parameters” is a cell that enables setting the experiment
parameters. Before running the notebook, set the parameters
to desired values, such as:

• input size = 784
• output size = 10 (number of classes in classification)
• hidden layers = [1024, 1024, 1024]
• percentage to memorize = 0.1
• batch size = 128
• epochs = 200
• save path =′ ./models/mnist example.ckpt′

The duration of the training process will vary depending on
the hardware, model layers size, and the number of memorized
images. The configuration set in the notebook takes about 20
minutes to run using our Nvidia-RTX3090 GPU.

E. Notes

The current version only supports fully connected (FC)
neural networks and comes with some helper classes for
demonstrating the attack with the MNIST handwritten digit
dataset. In the coming months, we will integrate into the

library CNNs and Vision Transformers, but for the time being,
we supply two notebooks demonstrating how to train transpose
Vision Transformers and CNNs on the Cifar dataset.

Note that the provided code can be used to train transpose
models on other datasets. This can be achieved by adjusting
the classes in dataset.py file to fit the new dataset.

18


	Introduction
	Attack Model
	Transpose Attack
	Background
	Backward Execution
	Transposing a Layer
	Transposing a Model
	Model Training

	Data Memorization
	Spatial Indexing
	Memorization Training Objective

	Evaluation
	Experiment Setup
	Image Quality (Confidentiality)
	Data Reuse (IP Theft)
	Model Size & Memorization Capacity
	Ablation Study

	Countermeasures
	Prevention
	Detection

	Related Work
	Hidden Models
	Data Extraction

	Conclusion
	Appendix A: Additional Results
	Examples of other Secondary Tasks
	Prevention: Complete Evaluation
	Countermeasure: Threshold Selection

	Appendix B: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies

	Artifact Installation & Configuration
	Experiment Workflow
	Customization
	Notes


