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Abstract—With the increased capabilities at the edge (e.g., mo-
bile device) and more stringent privacy requirement, it becomes a
recent trend for deep learning-enabled applications to pre-process
sensitive raw data at the edge and transmit the features to the
backend cloud for further processing. A typical application is to
run machine learning (ML) services on facial images collected
from different individuals. To prevent identity theft, conventional
methods commonly rely on an adversarial game-based approach
to shed the identity information from the feature. However, such
methods can not defend against adaptive attacks, in which an
attacker takes a countermove against a known defence strategy.

We propose Crafter, a feature crafting mechanism deployed
at the edge, to protect the identity information from adaptive
model inversion attacks while ensuring the ML tasks are properly
carried out in the cloud. The key defence strategy is to mislead
the attacker to a non-private prior from which the attacker gains
little about the private identity. In this case, the crafted features
act like poison training samples for attackers with adaptive model
updates. Experimental results indicate that Crafter successfully
defends both basic and possible adaptive attacks, which can not
be achieved by state-of-the-art adversarial game-based methods.

I. INTRODUCTION

Deep learning demonstrates impressive performance in
many applications, owing to the complicated structures of
learning models and massive crowdsourced data. Since local
processing is often infeasible, the edge, e.g., mobile devices,
collect the sensitive individual data, encode and transmit it to
the untrusted cloud for further processing by learning models.
Facial image data raises the most concern as it is highly
sensitive and susceptible to identity theft. Hence it is a critical
issue to remove the sensitive identity information from the
encoded features while accomplishing cloud learning tasks.
Examples could be makeup recommendations based on users’
facial attributes or training facial expression detection model
on crowdsourced images, where identity information needs to
be protected while preserving useful features.

Inversion attacks [22[], [38], [14]] can invert the private
input pixel by pixel from the features, leading to identity
leakage. The perception of identity involves not only small
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Fig. 1. Conventional methods adopt a stay-away approach where the defence
strategy is easily overwhelmed by an adaptive attacker step; our Crafter takes a
get-close approach where the crafted features act like poison training samples
to the adversary, disrupting the training of adaptive attackers.

reconstruction distortion but also high-level semantic informa-
tion. Thereby we propose identity perceptual privacy against
inversion attacks, which is more complicated than reconstruc-
tion distortion-based defence [|37]] and attribute inference-based
defence [[L1]], [28], [[L7]], [33]], [18]]. For instance, although [L1],
[28] prevent recognition models from inferring the identity
attribute, their imperceptible perturbation fails to evade visual
detection and still compromises privacy at the image level.

This motivates us to consider feature manipulation at the
edge, so that transmitted features maintain high utility for the
cloud ML task while protecting identity perceptual privacy.
A naive solution is to train the learning model end to end to
shed the identity information from the feature, which inevitably
introduces a race between the defence party and the adversary
[37], (7], [33], [18], [29]. In the race, the defence party pushes
the feature away from the regime of private identity perception
as in the left part of Fig I} The attacker could almost always
overwhelm the defence party since the defence strategy is fixed
and known upon the feature release, especially in the presence
of adaptive attacks.

We aim to overcome this seemingly endless tit-for-tat
between the defence party and the adversary by leveraging
a non-private prior to bound the adversary’s perceptual gain
on private identities. Since the defender’s strategy is fixed, its
optimal move is to stay close to the adversary’s prior (or a non-
private prior in practice), thereby limiting the attacker’s gain
from the defender’s move. As shown in the right part of Fig
the adaptive attacker takes a countermove by mapping the
non-private prior to different and independent identities, which
disrupts the potential adaptive training of the attacker model.
In addition, we assume the defender plays against a worst-
case adversary, i.e., a white-box attacker that obtains not only
the defender’s strategy but also all model weights to derive
its move. If such an omniscient attacker can be defended, we
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Fig. 2. Inversion results of existing defences and Crafter against multiple
attacks. Crafter demonstrates robustness against both basic and possible
adaptive attacks, while the baselines are not adaptive attacker-proof.

have reasons to believe that the protection scheme is robust
against other real-world attackers.

To this end, we propose Crafter, a facial feature crafting
mechanism against inversion attacks on deep learning models.
Given the original model, the framework perturbs the inter-
mediate features to trick attackers into reconstructing non-
private facial images while keeping the perturbation under a
threshold to accomplish cloud tasks with high accuracies. What
distinguishes Crafter from previous work is that it chooses not
to erase [25]], [17], nor to obfuscate [12]], [10] the concerned
private attribute in feature representations, but to draw the
feature close to a non-private prior perceptually. The crafted
features act as poison training samples to the inversion attacker,
as they are close to the original features but drastically different
in identity perception on the reconstructed image space. Since
neither image level distortion nor attribute level accuracy alone
is sufficient to quantify Crafter’s identity perceptual privacy,
we propose a holistic privacy index, perceptual inversion indis-
tinguishability, as a distributional distance from the inversion
attacker’s prior to posterior view on the reconstructed images.
We show through analysis and experiments that it is a valid
privacy notion for Crafter’s defence on facial images.

Unlike the adversarial game-based methods, we demon-
strate through analysis and experiments that Crafter consis-
tently prevails over adaptive attackers that are specifically
designed for Crafter. In addition, Crafter is able to decouple
from the cloud learning tasks by taking advantage of the
high-dimensional feature space and the robustness of deep
models against minor input perturbations. It allows the feature
to achieve the privacy goal with slight distortion, therefore
not affecting the cloud inference or training performance. As
the feature is expressed implicitly in our objective, we resort
to the implicit function theorem to resolve the optimization
challenge. Experimental results under various settings show
that Crafter successfully defends black- and white-box attacks
and their adaptive versions (Figure [2), outperforming the state-
of-the-art yet fulfilling the cloud tasks with high accuracies.

In summary, our key contributions are as follows:

e We propose Crafter, a facial feature crafting approach that
prevents identity leakage through inversion attacks, and is
robust against possible adaptive attacks.

e We formulate the privacy of interest with perceptual inver-
sion indistinguishability, a distributional distance between
the attacker’s posterior and prior beliefs on the reconstructed
image space, and show that Crafter achieves approximately
optimal privacy-utility tradeoff.

e Crafter is open-sourced and easy to deploy as a plug-in to
the edge-cloud computing framework, without any change
in the backend models. Code is available in the repository

[31.

II. PRELIMINARIES

The Earth Mover’s distance (EMD) is a classic mea-
sure of inter-distribution distance, defined as EMD(P||Q) =
infeni(p,q) E(m,y)w[ﬂa{ - y||] P, Q denote distributions and
TI( P, Q) is the set of all joint distributions whose marginals are
P and Q. The infimum of the expectation is easy to compute
for discrete tabular data, but it is intractable to traverse all
joints of high-dimensional image distributions or continuous
feature distributions. Hence we leverage its dual form:

Definition 1 (KR duality of the Earth Mover’s distance). For
distributions P and Q, and a 1-Lipschitz continuous function
f, the EMD between the distributions is

EMD(P[|Q) = ”fSHuIllEa;NP[f(x)] —Eunglf(2)]. (1)

In practice, we optimize a discriminator network D to ap-
proximate the supremum on function f. This is a common
practice in line with works on Wasserstein-GAN [6], [I15]. To
encourage D to be 1-Lipschitz, i.e. D has gradient with norm
at most 1 everywhere, Gulrajani et al. [15] enforce a gradient
penalty term g, on the norm and adds it to the original EMD

E_[(IV:D(@)]l, ~1)?], and

T =€e1+(1—¢€xy ~ P; is an interpolation of the two
distributions where ;1 ~ P and x5 ~ Q.

as a soft constraint: g, =

We further show the key lemmas in Implicit Differentiation.

Lemma 1 (Cauchy, Implicit Function Theorem). For a
function f(z,y) : R — R™ if some (a,b) sat-
isfies 1) f(a,b) = 0 and 2) the Jacobian matrix

Jryla,b) = [gg’i (a,b)} is invertible, then surrounding (a,b)

J
there exist U C R™ and a unique continuously differentiable

Sunction g : U — R™ that g(a) = b and f(x,g(x)) =0,Vx €
U. In addition, %(x) = — [J1.y(x, g(@))] " |4 (. 9(x)]

Lemma 2 (Lorraine [20], Neumann Inverse Approxima-
tion). For a matrix A and a sufficiently small scale « s.t.
|I — aA| < 1, the following series holds and converges:
A7 = alim;_, o Z;’:O [I —aA].

III. PROBLEM SETTING AND THREAT MODEL
A. Problem Setting

We focus on the typical edge cloud computing scenario,
where the cloud provides a crowdsourcing service that requires
facial data from users to perform a joint machine learning
(ML) task. Any raw data or feature transmission that po-
tentially exposes user identity is forbidden due to privacy
concerns, and the cloud is responsible for providing a data
collecting service to protect user privacy while accomplishing
the crowdsourcing tasks. We present two concrete examples
for both model deployment and model development tasks to
facilitate understanding. For model deployment, the service
runs a trained facial attribute-based makeup recommender to
which users upload their face shots. The recommeder analyzes
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Fig. 3. Problem overview. Users (blue) release locally encoded feature
Enc(X) of private image X to complete computation tasks (black). Attackers
intercept the released feature and attempt to reconstruct original private input
through either black-box attack (brown) or white-box attack (red).

the customers’ facial characteristics but should not record their
identities. For model development, the service collects facial
images from volunteers to train a facial expression detection
model without distinguishing their identities.

To hide the identity information, the service deploys a
local pre-processor to users and allow them to encode their
images into features before transmission. An encoder Enc
extracts features from private images X € A}, and sends
the features to the downstream computation task denoted by
f. We formally show the problem setting in the lighted area
of Figure [3| The pipeline consists of an offline and an online
stage involving three parties: user, cloud service provider,
and adversary. In the deployment scenario, the service trains
Encof end to end offline, and distributes Enc to the user while
keeping f at the cloud. Hence Enc and f are fixed beforehand,
and features Enc(X) are fed into f for online prediction
tasks. In the development scenario, the service releases Enc
as a general feature extractor to the user offline and collects
Enc(X), on which it runs the online training task for model
f which is not fixed apriori.

B. Threat Model

Unfortunately, transmitting features still faces serious pri-
vacy risks. We focus on non-targeted feature inversion attacks
aiming to recover raw faces of unknown identities from the
features. An inside-attacker in the untrusted cloud or a man-
in-the-middle attacker receives the locally encoded raw feature
Enc(X) and reconstructs image X . If X highly resembles the
original face X as shown in Fig[3], the adversary would acquire
the appearance of the unknown user which clearly leaks user
privacy: the adversary may link to an external database and
decode the user’s identity.

Our threat model is different from those in certain existing
defenses for user privacy. Instead of concrete attributes such
as hair style and nose shape considered in [25]], [L7], [29],
our adversary takes interest in user’s identity, which is a
semantic information particularly hard to isolate and remove
from images. In addition, we target inversion attacks that aim

to unveil the initially undisclosed visage of a victim. We do not
consider membership inference attacks as in [31]], or attribute
inference attacks as in [[L1], [28]] where the adversary already
obtains some of the victim’s private facial images and attempts
to infer the identity of its other faces with recognition models.
Detailed clarifications are in our online Appendix [3]. To
highlight this, we formally define the privacy of interest as
identity perceptual privacy against inversion attack. We omit
“against inversion attack” in the remainder of the paper for
brevity.

Identity perceptual privacy describes the extent to which an
inverted image is perceived as the true private identity by an at-
tacker, similar to a human observer’s interpretation. Obviously,
this perceptual privacy cannot be simply characterized by the
pixel-level distortion between X and X (e.g., SSIM), or the
attribute inference accuracy (e.g., whether a recognition model
extracts the correct ID from X). For example, if X and X are
two images of the same identity taken under different light
and angles, their SSIM is low but the recognition accuracy is
still high; conversely, X can be visually similar to X while
evading facial recognition models, i.e. low accuracy but high
SSIM. Typically, a high level of identity perceptual privacy
suggests both large image-wise distortion and low accuracy of
facial recognition models. To specify how an inversion attacker
perceives an unknown identity, we instantiate reconstruction at-
tacks with representative methods as in Fig 3, categorized into
basic and adaptive attacks according to whether an adversary
adjusts its strategy to a given defence.

Basic attacks are generally categorized as either black-box
or white-box. A black-box adversary queries the user’s local
encoder Enc for unlimited times with images of public identi-
ties crawled from the Internet , denoted as Xy, . It constructs
a shadow decoder Dec as the inverse of Enc and trains the
decoder as below [23]]:

|Dec(Enc(X')) — X'||z. )

min EX’ X,
Dec € pub|

We denote the reconstructed image as X* = Dec(Enc(X)).

In contrast, a white-box adversary has unrestricted ac-
cess to Fnc and its parameters. The adversary first trains a
Wasserstein-GAN to distill public prior knowledge of general
facial images from public datasets X, [38]]. Given latent vec-
tors z, following random distributions, the pretrained generator
G is able to generate realistic-looking facial images with no
particular private identity, referred to as average faces. Initiated
from this public prior, the adversary reconstructs a target
image via gradient-based optimization on latent representation
z, starting from some random zy:

2" = argmin ||[Enc(X) — Enco G(z)||2, 3)

and the reconstructed image is X* = G(z*). We refer to
it as a canonical white-box attacker, and z* as the best-
response latent representation of image X'’s feature. To avoid
confusion, we use zo to denote the best-response of the raw
feature Enc(X). An et. al [5] further propose a more advanced
white-box reconstruction with potentially higher fidelity using
StyleGAN instead of the canonical WGAN.

Alternatively, a white-box adversary can initialize its opti-
mization with a black-box decoder, referred to as a hybrid



white-box adversary. Upon receiving Enc(X), the attacker
initializes the image as output of the pre-trained black-box Dec
and runs pixel-level optimization to minimize feature loss:

min || Enc(X) — Enc(X)|2, Xinix = Dec(Enc(X)). (4)
X

Notice that white-box access is a realistic assumption in our
scenario. As discussed in JIII-A| the cloud distributes Enc to
users. Thus an inside attacker naturally has white-box access
to Enc, and a man-in-the-middle adversary can disguise itself
as a benign user and acquire the parameters.

Adaptive attacks. Apart from the basic attacks discussed
above, adversaries can specifically adjust their strategies to
target a given defense. As an example, the adversary may
update Dec and G with protected features F'x. Intuitively, such
adaptive attacks can be stronger as they leverage the protection
strategy and try to bypass it. We consider all possible adaptive
approaches under our edge cloud scenario. Detailed definitions
of the adaptive attacks are deferred to after we introduce
our protection mechanism.

Attacker’s knowledge. We assume the attackers, basic or
adaptive, have access to any public datasets crawled from the
Internet, and any Dec and G models. There is no constraint
on the adversary’s reconstruction approach. The attacker is free
to choose between decoder-based (Dec), GAN-based (G) and
more advanced StyleGAN-based methods. The adversary is
assumed to have no access to the private images of the un-
known identity, i.e., Xpu, and A}y has no identity overlapping.
Intuitively, if the adversary already acquires multiple faces of
a victim, the harm is already done and it is meaningless to
prevent another image from exposure. Hence the adversary
cannot launch an attribute inference attack on the features
directly: it can only train the identity classifier on &}y, which
does not effectively recognize the identities of A,y We will
further extend the attacker’s capability in

Defender’s knowledge. We assume the defender has knowl-
edge of the white-box attacker’s reconstruction loss function
Liny, wWhich is the Lo feature distortion between the original
and the reconstructed as in most inversion attacks. It is later
verified that our defence using Li,, is also effective against
black-box and other attacks. The defender also has full access
to a trained GG provided by trusted third parties, which can be
any open platform offering widely-acknowledged pretrained
generators. To be noted, the defender knows nothing about
the adversary’s reconstruction model, indicating the adversary
does not necessarily use G in its attack.

IV. METHODOLOGY

In face of the privacy threats, the cloud provides a user
encoder to let users craft features with the following goals:

e Privacy: given features, the attacker reconstructs images that
reveal little private identity information.

e Urtility: the crafted features should complete the subsequent
ML tasks with high performance.

e Robust against adaptive attacks: once features are released,
attackers cannot bypass the defense via adaptive updates.

Towards these goals, we illustrate our design choices in
§IV-A and our approach of privacy-preserving feature repre-
sentation construction in §IV-B| The key idea is to iteratively

TABLE 1. NOTATIONS.
Notation | Definition
DNN models:
Enc The local encoder under attack.
G Pretrained generator; input: latent vectors; output:
images.
D Discriminator that attempts to distinguish recon-
structed images from attacker’s prior.
Variables:
X Private input images.
Fx Protected feature representation of X.
Zr Latent random vector.
Zorg Best-response latent vector of raw feature Enc(X).
2"(Fx) Best-response latent vector of feature F'x.
G(zr) Prior belief.
G(z"(Fx)) | Posterior belief given Fx.
Loss functions:
Ly Privacy loss, EM distance between the distributions
of reconstructed and prior images.
Ly Utility loss, deviation from the protected feature to
the original feature.
Liny Reconstruction loss, deviation from features of recon-
structed images to original features.

craft a feature F'x to bring the adversary’s posterior close to
a non-private prior (minimizing £,) while restricting feature
perturbation (minimizing £,,). To capture the privacy leakage,
we give a theoretical privacy guarantee for our method in
§IV-D. Finally, we discuss the advantage of Crafter in real-
world cases in §V, Notations used are listed in Table [L.

A. Design Choices

We make the following design choices according to the
goals above:

Feature-manipulation protection. We manipulate the locally
encoded feature representation Enc(x) before release so that
the attacker fails to extract private information from what it
intercepts. The reason that we do not perform image-level ma-
nipulation [[L1], [28] is that previous image perturbation either
fails to prevent white-box attack, or is visually identifiable
(See . Further, we do not replace the local encoder Enc
with other models since Enc has been pre-trained to fit the
downstream tasks. A simple replacement may fail to meet the
inference or training requirement.

Protection against white-box attacks. In our setting, Enc(-)
is deployed by the service beforehand and thus can be acquired
by the adversary. Our scheme should fight against a white-
box attacker which is typically stronger than a black-box
attacker. A defence method that withstands the stronger white-
box attacker suffices to transfer well to the weaker black-box
inversion attacks.

Exploiting non-private prior. To achieve the privacy goal,
previous work formulates a multi-player game: the defender
maximizes the difference between information revealed by re-
leased features and the private raw images; the attacker updates
itself simultaneously against defender’s strategy [17], [37]. We
refer to the type of strategy as the stay-away (from the original)
approach. However, there is no guarantee that the attacker
strategy is worst-case at the end of the optimization. Hence
the attacker can proceed the adversarial game given a fixed
defence strategy and eventually undermines the protection.
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Fig. 4. Overview of our feature crafting scheme against inversion attack.
Attacker (red) obtains a best-response latent vector z* of protected feature
Fx by minimizing inversion loss L. Defender (blue) manipulates F'x to
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In contrast to the stay-away approach, we choose a get-
close method to draw the released features close to a public
prior on the reconstructed image space. Notice that we make no
assumption on the defender’s knowledge about any particular
adversary’s prior: any public prior will suffice as long as it does
not overlap users’ private information. Ideally, the exposed
features do not enhance the attacker’s knowledge. They act
like poison training samples to the inversion attacker, as they
are close to the raw data on the feature space but drastically
different on the inverted image space. Hence the attacker will
only corrupt its model if it adaptively updates its strategy based
on these poison samples, thus breaking the adversaial game.

Distributional distance as privacy loss. To better quantify
what an attacker perceives from the reconstruction, we follow
the well-defined ‘perceptual quality’ formulation in signal
restoration [8]], [32], [7]] and adopt distributional distance as our
privacy-preserving loss. In image signal restoration, perceptual
quality refers to how much an output signal X is perceived
by humans as a realistic sample. It quantifies the perception
of ‘naturalness’ with the distance between the distribution of
output signals and the distribution of natural signals, eg. EMD
[7], [8]. Similarly, we quantify the attacker’s perception of
identity using the EMD between the possible reconstruction
distribution and the non-private average face distribution. Just
as a smaller EMD in signal restoration indicates the output
signal is perceptually closer to realistic images, a smaller EMD
in our scenario implies that the reconstruction is more likely
to be perceived as non-private images and thus higher identity
perceptual privacy.

B. Privacy-Preserving Feature Crafting

Our privacy-preserving feature construction scheme em-
beds carefully-crafted perturbations in the feature representa-
tion before releasing it to complete the computation tasks. Such
a perturbation is crafted to disrupt the attacker’s reconstruction
ability via feature collision [27], misleading the attacker’s view
of the private input to some non-private prior, and is kept small
to maximally retain the utility of the downstream tasks.

We show the design overview in Figure ] Given private
images X, the defer}der simulates a white-box attacker’s re-
construction result X* = G(z*) by minimizing the inversion
loss Liny. X* is used to measure the adversary’s perception
of certain identity. To prevent the identity leakage from F'x,
the defender brings the distribution of reconstructed images

close to that of the average faces, which are not associated
with any private identity (i.e., minimizing £,). Meanwhile,
the perturbation on feature should be limited so that the
computation tasks are not disrupted (i.e., minimizing £,,). We
will demonstrate each part in the following.

Privacy protection. Following the design choice, we describe
attacker’s identity perception by the EMD between the distri-
butions of attacker’s inverted images and prior belief G(z,.).
The privacy loss is:

Ly(z*(Fx)) (EX)G (), Q)

where 2*(Fx) is the best-response latent representation of F'y
that minimizes the white-box inversion loss Lin (Flx,2) =
|Fx — Enco G (z)|, which replaces Enc(z) in Eq. (3) with
Fx. As discussed in éIV-A, L, represents the enhancement of
attacker’s knowledge given F'x compared to its prior belief of
general facial images. With this loss minimized, the attacker is
tricked into generating close-to-average faces and perceiving
non-private identities, thereby achieving a successful defence.

= EMD(G(z*

Utility preservation. We restrict F'x’s deviation from the orig-
inal feature Enc(X) to prevent severe drops in downstream
utility. The utility loss is:

Lu(Fx) = [[Fx — Enc(X)]l, - ©)

Notice that the utility loss does not concern the downstream
model f. Given an encoder that already functions well for
f (either pretrained in the deployment scenario or generally
provided in the development scenario), f is expected to be
robust under minor deviation from its original input Enc(X),
and intuitively the larger the feature deviation, the larger the
impact on utility. This independence of f decouples privacy
goals from the downstream model, and thus admits unknown
computation tasks.

Overall objective. Given a target network Enco f, a private
input X € X, and a generator G trained with public images
Xpub, the high complexity and nonlinearity of Enc and G
makes it possible to find a feature F5 that collides with the
original feature Enc(X ), while its best-response reconstructed
image G(z*) approximates to the average face distribution
G(zr) in image space. The overall goal is to seek an ideal spot
in the utility-privacy tradeoff. Hence the optimization objective
is such that

*) where z* = arglrnin,Cim,(FX,z)7 @)
x) <l

in L
min »(z

subject to L, (F

We adopt its Lagrange dual form, and transform the mini-
mization of EMD (Eq. E])) which has no closed-form solution
to a minimax game as the canonical Wasserstein-GAN. This
formulation utilizes neural network, so we use ‘neural net
distance’ dy,(-,-) with EMD interchangeably. Thereby we
formulate our protection scheme as:

X))+ B Lu(F
(FX) = arg min Liny (Fx, 2),

£,(D, #*(Fx)) = E=, [D 0 G(z,)] — Eo- [D o G(* (Fx))],
Lu(Fx) = [|[Fx — Enc(X)y,
Einv(FX7 Z) = ||FX —EncoG (Z)HQ .

'x) where  (8)

min maX L
pin. ma p(D, 2" (F



The discriminator D introduced here attempts to distinguish
the reconstructed image from the average face. It is different
from the pretrained D in the white-box attack (Eq. in the
appendix [3]]). Also notice that the pretrained G is fixed, and
it is the feature F'x that competes with the discriminator D.

The above formulation is a nested optimization. Solving
it with gradient-based optimizers is challenging as one must
differentiate through the best-response latent vector z* as a
function of the feature F'x. To address this problem, we
propose a method based on the Implicit Function Theorem
(IFT) to compute the privacy loss gradient with respect to F'x.

Optimization via IFT. We show how to solve Eq. (8) to seek
an optimized F%. 2£2(0:2) apq 9Ly ) are both direct gra-
dients, and can be directly computed T)ile bottleneck lies in the

D
indirect gradient pd(#z) since z* changes in each iteration

with respect to the protected feature. w is difficult to
obtain as z* is determined by optlmlzmg Linv(Fx,z). We
thus resort to the IFT (Lemma |[I)) and compute the indirect

gradient %iw’()) as
‘Cp (D7 Z*) . : a2£inv J aQEinv
B Al RV | I .
T o 3?0; Y0202 | 9:0Fy

Detailed derivations are in Appendix [C|[3]]. Having tackled the
implicit differentiation, we are ready to solve Eq. (8).

C. Algorithm of Crafter

We outline our scheme in Alg. [1} Alg [Z!ls adopted from
[20] for computing the indirect grad1ent D:2) In Alg.
the simulated attacker intercepts the feature representatlons
of a batch of private images X € R®*(“*") and computes
the corresponding z* € R®*4. Each 2*U) j € {1,---,b}
generates a reconstructed image G(z*()) € R“*"  which
can be considered as a sample from the distribution of re-
constructed images, rather than the distribution of pixels in
the image. The discriminator respectively samples m images
from the reconstructed images and the average images, trying
to distinguish the two groups of data at each iteration of
optimization. Unlike the canonical WGAN where a generator
directly competes with the discriminator, our generator G is
pretrained on public images and fixed during the process. It
is the feature F'x that strives to confuse the discriminator. We
follow the tradition in WGAN that the discriminator undergoes
multiple training steps (lines 5 to 8) for each update of Fx.

To sum up, our feature crafting system operates in the
following two phases.

Offline: G and Enc preparation. The trusted party collects
a public image dataset A}, on which it trains a WGAN
following Eq.(I2), and releases the trained generator G. G
takes in random latent vectors and outputs realistic-looking
facial images. The user receives GG from any trusted party and
the local encoder model Enc from cloud depending on the
utility tasks. For a deployment task, f is also readily deployed
on cloud. For a development task, features from users are
crowdsourced for training new models on cloud.

Online: feature crafting and task completion. After determin-
ing Enc and G, the user runs Alg[l] to construct Fx of its

Algorithm 1 Crafter

Input: Target network Enc, generator G, a batch of private
images X of batch size b, minibatch size m, latent vector
dimension d, training iterations of the discriminator per
feature update n¢ritic, tradeoff scale 3.

1: Initialization: Fix < Enc(X), zavg < randn(b,d) z, <

randn(b, d)

while F'x has not converged do

z* = argmin, Li,(Fx, 2)
for t =0,...,ncritic do
Sample {z*(J )} ", a minibatch from inverted z*

Sample {z(] )ym * | a minibatch from random z, .

Ly %Zg‘:l [ wOG(Z*(J)) D, OG(Zan)} +
9p

8: w < AdamOptimizer(V,L,,w)

9: end for '

100 Ly =30 —DyoG(z*0)

1 vy approxInverseHVP(gff, aaﬁzi‘;")

12: (6[:“” Fx,grad_outputs =

Oz* )

A A S

1}1)
13:  Fx + AdamOptimizer(vy, Fx,lr = flr)
14: end while
15: F'y «+ Fx
Output: Crafted feature F%.

Algorithm 2 approxInverseHVP( aai v ag,,w ).

Experiments used the default values o = 0.001, s¢ = 150

aL,
1: Initialization: p < =2

2: for j =0,...,i do
3 v v—a- grad(a(%%, z,grad_outputs = v)
4 p<—p+vo
5: end for
Output: ap

private images and sends F'x to the cloud. The server receives
Fx. If it undertakes a deployment task, the features go through
model f to return a prediction result. Otherwise, the server
collects features as training data to train a target model.

D. e-Perceptual Inversion Indistinguishability

We formally define e-perceptual inversion indistinguisha-
bility (PII) which is inspired by the concepts of differential
privacy and t-closeness. The PII is directly defined on the
EMD loss which indicates how a simulated white-box attacker
perceives identities from reconstructions. Specifically, let X,y
be the public dataset with no private identity involved. For any
feature F'x, let G o F'x denote the inverted distribution using
white-box G, i.e. Go Fx = G(2*(Fx)). We then have:

Definition 2 (e-Perceptual Inversion Indistinguishability). A
feature crafting system M is e-perceptual inversion indistin-
guishable (e-PII) on the private image X, if

EMD(G o M (Xpu)||G o M (X)) < € €))
The interpretation of Def. [2]is that the smaller the privacy

upperbound ¢, the closer M is to ideal privacy perceptually
against the inversion attack, and thus the less identity leakage.



Note that PII is not associated with any realistic attacker but
only a public generator G serving as a simulated privacy
indicator — in fact the specific choice of G would affect only
the value of ¢, but not the qualitative relationship between ¢
and the realistic defence capability. That is, as long as G is
well-trained (eg. provided by a trusted third party and capable
of reliable inversions), the defence strength against realistic
attacks will increase as € decreases.

Crafter meets the definition with G o M(ALy) being
G(z*(F%)) for X € Xy, and G o M (X,y) being the non-
private prior G(z,). Hence as Crafter optimizes the feature
Fx towards minimizing EMD(G(z* (Fx))||G(2,)) in Eq. ().
it minimizes the left-hand-side of Eq. (9), thereby satisfying
Def. [2| with a smaller € indicating stronger perceptual privacy.

Validity of e-PII. We show e-PII is a valid indistinguishability
index by providing 1) discussion on avoiding potential liminta-
tion of PII; 2) experimental consistency of perceptual privacy
in A potential limitation of the e-PII formulation is that
EMD may not measure the inter-distribution distance precisely
when the stability difference between the users’ reconstructed
M (X,\) and the public prior M (Xpu) is too large. That is,
the e-value might not reflect the true dissimilarity between
the distributions. To reduce the stability difference, Crafter
normalizes the public faces according to the pixel mean and
variance of users’ private images so that the reconstructed
images are likely to be pixel-level-similar to the public faces
G(zr) in Def.

Connection to other privacy concepts. We notice that e-
PII is related to the conventional e-differential privacy and ¢-
closeness definitions. We analyze their relations as below.

Definition 3 (Adjacent datasets). Two datasets D and D' are
adjacent if they differ in the existence of a single user’s data.

Definition 4 (e-Differential Privacy). Let Do (P||Q) denotes
the max divergence between distributions P and Q. A ran-
domized mechanism M is e-differentially private (e-DP) if its
distribution over any two adjacent datasets D and D’ satisfies
Doo (M(D)|[M(D")) < e.

DP and PII share the same intuition: bounding the impact
that the private data’s presence has on the mechanism outputs.
The key differences lie in their definitions of paired datasets,
the dependency of e values, and the choices of divergence
function. DP considers a pair of adjacent dataset (D, D’)
differing on a single user’s private data record, while the
Xpvt and Ay, considered in PII differ on the existence of the
private identities, which aligns with our goal of quantifying
identity leakage. Second, € in DP is a privacy upper bound
on any adjacent sets, focusing on the worst-case privacy of
the mechanism itself on any possible data record. In contrast,
PII is contingent on the given private data A}, emphasizing
the privacy of the user data under the mechanism’s protection.
PII is also dependent on the public generator G quantitatively
but not qualitatively as shown by our experiments. Finally,
PII adopts EMD rather than the max divergence Do, for the
inter-distribution divergence, as the EMD is closely related to
human perception rather than the theoretical worst case.

Next we compare our proposed e-PII to t-closeness, which
is conventionally applied to structural tabular data.

Definition 5 (Equivalence class). Let quasi-identifiers be at-
tributes whose values when taken together can potentially iden-
tify an individual in an anonymized data table. An equivalence
class of a data table is a set of records that have the same
values for the quasi-identifiers.

Definition 6 (The t-closeness principle). An equivalence class
has t-closeness if the EMD between the distribution of a
sensitive attribute S in this class and the distribution of the
attribute in the whole table is no more than a threshold t.

PII and ?-closeness both limit the knowledge gain between
the prior and posterior view of the attacker (or observer in the
tabular data context). We list their counterparts for comparison
in Table |IIl The major differences are as follows. The entity
that ¢-closeness aims to protect is an equivalence class in the
data table, while for e-PII is the private raw images as a whole.
The private information at risk for ¢-closeness is a sensitive
attribute (eg. a disease), while for PII it is the reconstructed
images. Finally, the public prior information assumed by ¢-
closeness is the whole datatable distribution, whereas in PII it
is the public images with no identity overlapping.

TABLE II. COMPARISON OF ¢t-CLOSENESS AND €-PII.

Privacy notion t-closeness e-PII

Protected entity
Attacker’s goal

Private raw images

Sensitive attribute .S Reconstructed images

Distribution of reconstructed

Equivalence class ‘
Distribution of S in ‘

|
Prior ‘

the whole datatable public images
. Distribution of S in Distribution of reconstructed
Posterior . . .
the equivalence class private images

Finally, we provide a theoretical upper bound on € of
Crafter in Appendix [3]. The theoretical result indicates
that at the same utility loss, Crafter offers an e within a
bounded distance to the infimum e, thereby achieving an
approximate optimal privacy-utility tradeoff.

V. DISCUSSION

We answer the following questions in this section: Does
Crafter remain robust against an adaptive attacker? Why does
Crafter use implicit optimization?

A. Robustness against Adaptive Attacks

We explore three possible adaptive attacks against Crafter.
Details of the design idea are in Appendix [E [3]]. Experimental
results are in §VI-C|

A1l: Continue the optimization. Once the protection is com-
pleted, the feature F'5 is released and is fixed ever since.
We design Al that continues to optimize its attack model
against the protection. Specifically for Crafter, Al queries
Crafter with its own images X, intercepts the corresponding
protected features F'y, and obtains the reconstructed image
X = G(z*(F%)) (white-box Al) or X = Dec(F%) (black-
box Al). Then it updates G or Dec to minimize the recon-
struction 10ss Lyyacker = ||X — X ||2. The same can be done for
other adversarial game-based defences [37], [17]. We establish
the family of adversarial game-based defences, and show why
they are vulnerable to Al while Crafter remains secure.



Fig. 5. Visualization of the best-response zorg of the raw feature (red), z* of
our crafted feature (blue), and z; the attacker’s prior (green). Our framework
shifts the unprotected posterior belief towards attacker’s prior belief.

Definition 7 (The family of adversarial game-based protec-
tion.). Given a defencer P with strategy x, and an attacker
A with strategy xo, a game-based protection framework is:

Find 2™ = (27, 22") s.t. (10)
] = argmin ['privacy (1517 JC;) +8- ‘Cutility(afl)
@1

. *
Ty = arg leln »Cattacker (1'17 X2, Xtest)~
2

Table describes our and previous defence [37]], [L7],
[29] under the above framework. A aims to minimize its loss
Lattacker ON the private test set Xi.s, which is not available to
A, so in practice A will use X, instead. Previous work com-
monly adopt an update approach which converges at (i1, Z2),
and claim the protection successful as Z; has an advantage
over . However, none of them guarantees the adversary Zo
at convergence is the worst-case. An adaptive A; can thus
continue to optimize x5 and reduce the attacker loss on Xy, ain,
which is the opposite of the privacy loss under the stay-
away approach. Therefore, the adaptive attacker successfully
undermines the defence and transfers well to X cqt.

Our framework is free of this worry. We argue that our
simulated A without any adversarial update is stronger than
any potential Al adaptive attacks .A;. Under the get-close
approach, A is misled to reconstruct images close to random
G(zr), as shown in Figure |5| A; essentially matches G(z,)
with X, which are independent and identically distributed
image samples. Establishing correspondence between inde-
pendent samples only results in larger L,gtacker than A and
weakens A;. The same holds for black-box adaptive attacks.
Hence the simulated attacker A is stronger than any A, and
the attacker is discouraged from adversarial updates. If P has
an advantage over A, it is robust against Al adaptive attacks.

A2: Utilize different generators. Crafter’s optimization relies
on a specific simulated generator model G. This adaptive
adversary uses generator models that are different from and
possibly stronger than G. Specifically, we evaluate our scheme
on generators of different structures and latent dimensions,
including the more advanced StyleGAN as proposed in [5],
and show through experiments (§VI-C) that Crafter is robust
against different generators. This is because Crafter transfers
well to different A2 adaptive attacks, as long as the simulated
attack used in training can reliably extract private identity
information through reconstruction. Hence, when choosing
the simulated G in Eq. (8), a generator model with fair
reconstruction performance on Enc is sufficient for qualified
defence across different A2 adaptive attacks. A2 attacks may

also leverage G trained with different public datasets. However,
we empirically discover that the attack is usually the strongest
when the adversary uses the same public dataset for its
WGAN, so we show the worst-case results and only present
results using different public sets for StyleGAN as in [J5]].

A3: Average features over multiple queries. This adaptive
adversary waits for a user to query Crafter on the same batch of
image multiple times, and averages over the multiple protected
features before reconstruction. Privacy of Crafter is solely
accomplished by feature perturbation. As discussed in
a user can run defence on the same batch of image multiple
times and ends up with different feature perturbations because
of the randomness of z, in Eq. (8) during each iteration. As
a result, the perturbation of each query may offset each other,
and averaging over the queries may remove the perturbation.

We show in that this averaging strategy indeed
undermines the defence. However, by shuffling user’s batch
of data each time feeding into Crafter, we ensure robustness
against A3 adaptive attacks. We implement shuffling as an
inherent part of the encoder in Crafter, so that no additional
abnormal query detection is required for the user. The intuition
is that A3 works only when image batches of different queries
are identical, including the order of images. If the attack
averages the features of two batches containing the same
images but in shuffled orders, features of different images
are mismatched. Perturbations can be hardly removed if the
input batches contain a sufficient number of images. If a batch
merely has a few images, Crafter records the features the first
time the batch is fed, and reuses the features afterwards to
prevent averaging.

False security means a protection lacks important robustness
evaluations against comprehensive adaptive attacks [30]. A
protection must be effective against realistic adaptive attacks to
be of practical use. The adaptive attacks in this section could
be launched without additional assumptions, and are all easy
to implement in real applications. Therefore, if a protection
fails to defend adaptive attacks, privacy against basic attacks
is meaningless and is merely a false security. No matter how
strong the privacy is, the adversary can always breach the
security with a simple adaptive approach.

B. Implicit Optimization

One may question the necessity of using implicit opti-
mization in §IV-B| Indeed, we can evade the indirect gradient
computation if we perform optimization on the latent represen-
tations instead of manipulating features. Specifically, in §IV-B]
we control the latent z instead, and the protected feature is a
function of z: Fx = Enco G(z). The optimization on latent
z thus becomes:

min max L£,(D,z)+ 8- L,(z) where (11)
z |D[p<1
Ly(D;2) =K., [DoG(z)] - E.[D o G(2)],
L.(z) = [[Enco G(z) — Enc(X), -

Since F'x can be computed by forwarding z through NNs, we
can apply gradient-based optimizers on z and D. The algorithm
can be found in Appendix [F] [3]]. We refer to this alternative as
Crafter-z. Although it evades implicit differentiation, it delivers
poor privacy-utility tradeoff empirically, mostly because the



TABLE III.

LIST OF GAME-BASED DEFENCE. C'E DENOTES THE CROSS-ENTROPY LOSS. C' CLASSIFIES FEATURES TO DIFFERENT PRIVATE ATTRIBUTES

u. I(;) MEANS MUTUAL INFORMATION.

Name X1 of P X2 of A Lprivacy L‘»utility Acattackery X e Xtrain

Adv Learn [37] Enc, f Dec —|[Dec 0 Enc(X) — X]|2 CE(f o Enc(X),Y) [[Dec o Enc(X) — X||2
Disco [29] Enc, f, Pruner Dec —||DecoPruneroEnc(X)—X|| CE(foPruneroEnc(X),Y) ||DecoPruneroEnc(X)—X||
TIPRDC [17] Enc C —CE(CoEnc(X),u) I(Enc(X); X) CE(CoEnc(X),u)

Ours Fx G EMD(G(z"(Fx)), G(zr)) [Fx — Enc(X)]| G (=" (Fx)) = X[l

tradeoff is better to manipulate in the feature space (F'x) rather
than the latent space (z). We will elaborate on this in

VI. EVALUATION
We aim to answer the following questions in this section:

Q1: Is Crafter effective against white-box attacks?
Does Crafter transfer well against black-box attacks?
How well does Crafter maintain downstream utility?
Q2: Is Crafter robust against the three adaptive attacks?
Q3: What is the advantage of using implicit optimization?
Q4: Does Crafter introduce large runtime overhead?

A. Setup

Implementation. We implement Crafter with PyTorch
1.10.0 and run all experiments on NVIDIA GeForce RTX
3090 GPU. We first act as the trusted party to train G on
Xpub- The cloud trains Enc and f end to end on Xy, in the
deployment scenario, or leverages a general feature extractor
Enc in the development scenario. Users collect Enc and G
to generate crafted features of Ajest, Which accomplish the
subsequent downstream tasks.

Datasets. We use the widely-adopted CelebA [34], LFW [19]
and VGGFace2 for training and testing Crafter. CelebA is
labeled with 40 binary facial attributes, and is split into 200K
images for public set A}, 17K images for private train set
Xirain and 4K for private test set Xiest. The input dimension
of each image is 64 x64. For LFW, we choose 10 independent
binary facial attributes and split the dataset into 10K images
for Xpup, 2K for private train X,.in and the rest 1K for private
test Xiest. We crop and resize each image to 128x128. The
public &}, has no identity overlapping with the private sets,
while X}, and Xiesr is a 4:1 (2:1) split for each private
identity’s images in CelebA (LFW). For VGGFace2, we crop
and rezie images to 112x 112, and perform 2:1 train-test split.
Note that on each dataset, X}, 1s used in baselines, or to train
the oracle evaluating networks, not by Crafter. We consider
‘identity’ as the private attribute to be protected whereas
the cloud tasks are 40 facial attributes classification, 10 at-
tributes classification, and a 5-class hair color classification,
for CelebA, LFW, VGGFace2, respectively.

Models. For the target models under attack, we use the classic
image processing DNNs (ResNetl8, VGG16 and ResNet50)
as Enc o f in the deployment and development scenarios.
Enc is chosen as the first few layers of the models. For D
in Crafter and in the white-box attacker model, a CNN model
is adopted. We prepare three generator models — G1, G and
StyleGAN ([S]) — for white-box attacks, and a decoder Dec
for black-box attacks. GG1,Gs, Dec are composed of stacks
of ConvTranspose2D layers. For StyleGAN, X}, is from
CelebA, and Xiest is from VGGFace2 following the design

in [3)); for other models, X}, and Xieq; are from the same
dataset. For the evaluating networks, we adopt ResNetl52
for CelebA, Facenet [26] for LFW, and Azure Face API [2]]
for VGGFace2. Detailed architecture of the networks is in
Appendix [H [3].

Metrics. We use the mean AUC as the utility metric to evaluate
the performance of cloud tasks. For privacy, we simulate
white-box, black-box, hybrid white-box and adaptive attacks to
reconstruct images from intercepted features. Hyperparameters
of the attacks are in Appendix [G [3]. The empirical identity
perceptual privacy of each defence is evaluated against the
attacks by the following metrics:

e FEvaluation Accuracy (Eval Acc). We use a face verification
model as well as the Microsoft Azure Face API [2] as
the evaluating networks, trained on Xj,,i,. The evaluation
accuracy is the identification accuracy on the reconstructed
private test images.

e Feature Similarity (FSIM). We feed the inverted and raw
private X;est into the evaluating network, extract the penul-
timate layer outputs and calculate their cosine similarity.

o SSIM evaluates the resemblance between the reconstructed
images and the original ones on a pixel level. It is a
supplement of the semantic security metrics above.

o Human study. We conduct a human study to further quantify
Crafter’s privacy performance following the design in [5].

Different from simply applying the evaluation accuracy of a
specified private attribute, our combination of privacy metrics
goes beyond attribute-level or pixel-level privacy, but evaluates

identity privacy, as mentioned in §III-B

Baselines. We compare Crafter with state-of-the-art privacy-
preserving approaches against inversion attacks. Adv Learn-
ing [37] and Disco [29] fall under the model deployment
scenario. TIPRDC [17]] falls under the development scenario.
Fawkes [11] and LowKey [28] are image-manipulation-based
defences against attribute inference attack, and we adapt them
to our threat model. We implement Crafter-z as a supplemen-
tary baseline as discussed in §V-B.

e Adv Learning [37|] presents an adversarial game-based ap-
proach by pitting the encoder Enc and downstream f against
a black-box decoder Dec trained on Aj,p. The tradeoff
hyperparameter A € {0.1,0.5,0.8}. It is a task-oriented
protection, which requires prespecified utility tasks and
downstream network f. Therefore, this is a baseline under
the model development scenario.

e Disco [29] takes the same adversarial game-based approach
as Adv Learning [37]], but it further introduces a pruner to
mask privacy-leaking feature channels. We set its tradeoff
parameter as A € {0.2,0.6,0.8}. It is also a baseline under
the model deployment scenario.

e TIPRDC aims to protect private attribute (ID in our setting)
through adversarially training Enc on Xi;,i, to minimize the
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Fig. 6.

Privacy-utility tradeoffs against white-box attacks. On CelebA, 8 € {0.5,1,2,10} for Crafter, and 8 € {20,50} for Crafter-z. On LFW, 3 €

{3.5,4,4.5,6,7} for Crafter, and 8 € {5,10,20} for Crafter-z. Subfigures share the same legend. For Adv learning, A € {0.1,0.5,0.8}. For Disco,

X € {0.2,0.6,0.8}. The black square denotes the ideal tradeoff point.

mutual information between the feature and the input. The
tradeoff hyperparameter are chosen as A € {0.1,0.5,0.8}.
It is a task-independent protection, which generates feature
representataion of raw input images for unknown down-
stream tasks. Hence it falls into the category of baselines
under the model development scenario.

Fawkes & LowKey methods [L1], [28] perturb the input
images under Fawkes mode {low, mid, high} (or iterations
€ {50, 75, 100} for LowKey) to mislead an ensemble of ID
classifiers. Their original design is to release the perturbed
training images as poison samples for the adversarial ID
classifiers. To fairly compare with Crafter, we replay their
approach on the private test set to see how it preserves the
input privacy.

B. Defence against Basic Attacks

Model deployment scene. We show the Crafter’s performance
in comparison with baselines in the deployment scenario. For
fair and integral comparison, we report results under a variety
of utility-privacy tradeoffs by tuning the hyperparameter 5. A
discussion on 3 can be found in the end of this section. The
ideal tradeoff is a point with a high AUC and a low privacy loss
metric value, as depicted by the black square in each figure.

White-box attacks. As Figure [6] shows, Crafter gives the
best tradeoff against white-box attacks in almost all cases, as
it is closest to the lower-right corner (Q1). We leave FSIM-
utility plots to Appendix [3] as FSIM is mostly consistent
with Eval Acc. In Figura), 8 = 1 reduces the Eval Acc
of the unprotected from 49.22% to as low as 8.59%, while
downstream AUC drops a mere 0.05. In contrast, Crafter-z
offers a less satisfactory tradeoff under the white-box attack.
For example, on a 5.7% reconstructed Eval Acc, the average
AUC of Crafter-z drops to 0.72, supporting the use of implicit
optimization other than direct optimization (Q3). Among the
three baselines, Adv Learning fails to defend against white-box
attacks on both datasets, e.g., on CelebA, the Eval Acc is still
high around 30% while it sacrifices 0.20 AUC. Disco improves
the tradeoff upon Adv Learning on LFW, but is still inferior to
Crafter as in Figure[6{c)(d). On CelebA, Disco achieves strong
privacy but low utility akin to random guessing (around 0.55
AUQC) for all tradeoff parameter A\ values (Figure ﬂa)(b)). We
test Crafter and the baselines on Microsoft Azure Face and
obtain similar tradeoffs. The results are in Appendix [K [3].

Black-box attacks. We test Crafter and baselines against
the black-box decoder Dec trained on the feature-image pairs
of the public data. Comparison between Fig [6] and Fig

illustrates that white-box attackers are generally stronger than
black-box ones, e.g., the 50% Eval Acc in Figure [6(a) is
higher than the 34% in Figure [7/(a). And Crafter achieves a
comparable or lower value of Eval Acc or SSIM against black-
box attacks, and obtains satisfactory utility-privacy tradeoff
(Q1). On CelebA, Figure [7| show that Crafter-z achieves a
comparable tradeoff to Crafter, but is not a proper alternative to
the IFT-based Crafter, as the tradeoffs are mostly manipulated
through the learning rate [r, other than 8 in Crafter-z (Q3,
further discussion in Appendix lE 13D.

(a) Black-Box, CelebA

(b) Black-Box, LFW
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Fig. 7. Privacy-utility tradeoffs against black-box attacks, deployment sce-

nario. For Crafter, 8 € {0.5,1,2,10} on CelebA and 8 € {3.5,4,4.5,6,7}
on LFW. For Crafter-z, as 8 cannot properly trade off privacy and utility,
we manipulate the learning rate instead: ir. € {0.0001,0.0005,0.001} on
CelebA and Ir, € {0.0001,0.001,0.01} on LFW.

(a) Hybrid, LFW

(b) Hybrid, LFW

10

1.0 A 081 A No protection A
0.9 074 Advlearn
g's' | @ Disco
Q 0.71 { v Crafter
o 0.6
< 8'2' * = * Crafter-Z
T 0] ) 0 05 -
S .44 False security n False security *
W o34 * Ideal 04 \ %
0.2 e S < P s -*-
0.1 AT 4 03 7 oo -
00l Tlo® e - o2 __e__-~ ]
0.5 0.6 0.7 0.8 0.9 “05 0.6 0.7 0.8 0.9
Mean AUC Mean AUC

Fig. 8. Privacy-utility tradeoffs against hybrid attacks, deployment scenario.

Hybrid white-box attacks. Since white-box inversion starts
off from some random z which can affect optimization, it does
not triumph black-box attackers pervasively. This is exactly
the case for LFW: without any protection, the EvalAcc of
white-box attacks is 81.77%, while that of black-box is high as
92.97%. Hence we initiates a hybrid white-box attack which
starts from the output of the black-box attack. The hybrid
one successfully outperforms with an EvalAcc of 97.65%.
Figure [8| shows that Crafter gives better tradeoffs when pitting



against this hybrid attacker than other baselines except for Adv
Learning and Disco.

False security. Adv Learning and Disco display much
higher robustness against black-box and hybrid attacks than
Crafter, shown by Figure [7] and [§] However, we point out that
it is an unreliable false security discussed in §V-A] as an Al
adaptive attack could easily break them. §VI-C| will show that
Crafter is in fact superior to the baselines against black-box
and hybrid attacks.

Model development scene. We compare the performance of
Crafter with TIPRDC on CelebA against white-box and black-
box attacks, and report the privacy-utility tradeoffs across fs.
The cloud task is to train a 40-facial-attribute classifier given
features of Xi;ain, With its performance evaluated by the mean
AUC on X,,1. As in Figure E], Crafter gives a better tradeoff
against both white- and black-box attacks than TIPRDC. At
B = 1.0, Crafter reduces the EvalAcc of the unprotected from
43% to 10%, while AUC drops a mere 0.02. Moreover, privacy
loss metrics of black-box attacks is close to white-box attacks,
confirming the transferability of Crafter against attacks.

In contrast, TIPRDC fails to preserve privacy against
attacks as all choices of A lead to an Eval Acc above 40%.
For a fair analysis, we directly report evaluation results against
adaptive attacks. As we analyze, TIPRDC exhibits good pri-
vacy performance in [17]] on the binary sensitive attribute (e.g.,
gender), which is easy to isolate from the insensitive semantic
information. Our setting requires a higher level of semantic
privacy, to preserve the identity information that depend on
the general appearance and is hard to separate from the input.
Hence erasing such private information is contradictory to
TIPRDC’s utility goal of maximally preserving the semantic
information of raw inputs. The conflict goal of utility and
privacy disrupts the TIPRDC encoder, yielding features con-
taining ample original information yet fails in the downstream
tasks. This explains why the Eval Acc of TIPRDC is even
higher than that of the unprotected feature.

A naive baseline in this scenario is to perform the training
task using only Aju,, which provides perfect privacy as no
private images are involved. However, it may exhibit unsatis-
factory utility due to potentially imbalanced utility labels for
the unknown training tasks. We simulate an imbalanced X,
by randomly choosing 1 among 40 binary utility attributes in
CelebA and removing the images with the attribute labeled *0’.
The utility AUC of model trained on A}, alone drops to 0.76,
while that of A}y, U Ay can reach 0.82. Hence users’ X,y is
needed to augment A, to improve model performance.

Impacts of hyperparamter 3. We take a closer look at how
[ gauges the tradeoff between privacy and utility. Regradless
of the attacker type, data points of Crafter in Fig [6] [7} [§]
from left to right correspond to 8 = 0.5,1,2,10 on CelebA
and 8 = 3.5,4,4.5,6,7 on LFW under the deployment
scenario. A decreasing 3 allows a less informative image to
be reconstructed but undermines the cloud utility. The same is
true for the development scenario in Figure 0] Hence Crafter’s
tradeoff is easy to manipulate by a single coefficient .

Validity of e-PII. We show that e-PII successfully reflects
Crafter’s empirical perceptual inversion privacy, supporting its
validity as a perceptual privacy index for Crafter. The exact
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EMD between the G(z*(F%)) distribution and the G(z,) dis-
tribution is intractable to compute, so we compute its empirical
approximation from the distribution samples with the POT
solver [13], and scale it down by the image size for simplicity.
We show that this approximation error is bounded in Appendix
[D-B [3]l. Figure[I0|shows Crafter’s result on LFW and CelebA
under the model deployment and development scenario against
different inversion attacks with different access. As e increases,
all three empirical privacy metrics (Eval Acc, SSIM and FSIM)
increase collaboratively regardless of the attacker instantiation,
indicating weaker empirical identity perceptual privacy against
inversion attacks.

C. Defence against Adaptive Attacks

Al: Continue the optimization. We claim in §V that Adv
Learning and Disco do not provide any worst-case guarantee
of their simulated adversary and is vulnerable against adaptive
attacks, while Crafter successfully prevents adaptive attacks
under the model deployment scenario. Figure[IT|and Figure
respectively show how Crafter defends against adaptive white-
box and black-box attacks through iterations of update. Basic
attacks correspond to epoch 0 in each figure. In Figure [12]
line plots of Adv Learning starts at an Eval Acc and SSIM
much lower than Crafter, indicating stronger privacy protection
against basic attacks. As the black-box Dec proceeds to update
itself on A1, the privacy loss metrics drastically increases
and ends up much higher than Crafter. Disco exhibits a similar
performance: on LFW, its Eval Acc increases from 0 to 0.47,
0.60 and 0.63 for tradeoff parameter A = 0.8,0.6 and 0.2
respectively. We omit the adaptive privacy evaluations of Disco
on CelebA due to its impractical utility. In contrast, for Crafter,
the Eval Acc and SSIM drop to or maintain at the same level
with the basic black-box attacks. Similarly for the model
development scenario, TIPRDC also fails to defend against A1l
adaptive attacks. Figure [I3] shows that Eval Acc of TIPRDC
increases more than 15% in 70 epochs, while that of Crafter
decreases slightly from the basic attacks. The experimental
results support our claim (Q2).

We summarize how different schemes defend against at-
tacks of varied strength in Figure and the corresponding
visualization is in Figure with more in Appendix [N [3].
Figure [T4[a) reports the average Eval Acc of the raw feature,
Adv Learning and Crafter against five attacks on LFW in
the deployment scene. It is averaged across 8 € {3.5,4,4.5}
for Crafter and A € {0.1,0.5,0.8} for Adv Learning. Crafter
exhibits robust privacy performance against all attacks, while
Adv Learning is robust only against basic black-box and hybrid
attacks. Figure [T4[b) draws a similar conclusion in comparison
with TIPRDC in the training scene.

As pointed out by Tramer et. al [30]], building a non-robust
defence that prevents a particular attack is of little value (the
“no-free-lunch-theorem™). The final Eval Acc that evaluates
the protection strength should be the maximal value among
all basic and adaptive attacks under all adversary access, so
Crafter is superior to the baselines, as shown in Figure [T4]

A2: Utilize different generators. We show Crafter remains
effective across attack models with different structures and
z dimensions. Specifically, Crafter uses generator (G; and
z dimension of 500, whereas the adaptive attackers employ
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Fig. 12. Crafter and Adv Learning on CelebA and LFW against Al adaptive
black-box attacks, deployment scenario.

generators (G; and Go across 5 different latent dimensions
in the attacks. Figure [I3] shows that Crafter’s Eval Acc on
CelebA at § = 1 against different attacker models fluctuates
within a threshold of 3%, and FSIM differs no more than 0.01.
We also evaluate Crafter against an adaptive attack with a
more advanced model StyleGAN. Under Crafter protection,
the attack achieves O success rate on CelebA, and does not
beat basic attack on VGGFace2 either (Table [[V). The ‘mean’
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entry reports the average SSIM of reconstruced images across
the dataset, while the ‘worst’ entry reports the largest SSIM.
Hence Crafter is effective against A2 adaptive attacks (Q2).

A3: Average features over multiple queries. We simulate an
A3 adaptive attack that queries Crafter 5 times with the same
batch of 64 images, and computes their mean as an averaged
feature. The drastic increase from ‘Basic’ to ‘Averaging’ in
Table [V] shows that without shuffling, crafted perturbations on
each query indeed offset each other weakening the defence.



TABLE IV. SSIM OF CRAFTER ON VGGFACE2 AGAINST BASIC
(WGAN) ATTACK AND A2 ADAPTIVE ATTACK (STYLEGAN).
B || Basic attack (WGAN) | A2 attack (StyleGAN) Utility
mean worst mean worst
2 0.27 0.46 0.2 0.3 0.5
5 0.29 0.5 0.22 0.28 0.59
7 0.32 0.5 0.27 0.38 0.6875
TABLE V. EVAL AcC OF CRAFTER ON CELEBA AGAINST A3

ADAPTIVE ATTACK. BATCH SHUFFLING IS AN ESSENTIAL USER
REQUIREMENT TO DEFEND AGAINST AVERAGING.

B 0.5 1 2
Basic attack 5.98% 8.59%  13.02%
A3 attack (Averaging) 10.16% 20.31% 26.56%
A3 attack against shuffling defence 0% 0% 0.52%

However, with a simple shuffling within the batch, the attack
success rate is reduced to almost 0%. Therefore, to ensure
robustness against A3 adaptive attack, we implement input
shuffling as an inferent part of Crafter. We acknowledge that
passing Al, A2 and A3 does not guarantee Crafter bullet-proof.
It is possible that more advanced attacks in the future may
corrupt the current defence.

D. Image-manipulation Defences

The image-manipulation defences are not strictly compa-
rable with feature-manipulation schemes, but LowKey
and Fawkes [28]] share the same goal of private information
concealing with Crafter. Hence we adopt the two schemes
on private test sets to evade identity classification models.
Specifically, poisoned images by their schemes are fed to
Enc and the produced features are being attacked. Figure
shows that the encoding and reconstruction procedure strips
away Fawkes perturbation on images, leading to privacy loss
metrics as poor as the raw feature. LowKey on LFW attains
a comparable Eval Acc with a higher AUC than Crafter in
Figure [I6] However, upon a closer look, the SSIM of recon-
structed LowKey images are still as high as unprotected ones,
meaning the attacker is able to reconstruct an image with high
confidence although a facial verification model fails to predict
its true identity. Evani et. al [24] shows that even such an
advantage over verification models can be overcome through
robust training. The visualization (Figure [I7) also supports
the conclusion that such image-manipulation protection is
ineffective against reconstruction attack. The black-box attack
shows similar results.

As an alternative, the poisoned images can be generated
to evade Enc. It achieves high privacy but disrupts data
utility: the AUC drops to 0.52. This is because drawing the
user’s protected feature close to that of another independent
individual (Fawkes) or far away from the original feature
(LowKey) causes large feature deviations, thus not preserving
utility however small the image perturbation is. Therefore,
existing image-manipulation defences fail under our edge-
cloud computing scenario.

E. User study and Running Time

Human study. Besides using the evaluating network as an
oracle, we conduct a human study to further evaluate if the
inverted images under attacks can be recognized by human.
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Fig. 17. Reconstructed images under LowKey protection. LowKey fails to
preserve pixel-level privacy regardless of the defence mode.

A sample question is in Figure [T8] where participants are
given one reconstructed LFW image under Crafter’s protection
with 8 = 4.5 (marked with an asterisk). At most one of the
options belongs to the same identity as the protected image,
and participants may choose “None above” if they believe
options A-E do not cover the correct answer. Hence each
option has an equivalent rate of 20% to be correct. Please refer
to Appendix [O [3] for more details of the study protocol.

Fig. 18. A sample question from the human study poll.

We eventually harvest 35 valid feedbacks each from a
different individual as shown in Table The Macro-F1
measure is 0.251, which is close to that of a random guess
(0.200). Thus Crafter is effective by human evaluation.

TABLE VI HUMAN STUDY RESULTS.
- Participant’s choice
35 participants A B C D Nouc

A 7 11 11 17 24

B 17 8 21 6 18

Ground Truth C 15 4 25 11 15
D 7 10 4 24 25

‘None’ | 15 9 11 8 27

Running time. Crafter runs upon every incoming batch, and
it is unrealistic to benchmark it against schemes involving
network training (e.g., Adv Learning, TIPRDC). Hence, we
compare Crafter’s running time with a similar setting in
LowKey, where the 128x128 LFW image is crafted. The
results are shown in Table that Crafter’s running time is
comparable with existing ones (Q4). In Crafter, the feature
crafting iteration no. is 500 and the approxInverseHVP
iteration no. is 150. We observe the runtime bottleneck is



TABLE VII. RUNNING TIME COMPARISON BETWEEN CRAFTER AND
LOWKEY WITH VARIED FEATURE/IMAGE SIZES, ON LFW.

Defense | Feature (Image) Size | Runtime(s)/Image
Crafter (64, 16, 16) 27.15
(128, 16, 16) 30.82
(64, 32, 32) 53.71
LowKey (3, 128, 128) 87.45
TABLE VIII. EVAL ACC OF CRAFTER AGAINST WHITE-BOX ATTACK

W/WO PRIVATE IMAGE EXPOSURE, AND W/WO THE ORIGINAL FEATURE
EXPOSURE, ON CELEBA.

B 0.5 1 2
Crafter 598% 8.59% 13.02%
With Xt |6.77% 10.93% 13.28%
With Enc(X)[9.38% 17.97% 21.09%

the inversion and approxInverseHVP steps (lines 3 and
11 in Alg. [I). Thus we speedup the inversion by training an
amortizer offline (see details in Appendix [M] [3]). Improving
the speed of the latter is left to future work, which now takes
up 71.5% of the total running time.

F. Limitations
We discuss Crafter’s limitations to further specify its usage.

Private image exposure. Ideally, private images are not
publicly available, but we discuss how the accidental exposure
of private images would affect Crafter. We expose 10% of each
individual’s private images to the white-box attacker and re-
train its generator to simulate a realistic exposure. Comparions
between entry ‘Crafter’ and ‘With A}, in Table [VIII shows
the Eval Acc of Crafter on CelebA against white-box attacks
with and without private image exposure. There is a slight
increase of 2% on Eval Acc, but the impact is minor overall.

Exposure of original features. It is also a threat if the
attacker happens to intercept the original features Enc(X) of
a set of private images, based on which it trains a feature-to-
identity classification network, and predict the ID of private
Fx directly. The two groups of private images are different
but having identity overlaps. We simulate the case by letting
the attacker collect (Enc(Xirain), ID) pairs to train an ID
classifier, and infer the ID by feeding in Fx, . The evaluating
accuracy is given in Table [VIII, which is inferior to Crafter’s
original performance. Hence it is important not to reveal the
corresponding identity label of private features Enc(X) for
the effectiveness of Crafter. We consider this requirement
attainable, as users are not motivated to share the private
identity label anywhere in our problem setting.

VII. RELATED WORKS

We focus on prior works preserving input privacy in deep
neural networks (DNNs), especially when inputs are images.

A. Image Perturbation.

To prevent the identity of an image from being disclosed in
DNN processing, de-identification is proposed to alter the raw
image. One technique to achieve de-identification is adversarial
image perturbation, where visually insignificant perturbation
is crafted to disrupt the prediction result of an ensemble of

14

identity classifiers [11]], [28]. Although these approaches are
effective against state-of-the-art auto-recognition models such
as Microsoft Azure Face API [2] and Amazon Rekognition [[1],
they fail to preserve visual privacy, i.e. the perturbed image
is close to the original one and any semantic information
could be exposed. Zheng et al. [39] prevents GAN-inversion-
based facial image manipulation with imperceptible image
perturbation that maximizes the distance between the original
and pertubed images in the latent and feature space. This is a
scenario opposite to that of Crafter: [39]] pushes the protected
image away from the original in feature space to protect
privacy, while Crafter draws the feature close to the original
to preserve utility. Wu et al. [36] protects visual privacy by a
transformer network DAPter that generates images with low
image entropy while minimizing inference loss to preserve
image utility. However, it is restricted to specified learning
tasks and does not defend inversion attacks. Different from
image perturbation, we choose to preserve privacy by injecting
perturbations to features.

B. Feature Perturbation.

An alternative to image perturbation/obfuscation is to send
an encoded feature of the corresponding input to serve the
downstream tasks instead of raw images. The feature, on one
hand, carries much information of the input images, on the
other, prevents direct revealing of raw inputs. To prevent adver-
saries from reconstructing inputs or inferring private attributes
from features, several works propose to simulate a game
between the attacker and protector with conflicting privacy
goals: the protector fights against the worst-case attacker by
producing features which the attacker would fail to invert. Li et
al. [18]], Xiao et al. [37], Singh et al. [29] and Wang et al. [33]
propose to learn perturbed features with adversarial networks
and only upload those features for downstream DNN tasks.
They either minimize the resemblance of reconstructed images
to original ones [37]], [18]], or minimize the mutual information
between the obfuscated feature and the raw input [33]. While
sharing a similar idea of preserving utility by minimizing
inference accuracy loss, the aforementioned works all suffer
the drawback of requiring specified inference tasks in the
adversarial training. Being task-independent, TIPRDC [17]]
and Decouple [25] lift the constraint by maximizing the mutual
information between features and raw inputs to preserve utility,
and thus require no knowledge of the learning task. However,
they demand the private information be specifically defined
with labels, i.e., a man with or without a beard. Our method is
designed to defend against identity theft, in which the private
attribute is challenging to isolate from the raw input.

The above adversarial-networks-based solutions share a
common defect: there is no guarantee for the convergence
point of the adversarial game, rendering them vulnerable to
adaptive attackers in §[V-Al In addition, they all involve
retraining the backend model on the cloud, which is typically
costly. In comparison, our framework is robust against adaptive
attackers, and requires no change in the cloud backend.

VIII. CONCLUSION

We present Crafter, a facial feature crafting system against
inversion attacks in deep learning models. We define privacy
as the distributional distances between the attacker’s posterior



and prior views on the input facial images given the feature.
As feature is implicitly expressed in the privacy-utility joint
optimization objective, we take an IFT-based approach to solve
the problem. Analysis and experimental results support that
Crafter successfully defends against a variety of attacks with
little computation accuracy loss.
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