
A Security and Usability Analysis of
Local Attacks Against FIDO2

Tarun Kumar Yadav, Kent Seamons
Brigham Young University

tarun141@byu.edu, seamons@cs.byu.edu

Abstract—The FIDO2 protocol aims to strengthen or replace
password authentication using public-key cryptography. FIDO2
has primarily focused on defending against attacks from afar
by remote attackers that compromise a password or attempt
to phish the user. In this paper, we explore threats from local
attacks on FIDO2 that have received less attention—a malicious
browser extension or cross-site scripting (XSS), and attackers
gaining physical access to an HSK. Our systematic analysis of
current implementations of FIDO2 reveals four underlying flaws,
and we demonstrate the feasibility of seven attacks that exploit
those flaws. The flaws include (1) Lack of confidentiality/integrity
of FIDO2 messages accessible to browser extensions, (2) Broken
clone detection algorithm, (3) Potential for user misunderstanding
from social engineering and notification/error messages, and (4)
Cookie life cycle. We build malicious browser extensions and
demonstrate the attacks on ten popular web servers that use
FIDO2. We also show that many browser extensions have sufficient
permissions to conduct the attacks if they were compromised. A
static and dynamic analysis of current browser extensions finds
no evidence of the attacks in the wild. We conducted two user
studies confirming that participants do not detect the attacks with
current error messages, email notifications, and UX responses to
the attacks. We provide an improved clone detection algorithm
and recommendations for relying parties that detect or prevent
some of the attacks.

I. INTRODUCTION

Two-factor authentication (2FA) defends against account
compromise due to stolen passwords and phishing attacks. The
current state-of-the-art for 2FA on the Web is FIDO2, the
FIDO (Fast Identity Online) Alliance, and the W3C’s newest
set of specifications supporting 2FA, multi-factor authentication
(MFA), and passwordless authentication. FIDO2 provides a
standard web services API (WebAuthn) on client machines to
authenticate users using public-key cryptography. The API is
available in all popular browsers and seeing adoption by major
service providers, including Facebook, GitHub, and Gmail.

FIDO2 supports a variety of client-side authenticators,
including hardware security keys (HSKs) and built-in platform
authenticators such as biometrics. Although this paper refers
to HSKs, the ideas apply to all FIDO2 authenticators.

The FIDO2 specification focuses on remote attackers, so
the threat model assumes a trusted client (browser and browser

extensions). However, malicious browser extensions and cross-
site scripting (XSS) have a long-standing history of stealing user
data, including passwords, financial information, and browsing
history [2], [1], [3]. With the adoption of the FIDO2 protocol,
it is crucial to recognize the potential risks posed by malicious
extensions and XSS. Examples of password theft by malicious
extensions such as "Web Security" and "Stylish" underscore
the pressing need to study these attacks for new emerging
protocols such as FIDO2 and develop countermeasures to
mitigate the risks. As attackers constantly evolve their tactics, it
is important to proactively research potential attack vectors to
stay ahead of the curve and ensure the effectiveness of FIDO2’s
security measures. The threat posed by these extensions cannot
be overlooked and warrants continued research, mitigation
strategies, and vigilance against new and emerging threats.

Our research systematically analyzed local attacks against
FIDO2 from malicious browser extensions and XSS. During our
analysis, we also discovered a weakness in the clone detection
algorithm that combats attackers that gain physical access to
HSKs. As a result, we identified four fundamental flaws that
attackers can exploit: (1) Lack of confidentiality/integrity of
FIDO2 messages accessible to browser extensions, (2) Broken
clone detection algorithm, (3) Potential for user misunderstand-
ing from social engineering and notification/error messages,
and (4) Cookie life cycle.

We describe seven attacks that exploit these flaws and
implement the attacks to demonstrate their feasibility. Four
of the attacks have not been described previously. Three of
them have been described earlier as theoretical attacks, but we
implement them and show they are feasible (see Table II).

We were surprised to discover two attacks (3 and 4) where
passwordless authentication presents more risk than passwords
alone in the presence of a compromised extension. After
performing the attack, an attacker can log in to an account
the victim never logs into from the vulnerable browser. These
attacks are significant because users may log into only a low-
value account from an untrusted computer, not anticipating
that it puts their high-value accounts at risk if the computer is
compromised. This risk did not exist in the world of passwords
when a user had a different strong password on their high-
value account. Surprisingly, passwordless authentication using
public-key cryptography opened up a new risk.

We also determine that 47% of browser extensions on the
Chrome Web Store have sufficient permissions to execute most
of the attacks. Finally, we present an improved clone detection
algorithm that an HSK’s firmware can implement and make
recommendations for web servers to improve the security of

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24327
www.ndss-symposium.org

FIDO2 implementations.

Fig. 1: Paper overview

An overview of the paper is depicted in Figure 1. The
contributions of this paper are the following:

1) Systematization of attacks by two local adversaries on
FIDO2 security: attacks from a malicious browser exten-
sion or XXS, and an attacker gaining physical access to an
HSK. Our systematization reveals seven practical attacks
or weaknesses.

2) Demonstrate the feasibility of the attacks:
• We prototype a malicious browser extension for Chrome

and Firefox, and demonstrate the attacks on ten popular
web servers that use FIDO2.

• We analyze current Google Chrome extensions to
identify (1) how many have sufficient permissions to
execute the attacks if they were compromised and (2)
the scale of such attacks based on the number of users
for the extensions. Our results show that 105,381 out
of 211,026 extensions have sufficient permissions to
compromise a WebAuthn client and execute the attacks.
Furthermore, 404 of these extensions have more than
one million users each.

• We confirm that the current clone detection algorithm
is vulnerable to a stealthy device cloning attack

• We perform a static and dynamic analysis of current
browser extensions and find no evidence of these attacks
in the wild.

3) Through two user studies (n=80 and n=20), we confirm
that current error messages, email notifications, or changes
in the UX caused by these attacks were insufficient for
participants in the user study to detect them.

4) Present an improved clone detection algorithm.
5) Provide recommendations for web servers and browsers

that could help users detect some of the attacks.

II. FIDO2 BACKGROUND

The FIDO2 protocol is a secure authentication method that
utilizes public-key cryptography for user authentication to web
services. In this protocol, users register their public key with
the web service and prove ownership of the corresponding
private key by signing challenges presented by the service.

The FIDO2 protocol involves three main entities:

The Relying Party (RP): This entity represents the web
application, such as "facebook.com," that supports FIDO2
authentication. The RP communicates with the authenticator
through the WebAuthn client. It can choose to offer FIDO2 as
a method for two-factor authentication (2FA) or passwordless
authentication.

The Authenticator: This entity is a device that securely
stores the user’s private key. Users authorize an authenticator to
generate a login credential to the RP by providing some form of
input, such as a PIN or a button press. FIDO2 supports various
types of authenticators, including built-in fingerprint readers
and external (remote) authenticators like hardware security keys
(HSK).

The WebAuthn client: Typically present in a web browser,
the WebAuthn client acts as a mediator between the authentica-
tor and the RP. It relays information and commands between
the two entities. To prevent phishing attacks, the WebAuthn
client reports the origin (URL) of the RP to the authenticator,
ensuring the authentication process is bound to the correct
website.

The FIDO2 protocol consists of two main components:
the Web Authentication (WebAuthn) browser API and the
client-to-authenticator protocol (CTAP). The WebAuthn API
in the client provides an interface for the RP to interact with
the authenticator, while the CTAP protocol enables secure
communication between the WebAuthn client and external or
roaming authenticators using Bluetooth, USB, or NFC.

A. Registration and authentication

The registration and authentication processes in FIDO2
involve the following steps:

Registration: Users initiate the registration process by
clicking a "register/login" button. The RP sends a registration
request to the WebAuthn client, including a challenge, user in-
formation, and RP information. The WebAuthn client forwards
this information to the HSK, along with the RP’s origin and the
request type. The HSK prompts the user for consent, generates
a new asymmetric key pair, and sends the registration data
(credential ID, public key, RP ID hash, counter, and attestation
signature) as an attestation object to the WebAuthn client. The
WebAuthn client then forwards this data to the RP, which
verifies the signatures and critical parts of the response. Upon
successful verification, the HSK is registered to the user’s
account.

Authentication: The authentication process is similar to
registration, with a few differences. Authentication does not
require user information, and instead of attestation, the HSK
performs assertion by signing the response with the private key
corresponding to the credential ID.

These mechanisms ensure secure and reliable authentication
using the FIDO2 protocol, providing enhanced protection
against various attacks and unauthorized access attempts.

B. Clone detection

By design, an HSK never releases the user’s private key
and other sensitive data. In theory, an attacker must steal an
HSK to impersonate a user. NinjaLab recently demonstrated

2

Fig. 2: FIDO2 Registration

a successful cloning of a Google Titan Security Key using a
side-channel attack. The NinjaLab attack requires access to
the device, 10 hours, $12,000 in equipment, and specialized
expertise [15]. However, various HSK vendors have different
firmware and hardware; attackers will find other ideas to clone
HSKs faster at a cheaper cost. Roth et al. [23] demonstrate the
cloning attack on Nordic nRF52832 by voltage glitching the
nRF chip for firmware extraction with a low-cost setup (5C).

To detect cloning, the HSK and RP both maintain a counter.
An HSK can have account-specific counters or a global counter.
During registration, the HSK initializes the counter on the
device and sends it to the RP, as shown in Figure 2. The HSK
increments the counter and sends it to the RP each time it
authenticates. The RP confirms the received counter is larger
than the current counter and updates the counter. A cloning
attack is detected if the RP ever receives a counter lower than
the current counter.

If an attacker clones a device and impersonates the user, the
RP increments the counter each time the attacker authenticates.
When the victim eventually authenticates using the original
HSK and counter, the RP detects the attack because the counter
it receives is lower than its current counter and notifies the
user about it.

C. Attestation

During registration, an optional attestation process allows
an RP to verify the make and model of the HSK, allowing only
specific devices (e.g., all employees must use a Google Titan
Key) or blocking models with known security flaws.

Each HSK comes with a hard-coded private attestation key
shared among a group of HSKs, such as 40K devices, to
prevent user tracking. An HSK proves its make and model
by signing part of the registration response with its attestation
key. An RP needs access to the HSK public attestation keys to
verify attestation signatures. The RP can access the keys on
demand at the vendor or maintain a local copy.

III. ADVERSARY MODEL AND ATTACKS

This section provides an overview of the entities in FIDO2
and how they communicate. We then introduce our adversary
model and describe seven attacks.

a) Entities and communication: In FIDO2, there are
three main entities: (1) Relying Party (RP): a Web service, (2)
WebAuthn Client: relays communication between an RP and an
HSK, and (3) HSK: a user’s hardware authenticator. To initiate
the registration or authentication process with an RP, the user
communicates with the webAuthn client. The webAuthn client
communicates with the RP and the user’s HSK to register or
authenticate the user. The user may be asked to touch the
HSK to confirm a request and prove that the user initiated the
request. A more detailed explanation of the entities is provided
in section II.

b) Adversary model: Our adversary model includes two
independent adversaries:

• Adversary A1: a malicious/compromised browser exten-
sion or malicious web pages that leverage a vulnerable
extension to compromise the FIDO2 webAuthn API. The
adversary has access to plaintext FIDO2 communication
and therefore can execute various attacks, such as MITM.

• Adversary A2: An adversary that gains temporary physical
access to the victim’s HSK and has cloned the device. The
adversary cannot retrieve the private key or any other
metadata from the HSK, they can only clone it.

c) Adversary goals: Adversary A1’s goal is to imper-
sonate a victim (Bob) who uses an HSK and gain unauthorized
access to Bob’s account. Ultimately, A1 wants to impersonate
Bob from A1’s device over an extended period without detection
after executing a short-duration one-time attack from Bob’s
device or another device that Bob uses just once. Reliance on
a single malicious code execution from Bob’s device removes
A1’s continued dependence on an extension’s malicious code to
access Bob’s accounts, decreasing the likelihood of detection.

A1 cannot achieve its goal by registering OAuth tokens,
stealing session cookies, or monitoring all user communication.
Many websites do not use OAuth access tokens (e.g., banking),
and the tokens last only for several hours to a couple of weeks.
Furthermore, cookie-based login sessions expire as soon as a
user logs out. Therefore, if the attacker wants long-term access,
they have to steal cookies frequently, which is infeasible if the
victim only logs in only once from a vulnerable browser.

Adversary A2’s goal is to bypass the FIDO2 clone detection
algorithm and gain unauthorized access to the victim’s account
using the cloned device without being detected.

3

TABLE I: Relying Party Analysis

Relying Attestation Authentication Notification Least secure Clone detection error
Party before adding after adding signature

additional HSK an HSK algorithm
1 Facebook # password # ES256 (Page refresh)
2 GitHub # # email RS256 "Security key authentication failed"
3 Boxcryptor required password # ES256 N/A ‡
4 Dropbox required password email RS256 N/A ‡
5 Twitter # N/A † # RS256 (technical problem during testing)
6 Cloudflare # password # RS256 "Invalid security key used. Please use a security key registered to this account."
7 Basecamp # # email RS256 "We couldn’t verify this security key. Make sure you have registered it."
8 Login.gov # # # RS256 (cloning not detected)
9 Shopify # password email RS256 "Couldn’t connect to your security key. Try again."

10 1Password # # # ES256 "Unable to verify your security key."

none † Twitter supports only one HSK on an account ‡ Unable to test clone detection due to required attestation
ES256 = ECDSA w/ SHA-256 RS256(−256) = RSASSA-PKCS1-v1_5 using SHA-256

A. Attacks

This section describes the attacks Adversary A1 can execute
on the webAuthn client API and Adversary A2 can execute with
a cloned HSK. We take a holistic approach to explore a range of
attacks in detail based on three types of flaws: protocol errors,
HCI (Human-computer interaction) challenges that impact user
understanding, and implementation weaknesses. Table II shows
the flaws, the type of each flaw, and attacks that exploit each
flaw. We are the first to demonstrate the practical feasibility of
these attacks.

1) Mis-binding attack during registration – Attack 1: During
registration of the victim’s HSK, Adversary A1 replaces the
victim’s public key with the attacker’s public key in the HSK
response. It also replaces the digital signatures with signatures
generated using the attacker’s private key. This attack causes the
RP to register the attacker’s HSK instead of the victim’s HSK.
This attack was first identified by Hu et al., when investigating
the security of the Universal Authentication Framework (UAF),
a precursor to FIDO2[12].

An attacker can register either a software-based HSK or a
hardware-based HSK. A software-based HSK makes it easier for
the attacker to automate the MITM attack but is not an option if
the RP requires attestation. From our analysis, popular RPs like
Facebook and GitHub do not require attestation (see Table I).
Attestation forces the attacker to use legitimate hardware HSK,
which increases the attacker’s effort because the attacker must
forward the requests and responses to a remote machine where
they can connect the hardware HSK. The attacker can use an
HSK with the same make and model as the user to be more
stealthy. The attacker can automate the key tap on their HSK by
building additional hardware to perform the key tap without the
user being present.1 Other Robo projects, such as MattRobot,2
aim to simulate touches by employing Robo fingers capable of
handling various types of touch interactions.

Once the attacker has registered their HSK, they can mark
the Remember Me option that causes the generation of a cookie
that allows the victim to continue to log in while remaining
oblivious that the attacker’s HSK was registered. If the victim
logs in through a different browser or device, they will receive
an error indicating that their HSK was never registered. We

1https://bert.org/2020/10/01/pressing-yubikeys/.
2https://www.mattrobot.ai

TABLE II: FIDO2 flaws exploitable by local attacks

Flaws Type Attacks
Lack of confidentiality/integrity of FIDO2
messages accessible to browser extensions

Protocol 1[12], 2,
5

Broken clone detection algorithm Protocol 7
User misunderstanding from social engineer-
ing and notification/error messages

HCI 1, 2, 3,
4 [10]‡ ,
7

Cookie life cycle Implementation 6[20]

‡ = for FIDO UAF

answer the effectiveness of two email notifications in RQ1 in
Section V.

2) Double-binding attack during registration & authenti-
cated session – Attack 2:

a) During registration: During registration of the vic-
tim’s HSK, Adversary A1 registers their malicious authenticator
first to the victim’s account and sends a second registration
request in the background to register the victim’s HSK to the
same account. The victim and the attacker can respond to their
respective registrations if the RP requires a touch for user
presence on their HSK. A1 directs the attacker’s user presence
request to the attacker. Like the mis-binding attack, the attacker
can automate the test for user presence. Unlike the mis-binding
attack, the victim can log in using their HSK without even
being aware that a second HSK is also bound to the account.

b) During authenticated session: Adversary A1 registers
a malicious HSK to the victim’s account during a logged-in
session by sending a registration request and the response from
their HSK in the background without any victim’s involvement.
This attack can be executed anytime during a session, providing
ample opportunity to initiate an attack instead of being limited
to only during registration. Adding a malicious HSK allows an
attacker to access the account stealthily indefinitely unless the
victim manually detects it through the registered HSK page.

A strong defense against this attack is to require authenti-
cation using an already-registered HSK before adding a new
HSK. Requiring the previous 2FA prevents software attacks that
register their malicious HSK in the background without user
knowledge. Of the ten web services we analyzed, as shown in
Table I, four do not require any authentication while adding
a new HSK during a logged-in session. Five services require

4

only passwords to add a new HSK even if there is already a
registered HSK, which allows software-based attacks to add a
malicious HSK. Twitter allows only one registered HSK, which
prevents a double-binding attack. However, limiting registration
to one HSK is not recommended as it prevents a user from
registering an HSK as a secure form of backup.

Use of notifications to detect binding attacks: A victim
may detect one of the binding attacks (Attacks 1, 2a, and 2b
described earlier) in two ways unless A1 also compromises the
notification channel.

• Some RPs send users a registration notification through
a different channel, such as email. If users monitor these
notifications, they can detect the attack when they see two
notifications for Attack 2a or an unexpected notification for
Attack 2b.

• An RP can display a list of registered HSKs on the account,
including the make and model. A user can verify the list
regularly to detect a malicious HSK. This passive detection
depends on user awareness and effort.

We analyzed the notification process of ten popular web
services that use FIDO2’s WebAuthn for 2FA (see Table I).
Six services do not send any registration notifications. Four
services send an email notification. However, they all send an
identical email when adding a new HSK, as shown in Figure 3).
For Attack 2a, receipt of two duplicate emails that lack any
information about the identity and number of HSK devices may
not be sufficient to raise suspicion. We answer the effectiveness
of two email notifications in RQ2a in Section V.

3) Synchronized login – Attack 3: As described in Figure 4,
while a victim logs into a website with a registered HSK,
Attacker A1 generates a login to another victim account that
expects an HSK to authenticate. The second login is invisible
to the user except that A1 coerces the user to perform the user
presence test, believing it to be for the first site.

To accomplish this, A1 adds an invisible iframe to the
example.com page that loads facebook.com, resulting
in an authentication request to the HSK sent from the iframe.
By default, the browser’s webAuthn client does not allow cross-
origin iframes to send an authentication request to an HSK. To
allow cross-origin iframe authentication, A1 also adds (1) an
allow attribute to the iframe (i.e., allow="publickey-credentials-
get *") and (2) a header in the response from facebook.com that
loads the iframe (i.e., Permissions-Policy: publickey-credentials-
get=*).

There are two ways to handle the test for user presence.
First, suppose facebook.com has a registered HSK but
the user marked Remember this device during the login
process. Remember this device uses a cookie for login once
the user completes their first login from the device using
their HSK. The user could misinterpret the prompt for using
the HSK to login to example.com in the background as a
request to re-login to facebook.com using the HSK and
complete the user presence test. Second, even if the user
authenticates to facebook.com using their HSK and the
login to example.com also requires authenticating with their
HSK, A1 can cause two prompts to tap the HSK for the user
presence test and the user may comply believing the first tap
failed to be recognized. Currently, browsers show the domain

of the website that a user is authenticating to, but users do not
usually verify it. Furthermore, tapping an HSK twice is common
due to improperly touching it the first time. We explore this
user behavior in RQ4 in Section V.

This attack is more insidious than some other attacks
because the attacker succeeds against the victim using the
victim’s HSK without registering the attacker’s HSK, reducing
the amount of forensic evidence for detecting the attack.

This attack assumes that A1 has compromised the user’s
password to facebook.com. If passwordless authentication
is enabled on the target site, then A1 does not need a stolen
password. In this case, passwordless authentication increases
the risk of this attack on this account since A1 does not need to
first compromise the password. A1 can compromise an account
the user has not accessed while A1 was present.

4) MITM – Attack 4: When a victim visits a website,
such as facebook.com, an attacker can manipulate the
authentication process to execute a MITM. If the victim is
already logged in, the attacker can forcibly log them out by
removing the session details from the network request during
communication with the website.

To carry out the attack, the attacker generates a session
from their own device and initiates an authentication request to
the victim’s facebook.com account. The attacker intercepts
the authentication request received by the victim and replaces it
with the request they received on their device, aiming to obtain
the victim’s signature using their hardware security key (HSK).
The attacker then captures the response, transfers it to their
device, and forwards it to facebook.com, enabling their
device to create a login session on the victim’s account. In
case the user already had a session with facebook.com,
the attacker adds the previous victim’s session details to
facebook.com to allow the victim to log in using their
previous session.

In scenarios where the victim was not initially logged in
to facebook.com, the attacker can either temporarily share
their own session with the victim to avoid arousing suspicion
or execute a variant of Attack 3. In this variant, the user is
prompted to authenticate to facebook.com by tapping the
hardware security key twice. One session is created for the
victim, while the other is established for the attacker.

5) Signature algorithm downgrade – Attack 5: A signature
algorithm downgrade attack occurs during registration when
adversary A1 modifies the list of signature algorithms in the
registration request sent from the RP to the WebAuthn client.
In the registration request, the RP sends a prioritized list of
signature algorithms that it supports. The attacker leaves only
the least secure algorithm and removes all others.

All ten web services in our analysis use secure signing
algorithms that are not straightforward to crack. However, this
attack could be used with other web services in the wild
that support at least one insecure signing algorithm. Also
from the ten RPs we analyzed, as shown in Table I, seven
support the inadvisable signing algorithm RSASSA-PKCS1-
v1_5 using SHA-256. An attacker can force the HSK to
use an inadvisable algorithm and possibly exploit it. The
RSASSA-PKCS1-v1_5 using SHA-256 has been exploited
using Bleichenbacher’s attack, allowing one to perform arbitrary

5

(a) GitHub (b) Shopify (c) Basecamp

Fig. 3: Examples of email notifications when adding a new HSK to GitHub, Shopify, Basecamp

Fig. 4: Synchronized login (Attack 3)

RSA private key operations. Given access to an oracle, and
insecure exponents, the attacker can sign arbitrary messages
with the HSK private key. Table I lists the minimum supported
signing algorithms by individual RPs from our analysis.

The signature downgrade attack is more of a theoretical
threat today. No RPs that we analyzed support weak signing
algorithms. It is important to understand the threat exists in
FIDO2 because experience shows that downgrade attacks are

exploited after many years when algorithms become outdated.

6) Cookie Lifecycle – Attack 6: Although 2FA strengthens
security, it decreases usability when users must always authenti-
cate using an HSK. In response, some RPs use cookies to avoid
2FA for future logins on a device if users select "Remember
this device."

For example, Facebook issues a ‘datr‘ cookie to denote the
user has previously authenticated using an HSK on their device.

6

Future logins skip requiring the HSK until the cookie expires.
If an attacker steals this cookie and adds it to the browser on
their device, the attacker can authenticate as the user with only
a stolen password and altogether bypass 2FA.

The "cookies" permission allows a Chrome extension to
use the cookies API. With API access, A1 can steal long-
term session cookies or cookies that help them bypass 2FA
on any device for a domain. We analyzed 246,345 Chrome
extensions and discovered 31,326 Chrome extensions with
"cookies" permission. 18,024 of those extensions also have
"://*" permission, allowing these extensions to steal the cookies
of every RP a user accesses. 102 of these extensions have more
than a million users each. Figure 6 contains the full distribution
of users for these extensions.

To test the feasibility of a cookie-stealing attack, we logged
into Facebook from a Chrome browser and enabled 2FA using
an HSK. We added the current browser to the "Remember
this device" list. Then, we logged out of Facebook and copied
the ‘datr‘ cookie to a Chrome browser on another device.
We confirmed that the cookie permitted us to successfully
authenticate to Facebook from the second device with just a
password and bypass 2FA.

Cookie-stealing attacks are well-known. From our ex-
periment, we learned that Facebook sets cookie expiration
at approximately two years. Although this is motivated by
usability, attackers can exploit this to grant them long-term
access to 2FA-enabled accounts without stealing the hardware
authenticator.

7) Bypassing clone detection algorithm – Attack 7:

a) Lack of informative error message: Cloning an HSK
allows an attacker to authenticate to the victim’s account.
However, the FIDO2 has a built-in clone detection mechanism
(explained in Section II-B). We conducted experiments to
trigger the clone detection error messages on ten RPs by
simulating a cloned HSK using our malicious browser extension.
First, we registered our virtual HSK on the target website and
successfully authenticated. Second, we reduced the counter on
the virtual HSK to simulate a cloned HSK and reattempted
authentication on the target website to trigger an error message.
Some websites did not report any errors, while most displayed
generic error messages unrelated to device cloning (refer to
Table I).

These generic messages may lead users to reattempt the
login. Multiple reattempts could eventually lead to a successful
login, depending on the number of times the attacker used the
cloned device. For example, if the HSK and RP have a counter
value of x, the cloned HSK would initially have the same value.
When the attacker logs in, the counter’s value updates to x+1
at the RP and the cloned HSK. If users try to log in to their
account, they may receive an error message, but the counter
on the user’s HSK will advance to x+1. If the user reattempts
the login, they will be granted access to their account and may
not understand the failed attempt is due to a cloned HSK. We
answer the effectiveness of two email notifications in RQ3 in
Section V.

Figure 5 shows screenshots of error messages from RPs
when the counter value submitted by the HSK is lower than the
value stored at the RP. Even though this indicates a possible

cloning attack, none of the error messages state that the user’s
account may be under attack. Several messages even encourage
the user to switch to a less secure form of authentication.

b) Stealthy device cloning attack: FIDO2 supports a
counter to detect device cloning, as explained in Section II.
Assume A2 has cloned a victim’s device to gain unauthorized,
undetected, short-term access to their account. The following
paragraph describes a stealthy attack by A2 that avoids detection
by the clone detection algorithm in FIDO2.

Assume the user’s HSK and the RP have an account-specific
counter value of x. When A2 gains physical access to the user’s
HSK, they first clone the HSK and then increment the counter
value on the user’s HSK (by y) by sending it y dummy au-
thentication requests for the RP they want to compromise. The
dummy requests can be created using libraries such as Yubico’s
libfido2. The user’s HSK counter is now x+y, the cloned HSK
counter is x, and the RP’s counter is x. The attacker can now
log in to the user’s account up to y times before the user logs in
without detection. When the user logs in, they won’t trigger an
error if x+ y > x+ (numberOfT imesAttackerLoggedin),
but the login will force an update to the RP counter to x+ y.
The attacker will not log in again without detection, but the
attack provides a window of opportunity that the attacker can
exploit. An attacker can perform a variation of this attack if
the HSK maintains a global counter.

IV. ATTACK FEASIBILITY

To demonstrate the feasibility of the attacks, we built a
prototype of a malicious Chrome extension that compromises a
webAuthn client and executes the seven attacks. In our Chrome
extension, content scripts allowed us to obtain details and
make changes to the webpages a browser visits. We replace
Chrome’s web API function navigator.credentials.create with
our custom handler on every webpage. Our custom handler
modifies/replaces the original FIDO2 request or response with
a malicious one.

Similar to Kaprevelos et at. [14], we analyzed the permis-
sions requested for 246,345 Chrome extensions, extracted by
CRXcavator [9] from the Chrome webstore on Jan 21st, 2021.
We found that 115,881 Chrome extensions use activeTab/tabs
permission, which is sufficient to execute a MITM attack by
overriding webAuthn client APIs. There are 404 extensions
with more than one million users each that can execute these
attacks. A malicious actor only has to compromise one of these
extensions to be in a position to launch an attack on over one
million users. Figure 6 shows the distribution of users among
these extensions.

Prior research demonstrates the feasibility of Attacker A2
obtaining a clone of an HSK once they have physical access.
For example, Roche et al. [22] describe how to clone a Google
Titan Security Key. It requires about 10 hours to complete
the cloning process. Assuming that cloning has taken place
successfully, we describe how an attacker can avoid the clone
detection algorithm described in the FIDO2 specification.

The remainder of this section provides detailed descriptions
of attacks that Adversary A1 can execute on the webAuthn
client API and Adversary A2 can execute with a cloned
HSK. Others have explored a few attacks against FIDO2 (see

7

(a) GitHub (b) Shopify (c) Basecamp

(d) 1Password (e) Cloudflare

Fig. 5: Examples of clone detection error messages

Fig. 6: User distribution for Chrome extensions with permis-
sions that allow a MITM attack against FIDO2 HSKs

Section VIII). We take a holistic approach to explore a range of
attacks in detail. We are the first to demonstrate the feasibility
of these attacks.

a) Static and dynamic analysis of real Chrome ex-
tensions: We tried to find real-world attacks by analyzing
extensions. We did not detect any attack happening in the wild
as of now.

We analyzed extensions from the Chrome store to determine
if any extensions in the wild were executing attacks on
FIDO2. Specifically, we downloaded the source code of 152,526
Chrome extensions from the Chrome store over 20 days during
September of 2022 to minimize additional load on the Google
server. Our testing pipeline consisted of two stages: a static
and dynamic analysis.

In the static analysis phase, we filtered extensions by two cri-
teria: whether an extension had the ‘modify all data’ permission
or if the phrases navigator.get or navigator.create
were present in any of the source files. If either criterion was
met, the extension was flagged and placed in a folder to be
run through dynamic analysis.

In the dynamic analysis phase, we installed each flagged
extension on a browser in a virtual machine in sequence.
The virtual machine had a virtual FIDO2 authenticator that
automatically approves registration and authentication requests.
We ran an authentication server on the client outside the
virtual machine. We performed complete FIDO2 registration
and authentication flow between the webAuthn server and the
virtual FIDO2 through the Chrome browser, where the browser
extension under analysis was installed. For each request, we
verified the Hash(ClientData) the server sent and the virtual
authenticator received for registration and authentication. In
response, we verified the public key and the signed object sent
by the virtual key with what the server received.

We ran registration and authentication flows for each
extension on the top 100 Alexa domains to account for

8

extensions that might trigger malicious code based on URLs.
We added a mapping of these URLs to our local server’s IP
address in the host file so that the browser connects to our
local server for all the URLs. We tested our setup on our proof-
of-concept malicious extensions and were able to detect all the
attacks.

Our static analysis identified 155 extensions that matched
our criteria. However, none of the extensions in the dynamic
analysis were detected as performing attacks on FIDO2. The
extensions flagged by static analysis, particularly those using the
credentials.create and credentials.get APIs,
fall into two categories: password managers providing FIDO2
support and poorly optimized extensions. The first category
of false positives pertains to valid use cases such as password
managers trying to implement 2FA for user’s account, which
were flagged for using the credentials.create and
credentials.get APIs. The second category of false posi-
tives pertains to poorly optimized extensions. These extensions
are created using webpack, which packs multiple dependencies
into a single file. Sometimes parts of these dependencies are
unused, and it seems they are included for an API call that never
happens. One such dependency is ‘simplewebauthn’ which
is depended on by other libraries but only makes calls to
the credentials.create and credentials.get APIs
not usable by extensions.

b) Applicability of the attacks across various browsers:
The tabs/activeTabs permissions operate uniformly across
browsers, enabling all our attacks except for synchronized
login (Attack 3). This specific attack requires the utilization
of the "publickey-credentials-get" API, currently supported by
Chrome, Edge, and Samsung Internet. It is in an experimental
phase in certain browsers, such as Firefox [17]. We successfully
tested our attacks on Firefox except for Attack 3.

c) Cross-site scripting (XSS): : All the attacks we
demonstrated using the browser extension can also be exploited
through XSS, except for synchronized login (Attack 3). This
attack necessitates adding a header to the incoming response
from the target RP that the attacker aims to authenticate to. If
an XSS-based attacker can employ other techniques to insert
headers in the response received from the target website, they
can successfully execute this attack.

V. USER STUDY

Our user studies aim to assess whether the existing error
messages, email notifications, and UX behavior enable users to
detect various attacks. The results will show the effectiveness
of the attacks under the current system design.

We excluded the signing algorithm downgrade, cookie-
stealing, and MITM attacks from our study because they
do not cause any changes to the UX. One variant of the
MITM attack modifies the UX by presenting two pop-ups
with the same domain name. This alteration in UX resembles
a synchronization attack and possesses a higher degree of
stealthiness. We can establish an upper bound for detecting
the MITM attack variant by measuring users’ perception of
UX changes during synchronization attacks. We designed
our studies to address the following four research questions,
corresponding to one of the four primary attack types.

RQ1 Misbinding– How do users interpret the error and their
inability to log in after a misbinding attack?

RQ2 Double-binding–
(a) How do users interpret when they receive two registra-

tion emails after a HSK registration?
(b) How do users interpret the addition of a rogue HSK

they encounter on the settings page?
RQ3 Clone detection– How do users interpret clone detection

error messages they encounter during the login process?
RQ4 Synchronized login–

(a) How do users interpret pressing the HSK button twice
before logging in?

(b) Do they detect the attack by observing the browser’s
popup displaying the website name?

We conducted two user studies to evaluate the detectability
of attacks given the current error messages and user experience
(UX). Based on our experience, we hypothesized users would
likely not detect these attacks in practice. Therefore, we decided
to prime the participants during the study by asking them to
watch for potential attacks that would take place for some of
them. The results represent the best-case scenario for detecting
the attack due to the priming.

The objective of the first study, an online survey, was to
assess users’ comprehension of error messages, notifications,
and unusual UX flow. For this investigation, we selected
RQ2a, RQ3, and RQ4a, which were amenable to measurement
through an online survey and necessitated minimal contextual
information. RQ2a and RQ4a were also measured in the
subsequent in-lab study to ascertain their validity.

The second user study was an in-lab investigation that
addressed all the research questions (RQs) except RQ2a. We
developed a malicious browser extension that executed the
attacks to provide participants with the necessary contextual
information. We then had participants register an HSK and log
in to a test account. At the same time, the extension performed
the attacks, allowing us to capture participants’ perceptions of
the events that transpired during an attack.

A. Survey study

We conducted an IRB-approved survey exploring partici-
pants’ understanding and actions when encountering attacks
2a, 3, and 7a. We asked participants open-ended questions
about what they understand and their next step in the following
scenarios: (1) [RQ2a] Attack 2a- receive two HSK registration
emails due to double authenticator registration, (2) [RQ3] Attack
7a- encounter clone detection error message, and (3) [RQ4a]
Attack 3- requires two taps to complete authentication.

a) Demographics: We recruited n=80 participants from
Prolific. We mentioned in our study page “Please only take
part in this survey if you have used a security key or hardware
token such as Yubikey for authentication.” However, according
to Prolific policies, we cannot screen for surveys using the
description, and therefore we could not reject any participants.
Out of 80 participants, 32 use an HSK for their accounts, 45
do not use an HSK for their accounts, and 3 were unsure.
Table III presents the survey demographics. The median time
to complete the survey by participants was 6 mins, and we
paid them each $1.20, i.e. $12/hr.

9

Metric Percent
Gender
Male 50
Female 50

Age
18-29 years 38.8
30-39 years 32.5
40-49 years 10
50-59 years 12.5
60+ years 6.2

Student status
Student 31.3
Non Student 66.3

Metric Percent
Ethnicity
White 80
Asian 10
Black 6.2
Mixed 3.8

Employment
Status
Full-time 56.3
Part-time 20
Unemployed 12.5
Unpaid work 5

TABLE III: Survey participant demographics. Percentages may
not add to 100% because we do not include “Other” or “Prefer
not to answer” percentages for brevity.

1) Methodology: We designed three questions correspond-
ing to attacks 2a, 3, and 7a.

a) [RQ2a] Attack 2a: To measure users’ reaction to
Attack 2a, we described a scenario where they recently
registered their HSK with GitHub. To simulate the attack,
we provided them with credentials for a test Gmail account
containing two HSK registration emails and other random
emails such as GitHub account creation and 2FA enrollment.
Figure 3a shows the email content. We tasked each participant
with logging into the test Gmail account and identifying whether
their GitHub account had any malicious activity. Then, we
primed participants by telling them that half of the participants’
GitHub accounts had some malicious activity. We introduced
this priming to determine if even cautious users will ignore
two consecutive HSK registration email notifications arriving
within seconds of each other.

b) [RQ4a] Attack 3: To explore users’ behavior during
Attack 3, we described a scenario where they had used an HSK
with their work account for a long time. We told them that one
day while trying to log in, they tapped their HSK to satisfy
the user presence test. It doesn’t work the first time but works
after tapping it the second time. We then asked them why this
might occur and how they would respond.

c) [RQ3] Attack 7a: To explore user behavior during
Attack 7a, we described a scenario where they have been using
an HSK with their work account for a long time. One day, an
error occurs while logging in. We showed participants GitHub’s
clone detection error message as shown in Figure 5a and asked
what they thought was the reason for the error message and
what would be their next step.

2) Results:

a) Attack 2a: None of the participants identified mali-
cious behavior with their GitHub account, even with the priming.
Five participants noticed the two HSK registration emails but
did not consider it malicious activity. One of the reasons most
participants did not notice two emails is that Gmail, by default,
hides the content of the second email if the content is the same
as the first email. Furthermore, even if somebody notices two
emails, two identical emails within seconds can be considered
an intentional notification mechanism or a configuration error.
However, it is hard to imagine it as an attack.

P11: “It doesn’t seem like there was any suspicious
activity. There were only 3 emails and 2 of them
talked about 2-step authentication processes.”

b) Attack 7a: We asked participants what they thought
caused the error. No participant considered it an attack.
Participants attributed the error to incorrect key connection,
wrong hardware token, USB reading issues, dust on hardware or
USB slot, corrupted security key or PIN, device synchronization
problems, incorrect username or password, prompt interaction
delay, security token expiration, computer not updated, ad-
ditional layer of authentication, and server errors. Based on
these reasons users said they would perform the following
steps: unplugging and reconnecting the key, refreshing and
retrying with the correct hardware token, using alternative 2FA
methods, cleaning the USB port, resetting the security key PIN,
re-entering username and password, restarting the computer,
seeking help on Google for username/password issues, and
contacting GitHub support for prompt interaction delays.

P23: “Could be a number of things. Could be the
two-factor key got zapped or erased somehow. The
USB port is not working. The authenticator key is
dirty, and the contacts need to be cleaned with
isopropyl. Something is corrupt in the computer.
Needs rebooted.”

P65: “Sometimes websites have temporary bugs that
are beyond the user’s control.”

c) Attack 3: No participant considered that it was
malicious behavior. Instead, participants mentioned that the
HSK tap is unreliable and may not work the first time. Therefore,
they would tap it again. If that did not work, they would follow
the same steps mentioned for the clone detection error messages.

B. In-lab study

We conducted a second IRB-approved in-person study to
determine whether participants would detect these attacks when
provided with the context received during an actual attack.

1) Methodology: To address the four research questions, we
implemented the corresponding attacks in a browser extension.
Participants were assigned the following four tasks, each
corresponding to one of the research questions:

Task 1: Participants were presented with a scenario directing
them to register an HSK for their work github.com account
and verify it by logging in. Our attack implementation ensured
that the user experience remained unchanged during registration.
Participants received an error message during login.

Task 2: Participants were presented with a scenario directing
them to set up an HSK with their github.com account.
During the HSK registration process, we also registered a
fake HSK with the nickname admin. Participants were asked to
navigate to the settings page to verify if the HSK was registered
correctly and suggest improvements for its security.

Task 3: Participants were presented with a scenario directing
them to log in to their work github.com account, which
they had been using for years. Upon the first login attempt,
they encountered a clone detection error message. However, a

10

subsequent login attempt succeeded due to incrementing the
authentication counter after the failed attempt.

Task 4: Participants were presented with a scenario directing
them to log in to their work github.com account, which
they had been using for years. During login, our extension
sent an authentication request on behalf of chase.com and
another authentication request for github.com, as shown in
Figure 7. Users were required to tap the HSK button twice,
and before each popup, they observed the browser’s popup
displaying the domain they were authenticating to.

(a) Chase.com authentication popup

(b) Github.com authentication popup

Fig. 7: Task 4: Synchronized login to chase.com while user
logs into github.com

At the beginning of the study, participants were informed
about the four tasks they would do and how Yubikeys worked.
Participants were directed to a webpage containing detailed
instructions for each task as they progressed through the study.

The browser extension automatically detected the current task
and executed the corresponding attack. We used four separate
GitHub test accounts to maintain isolation between tasks. This
automated setup allowed us to minimize the study coordinator’s
interaction with the participants and ensured privacy. We
believed that providing autonomy to participants would result
in behavior similar to their real-world actions. We instructed
participants to try and resolve any errors they encounter to the
best of their abilities and provide their reasoning for why the
errors occurred and how to address them.

Recruitment We aimed to recruit technically proficient
individuals to maximize the likelihood of detecting the attacks.
We recruited 20 participants by making announcements in
Computer Science department classes, utilizing Slack, and
distributing flyers in the CS department building. To facilitate
communication, we specifically selected participants who were
fluent in English. Additionally, we restricted the study to
individuals who had prior experience using GitHub. Initially,
we offered a compensation of $10 for an expected 30-minute
duration. However, we faced difficulties in obtaining sufficient
participants. Consequently, we increased the compensation to
$20 during the study and paid this amount to all 20 participants.
On average, participants took 22 minutes to complete the study.

Demographics Out of 20 participants, 13 participants fell
into the age range of 18-24, while 7 participants were in the age
range of 25-34. In terms of gender distribution, 14 participants
identified as male, while 6 participants identified as female.
Additionally, 15 of the participants were undergraduate students,
while 5 participants were graduate students.

Data collection and analysis During each task, we asked
participants about their comprehension of encountered errors
and their approach to resolving them. In addition, we recorded
their screen activity to facilitate later analysis of their process.
The research coordinator took notes of any comments related
to our research questions. We analyzed the responses using
inductive coding and content analysis techniques.

2) Results:

a) RQ1: For task 1, all participants successfully reg-
istered a Yubikey on a GitHub account. All participants saw
the error message in Figure ?? during login, confirming the
attack succeeded for each of them. As expected, none of the
participants realized they were logging in with a different key
than the one registered with their account. Participants provided
various reasons for being unable to log in, including broken
keys, improper keypresses, and lack of familiarity with the key.
Three participants using a Yubikey for the first time mentioned
specific reasons such as improper fingerprint scan and failure
to unplug the Yubikey after registration. We believe such
misunderstandings would not apply to experienced Yubikey
users.

b) RQ2b: In task 2, participants were asked to register
Yubikey on a GitHub account. In the background, we registered
a second HSK with the nickname admin. Even when explicitly
asked to check the settings page after login and verify the
registered Yubikey and security of the account, only three out
of twenty participants noticed two registered Yubikeys. Only
one of the three mentioned they would try to identify and
remove the extra Yubikey. The other two did not comment on
whether they would remove it, but we assume they would take

11

some action. Therefore, we observed three successful detections
of the double-binding attack.

c) RQ3: In task 3, participants were asked to log in
to GitHub using their Yubikey. The attack setup provided a
cloning detection error during login on the first attempt, but
upon a second attempt it successfully logged in. None of
the participants associated the error with a potential cloning
detection attack, as the error message did not give any indication
of such an attack. The error message was identical to other error
messages, such as using the wrong Yubikey. Nine out of twenty
participants attempted a second login and were successful. All
participants were unsure why the login failed the first time and
attributed their inability to log in to an error in the authentication
process. The rest of the participants mentioned they would log in
using either SMS or another recovery mechanism and re-register
the key as some issue could have happened with the registered
HSK. Despite our mentioning that they have been using the
same key successfully for a long time, some participants still
attributed the issue to improper Yubikey configuration on their
account. P4 even acknowledged the strangeness of the situation
but could not connect it to any specific attack.

P2: “It worked the second time so it might have just
been an error in when I inserted the key.”

P4: “Maybe the yubikey isn’t configured correctly. I
would log in with sms and check that it is configured
correctly. But if I’ve hypothetically used it a bunch
before it doesn’t seem like that would be the issue. I
would probably reconfigure the security key.”

d) RQ4: In task 4, participants were required to log in
to their GitHub accounts. In the background, our extension
authenticated first with a chase.com account and then with
GitHub. Participants saw two popups from the browser for
each of these authentications and had to tap the Yubikey twice
to complete the login process. One participant encountered
a technical error during the setup and was unable to log in,
resulting in a sample size of 19 for this task. Among the 19
participants, all successfully logged in to their GitHub accounts
by tapping the HSK twice. When explicitly asked if they
noticed anything unusual during the authentication process,
6 participants reported no unusual observations. Thirteen
participants mentioned that they had to tap the Yubikey twice,
9 attributing it to either an improper key tap or a glitch in
the protocol or website. Only 1 out of 13 participants noticed
the first popup prompt for "chase.com" but proceeded with
authentication anyway. Two participants out of the 13 repeated
the task upon seeing the question "Did you notice anything
unusual?" and then noticed the chase.com prompt. They said
they would not have noticed it without the prompt.

VI. CLONE DETECTION ALGORITHM

We propose a cloning detection algorithm for account-
specific counters that is not vulnerable to the stealthy cloning
attack (as described in Attack 5a). The HSK (see Algorithm 1
below) saves a hash of the challenge it receives during
registration as hashC. Upon receipt of an authentication
request, the HSK includes hashC in the response and updates
hashC with a hash of the authentication request challenge.

The RP (see Algorithm 2 below) maintains a linked list of
hashed challenges it sends to the HSK in hashList. The RP
initially creates the list and adds hash(request.Challenge)
to the list when registration completes (line 7). After sending
the request, the RP adds the hashed challenge to the hashList.
Upon receipt of an authentication response, the RP searches
the list to determine whether it contains the hashed challenge
in the response (line 10). A cloning attack is detected if it finds
no matching challenge (line 11). If the hash is in the list, it
removes items from the head of the list up to and including
the matching challenge.

1 updateChallengeHashHSK (req)
2 if req.reg
3 hashC <- hash(req.Challenge)
4 else if req.auth
5 resp <- genAuthnResp(hashC)
6 hashC <- hash(req.Challenge)
Algorithm 1: Update Challenge hash on the HSK

1 insertCurrentChallengeHashRP(req)
2 hashList.add(hash(req.challenge))
3
4 updateChallengeHashRP(req, resp)
5 if resp.reg
6 hashList <- list()
7 hashList.add(hash(req.Challenge))
8 else if resp.auth
9 hashC <- resp.hashC

10 if !(hashList.contains(hashC))
11 cloning detected
12 else
13 repeat
14 head <- hashList.remove()
15 until head == hashC
Algorithm 2: Update Challenge hash on the RP

After cloning occurs, whichever HSK logs in first (victim
or attacker) will submit a matching challenge hash and proceed,
while the other will fail its next login attempt. Regardless of
who logs in last, the RP is alerted that an attack occurred and
can take precautions. If the victim logs in last, they receive a
clone detection alert message informing them an attack occurred
so they can take appropriate action.

The hash-based clone detection algorithm is backward
compatible with FIDO2. It avoids false positives when mes-
sages are lost or delayed. Suppose an authentication request
(RP->HSK) is lost. Assume that RP and HSK each store hashes
of challengei−1. When the RP sends challengei, it adds the
hash to the tail of the list. If that challenge never arrives at
the HSK, the next request will contain challengei+1, which is
added to the list. The HSK will return a hash of challengei−1

in the response and store a hash of challengei+1. The RP will
match challengei−1 in the list and remove it from the head of
the list along with any earlier challenges still in the list. The
hashes of challengei and challengei+1 are still in the list.

Suppose an authentication response (HSK->RP) is lost.
Assume that RP and HSK each store hashes of challengei−1.
When the RP sends challengei, it adds the hash to the tail
of the list. The HSK returns a hash of challengei−1 in its

12

response and stores a hash of challengei. If the response never
arrives, the RP sends challengei+1 in the next request and adds
the hash to the tail of the list. The HSK includes challengei
in its response and stores a hash of challengei+1. When the
RP receives a hash of challengei in the response, it removes
the hashes of challengei−1 and challengei from the head of
the list.

The likelihood of a false negative is negligible because the
attacker authenticating with the cloned device would have to
guess a correct challenge hash with a probability of 1 in 2256.
The following claim defines the security property of the new
algorithm to prevent and detect attacks.

Claim 1. Let a user u register HSKu on a relying party RP
for authentication. Assume an attacker A has physical access
to HSKu from time t to t′, where t <= t′. Let u authenticate
to RP at time ti, where ti < t′, and at time tj , where tj > t′.
If A clones u’s HSK (i.e. HSKc) by time t′, then one of the
following occurs:

1) Both u and RP detect the clone attack during authentica-
tion at time tj .

2) A cannot authenticate to RP as u.

: Proof Sketch: Clone detection relies on a Hashed Challenge
List that the RP maintains. The ordered list of hashes of
challenges is a sliding window of challenges the RP has sent
to the HSK for authentication. The HSK returns the challenge
saved from the most recent authentication, which an RP will
accept only once and then remove from the list.

Once the device is cloned after time t′, A can authenticate
either before or after u authenticates at time tj . Case 1 describes
what happens when A authenticates before u, and Case 2
describes what happens when A authenticates after u.

In Case 1, both HSKu and HSKc have a copy of the hashed
challenge received at time ti, so A successfully authenticates
to RP as u and the hashed challenge at time ti is removed
from the list at the RP. When u authenticates at time tj and
returns the hashed challenge from time ti, the RP detects the
cloning attack and notifies the user.

The only way for A to bypass detection is to force u to
authenticate at time tj successfully. For this, A would need to
predict the last challenge A receives before time tj and send
that challenge to HSKu during the cloning process between
time t and t′, which is infeasible because the challenges are
generated randomly for every authentication.

In Case 2, both HSKu and HSKc have a copy of the hashed
challenge received at time ti, so u successfully authenticates to
RP at time tj , and the hashed challenge at time ti is removed
from the list at the RP. If A attempts to authenticate after time
tj and returns the hashed challenge from time ti, RP detects
the cloning attack and A fails to impersonate u. To impersonate
u, A must guess the challenge the RP returns to u at time
tj , which is infeasible given randomly generated challenges.
Therefore, A cannot authenticate to the RP.

VII. RECOMMENDATIONS

Include and highlight nicknames, make & model in email
notifications. RPs should send a notification to the owner of the

account after every HSK registration, highlighting the nickname,
make & model of the HSK and the total number of registered
HSKs. This notification may help users detect the registration
of an unrecognized HSK in Attack 2. The notification could
also be effective against Attack 1 if the adversary uses an HSK
with a different make and model than the victim.

Require HSK authentication before adding a second
HSK. An authenticated user can usually register additional
HSKs. But an adversary can register a malicious HSK in the
background without user knowledge i.e. Attack 2b. Therefore,
an RP should require authentication with a registered HSK
before registering an additional HSK. However, this presents
a problem when a user loses their HSK and wants to register
a new one. In this case, the user must remove the lost
HSK during an already logged-in session using less secure
authentication methods like a password. The requirement to
either (1) authenticate with a previous HSK or (2) remove a
lost HSK ensures that either the attacker cannot register their
HSK or the victim detects the removal of their HSK on the
account.

Provide more specific context in error messages. To
mitigate Attack 7a, device cloning error messages should
explicitly state that (1) the device is cloned, (2) remove the
device from the account, and (3) register another HSK. The
failed authentication following device cloning could happen to
either the victim or A, depending on who authenticates last
following a cloning attack. Future work could analyze an RP
notifying a victim out-of-band to make them aware the attack
occurred when A authenticates last.

When a user attempts to log in with a different key than
the one registered, an informative error message explaining
the problem would help users detect potential misbinding
attacks or resolve the issue if they have multiple HSKs. To
create these error messages, researchers should engage users
by conducting interviews and evaluating the effectiveness of
different alternatives.

VIII. RELATED WORK

Prior work has investigated the security guarantees of
the first FIDO protocols—Unified Authentication Framework
(UAF) and Unified 2nd Factor (U2F). UAF is a passwordless
authentication system, and U2F is a standardized 2FA system.
Hu et al. performed the first informal analysis of UAF and
outlined three attacks [12]. They identified the mis-binding
attack where an attacker binds their authenticator to a RP
instead of the user’s authenticator.

Panos et al. also analyzed UAF [19]. They identified attack
vectors that lead to system compromise. The threat model
includes attackers with access to the authenticator and control
of the UAF client.

Peirera et al. performed the first formal analysis of FIDO1
[21]. Their threat model includes a network attacker and an
attacker that compromises the client or server. They verified
the security of the protocol as long as the RP is verified. The
analysis investigated only authentication, not registration.

Feng et al. [10] conducted a comprehensive analysis of the
FIDO UAF protocol, confirming the mis-binding attack and
identifying a parallel session attack. Building on their findings,

13

we demonstrated the practical feasibility of the parallel session
attack in FIDO2, which we call MITM - Attack 4.

FIDO2/WebAuthn Eventually, UAF and U2F merged
into the W3C standardized protocol, FIDO2, which supports
both passwordless authentication and 2FA. Guirat et al. [11]
presented a formal proof of the protocol, with a threat model of
a passive and active network attacker. They did not consider a
compromised client. Finally, Jacomme et al. formally analyzed
several multi-factor authentication schemes, including FIDO2
[13]. The threat model includes malware, fingerprint spoofing,
and human error. FIDO2 was shown not to be provably secure
against malware.

Other studies [6], [7], [16] investigated the usability chal-
lenges and perceived benefits of FIDO2 device usage. Alqubaisi
et al. [4] evaluated the threats of password attacks and compared
passwords to single-factor FIDO2. Their findings suggest that
single-factor FIDO2 performs better against the password-based
threat model, but they do not address targeted attacks on the
FIDO2 protocol.

Chang et al. [5] exposed the weaknesses of U2F to side-
channel and MITM attacks and proposed a modification to the
U2F protocol to mitigate side-channel attacks. O’Flynn [18]
also expanded the threat model by showing an attack on
HSKs through Electromagnetic Fault Injection, which led to
recovering secret data. Dauterman et al. considered the threat
posed by hardware backdoors to HSKs and proposed True2F [8],
a strengthened version of U2F. True2F protects against a
malicious HSK and increases the protection against token finger-
printing. While this work does consider a compromised browser,
it asserts that if the True2F token behaves faithfully, it is no
less secure than traditional U2F. Our work is complementary
and makes HSKs more secure from a compromised browser
than traditional U2F.

Remember this Device (RTD) Patat et al. [20] identified
RTD vulnerabilities for U2F devices by popular websites and
proposed replacing cookies with a "soft U2F token." The token
resists eavesdropping but not theft by a compromised client.

IX. CONCLUSION

FIDO2 has primarily focused on defending against attacks
from afar by remote attackers that compromise a password or
attempt to phish the user. In this paper, we explored threats
from local attacks on FIDO2 that have received less attention—
a browser extension compromise and attackers gaining physical
access to an HSK.

We systematically analyzed local attacks on FIDO2. We
demonstrated that some attacks are feasible against popular
websites supporting FIDO2. Our systematization reveals four
underlying flaws that lead to these attacks.

In addition, we showed that the threat to FIDO2 authentica-
tion from compromised browser extensions is real by providing
data showing that many extensions have sufficient permissions
to attack FIDO2. We then conducted a static and dynamic
analysis of existing extensions and found no evidence that
these attacks occur in the wild.

We conducted two user studies and found that participants
did not detect the attacks from current error messages, email

alerts, and other UX responses to the attacks. Future work can
explore more effective ways to alert users of these attacks.

Disclosure We shared our results with Yubico and Firefox.
Although the attacks are outside the current threat model, they
appreciated receiving our results for future consideration.

Availability The code for our FIDO2 attack demonstrations
is available to researchers upon request.

ACKNOWLEDGMENT

The authors thank the reviewers for their helpful feedback
on the paper. We thank Alden Howard for assistance with the
extensions analysis on the Chrome store and Hayden Taylor for
assistance with the user study. We also thank Scott Ruoti and
Garrett Smith for their feedback on an earlier draft of the paper,
and Trevor McClellan and Parker Hanson for their feedback
on the camera-ready draft of the paper.

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1816929.

REFERENCES

[1] “Discovery of a massive, criminal surveillance campaign,”
"https://awakesecurity.com/blog/the-internets-new-arms-dealers\
\-malicious-domain-registrars/".

[2] “Google removes 500+ malicious chrome extensions,” "https://www.
ositcom.com/61".

[3] “Threat intelligence feeds and endpoint protection systems
fail to detect 24 malicious chrome extensions,” "https:
//www.catonetworks.com/blog/threat-intelligence-feeds-and-endpoint-\
\protection-systems-fail-to-detect-24\\-malicious-chrome-extensions/".

[4] F. Alqubaisi, A. S. Wazan, L. Ahmad, and D. W. Chadwick, “Should
we rush to implement password-less single factor FIDO2 based authen-
tication?” in 2020 12th Annual Undergraduate Research Conference on
Applied Computing (URC). IEEE, 2020, pp. 1–6.

[5] D. Chang, S. Mishra, S. K. Sanadhya, and A. P. Singh, “On making U2F
protocol leakage-resilient via re-keying.” IACR Cryptol. ePrint Arch.,
vol. 2017, p. 721, 2017.

[6] S. Ciolino, S. Parkin, and P. Dunphy, “Of two minds about two-factor:
Understanding everyday FIDO U2F usability through device comparison
and experience sampling,” in Fifteenth Symposium on Usable Privacy
and Security (SOUPS), 2019.

[7] S. Das, A. Dingman, and L. J. Camp, “Why Johnny doesn’t use two
factor a two-phase usability study of the FIDO U2F security key,” in
International Conference on Financial Cryptography and Data Security.
Springer, 2018, pp. 160–179.

[8] E. Dauterman, H. Corrigan-Gibbs, D. Mazières, D. Boneh, and D. Rizzo,
“True2f: Backdoor-resistant authentication tokens,” in 2019 IEEE Sym-
posium on Security and Privacy (SP). IEEE, 2019, pp. 398–416.

[9] Duo and Cisco, “Crxcavator chrome extension permissions,” "https:
//crxcavator.io/".

[10] H. Feng, H. Li, X. Pan, Z. Zhao, and T. Cactilab, “A formal analysis of
the FIDO UAF protocol.” in NDSS, 2021.

[11] I. B. Guirat and H. Halpin, “Formal verification of the W3C web
authentication protocol,” in Proceedings of the 5th Annual Symposium
and Bootcamp on Hot Topics in the Science of Security, 2018, pp. 1–10.

[12] K. Hu and Z. Zhang, “Security analysis of an attractive online
authentication standard: FIDO UAF protocol,” China Communications,
vol. 13, no. 12, pp. 189–198, 2016.

[13] C. Jacomme and S. Kremer, “An extensive formal analysis of multi-factor
authentication protocols,” in IEEE 31st Computer Security Foundations
Symposium (CSF). IEEE, 2018, pp. 1–15.

[14] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and
V. Paxson, “Hulk: Eliciting malicious behavior in browser extensions,”
in 23rd USENIX Security Symposium (USENIX Security 14), 2014, pp.
641–654.

14

[15] V. Lomne and T. Roche, “A side journey to titan, side-channel attack
on the google titan security key (revealing and breaking NXP’s P5x
ECDSA implementation on the way),” NinjaLab, 161 rue Ada, 34095
Montpellier, France, Tech. Rep., January 2021. [Online]. Available: https:
//ninjalab.io/wp-content/uploads/2021/01/a_side_journey_to_titan.pdf

[16] S. G. Lyastani, M. Schilling, M. Neumayr, M. Backes, and S. Bugiel,
“Is FIDO2 the kingslayer of user authentication? a comparative usability
study of FIDO2 passwordless authentication,” in 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 2020, pp. 268–285.

[17] Mozilla, “Permissions-policy,” "https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers/Permissions-Policy/
publickey-credentials-get".

[18] C. O’Flynn, “MIN()imum failure:EMFI attacks against USB stacks,” in
13th USENIX Workshop on Offensive Technologies (WOOT 19), 2019.

[19] C. Panos, S. Malliaros, C. Ntantogian, A. Panou, and C. Xenakis, “A
security evaluation of FIDO’s UAF protocol in mobile and embedded de-

vices,” in International Tyrrhenian Workshop on Digital Communication.
Springer, 2017, pp. 127–142.

[20] G. Patat and M. Sabt, “Please remember me: Security analysis of
U2F remember me implementations in the wild,” in Actes SSTIC 2020,
18th Information and Communications Technology Security Symposium
(SSTIC 2020), 2020.

[21] O. Pereira, F. Rochet, and C. Wiedling, “Formal analysis of the FIDO
1. x protocol,” in International Symposium on Foundations and Practice
of Security. Springer, 2017, pp. 68–82.

[22] T. Roche, V. Lomné, C. Mutschler, and L. Imbert, “A side journey to
titan,” in 30th USENIX Security Symposium (USENIX Security 21), 2021,
pp. 231–248.

[23] T. Roth, F. Freyer, M. Hollick, and J. Classen, “Airtag of the clones:
Shenanigans with liberated item finders,” in 2022 IEEE Security and
Privacy Workshops (SPW). IEEE, 2022, pp. 301–311.

15

