Crafter: Facial Feature Crafting against Inversion-based Identity Theft on Deep Models

Shiming Wang, Zhe Ji, Liyao Xiang, Hao Zhang, Xinbing Wang, Chenghu Zhou, Bo Li

Example 1: Training deep learning task.

Example 1: Training deep learning task.

Example 2: Inference deep learning task.

Example 2: Inference deep learning task.

Example 2: Inference deep learning task.

Users are motivated to share their facial images with the cloud.

Defending Inversion-based Identity Theft

Previous Defense:

AdvLearn^[1], Disco^[2], TIPRDC^[3]

- Vulnerable against adaptive attacks;
- Fail to balance privacy & utility;
- Limited application scenarios.

- [1] Xiao et al. "Adversarial learning of privacy-preserving and taskoriented representations", 2020
- [2] Singh et al. "Disco: Dynamic and invariant sensitive channel obfuscation for deep neural networks", 2021
- [3] Li et al. "Tiprdc: task-independent privacy-respecting data crowdsourcing framework for deep learning with anonymized intermediate representations", 2020

In Our Work

Crafter Defense:

User-end feature crafting that protects identity info against various inversion attacks, while preserving data utility.

Threat Model

Intuitions & Design

Evaluation

Black-box inversion attack:

Access to public images; query access to the local Enc.

Black-box inversion attack:

- Access to public images; query access to the local Enc.
- Train a decoder network Dec.

White-box inversion attack:

White-box inversion attack:

- Access to public images; access to the local Enc and its parameters.
- Optimize over the inverted image.

White-box inversion attack:

- Access to public images; access to the local Enc and its parameters.
- Optimize over the inverted image.

White-box inversion attack:

- Access to public images; access to the local Enc and its parameters.
- Optimize over the inverted image.

White-box inversion attack:

White-box inversion attack:

White-box inversion attack:

Privacy goal: Inverted image does not look like Alice.

Utility goal: Feature completes cloud tasks well.

Privacy goal: Inverted image does not look like Alice.

Utility goal: Feature completes cloud tasks well.

General intuition: Perturb the feature.

Privacy goal: Inverted image does not look like Alice.

Utility goal: Feature completes cloud tasks well.

General intuition: Perturb the feature.

 (Privacy) Mislead a simulated inversion attacker.

Privacy goal: Inverted image does not look like Alice.

Utility goal: Feature completes cloud tasks well.

General intuition: Perturb the feature.

- (Privacy) Mislead a simulated inversion attacker.
- (*Utility*) Keep the perturbation small.

Defense Intuitions (Utility)

Utility loss: $L_{utility} = \text{perturbation magnitude.}$

Preserves utility: Cloud model is robust against minor perturbation.

Utility task agnostic: $L_{utility}$ independent from cloud model

→ deployable as a plug-in.

Challenge 1: Robust against both black- & white-box inversion.

Challenge 1: Robust against both black- & white-box inversion.

Intuition: White-box attack is stronger; simulate a white-box attacker.

Challenge 2: Robust against <u>adaptive attacks</u>.

Attacker tries to bypass a fixed defense.

Challenge 2: Robust against <u>adaptive attacks</u>.

Attacker tries to bypass a fixed defense.

If a defense is not robust: false security, meaningless!

Challenge 2: Robust against <u>adaptive attacks</u>.

Attacker tries to bypass a fixed defense.

If a defense is not robust: false security, meaningless!

Previous defense: Push the attacker away from the private image.

Tit for tat between attacker & defense.

Challenge 2: Robust against <u>adaptive attacks</u>.

Attacker tries to bypass a fixed defense.

If a defense is not robust: false security, meaningless!

Previous defense: Push the attacker away from the private image.

"Stay Away"

Tit for tat between attacker & defense.

Challenge 2: Robust against <u>adaptive attacks</u>.

Attacker tries to bypass a fixed defense.

If a defense is not robust: false security, meaningless!

Previous defense: Push the attacker away from the private image.

Tit for tat between attacker & defense.

Why is "Stay Away" vulnerable against adaptive attacks?

A game view:

Attack ——
Defense ——

Private Identity 1

A game view:

Attack —— Defense ——

Conventional:

stay away from private identity

A game view:

Attack —— Defense ——

Conventional:

But not equilibrium (there is NO equilibrium in reality).

Challenge 2: Robust against <u>adaptive attacks</u>.

Attacker tries to bypass a fixed defense.

If a defense is not robust: false security, meaningless!

Our Intuition: Limit attacker's knowledge gain from the exposed feature.

"Get Close"

Challenge 2: Robust against <u>adaptive attacks</u>.

Attacker tries to bypass a fixed defense.

If a defense is not robust: false security, meaningless!

Our Intuition: Limit attacker's knowledge gain from the exposed feature.

"Get Close"

= Prior vs. Posterior

Prior: "Average face", public face distribution.

Prior: "Average face", public face distribution.

Contains no private ID info.

Prior: "Average face", public face distribution.

Contains no private ID info.

Prior: "Average face", public face distribution.

Contains no private ID info.

Posterior: Image \hat{X} inverted from feature F_X .

"Get Close": Minimize distance between prior & posterior.

"Get Close"

: Minimize distance between prior & posterior.

We use: Earth-Mover distance EMD.

Privacy loss: $L_{privacy} = EMD$ between inverted image \hat{X} & average face.

"Get Close"

: Minimize distance between prior & posterior.

We use: Earth-Mover distance *EMD*.

Privacy loss: $L_{privacy} = EMD$ between inverted image \hat{X} & average face.

Combine utility & privacy: $L_{combined} = \beta \cdot L_{privacy} + L_{utility}$

"Get Close"

: Minimize distance between prior & posterior.

We use: Earth-Mover distance EMD.

Privacy loss: $L_{privacy} = EMD$ between inverted image \hat{X} & average face.

Combine utility & privacy: $L_{combined} = \beta \cdot L_{privacy} + L_{utility}$

Find a feature perturbation that 1) is small;

"Get Close"

: Minimize distance between prior & posterior.

We use: Earth-Mover distance EMD.

Privacy loss: $L_{privacy} = EMD$ between inverted image \hat{X} & average face.

Combine utility & privacy: $L_{combined} = \beta \left(L_{privacy} + L_{utility}\right)$

Find a feature perturbation that 1) is small;

2) draws inverted image close to public average faces.

: Minimize distance between prior & posterior.

Adaptive attackers can only get worse!

: Minimize distance between prior & posterior.

Why is "Get Close" robust against adaptive attacks?

Find a feature perturbation that

- 1) is small;
- 2) draws inverted image close to public average faces.

Find a feature perturbation that

- 1) is small;
- 2) draws inverted image close to public average faces.

Find a feature perturbation that

- 1) is small;
- 2) draws inverted image close to public average faces.

Find a feature perturbation that

The perturbed feature poisons adaptive attackers!

- 1) is small;
- 2) draws inverted image close to public average faces.

Datasets

CelebA (64*64)

40 binary utility attributes

LFW (128*128)

10 binary utility attributes

VGGFace2 (112*112)

5-class hair color utility attribute

Baselines

AdvLearn

Deployment scenario

Disco

- Deployment scenario
- Improves upon AdvLearn with a pruner

TIPRDC

Development scenario

Xiao et al. "Adversarial learning of privacy-preserving and task-oriented representations", 2020
Singh et al. "Disco: Dynamic and invariant sensitive channel obfuscation for deep neural networks", 2021
Li et al. "Tiprdc: task-independent privacy-respecting data crowdsourcing framework for deep learning with anonymized intermediate representations", 2020

Tradeoff parameter.

• AdvLearn: {0.1, 0.5, 0.8}

• **Disco:** {0.2, 0.6, 0.8}

• TIPRDC: {0.1, 0.5, 0.8}

Privacy Metrics.

Eval Acc: identification accuracy of the inverted images.

Feature Similarity: cosine similarity between of the raw & inverted images.

• SSIM: pixel-level resemblance between the raw & inverted images.

Human study: 35 human feedbacks, Macro-F1 score of reidentification.

Baselines: vulnerable against adaptive attacks → false security.

Crafter: • robust against both back- & white-box inversion,

- robust against adaptive inversions
- maintains high utility performance.

Crafter: Facial Feature Crafting against Inversion-based Identity Theft on Deep Models

Shiming Wang, Zhe Ji, Liyao Xiang, Hao Zhang, Xinbing Wang, Chenghu Zhou, Bo Li

Code Available @GitHub

