
Beyond the Surface: Uncovering the Unprotected
Components of Android Against Overlay Attack

Hao Zhou1∗, Shuohan Wu1∗, Chenxiong Qian2, Xiapu Luo1§, Haipeng Cai3 and Chao Zhang4
1The Hong Kong Polytechnic University, 2University of Hong Kong, 3Washington State University, 4Tsinghua University

Abstract—Overlay is a notable user interface feature in the
Android system, which allows an app to draw over other apps’
windows. While overlay enhances user experience and allows
concurrent app interaction, it has been extensively abused for ma-
licious purposes, such as "tapjacking", leading to so-called overlay
attacks. In order to combat this threat, Google introduced a dedi-
cated window flag SYSTEM_FLAG_HIDE_NON_SYSTEM_OVERLAY_WINDOWS
to protect critical system apps’ windows against overlay attacks.
Unfortunately, the adequacy of such protection in the Android
system remains unstudied, with a noticeable absence of clear
usage guidelines.

To bridge the gap, in this paper, we conduct the first systematic
study on the unprotected windows of system apps against overlay
attacks. We propose a comprehensive guideline and then design
and develop a new tool named OverlayChecker to identify
the missing protections in Android system apps. To verify the
uncovered issues, we also design and create Proof-of-Concept apps.
After applying OverlayChecker to 8 commercial Android systems
on 4 recently released Android versions, we totally discovered 49
vulnerable system apps’ windows. We reported our findings to the
mobile vendors, including Google, Samsung, Vivo, Xiaomi, and
Honor. At the time of writing, 15 of them have been confirmed. 5
CVEs have been assigned, and 3 of them are rated high severity.
We also received bug bounty rewards from these mobile vendors.

I. INTRODUCTION

Overlay or floating window is one of the key UI features of
Android. It allows an app to draw over other apps’ windows for
improving usability [73]. For example, the instant messaging
app (e.g., Facebook Messenger) creates an overlay, appearing on
top of other apps’ windows, to let users conveniently access the
received messages. Meanwhile, overlay allows users to interact
with multiple apps at the same time. For example, the video
streaming app (e.g., Youtube) creates an overlay to play videos
while letting users interact with other apps simultaneously (see
Fig. 11). Therefore, overlays are widely adopted by apps to
improve user experience. A recent study [73] reported that
around 35.4% of the top 500 popular apps on the Google Play
Store create overlays to improve their usability.

Like the coin has two sides, overlays are also widely abused
by malicious apps to launch attacks that compromise users’
security and privacy. Numerous studies [48, 52, 53, 59, 75]

∗Co-first authors.
§The corresponding author.

have found that attackers can abuse overlays to steal users’
private information by monitoring user input and lure users
to allow user consent for performing sensitive operations by
covering the sensitive widgets. For example, in Fig. 1a, a
malicious app creates an overlay on top of the system’s input
method to eavesdrop on users’ touch events to steal usernames
and passwords. In addition, in Fig. 1b, the malware creates an
overlay on top of the Allow button in the system’s settings
app’s permission request window, deceiving users into granting
the requested permissions to the malware.

Since system apps implement many security-sensitive
functionalities (e.g., permission managing and debugging) to
protect users’ security and privacy, they usually explicitly
ask for user consent before conducting sensitive operations.
Hence, it is essential to protect system apps against overlay
attacks. To achieve this purpose, recently released Android
systems (Android 10.0 ∼ 13.0) provide a dedicated window
flag namely SYSTEM_FLAG_HIDE_NON_SYSTEM_OVERLAY_WINDOWS
(short for HNSOW) for system apps to defend against overlay
attacks. Specifically, system apps’ windows can enable HNSOW
to prevent overlays created by third-party apps from drawing
over them [38]. Thus, HNSOW can prevent malware from abusing
overlays to intercept users’ touch events and lure users to allow
user consent, mitigating both attacks in Fig. 1.

O: #1 O: #2 O: #3 O: #4 O: #5 O: #6 O: #7 O: #8 O: #9 O: #0

O: #q O: #w O: #e O: #r O: #t O: #y O: #u O: #i O: #o O: #p

O: #a O: #s O: #d O: #f O: #g O: #h O: #j O: #k O: #l

O: #z O: #x O: #c O: #v O: #b O: #n O: #mO: Shift O: Delete

O: Comma O: Stop

(a) Keystroke inference [53].

Congratulations!
You get a gift

OK

(b) User consent bypass.

Fig. 1: Two cases of overlay attacks.

Although HNSOW can effectively protect system apps against
overlay attacks, it is unknown whether this flag is adopted by
the system apps whose windows need protection. Unfortunately,

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24035
www.ndss-symposium.org

we find that Google is constantly applying patches to enable
HNSOW in system apps’ windows in recently released Android
systems (Android 10.0 ∼ 13.0) [13–19, 21–23], indicating that
missing protections against overlay attacks commonly exists in
system apps. To make things even worse, we notice that the
guideline for determining whether a window needs protection
against overlay attacks is missing. Although Google outlines
three cases of windows that need protection [39], we discover
that they just cover very few protected windows of system apps.
Lacking the guideline raises two problems. On one hand, in
the official Android system developed by Google (i.e., AOSP
[10]), a part of system apps’ windows misses protection. On the
other hand, since mobile vendors usually introduce additional
system apps in their customized Android systems, a lack of
protections commonly exists in these system apps. To enhance
the security of system apps and enable them to defend against
overlay attacks, there is an urgent need for a proper guideline
to determine whether a system app window requires protection
and a systematic approach for identifying unprotected windows.

In this paper, we systematically investigate the vulnerability
of missing protections against overlay attacks in Android
systems. First, we semi-automatically analyze the protected
windows in the official Android system to build a guideline
for determining whether a window of a system app requires
protection (see §IV). More specifically, we automatically find
all protected system apps’ windows using static code analysis.
Then, we conduct an extensive manual analysis on the found
windows to gain insights into and summarize their common
features in three aspects, including startability, functionality,
and interactivity. Second, based on the guideline, we design and
develop a new approach, named OverlayChecker, to uncover
the windows that miss protections (see §V and §VI). In
detail, OverlayChecker statically examines the bytecode code
of system apps and Android framework to determine whether
the features of a window are consistent with the guideline.
If so, it further inspects whether HNSOW has been enabled in
the window. If not, a window missing protection is uncovered.
After uncovering a vulnerable window, we also craft a Proof-
of-Concept (PoC) app to validate the vulnerability and study
the potential security impact. To mitigate the manual effort,
we generate the code for launching the targeting window by
statically analyzing the system app (see §VII).

To evaluate the effectiveness of OverlayChecker, we apply it
to find the system apps’ windows that are vulnerable to overlay
attacks in 8 commercial Android systems on 4 recently released
Android versions (Android 10 ∼ 13) from 5 mainstream mobile
vendors, including Google, Samsung, Vivo, Xiaomi, and Honor.
In total, we uncover 49 unprotected windows, where attackers
can abuse overlay to lure users to allow consent for conducting
security-sensitive operations (e.g., privilege escalation), causing
severe security and privacy problems to users and their devices.
We have reported our findings to the corresponding mobile
vendors. At the time of writing, 15 of them have been confirmed.
5 CVEs have been assigned, and 3 of them are rated high
severity. We also received bug bounty rewards from Google,
Samsung, and Vivo.

In summary, we make the following contributions:

• We are the first to systematically investigate the vulnerability
of missing protection against overlay attacks in windows of
Android system apps.

• We summarize the criteria for determining whether a system
app’s window needs protection against overlay attack. Based
on it, we design and implement a tool named OverlayChecker
to uncover unprotected windows in Android systems.

• We apply OverlayChecker to 8 commercial Android systems
on 4 recently released Android versions. OverlayChecker
totally finds 49 unprotected windows, which are vulnerable
to overlay attack and can be compromised and lead to severe
security and privacy problems.

II. BACKGROUND

In this section, we present the knowledge about the Android
app’s user interface in §II-A and the Android system’s architec-
ture in §II-B. Then, we introduce overlay in Android in §II-C
and the flag SYSTEM_FLAG_HIDE_NON_SYSTEM_OVERLAY_WINDOWS
for preventing overlay attacks in §II-D.

A. User Interface of Android App

Activity. Activity represents a single screen in an app that
incorporates various user interface (UI) components (e.g.,
Button and ImageView) [4]. It acts as an entry point for users to
interact with an app. While an app typically consists of multiple
activities, each one operates independently, collaboratively
contributing to a cohesive user experience.

Window. Window serves as a top-level container that occupies
a rectangular region on the device’s screen, providing a canvas
for rendering and manipulating UI content [40]. Each activity in
an app has its own window, usually occupying the entire screen.
However, it can also be smaller and float above other windows.
It is worth mentioning that activities can create sub-windows
(e.g. dialogs) to present UI content [26].

01<activity android:name="NfcImportVCardActivity"
02 android:exported="true"
03 android:enabled="true"
04 <intent-filter android:priority="1">
05 <action android:name="NDEF_DISCOVERED"/>
06 <data android:mimeType="text/vcard"/>
07 <category android:name=".category.DEFAULT" />

Intent intent = getIntent();

if
(!NfcAdapter.ACTION_NDEF_DISCOVERED.equals(intent.getAction())) {

Log.w(TAG, "Unknowon intent " + intent);

finish();

return;

}

String scheme = mUri.getScheme();

if (!"http".equals(scheme) && !"https".equals(scheme)) {

Log.e(TAG, "Uri not http or https: " + mUri);

finish();

return;

Fig. 2: A simplified example of the manifest file of app.

Intent. Intent is a messaging object designed for implementing
inter-component communication in Android. An app component
(i.e., activity, service, broadcast receiver, and content provider
[30]) uses Intent to request operations from another component.

TABLE I: Composition of Intent.

Category Sub-cat Type Manifest Retrieving API

Basic

Action String <action > getAction()
Category Set<String> <category> getCategories()

Data String <data> getIntent()
Type String <data> getType()

Extra <k,v> k: custom String
v: multiple Types -

getStringExtra()
getFloatExtra()

getParcelableExtra()

An Intent object can carry a set of data items, providing the
necessary information for the requested operation. We outline
the data items that Intent can supply in Table I. These data can
be classified into two categories, namely the basic attribute and

2

the extra attribute. Basic attributes can be declared in intent-
filters within the manifest file (Lines 4-7 in Fig. 2), while extra
attributes are generally specified programmatically. The extra
attribute is formatted as a key-value pair (<k,v>). The key is a
string and the value could be of various types. Android offers
APIs for the component receiving the Intent to retrieve the data.
For instance, the getAction API can be called to obtain the
intended Action. If the value of the extra attribute is of the
String type, the API getStringExtra can be called to extract
the string value.

B. Architecture of Android System

The Android system is built on a multi-layered architecture
[35]. Fig. 3 shows the three core layers of the Android system,
including the Library layer, the Android Framework layer,
and the Application layer. System services (in the Android
Framework layer) provide APIs for apps (in the Application
layer) to interact with the Android system and perform sensitive
operations. For example, the Telephony service provides APIs
for apps to manage phone status and perform phone operations,
and the LocationManager service provides APIs for apps to
retrieve the sensitive location information of the device. Note
that, some system services (e.g., the Camera service) rely
on native code to access hardware and implement sensitive
functionalities. To achieve this purpose, they will invoke
functions in native libraries (in the Library layer).

Application

Library

Webkit Libc OpenGL
ES ……

Native C/C++ Libraries

ART Core
Libraries

Android Runtime

Hardware Abstraction Layer

Audio Bluetooth Camera Sensors ……

Linux Kernel

WIFI WIFI
Drivers

Keypad USB Display …

Android Framework (Java)

Activity
Manager

System Service
Location
Manager ...Telephony

Content
Provider View System

Email Calendar Camera ……

SystemApps

Twitter Chrome

Third-Party Apps

…

Application

Linux Kernel

WIFI WIFI
Drivers

Keypad USB Display …

Fig. 3: Android system architecture.

C. Overlay

Overlay is a floating window that can be created by an app
to overlap another app’s windows. It is designed to enhance user
experience by providing additional information or functionality
without requiring navigation away from the current window.
Overlay serves a range of purposes, such as the display of
tooltips, temporary notifications, or offering interactive controls.
Therefore, overlays are commonly used in apps. A recent study
[73] surveyed the top 500 apps on the Google Play Store and
found that 35.4% of them use overlays.

To create an overlay, an app needs to request the permission
SYSTEM_ALERT_WINDOW. Prior to Android 7, this permission is
automatically granted for apps installed from Google Play Store,
without requiring the user’s explicit consent [53]. However, such
improper permission control leads to the notorious "Cloak &
Dagger Attack" (or overlay attacks) [53], in which malicious
apps can abuse overlay to monitor users’ input events or lure
users to approve user consent (see Fig. 1), resulting in significant
security risks and privacy issues. To mitigate this problem, in the

later versions of Android, apps need to declare the permission
SYSTEM_ALERT_WINDOW in their manifest files, and explicitly ask
the user to enable this feature within the system settings app
(see Fig. 12a).

D. Hide Non-System Overlay Windows Flag

Since system apps usually implement security-sensitive
functionalities, before conducting these operations, they ask for
user consent. To protect system apps against overlay attacks, the
flag SYSTEM_FLAG_HIDE_NON_SYSTEM_OVERLAY_WINDOWS (short
for HNSOW) has been introduced in the recently released Android
systems (since Android 10). Specifically, by enabling the HNSOW
flag, system apps disallow non-system apps (i.e., third-party
apps) to draw overlays on top of their windows.

For example, GrantPermissionsActivity [28] is an activity
in the permission management system app. It will ask for user
consent before performing the security-sensitive operation of
granting runtime permissions to apps. Therefore, to defend
against overlay attack, as depicted in the following code snippet,
this activity calls the API addSystemFlags to enable HNSOW in
Line 3-4.

1 public class GrantPermissionsActivity
2 protected void onCreate(Bundle b){
3 getWindow().addSystemFlags(
4 SYSTEM_FLAG_HIDE_NON_SYSTEM_OVERLAY_WINDOWS);}

Remark. It is important to note that the Android system enables
HNSOW in a select portion of system app activities that require
protection, rather than in all activities of system apps. This
strategy strikes a balance between security concerns and user
experience. For instance, as shown in Fig. 3, system apps (e.g.,
system launcher app, system email app, system messaging
app, system settings app) provide various useful functionalities,
and users frequently interact with them when using Android
smartphones. If the windows of all system apps have HNSOW
enabled, overlays become almost unusable. To minimize the
impact on user experience, the system does not need to enable
the HNSOW flag on the targeted window if a system app’s window
is not under potential threat from malicious overlays.

III. MOTIVATION

Over recent years, as listed in Table II, a series of vulnerabil-
ities of missing protections against overlay attacks in Android
system apps have been exposed. For example, CVE-2021-0333
[16] discloses that the activity BluetoothPermissionActivity
in the system settings app was left unprotected against overlay
attack. As a consequence, malware can abuse overlay to obscure
the activity for luring users to allow the consent to grant
phonebook read permissions to a connected Bluetooth device.
We consider that the root cause of these issues stems from the
absence of a guideline, outlining which windows of system
apps necessitate protections against overlay attack (i.e., enabling
HNSOW). Through reviewing Google’s documentation [39], we
only derive a vague guidance, as presented below:

• The window for granting permission.
• The window for approving app installation.
• The window for showing a persistent sensor icon or equiva-

lent privacy-sensitive notification.

3

Although the guidance covers three categories of system
apps’ windows where overlay could pose security problems,
it misses a large portion of windows requiring protection. In
particular, the guidance only covers three vulnerabilities (i.e.,
CVE-2021-0314, CVE-2021-0333, CVE-2021-1016) in Table II,
while the remaining cases are non-compliant with the guidance.

TABLE II: Partial of CVEs about overlay attacks in Android.

CVE number System App Activity
CVE-2022-20212 [23] com.android.settings RequestToggleWifiActivity
CVE-2021-1016 [22] com.android.systemui UsbPermissionActivity
CVE-2021-0992 [21] com.android.settings PaymentDefaultDialog
CVE-2021-0538 [19] com.android.phone EmergencyCallbackModeExitDialog
CVE-2021-0523 [18] com.android.settings WifiScanModeActivity
CVE-2021-0391 [17] android ChooseTypeAndAccountActivity
CVE-2021-0333 [16] com.android.settings BluetoothPermissionActivity
CVE-2021-0314 [15] com.android.packageinstaller UninstallerActivity
CVE-2020-0394 [14] com.android.settings BluetoothPairingDialog
CVE-2020-0015 [13] com.android.certinstaller CertInstaller

In light of the observations, a proper guideline for determin-
ing which windows of system apps require protection against
overlay attacks is in urgent need. Additionally, a systematic
approach to identifying unprotected windows is also crucial for
bolstering security measures against potential overlay attacks.

IV. GUIDELINE

To demystify why a system app’s window requires protec-
tion against overlay attacks, we perform an in-depth analysis on
the windows under protection in the recently released official
Android system AOSP Android 12.

In order to complete the task, we propose a semi-automated
approach, which includes three steps. First, we find the protected
system apps’ windows. Since windows call addSystemFlags,
addPrivateFlags, or setPrivateFlags [5, 6, 37] and pass the
value of HNSOW to these APIs to enforce the protection, we
statically identify these APIs in bytecode of system apps and
then perform data flow analysis on the parameters to identify
the protected windows. Second, we study the features of these
windows. Specifically, we manually inspect the source code
of identified windows under protection to understand their
functionalities. We also review the code modification history to
find the potential reasons for system developers to enable HNSOW.
Moreover, to observe their user-centric functionalities more
intuitively, we use ADB [7] to launch them by constructing and
sending appropriate intents. Third, we summarize the common
features of the protected windows, which are treated as the
guideline for determining whether a system app’s window needs
to be protected against overlay attacks.

To guarantee the reliability of our conclusions, we recruited
four volunteers, two with over three years of Android develop-
ment experience and two who have published Android related
research papers in top-tier security conferences. In total, we
found 66 windows that set HNSOW, and each volunteer devoted
five days (about 30 hours) to analyzing them. They worked as
a team and carried out extensive discussions on the features of
each window, aiming to derive accurate and reliable conclusions.
Based on the findings from manual analysis, we summarize
the common features of the windows under protection in three
aspects, including startability, functionality, and interactivity.

(a) One-step Launch. (b) Internet Window. (c) AddNetwork.

Fig. 4: Different cases of system apps’ windows.

Startability. We discover that the windows under protection
can be launched in one step.

The windows that can be directly launched (i.e., launched in
one step) are more vulnerable to overlay attacks. For instance,
the activity BluetoothPermissionActivity of the system set-
tings app, which asks users to grant permissions to the con-
nected Bluetooth devices (see Fig. 4a), can be directly launched
by malware. Accordingly, while launching the activity, malware
can draw an overlay on top of the activity to deceive users
into clicking the "Allow" button to grant permissions. In this
scenario, due to a lack of context information, users are unaware
that they are interacting with BluetoothPermissionActivity.
To prevent such overlay attacks, the Android system enables
HNSOW in BluetoothPermissionActivity.

On the contrary, windows that cannot be directly launched,
which indicates that users need to interact with other windows
to launch them, are less vulnerable to overlay attacks because
users will obtain more context information. For example, to
launch the "AddNetwork" window in Fig. 4c, users need to first
start the "Internet" window in Fig. 4b and then click the "Add
network" button. With more interactions, users are more likely
to recognize the interaction context. This contextual awareness
makes overlay attacks challenging to execute. Hence, the system
does not enable HNSOW in the "AddNetwork" window.

Functionality. We uncover that the windows under protection
will perform sensitive operations.

Windows that implement sensitive functionalities, such
as permission management, typically require user consent to
perform such sensitive operations. Malicious apps can exploit
overlays to deceive users into granting user consent, resulting in
severe security consequences (e.g., privilege escalation). There-
fore, these windows necessitate protection against overlay at-
tacks. For instance, the activity BluetoothPermissionActivity,
which implements the sensitive function of granting permissions
to Bluetooth devices, must be defended against overlay attacks.
As a result, system developers enable HNSOW in this activity.

Interactivity. We find that sensitive functionalities of protected
windows can normally be executed with a limited number of
user interactions, usually no more than two, which include one
user interaction for launching the targeting window and another

4

TABLE III: Details about partial of system apps’ windows that are protected against overlay attacks in AOSP Android 13.

App Name Activity Name One-step Launch Sensitive Operations Simplistic Interaction

1 com.android.settings RequestToggleWiFiActivity self.onCreate WiFiManager.setWifiEnabled press a button

2 com.android.systemui UsbPermissionActivity self.onCreate UsbService.grantDevicePermission press a button

3 com.android.settings PaymentDefaultDialog self.onCreate Settings$Secure.putString press a button

4 com.android.phone EmergencyCallbackModeExitDialog self.onCreate Phone.exitEmergencyCallbackMode press a button

5 com.android.settings WifiScanModeActivity self.onCreate WifiManager.setScanAlwaysAvailable press a button

6 android ChooseTypeAndAccountActivity self.onCreate AccountManager.setAccountVisibility press a button

7 com.android.settings BluetoothPermissionActivity self.onCreate BluetoothDevice.setMessageAccessPermission press a button

8 com.android.packageinstaller UninstallerActivity self.onCreate PackageInstaller.uninstall press a button

9 com.android.settings BluetoothPairingDialog self.onCreate BluetoothDevice.setPhonebookAccessPermission press a button

10 com.android.permissioncontroller RequestRoleActivity self.onCreate RoleManager.addRoleHolderAsUser press a button

11 com.android.nfc ConfirmConnectActivity BluetoothPeripheralHandover.onReceive BluetoothHeadset.setConnectionPolicy press a button

12 com.android.certinstaller WiFiInstaller CertInstallerMain.onCreate WifiManager.addOrUpdatePasspointConfiguration press a button

single user interaction for triggering the sensitive functionality
of the window.

Windows requiring fewer user interactions to execute the
sensitive functionalities are more vulnerable to overlay attacks.
For example, after launching BluetoothPermissionActivity,
it only needs one click event (i.e., clicking the "Allow" button)
to perform the sensitive permission granting operation. Malware
can easily launch the overlay attack by creating a deceptive
overlay to lure users into clicking such a button. Since users
have limited context information about the interaction, it is
challenging for them to understand the consequences of such
a simple click event.

Conversely, more user interactions generally imply a more
complex chain of actions, which in turn reduces the likelihood
of a user unintentionally performing these actions. As shown
in Fig. 4c, adding a network requires four user interactions,
including launching the activity, entering an SSID, selecting a
security level, and clicking the save button. Although adding a
network is a sensitive operation, it is less likely that an attacker
can successfully deceive a user into performing multiple specific
actions (excluding the operation for launching the activity)
compared to just one. Multi-step interactions provide users
with more opportunities to notice unusual behaviors, thereby
raising their suspicions. It is worth noting that this aligns
with the existing practices, as most mobile manufacturers, like
Xiaomi, categorize the security risks that require more than
two user interactions as negligible threats [31].

Based on these findings, we derive three criteria that serve
as guidelines to determine whether a window of a system app
requires protection. If a window simultaneously satisfies these
three criteria, we consider that the window needs protection
against overlay attack. Table III presents a partial list of system
app windows that meet these criteria, all of which are protected
against overlay attacks in the latest AOSP Android 13.

• (C1) One-Step Launch: The window can be directly launched.
• (C2) Sensitive Operation: The window implements security-

sensitive functionalities.
• (C3) Simplistic Interaction: Sensitive operations of the win-

dow can be triggered via no more than one user interaction.

V. OVERVIEW OF OVERLAYCHECKER

Fig. 5 illustrates the workflow of our approach Overlay-
Checker, which consists of two primary components. (1) The
Discovery Module (see §VI) identifies the windows requiring
protection against overlay attacks in a given system app via a
three-step process. First, for each window in the system app,
the module examines the app’s manifest file and bytecode to
determine if the window is one-step launchable (C1). Second,
it identifies sensitive operations executed by the window, which
originate from two primary sources (i.e., sensitive system APIs
and sensitive content providers), thus determining if C2 is met.
Third, the module inspects the event handlers involving sensitive
operations to evaluate if they can be triggered through simple
user interactions (C3). Once all windows requiring protection
are identified, we verify whether they have enabled HNSOW. The
windows that have not enabled HNSOW are labeled as "suspicious".
(2) The PoC Creator Module (see §VII), constructs Proof-of-
Concept (PoC) apps for these suspicious windows to practically
confirm whether they are vulnerable to overlay attack. To reduce
manual efforts in constructing PoC apps, this module generates
the proper Intent objects, allowing us to launch the targeting
windows. After launching, we manually analyze the windows
to determine the regions for drawing overlays and the layouts
on overlays. As a final step, we submit the PoC apps along
with the bug reports to the mobile vendor.

VI. DISCOVERY MODULE

A. Criteria 1: One-Step Launch

This step aims to identify all windows, including activities
and dialogs, that can be directly launched (see C1 in §IV). To
achieve this, we consider two types of windows. ❶) First, we
examine windows that can be directly launched by external apps
through Intent objects. ❷) Second, we also consider windows
that can be launched by other components in the system (known
as preceding components). In particular, we focus on instances
where the preceding components are invisible, and the launch of
the targeting window does not require any user interaction. The
rationale is that visible and interactive preceding components
will enhance users’ awareness of their interaction context,
thereby arousing suspicion. The second type can be further
divided into two subclasses. The first subclass includes windows
that can be started by system services, broadcast receivers, or
services of system apps (all of which work in the background

5

System
apps

AOSP

Discovery
Module

{functions }

Function-call
Sequence

Criteria 1: One-Step

Launch

Criteria 2: Sensitive

Operation

Function-call
Sequence

Window

Requiring

Protection

Callback几个

Criteria 3: Simplistic

Interaction

Call Graph Analysis

Soot CFG
DDG

App Pre-Processing

Report the bug

Event Handler

Code

Analysis

Manifest

Analysis

或gettext

B有两个button,
单敏感操作再A

Onactivtyreult

Sensitive

System API

Sensitive

ContentProvider
Check Sensitive Operation

Triggers

Suspicious

Window

Activity Launching

Intent

Construction

Launch

Target Activity

Manual

Attack Design

PoC Creator Module

PoC app

HNSOW

flag??

Fig. 5: Workflow of OverlayChecker.

without a user interface [8]). Note that, a service of a system app
and a system service are two different concepts. The former
is an application-level component for a specific app, while
the latter represents an OS-level service that any app on the
device can use to perform common tasks (see Fig. 3). The
second subclass includes windows that are instantly launched
during the startup of other windows (e.g., those launched within
onCreate methods of activities).

In detail, given a system app, we first use FlowDroid [46]
to parse the manifest file, which contains information about the
app’s components [11]. For each activity in the manifest file,
we examine two attributes: "exported" and "enabled" (see Fig.
2). The "exported" attribute indicates whether the activity is
accessible to other apps or components outside of its own app.
The "enabled" attribute determines whether the activity can be
instantiated. Therefore, for an activity, if both the "exported"
and "enabled" attributes are set to "true", we consider it as type
❶, meeting C1. For activities that cannot be instantiated (i.e.,
"enabled" is set to "false"), we omit them because there is no
possible way to launch them.

For the activity, which is "enabled" but not "exported", we
conduct a more in-depth examination to pinpoint the component
responsible for launching it. First, we construct the call graph
of system apps and then analyze the call graph to identify the
system APIs (e.g., startActivity), which are called to launch
the targeting activity (e.g., Line 12 in Fig. 8a). From there,
we traverse the call graph backward to identify the caller. If
the caller is found to be another activity’s startup method (i.e.,
onCreate, onStart, or onResume), we further examine whether
this activity is "enabled" and "exported" (i.e., type ❷). In other
cases, if the caller is an intent handling method in broadcast
receivers (e.g., onReceive) and system apps’ services (e.g.,
onCreate, onStartCommand, onHandleIntent) or an interface of
system service which can be called by apps, we also categorize
the launched activity as type ❷.

In addition, we adopt a similar approach to identify the type
❷ dialog. More precisely, we first identify the system APIs
(e.g., Dialog.show), which are called to launch the dialog, and
then traverse the call graph backward to examine whether these
APIs are called by an activity’s startup method.

Moreover, it is common for preceding components to launch
the windows using asynchronous mechanisms, such as Thread,
Message Handler, and AsyncTask [47]. To account for this, we
follow the existing practice [47] to analyze and recover the
implicit function calls and then add the missing call graph edges.

By doing so, from the call graph, we can find out whether the
code, launching the targeting windows, can be triggered by
preceding components.

B. Criteria 2: Sensitive Operation

Through our experience and a review of existing studies
[66, 77, 78], we find that sensitive operations can be mainly
conducted by system apps in two ways.

Invoking sensitive APIs. System apps can execute sensitive
operations by calling sensitive APIs, such as those granting
access to contacts or cameras [76]. Since sensitive APIs are
implemented in system services [78], we first analyze the
system services to identify the sensitive APIs and then inspect
system apps to determine whether the identified sensitive APIs
are called in system apps’ windows.

In detail, since system services commonly adopt permission
check [78] to enforce access control in sensitive APIs, we
analyze the bytecode of system services to build the call graph
for finding the interfaces that call permission check methods.
These interfaces are treated as sensitive APIs. More specifically,
we follow the existing approach [78] to first collect the remote
interfaces of all system services, which are then used as the
entry points for conducting call graph traversal to identify
which interfaces call permission check methods.

With a complete collection of sensitive APIs, we analyze
the control flow of the window’s event handlers to determine if
they perform sensitive operations by calling sensitive APIs in
response to user interactions. Given that, we build the call graph
and control flow graph for system apps and find whether the
sensitive APIs are called by the event handlers (e.g., onClick)
of the targeting windows (identified in §VI-A). We focus on
event handlers because executing sensitive operations commonly
requires user consent, such as a user interaction on the "ok" or
"confirm" button.

Accessing Sensitive Content Providers. System apps, in
some cases, can execute sensitive operations by accessing
sensitive content providers (see §II-B), such as modifying
system data or settings, which could permanently impact the
user’s device. Similarly, to ensure safety, Android enforces
access restrictions (i.e., permissions) on these sensitive content
providers. The permissions required by them are declared
in their corresponding Manifest files. As such, if an event
handler accesses a permission-protected content Provider, we
consider there is a sensitive operation. Android provides a

6

unified interface (i.e., ContentResolver) for all apps to access
content providers. When we detect the use of this interface
within the control flow of an event handler, we follow the same
steps as the previous work [76] to infer the content provider
being accessed. Then, we examine the relevant Manifest file
to check if any permission is required for access.

例子错误

01 public class NfcImportVCardActivity{
02 protected void onCreate(Bundle bundle) {
03 Intent intent = getIntent();
04 if(!NDEF_DISCOVERED.equals(intent.getAction())){
05 finish();
06 return;}
07 String type = intent.getType();
08 if(type==null || (!"text/x-vcard".equals(type)
09 && !"text/vcard".equals(type))){
10 finish();
11 return;}
12 startActivityForResult(new Intent(this,
13 SelectAccountActivity.class), SELECT_ACCOUNT);}

01 public class A-Activity{
02 protected void onCreate(Bundle bundle) {
03 Intent intent = new Intent(B-Activity.class);
04 startActivityForResult(intent);}

05 protected void onActivityResult(int resultCode，
Intent result){

06 if(resultCode==RESULT_OK){
07 /**sensitive action**/;
08 }
09 sensitiveAPI(result);}

10 public class B-Activity{
11 public void onClick(){
12 Intent data = new Intent();
13 setResult(RESULT_OK,data);
14 finish()}

Fig. 6: Sensitive operation deferred to parent Activity.

Beyond the common scenario where the event handler
directly executes the sensitive operation, we also consider
a special case where the sensitive operation is deferred and
executed in the parent activity. As shown in Fig. 6 the parent
activity (A-Activity), starts another activity (B-Activity) in Line
4 using startActivityForResult. Within B-Activity, the user
performs an action (i.e., click on a button), which produces a
result and informs the parent activity via setResult in Line
13. Back in A-Activity, in onActivityResult that handles the
returned data from previously started activity, it will perform
sensitive operations based on the returned data. In this case,
a single user interaction also activates a sensitive operation.
To handle this, for each target Activity, we first scan all the
startActivityForResult across the app, aiming to identify
its parent activity. This involves conducting backward slicing
on the arguments of startActivityForResult to confirm if
the target activity is specified therein. Next, we inspect the
parent activity’s onActivityResult to identify if it contains any
sensitive operations. If true, we further examine whether these
sensitive operations are dependent on the returned data. Notably,
both resultCode and result arguments of onActivityResult
(Line 5) can store the returned data. We analyze both the
data and control dependency between these two arguments and
sensitive operations. We explore the data dependency because
the returned data might be directly used in sensitive operations
(Line 9), while control dependency is examined because the
returned data could influence the execution of the sensitive
operations (Line 6). If any such dependency is found, we
classify the target activity as satisfying C2.

C. Criteria 3: Simplistic Interaction

To determine if an Activity meets C3 criteria, we investigate
whether sensitive operations within it can be triggered through
a single user interaction. As previously mentioned, multi-step
interactions significantly reduce the probability of successful
overlay attacks. To facilitate this, we aim to detect if sensitive
operations within the event handler depend on other user inputs.
This dependency can be established in two ways. First, as

demonstrated in Line 6 of Fig. 7, the sensitive operation is
protected by a global variable, which needs to be modified in
other event handlers (Line 4) to satisfy the branch constraint.
The second way is shown in Line 7, where a branch condition
utilizes the text entered by the user. Although no global variable
is used, the user still requires the correct interaction sequence
to trigger the sensitive operation.

01 public class RequestPermissionActivity
02 protected void onCreate(Bundle s){
03 getWindow().addSystemFlags(

SYSTEM_FLAG_HIDE_NON_SYSTEM_OVERLAY_WINDOWS);
}

01 private String current;
02 private EditText editText;
03 public void onSwipeLeft(){
04 current = getSomething();}
05 public void onClick(){
06 if(current == null) {return;}
07 if(editText.getText() == null) {return;}
08 /**sensitive action**/;}

checkBox.isChecked(
/**sensitive action**/;

01 public class NfcImportVCardActivity
02 protected void onCreate(Bundle s){
03 if(condition) {
04 startActivityForResult(new Intent(this,
05 SelectAccountActivity.class), ACCOUNT);
06 return;}}

01<activity android:name="ImportVCardActivity"
02 android:exported="true"

Fig. 7: Two ways that sensitive operations rely on user inputs.

Based on these observations, to complete the task, we first
analyze and construct the control flow of the event handler
containing the sensitive operations (identified in §VI-B). Then,
we traverse the control flow to identify all branch statements
preceding the sensitive operation. When a global variable is used
in the branch condition, we further assess whether its default
value can trigger sensitive operations. Specifically, we examine
the target Activity’s constructor (<init>) and initialization life-
cycle functions (onCreate, onStart) to find the assignment
statement of this global variable, thereby determining its default
value. Subsequently, we use the concolic execution to verify
if this default value can satisfy the branch condition and thus
reach the sensitive operations. If so, we conclude that the
sensitive operation can be triggered by a single user interaction,
thus meeting C3. Otherwise, we consider the target Activity as
not meeting C3. In addition, if the branch condition uses the
return values from user-input-dependent methods (e.g., getText,
isChecked), which require user input to yield results, we also
regard the target Activity as not meeting C3.

VII. POC CREATOR MODULE

After applying three criteria, we identify the windows within
system apps that necessitate overlay protection. Next, we inspect
these windows to see if they enable the HNSOW flag through
control flow analysis, thus identifying suspicious windows
that may miss overlay protection. To practically validate the
potential discovered issues, this module is designed to build
PoC apps for them. To facilitate this process and reduce manual
efforts, we perform static analysis to automatically construct
the window launching context. Once the suspicious window is
launched, we manually design an overlay to be drawn over it
within our PoC app.

A. Launching Target Activity

As introduced in §II-A, an Activity can be externally
launched via an Intent object. When creating such an Intent
to start an Activity, it is crucial to provide the proper context
(e.g., "Action" and "View" in Table I). This ensures that the
triggered Activity has the necessary resources and can exhibit
the expected behaviors. Take the example in Fig. 8a, where
the Activity, upon launch, first invokes its life-cycle method
onCreate. To access the context during this initialization, it
retrieves the Intent using the API getIntent. Subsequently,

7

SwitchToEsimConfirmDialogActivity

String[] provisionApp =
getIntent().getStringArrayExtra(

frameworks/base/core/java/com/android/internal/app/ConfirmUserCreati
onActivity.java

01 protected void onCreate(Bundle bundle) {
02 Intent intent = getIntent();
03 String usrName=intent.getStringExtra(USER_NAME);
04 PersistableBundle actOptions =

intent.getParcelableExtra(USER_ACCOUNT_OPTIONS);
$r0 = @this;
$r1 = virtualinvoke $r0.<.Activity:..Intent getIntent()>();
……
$r3 = virtualinvoke $r1.<..Intent: ..Parcelable

getParcelableExtra(.lang.String)>("USER_ACCOUNT_OPTIONS");
$r4 = (android.os.PersistableBundle) $r3;

Data-flow
Propagation

01 public class NfcImportVCardActivity{
02 protected void onCreate(Bundle bundle) {
03 Intent intent = getIntent();
04 if(!NDEF_DISCOVERED.equals(intent.getAction())){
05 finish();
06 return;}
07 String type = intent.getType();
08 if(type==null || (!"text/x-vcard".equals(type)
09 && !"text/vcard".equals(type))){
10 finish();
11 return;}
12 startActivityForResult(new Intent(this,
13 SelectAccountActivity.class), SELECT_ACCOUNT);}

(a) Basic Attribute.SwitchToEsimConfirmDialogActivity

String[] provisionApp =
getIntent().getStringArrayExtra(

frameworks/base/core/java/com/android/internal/app/ConfirmUserCreati
onActivity.java

01 protected void onCreate(Bundle bundle) {
02 Intent intent = getIntent();
03 String usrName=intent.getStringExtra(USER_NAME);
04 PersistableBundle actOptions =

intent.getParcelableExtra(USER_ACCOUNT_OPTIONS);
$r0 = @this;
$r1 = virtualinvoke $r0.<.Activity:..Intent getIntent()>();
……
$r3 = virtualinvoke $r1.<..Intent: ..Parcelable

getParcelableExtra(.lang.String)>("USER_ACCOUNT_OPTIONS");
$r4 = (android.os.PersistableBundle) $r3;

Data-flow
Propagation

01 public class NfcImportVCardActivity{
02 protected void onCreate(Bundle bundle) {
03 Intent intent = getIntent();
04 if(!NDEF_DISCOVERED.equals(intent.getAction())){
05 finish();
06 return;}
07 String type = intent.getType();
08 if(type==null || (!"text/x-vcard".equals(type)
09 && !"text/vcard".equals(type))){
10 finish();
11 return;}
12 startActivityForResult(new Intent(this,
13 SelectAccountActivity.class), SELECT_ACCOUNT);}

(b) Extra Attribute.

Fig. 8: Intent Construction.

the Activity extracts the attached data from the Intent through
several APIs (e.g., getAction). The extracted data is then used
for various purposes, such as determining branch paths.

To construct the correct Intent to launch the target Activity,
we employ a three-step approach. First, for the basic attributes
(see Table I) declared in the manifest file, we scan the manifest
file to determine their values. For example, in Fig. 8a, for
the NfcImportVCardActivity, its expected intent Action is
"NDEF_DISCOVERED". This value can be obtained by inspecting
the <action> element within the Intent-filter (see Fig. 2). Among
the basic attributes, the Data attribute stands out for its distinc-
tive requirement. The value of the <data> element in the mani-
fest cannot be directly used by the Intent. Instead, it specifies the
type of data that the target Activity can handle. For example, in
Fig. 2, <data android:mimeType="text/vcard"/>
indicates that we need to input a VCard file (i.e., .vcf file) into
the Intent as its Data attribute. To better handle Data, we
establish a mapping for each specific type, e.g., we use random
text for the type text/plain.

For extra attributes, which are key-value pairs, our approach
aims to identify the correct key and the type of its value.
Activities can use several specific system APIs, such as
getStringExtra in Line 3 of Fig. 8b, to retrieve extra attributes
using user-defined keys. Leveraging a list of APIs collected
by prior research [71], which includes 29 APIs that can access
extra attributes of different types, we locate the invocations of
these APIs within the onCreate method of the target Activity.
As a result, we can determine the key and the type of the extra
attribute. For example, the key in line 3 is "user name" and the
value is a string. Parcelable and Serializable are two special
types of extra attributes, both of which are implemented as
generic types for Android serialization. As shown in Line 4,
when an object is received from an Intent using Parcelable, it
needs to be cast to a specific type. To handle this, for APIs like
getParcelableExtra, we track the data flow from its return
value to find the cast statement (r4), allowing us to determine

its types. It is worth noting that extra attributes are typically
used for providing data. Therefore, after extracting their keys
and types, we follow the existing practice [71] to assign random
values based on their types.

For activities that need to be launched by other components
(Activities, services, broadcast receivers), we launch them by
sending Intents to their preceding components. Given that these
components typically rely on the Action attribute within
the Intent to determine the events to execute (e.g., launching
an Activity) [12], we must determine the correct Action
to set. To achieve this, we first trace the control flow path
from the code point at which they receive the Intent to the
target Activity’s launch. Then, we adapt the approach in [71]
to perform constraint solving on the Action attribute to
determine its value. For other data attached within the Intent,
we reuse the previous approach to identify the key and the type
of its value. For Activities that cannot be launched through
automatically constructed Intents (e.g., some Activities use extra
attributes as condition constraints), we manually analyze their
code to build their respective Intents. For third-party ROMs
without source code, we use tools such as JEB [24] to analyze
the decompiled code.

B. Manual Attack Design

After launching the suspicious window, we manually craft a
PoC app tailored for it. Our goal is to cover the entire suspicious
window’s region with an overlay. We utilize uiautomator2 [9],
an Android UI testing framework to obtain its coordinates and
size. Once the suspicious window is launched, the PoC app
swiftly draws an overlay of the corresponding position to cover
it. We also make this overlay indistinguishable from the PoC
app interface. By doing so, we effectively obscure the user’s
view of the underlying window, making it challenging for them
to recognize their interactions with the system app due to the
lack of contextual clues. Subsequently, we manually analyze
the code of the suspicious window, to determine which widget
(e.g., Button) triggers the sensitive operation. This knowledge
helps us craft the deceptive widget within our overlay, which
is placed at the exact coordinates of the sensitive widget in the
actual Activity. It’s noteworthy that our PoC app will request
the SYSTEM_ALERT_WINDOW permission from the user,
aligning with the threat model assumed for overlay attacks (see
Appendix A).

VIII. EVALUATION

In this section, we evaluate the performance and function-
alities of OverlayChecker by answering the following four
research questions (RQs).

RQ1: Are the guidelines reliable for determining whether a
window of the system app requires protection?

RQ2: Can OverlayChecker effectively uncover the system apps’
windows missing protection in Google AOSP?

RQ3: Can OverlayChecker effectively identify the system apps’
windows lacking protection in third-party Android ROMs?

RQ4: What are security impacts of missing protection against
overlay attacks in unprotected windows of Android systems?

We develop the OverlayChecker with more than 8k SLOC
in Java and around 1k SLOC in Python. The prototype is

8

implemented based on several existing tools: ADB [7], a tool
that helps dump app from Android devices; Apktool [3], a tool
used to decompile Android apk; Soot [46], a static analysis
framework we use to construct call graphs and perform control
and data flow analyses; Z3 [69], an SMT solver that we build
our concolic testing engine; and Fax [71], a framework that
assists in constructing the Intent objects.

TABLE IV: Details about Android systems under analysis.

System Version Vendor Date #App #Miss

1 AOSP 10 Google 01/2022 75 27
2 AOSP 11 Google 12/2021 102 16
3 AOSP 12 Google 11/2021 197 10
4 AOSP 13 Google 12/2022 212 7

5 OneUI 12 Samsung 01/2022 311 26

6 OriginOS 12 Vivo 02/2022 289 22

7 MIUI 12 Xiaomi 06/2022 245 22

8 MagicUI 12 Honor 06/2022 357 14

Data Set. To answer the research questions, OverlayChecker
is applied to analyze 8 commercial Android systems. Table IV
lists details about systems under evaluation, where System,
Version, and Vendor provide the information about system
name, Android version, mobile vendor that deploys the cor-
responding system on its mobile devices. In addition, #App
provides the number of system apps. In detail, we choose
4 recently released versions of Android systems (Android
10 ∼ 13) deployed on the smartphones of popular mobile
vendors [2] as our targets, including the official Android system
AOSP [10] deployed on Google Pixel, and third-party Android
systems OneUI [33] deployed on Samsung Galaxy smartphones,
OriginOS [34] deployed on Vivo smartphones, MIUI [32]
deployed on Xiaomi smartphones, and MagicUI [1] deployed
on Honor smartphones. We extracted JAR files and APK files
of Android framework and system apps of the systems under
evaluation from the downloaded stock ROMs of Google Pixel
6, Samsung Galaxy S21, Vivo iQOO 8, Xiaomi 11, and Honor
60 respectively, between November 2021 and December 2022.

A. Reliability of Guidelines (RQ1)

To evaluate the reliability of the proposed guidelines, we
follow the procedures in §IV to automatically find the windows
protected against overlay attacks in each system app of AOSP
Android 10 ∼ 13, and then we manually examined their source
code to determine whether they satisfy the guidelines. More
specifically, all (100%) of 27 protected windows found in AOSP
Android 10 satisfy the guidelines. 42 (95.5%) of 44 protected
windows found in AOSP Android 11 satisfy the guidelines. 56
(93.3%) of 60 protected windows found in AOSP Android 12
satisfy the guidelines. 60 (90.9%) of 66 protected windows
found in AOSP Android 13 satisfy the guidelines. Since most
(more than 90%) of protected windows in AOSP Android 10 ∼
13 satisfy the guidelines, we are confident that the guidelines
are reasonably reliable.

We further analyze the 6 protected windows that dissatisfy
the guidelines, including ContactsDumpActivity, WebActivity,
UserConsentActivityDialog, CacheClearingActivity, Usb-
AccessoryUriActivity, and BugreportWarningActivity. We
find that they neither call sensitive APIs nor access sensitive
content providers to perform sensitive operations (see Criteria 2

in §VI-B). Particularly, they conduct operations on files storing
sensitive content (e.g., bugreport).

B. Unprotected Windows in Official Android Systems (RQ2)

Table V lists the details about the system apps’ windows
missing protection against overlay attacks in 2 recently released
versions of AOSP, including Android 12 and 13. In total, 10
unprotected windows are identified by OverlayChecker. All of
the vulnerable windows are found in Android 12, while 7 of
them still exist in Android 13. To further determine whether
the remaining 3 cases are false negatives, we manually examine
their source code. We find that these windows have enabled
HNSOW in Android 13, indicating that they become protected
windows in Android 13. Therefore, they are not false negatives.

Responsible Disclosure. We are in the process of responsibly
disclosing all our findings to Google. At the time of writing,
3 of the identified unprotected windows have been confirmed.
We have been assigned 3 CVEs with high severity and got bug
bounty rewards from Google.

Evolution of Defense Strategies. To understand the evolution
of AOSP’s overlay-related defense strategies, we also apply
OverlayChecker to extra 2 versions of AOSP, including Android
10 and 11. Specifically, there are 27, 16, 10, and 7 unprotected
windows found in AOSP Android 10 ∼ 13, respectively.
Inspecting the detection results, we have the following findings.
(1) Unprotected windows are gradually patched in AOSP. More
specifically, 10 unprotected windows in AOSP Android 10 get
protection in Android 11, 7 unprotected windows in AOSP
Android 11 get protection in Android 12, and 3 unprotected
windows in AOSP Android 12 get protection in Android 13. (2)
New versions of AOSP introduce extra unprotected windows.
Specifically, 2 and 1 unprotected windows are introduced
in AOSP Android 11 and 12, respectively. (3) Unprotected
windows still exist in the latest version of AOSP. For example,
AOSP Android 13 still has 7 unprotected windows.

C. Unprotected Windows in Third-party Android Systems (RQ3)

Table VII presents the details about partial of system apps’
windows lacking protection against overlay attacks in Samsung
OneUI Android 12, Vivo OriginOS Android 12, Xiaomi MIUI
Android 12, and Honor MagicUI Android 12. In total, 39
unprotected windows are found by OverlayChecker. In detail,
OverlayChecker uncovers 26 vulnerable windows in OneUI,
22 vulnerable windows in OriginOS, 22 vulnerable windows
in MIUI, and 14 vulnerable windows in MagicUI. Note that,
all unprotected windows in AOSP Android 12 also remain
unprotected in OneUI, OriginOS, MIUI, and MagicUI. That is,
compared with AOSP, more unprotected windows are found in
the third-party commercial Android systems under evaluation.

From the results, we observe that mobile vendors fail to
promptly apply Google’s security patches to their customized
systems. For instance, Google addressed an overlay missing
protection issue in RequestToggleWiFiActivity in Android 12
(referring to CVE-2021-0837 [20]). This fix prevents overlay
from rendering on top of the window that asks for user consent
to enable WiFi. However, Samsung OneUI Android 12 still has
this vulnerability (7th case in Table VII), leaving opportunities
for attackers to lure users to enable WiFi without consent.

9

TABLE V: A Summary of the identified unprotected windows in the recently released AOSP.

System Version ID App Window Name One-step Launch1 Sensitive Operations Simplistic Interaction

AOSP

12
1 com.android.settings RequestManageCredentials self.onCreate KeyChain.setCredentialManagementApp press a button
2 android HarmfulAppWarningActivity ATMS.startActivity PackageManager.deletePackage press a button
3 com.android.permissioncontroller ReviewPermissionsActivity self.onCreate PermissionManager.startOneTimePermissionSession press a button

12
≀

13

4 com.android.settings AppWidgetPickActivity self.onCreate AppWidgetManager.bindAppWidgetId click on an AppWidget item
5 com.android.managedprovisioning PreProvisioningActivity self.onCreate DevicePolicyManager.wipeData press a button
6 com.android.settings WifiNoInternetDialog self.onCreate ConnectivityManager.setAcceptUnvalidated press a button
7 com.android.phone PhoneAccountSettingsActivity self.onCreate TelecomManager.setUserSelectedOutgoingPhoneAccount select a phone account
8 com.android.server.telecom EnableAccountPreferenceActivity self.onCreate TelecomManager.enablePhoneAccount select a phone account
9 com.android.vpndialogs ManageDialog self.onCreate VpnManager.prepareVpn press a button
10 com.android.captiveportallogin CaptivePortalLoginActivity self.onCreate CaptivePortal.useNetwork select a menu item

1 ATMS: ActivityTaskManagerService

TABLE VI: Security implications of missing protection against
overlay attacks on windows of AOSP system apps.

System ID A crafted overlay can lure users to ...

AOSP

1 set the credential manager app.
2 launch harmful apps marked by Play Store.
3 grant permissions to apps.
4 manipulate App widgets on the home screen.
5 set up work profile and agree to managed provisioning related tasks.
6 connect to the network regardless of whether it is validated or not.
7 select and adjust enabled phone accounts.
8 adjust enabled phone accounts.
9 set the VPN service to be controlled by new apps.

10 use the current network even though it has an unsatisfied captive portal.

Responsible Disclosure. We are making responsible disclosures
by reporting our findings to Samsung, Vivo, Xiaomi, and
Honor. At the time of writing, 4 of the identified unprotected
windows in OneUI have been confirmed by Samsung. We have
been assigned 2 CVEs with moderate severity and got bug
bounty rewards from Samsung. In addition, 8 of the uncovered
vulnerable windows in OriginOS have been confirmed by Vivo.
The Android security team of Vivo rates the confirmed cases as
high severity, and we also got bug bounty rewards from Vivo.

D. False Alarms

To analyze false positives (FPs) of OverlayChecker, we
manually inspect the source code of unprotected windows
identified by OverlayChecker in AOSP Android 10 ∼ 13. We
find that all of the unprotected windows satisfy the guidelines
without enabling HNSOW. That is, no false positives are found.

Furthermore, to analyze false negatives (FNs) of Overlay-
Checker, we apply OverlayChecker to AOSP Android 10 ∼
13 and compare reported unprotected windows with manually
found protected windows in two adjacent versions of AOSP. For
a window that is protected in the higher version but unprotected
in the lower version, if OverlayChecker does not detect it in the
lower version, it is an FN. In total, we find 3 FNs. Specifically,
ContactsDumpActivity is protected in AOSP Android 11 but
unprotected in Android 10. BugreportWarningActivity and
UserConsentActivityDialog are protected in AOSP Android
12 but unprotected in Android 11. OverlayChecker cannot detect
them because our guidelines do not cover sensitive operations
performed in these windows.

IX. CASE STUDY

To study the security impact of missing protection against
overlay attacks in system apps of commercial Android systems

Fig. 9: The proof-of-concept for the case study of Google.

(RQ4), in this section, we present two case studies to explore
the details of identified vulnerabilities, assess their potential
threats, and illustrate hypothetical scenarios in which these
vulnerabilities could be exploited. Note that, we summarize the
potential security implications of vulnerable windows identified
by OverlayChecker in official Android systems and third-party
Android ROMs in Table VI and Table VIII, respectively.

A. Google

Bug Overview. HarmfulAppWarningActivity, a system activity
used to alert users when a potentially harmful app is installed
or detected on their devices, is revealed to contain a bug that
allows malicious apps to overlay this warning screen with a
fake UI. Consequently, an unknowing user may be misled into
trusting and opening the harmful app.

Proof-of-Concept. Our proof-of-concept demonstration unfolds
in several steps. First, we create a malicious app and installed
it on a Pixel 6 device. By executing the ADB command (i.e.,
ADB shell pm set-harmful-app-warning apkName harmful 0),
we mark it as a harmful app. Then, we create a secondary
app, which served as a launchpad for the malware. This app is
installed on the same device and is granted with the permission
system_alert_window. When the secondary app activates the
malware, it also immediately draws an overlay to cover the

10

TABLE VII: A Summary of the identified unprotected windows in third-party Android systems.

System Version ID App Window Name One-step Launch Sensitive Operations Simplistic Interaction

OneUI 12

1 com.samsung.android.settings BluetoothScanDialog self.onCreate AdapterService.startDiscovery click on an item
2 com.android.permissioncontroller ConfirmationActivity ConfirmationReceiver.onReceive IncidentManager.approveReport press a button
3 com.android.permissioncontroller AppsPermissionsActivity self.onCreate AppOpsManager.setUidMode press a button
4 com.samsung.android.settings WifiApAutoHotspotBlePairingDialog self.onCreate BluetoothDevice.setPairingConfirmation press a button
5 com.android.settings SimDialogActivity self.onCreate TelephonyManager.setDataEnabled press a button
6 com.samsung.android.settings WifiApWarning self.onCreate SemWifiManager.setWifiApEnabled press a button
7 com.android.settings RequestToggleWiFiActivity self.onCreate WifiManager.setWifiEnabled press a button
8 com.samsung.android.settings PaymentDefaultDialog self.onCreate Settings$Secure.putStringForUser press a button
9 com.android.systemui SensorUseStartedActivity self.onCreate SensorPrivacyManager.setSensorPrivacyForProfileGroup press a button

10 com.android.systemui TvUnblockSensorActivity self.onCreate SensorPrivacyManager.setSensorPrivacyForProfileGroup press a button
11 com.samsung.desktopsystemui UsbConfirmActivity self.onCreate UsbManager.grantDevicePermission press a button
12 com.samsung.desktopsystemui SensorUseStartedActivity self.onCreate SensorPrivacyManager.setSensorPrivacyForProfileGroup press a button
13 com.sec.android.app WiFiStressTest self.onCreate WifiManager.setWifiEnabled press a button
14 com.android.nfc BeamShareActivity self.onCreate NfcAdapter.enable press a button
15 com.android.nfc ConfirmConnectToWifiNetworkActivity self.onCreate WifiManager.connect press a button
16 com.samsung.android.settings WifiPickerDialog self.onCreate WifiManager.connect click on an item

OriginOS 12

1 com.android.bluetooth BluetoothOppTransferActivity BluetoothOppReceiver.onReceive BluetoothAdapter.enable press a button
2 com.android.permissioncontroller ConfirmationActivity ConfirmationReceiver.onReceive IncidentManager.approveReport press a button
3 com.android.bluetoothsettings BluetoothPermissionActivity self.onCreate BluetoothDevice.setAutoPlayAccessPermission press a button
4 com.android.wifisettings WifiReselectApDialog self.onCreate TelephonyManager.setDataEnabled press a button
5 com.android.settings SimDialogActivity self.onCreate SubscriptionManager.setDefaultDataSubId press a button
6 com.android.wifisettings Settings$WifiSettingsActivity self.onCreate WifiManager.save press a button
7 com.android.wifisettings Settings$AuxiliaryWifiActivity self.onCreate WifiManager.enableNetwork press a button
8 com.android.wifisettings WifiNotifyDialog self.onCreate WifiManager.connect press a button
9 com.vivo.systemui NotificationPermissionDialogActivity self.onCreate NotificationOpsManager.setNotificationEnabled press a button

10 com.android.systemui SensorUseStartedActivity self.onCreate SensorPrivacyManager.setSensorPrivacyForProfileGroup press a button
11 com.vivo.permissionmanager DefaultAppConfirmActivity self.onCreate Settings$Secure.putString press a button
12 com.android.wifisettings Setting$WifiDisplaySettingsActivity self.onCreate DisplayManager.startWifiDisplayScan click on an item

MIUI 12

1 com.android.bluetooth BluetoothOppBtEnableActivity BluetoothOppLauncherActivity.onCreate BluetoothAdapter.enable press a button
2 com.android.systemui UsbDebuggingActivity self.onCreate IAdbManager.allowDebugging press a button
3 com.android.systemui NetworkOverLimitActivity self.onCreate INetworkPolicyManager.snoozeLimit press a button
4 com.android.settings SimDialogActivity self.onCreate TelecomManager.setUserSelectedOutgoingPhoneAccount select a phone account
5 com.android.settings MiuiHeadsetActivity self.onCreate BluetoothDevice.setPhonebookAccessPermission press a button
6 com.android.settings BluetoothPairingDialog self.onCreate BluetoothDevice.setPairingConfirmation press a button
7 com.android.settings WifiProvisionSettingsActivity self.onCreate WifiManager.connect press a button
8 com.android.settings ManageApplicationsActivity self.onCreate NetworkPolicyManager.setUidPolicy press a button
9 com.android.settings WifiAssistantDialog self.onCreate ConnectivityManager.setAcceptUnvalidated press a button

10 com.android.settings MiuiSmsDefaultDialog self.onCreate SmsApplication.setDefaultApplication press a button
11 com.android.settings PaymentDefaultDialog self.onCreate Settings$Secure.putString press a button
12 com.android.phone MiuiPhoneAccountSettingsActivity self.onCreate TelecomManager.setUserSelectedOutgoingPhoneAccount select a phone account

MagicUI 4

1 com.android.settings BluetoothQuickDialogActivity self.onCreate BluetoothAdapter.startDiscovery press a button
2 com.android.settings DialerDefaultDialog self.onCreate TelecomManager.setDefaultDialer press a button
3 com.android.settings RequestIgnoreBatteryOptimizations self.onCreate IDeviceIdleController.addPowerSaveWhitelistApp press a button
4 com.android.systemui HwUsbDebuggingActivity self.onCreate IAdbManager.allowDebugging press a button

activity HarmfulAppWarningActivity’s window that pops up
(as shown in Fig. 9). Thus, we can lure the user to open harmful
apps by clicking on the "OPEN ANYWAY" button.

Potential Threats. This exploit could potentially lead to a
multitude of severe threats. Given that the user is misled into
trusting harmful apps, the malicious actors could gain unautho-
rized access to sensitive personal data, incur unwanted charges
by making calls or sending messages, install additional malware
leading to more serious security breaches or performance issues,
or in worst-case scenarios, gain complete control over devices.

B. VIVO

Bug Overview. BluetoothPermissionActivity, which is re-
sponsible for requesting and managing the permissions needed
for Bluetooth operations, is found to lack overlay protection.
Malware can create floating windows over its display, tricking
users into granting permissions to connect Bluetooth devices,
read contacts and call records, access text messages, and even
engage with SIM card operations.

Proof-of-Concept. We create a malicious app and install it on
a Vivo IQOO 8 device. Launching this malware, it requests

Bluetooth operation permissions and simultaneously draws an
overlay to cover the activity BluetoothPermissionActivity
that pops up, thus executing an overlay attack as shown in Fig.
10a ∼ 10d. The malware carefully sequences the permission
requests, leading users first to accept incoming Bluetooth
connection requests from the attacker’s device. Following that,
permissions are granted for the connected Bluetooth device to
read the contact list, text messages, and SIM card information.
After acquiring the permissions, we could use the attacker’s
device to send Bluetooth protocols such as PBAP, thereby
gaining access to the victim’s sensitive data, such as contact
lists and text messages.

Potential Threats. This vulnerability opens up a variety of
potential threats. First, it allows an attacker to establish a
Bluetooth connection without the user’s awareness, creating a
direct link for further attacks. For example, the attacker could
exploit this connection to distribute malicious files or eavesdrop
on other communications. Second, with granted permissions,
the attacker could access sensitive data, leading to potential
privacy breaches. Such breaches expose users to various forms
of abuse, including but not limited to, identity theft, blackmail,
or more sophisticated targeted attacks.

11

TABLE VIII: Security implications of missing protection on
windows of system apps in third-party Android systems.

System ID A crafted overlay can lure users to ...

OneUI

1 scan and select unwanted Bluetooth devices.
2 allow incident reports to be shared with apps.
3 grant app-op permissions for specific UIDs.
4 accept the Bluetooth device pairing requests.
5 turn mobile data (i.e., cellular data service) on or off.
6 enable Wi-Fi Soft AP (hotspot).
7 enable or disable Wi-Fi.
8 adjust the default NFC payment app.
9 adjust the sensor privacy unblocked for camera/mic sensors.
10 adjust the sensor privacy unblocked for camera/mic sensors.
11 grant apps with permissions to access USB devices.
12 adjust the sensor privacy unblocked for camera/mic sensors.
13 enable Wi-Fi.
14 enable NFC hardware.
15 connect to Wi-Fi.
16 connect to Wi-Fi.

OriginOS

1 enable Bluetooth.
2 allow incident reports to be shared with apps.
3 grant Bluetooth devices with the autoplay permission.
4 turn mobile data (i.e., cellular data service) on or off.
5 choose the SIM to use for calls, SMS, and data services.
6 connect to or save networks.
7 enable previously configured networks to access the internet.
8 connect to Wi-Fi.
9 enable or disable notifications for apps.
10 adjust the sensor privacy unblocked for camera/mic sensors.
11 adjust the default apps.
12 start scanning for available Wi-Fi displays.

MIUI

1 enable Bluetooth.
2 grant the permission to debug the Android device through ADB.
3 ignore the restriction on the network data usage.
4 select and adjust enabled phone accounts.
5 grant Bluetooth devices with the phone book access permission.
6 accept the Bluetooth device pairing requests.
7 connect to Wi-Fi.
8 set policies on network-related operations for specific UIDs.
9 connect to the network regardless of whether it is validated or not.
10 adjust the default SMS app.
11 adjust the default payment app.
12 select and adjust enabled phone accounts.

MagicUI

1 scan and select unwanted Bluetooth devices.
2 adjust the default Dialer app.
3 add apps to the power-saving whitelist.
4 grant the permission to debug the Android device through ADB.

X. DISCUSSION

A. Limitations

Despite promising findings, our study has a few limitations.

Semi-automated Approach and Manual Effort. Since the
complicated checks are enforced on data for launching windows,
creating valid Intent objects for PoCs to launch 9 of 49 reported
unprotected windows requires extra manual effort. Although
the PoC Creator Module requires some manual effort, it offers
the advantage of scalability for future research.

In future work, we plan to refine the Intent construction
method. Currently, since most of the extra attributes are used for
providing values, we fed them random values of corresponding
types. However, in certain scenarios, extra attributes could be
used by branch constraints, causing unsuccessful launch of the
target Activities by the constructed Intent objects. To address
this issue, we will employ symbolic analysis to determine the
valid values for extra parameters.

Experiment Scale. The scale of our experiments could be

(a) Connect devices. (b) Access SMS.

(c) Access contracts. (d) Access SIM card.

Fig. 10: The proof-of-concept for the case study of Vivo.

further expanded. Given the diversity of Android vendors on
the market, our investigation into third-party Android systems
is not exhaustive. In the future, we will include an expanded
range of third-party Android ROMs.

B. Threats to Validity

The external validity of our analysis results could be affected
by the following aspects.

Native Code. Some sensitive operations may be implemented
in native code, hence some windows requiring protection might
be undetected by our approach. Given the complexity of native
code analysis in comparison to Java bytecode [42, 58], currently,
there are no established methods for analyzing native code in
system apps. In the future, we aim to develop new methods
specifically to address this shortfall and extend our work.

12

Java Reflection. Besides native code, Java reflection can be
leveraged to either enable HNSOW to enforce protection or
implement sensitive operations. However, our methodology
does not cater to Java reflection, which can potentially lead to
false alarms. In future work, we plan to incorporate solutions
from existing work, such as DINA [44] and DroidRA [57], to
analyze Java reflection.

Guidelines. As observed in our experiments, some windows
that require overlay protection, execute sensitive operations by
accessing files containing sensitive data (e.g., bugreport), rather
than calling sensitive APIs or content providers. In our future
work, we will extend guidelines to cover sensitive operations
on files. For example, we will follow existing studies, such as
BigMAC [54] and PolyScope [56], to analyze SELinux policies
in Android to determine sensitive files.

C. Other Future work

In this study, our primary focus was on Activities within
system apps that require overlay protection, given their cru-
cial role in device functionality and security which makes
them high-value exploitation targets. However, in practice,
certain Activities within third-party apps also necessitate
such protections. In response to this, Google has intro-
duced countermeasures for third-party apps, such as the
setFilterTouchesWhenObscured method, which al-
lows apps to disregard all touch events whenever the view’s
window is obscured by other windows [36] Additionally,
the FLAG_WINDOW_IS_OBSCURED flag is incorporated into
motion events, enabling apps to verify whether the window
receiving the event is partially or fully obscured [38]. Despite
these countermeasures, the lack of a clear guideline leaves
developers puzzled about the correct implementation of overlay
protection. Given the more complex and varied scenarios
in third-party apps compared to system apps, our approach
cannot be directly applied. For instance, many apps have a
"Privacy Policy" window to inform users about the personal
data the app collects, which should be protected. However,
the method discussed in Section VI-B doesn’t classify this
as privacy-sensitive since it doesn’t involve sensitive system
APIs or Content-Providers. Therefore, in future work, we
plan to thoroughly investigate popular third-party apps and
establish clear criteria. Additionally, we will also propose a new
framework that assists third-party app developers in identifying
Activities within their apps that require overlay protection.

D. Recommendation

We provide several practical recommendations for Google,
users, and mobile vendors in Appendix B, C, and D to mitigate
the risks associated with overlay attacks.

XI. RELATED WORK

Recently, there has been an increasing concern regarding
the prevalence of overlay attacks, and many efforts have been
made to investigate and address these threats.

Overlay-based Attacks. Many earlier research [48, 63, 75]
used the overlay features to lure users to type passwords and
grant permissions. To control the timing of overlay display,
Chen et al. [50] discovered a side-channel vulnerability in
the Android GUI framework, which could be exploited to

infer the UI state of a target app without explicit permissions.
Similarly, Yan et al. [72] revealed that power consumption traces
could also be exploited for UI inference attacks. Deepening the
security concern, Fratantonio et al. [53] demonstrated that an
overlay could be used to trick users into unknowingly enabling
the accessibility service, this action could potentially lead to
the launch of a variety of powerful attacks, like granting
arbitrary permissions to malicious apps. In a recent study
[68], a novel overlay method was uncovered, where malicious
overlays could be constructed by creating successive toasts,
exploiting the fade-out animation of the toast so that transitions
between two successive toasts cannot be observed. Most of
those vulnerabilities were already fixed. For instance, Google
has removed the OS-level side channels and the Toast overlay.
Consequently, these attacks will no longer be effective on
modern versions of Android.

Attack Defenses. Along with the overlay based attacks, there
is also a large body of work proposing defense solutions.
Possemato et al. [61] surveyed 60 apps to understand how real-
world apps use overlays. The derived insights (e.g., overlays at
the margins are typically not problematic) can be utilized to
detect suspicious overlaps potentially exploited for clickjacking
purposes. Yan et al. [73], similarly, studied the properties of
suspicious overlays in malware apps and proposed an automated
approach to detect overlay based malware at scale. Bianchi et
al. [48], meanwhile, applied static analysis to apps, identifying
code patterns that could be harnessed to initiate overlay attacks.
They also suggested a security indicator to help users identify
the app which app they are interacting with, and make sure
that the inputs go to the app. However, this approach could
unintentionally create side channels, as discovered by Fernandes
et al [52]. They provided a more reliable solution by notifying
users when a background non-system app creates an overlay on
top of a foreground app, although this could disrupt legitimate
apps that utilize overlays (e.g., Facebook). Addressing this, Ren
et al. [64] propose the Android Window Integrity model, which
restricts the use of overlay to only white-listed apps. Fratantonio
et al. [53] suggested incorporate a new security flag in the OS,
allowing developers to set it for any widgets or activities within
their apps. This flag could prevent other apps from creating
overlays on top of it. In countering UI inference, Possemato et
al. [62] successfully pinpointed 18 vulnerable Android APIs
that may disclose state-related information, thereby mitigating
the impact of dependent overlay attacks.

Other GUI attacks. Besides overlay attacks, the research
community has seen a surge in diverse GUI attacks on the
Android system. Many of them [41, 43, 48, 49, 51, 59, 60, 75]
primarily focused on tapjacking attacks, which display harmless-
looking or transparent UI elements on top of sensitive ones.
Ren et al. [65] unveiled design flaws in Android’s multitasking,
which can be abused to place a spoofing activity on top of
other apps. Tuncay et al. [67] built false transparency attacks
by moving a transparent app to the foreground to mimic a
trustworthy one. Kalysch et al. [55] exploited a design flaw in
Android accessibility to capture sensitive UI input. Aonzo et al.
[45] discovered vulnerabilities in modern password manager
apps and instant apps, which can be abused to facilitate phishing
attacks. Xu et al. [70] presented how customizable notifications
can be abused to lure users into interacting with malicious
applications. In addition, GUI attacks can also be launched
via WebView, as revealed by Yang et al. [74], untrusted

13

iframe/popup within WebView can serve as attack vectors.

XII. CONCLUSION

In this paper, we study the overlooked vulnerability within
the Android system regarding missing protection against overlay
attack, bridging the existing knowledge gap. To automatically
detect these vulnerabilities, we established a guideline defining
which windows in system apps necessitate the protection. Based
on the guideline, we design and develop a new tool named
OverlayChecker, which can be applied to uncover the vulnerable
windows in Android systems. By applying OverlayChecker to
8 commercial Android systems in 4 recently released Android
versions, we totally uncover 49 unprotected windows, 15 of
which have been confirmed by mobile vendors. 5 CVEs have
been assigned, and 3 of them are rated high severity.

ACKNOWLEDGMENT

We thank the shepherd and the anonymous reviewers for
their helpful comments. This research is partially supported by
the HKPolyU Start-up Fund (A0048629), the Hong Kong RGC
Project (No. PolyU15224121), the HKPolyU Grant (ZVG0),
and the NSFC for Young Scientists of China (No. 62202400).

REFERENCES

[1] “MagicUI,” https://www.hihonor.com/cn/magic-ui/, 2022.
[2] “Mobile Vendor Market Share Worldwide,” https://gs.sta

tcounter.com/vendor-market-share/mobile, 2022.
[3] “A tool for reverse engineering Android apk files,” https:

//ibotpeaches.github.io/Apktool/, 2023.
[4] “Activity,” https://developer.android.com/guide/componen

ts/activities/intro-activities, 2023.
[5] “addSystemFlags,” https://cs.android.com/android/platfor

m/superproject/+/refs/heads/master:frameworks/base/co
re/java/android/view/Window.java;l=1247, 2023.

[6] “addSystemFlags,” https://cs.android.com/android/platfor
m/superproject/+/refs/heads/master:frameworks/base/co
re/java/android/view/Window.java;l=1231, 2023.

[7] “Android Debug Bridge (adb),” https://developer.android.
com/tools/adb, 2023.

[8] “Android SDK: Common Android Components,”
https://code.tutsplus.com/tutorials/android-sdk-common
-android-components--mobile-20873, 2023.

[9] “Android Uiautomator2 Python Wrapper,” https://github
.com/openatx/uiautomator2, 2023.

[10] “AOSP,” https://developers.google.com/android/images,
2023.

[11] “App manifest overview,” https://developer.android.com/
guide/topics/manifest/manifest-intro/, 2023.

[12] “Common intents,” https://developer.android.com/guide/
components/intents-common, 2023.

[13] “CVE-2020-0015,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2020-0015, 2023.

[14] “CVE-2020-0394,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2020-0394, 2023.

[15] “CVE-2021-0314,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2021-0314, 2023.

[16] “CVE-2021-0333,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2021-0333, 2023.

[17] “CVE-2021-0391,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2021-0391, 2023.

[18] “CVE-2021-0523,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2021-0523, 2023.

[19] “CVE-2021-0538,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2021-0538, 2023.

[20] “CVE-2021-0837,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2021-0837, 2023.

[21] “CVE-2021-0992,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2021-0992, 2023.

[22] “CVE-2021-1016,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2021-1016, 2023.

[23] “CVE-2022-20212,” https://cve.mitre.org/cgi-bin/cvenam
e.cgi?name=CVE-2022-20212, 2023.

[24] “Decompile and debug binary code and obfuscated apps.”
https://www.pnfsoftware.com/, 2023.

[25] “Developer Program Policy.” https://support.google.com
/googleplay/android-developer/answer/13438822, 2023.

[26] “Dialog,” https://developer.android.com/develop/ui/views
/components/dialogs, 2023.

[27] “Floating widget on top of other apps,” https://developer.
apple.com/forums/thread/78360, 2023.

[28] “GrantPermissionsActivity,” https://cs.android.com/andro
id/platform/superproject/+/master:packages/modules/Per
mission/PermissionController/src/com/android/permissio
ncontroller/permission/ui/GrantPermissionsActivity.java,
2023.

[29] “How to use Slide Over and Split View on
iPad,” https://www.imore.com/how-use-slide-over-and-s
plit-view-ipad, 2023.

[30] “Intent,” https://developer.android.com/reference/android/
content/Intent, 2023.

[31] “MiSRC Vulnerability Reward Program Rules V6.1,” ht
tps://cnbj1.fds.api.xiaomi.com/src/ppt/srcrule.pdf, 2023.

[32] “miui,” https://home.miui.com/, 2023.
[33] “OneUI,” https://developer.samsung.com/one-ui, 2023.
[34] “OriginOS,” https://www.vivo.com/originos, 2023.
[35] “Platform architecture,” https://developer.android.com/gu

ide/platform, 2023.
[36] “setFilterTouchesWhenObscured,” https://developer.andr

oid.com/reference/android/view/View#setFilterTouches
WhenObscured(boolean), 2023.

[37] “setPrivateFlags,” https://cs.android.com/android/platfor
m/superproject/+/refs/heads/master:frameworks/base/co
re/java/android/view/Window.java;l=1070, 2023.

[38] “SYSTEM_FLAG_HIDE_NON_SYSTEM_OVERLAY_
WINDOWS,” https://developer.android.com/reference/an
droid/view/MotionEvent, 2023.

[39] “Tapjacking/overlay SYSTEM_ALERT_WINDOW
vulnerability on a non-security-critical screen,”
https://bughunters.google.com/learn/invalid-reports/
android-platform/5148417640366080/bugs-with-negligib
le-security-impact, 2023.

[40] “Window,” https://developer.android.com/reference/androi
d/view/Window, 2023.

[41] D. Akhawe, W. He, Z. Li, R. Moazzezi, and D. Song,
“Clickjacking revisited: A perceptual view of UI security,”
in Proc. WOOT, 2014.

[42] S. Alam, Z. Qu, R. Riley, Y. Chen, and V. Rastogi,
“DroidNative: Automating and optimizing detection of
Android native code malware variants,” computers &
security, vol. 65, pp. 230–246, 2017.

[43] E. Alepis and C. Patsakis, “Trapped by the ui: The android
case,” in Proc. RAID, 2017.

14

https://www.hihonor.com/cn/magic-ui/
https://gs.statcounter.com/vendor-market-share/mobile
https://gs.statcounter.com/vendor-market-share/mobile
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities
https://cs.android.com/android/platform/superproject/+/refs/heads/master:frameworks/base/core/java/android/view/Window.java;l=1247
https://cs.android.com/android/platform/superproject/+/refs/heads/master:frameworks/base/core/java/android/view/Window.java;l=1247
https://cs.android.com/android/platform/superproject/+/refs/heads/master:frameworks/base/core/java/android/view/Window.java;l=1247
https://cs.android.com/android/platform/superproject/+/refs/heads/master:frameworks/base/core/java/android/view/Window.java;l=1231
https://cs.android.com/android/platform/superproject/+/refs/heads/master:frameworks/base/core/java/android/view/Window.java;l=1231
https://cs.android.com/android/platform/superproject/+/refs/heads/master:frameworks/base/core/java/android/view/Window.java;l=1231
https://developer.android.com/tools/adb
https://developer.android.com/tools/adb
https://code.tutsplus.com/tutorials/android-sdk-common-android-components--mobile-20873
https://code.tutsplus.com/tutorials/android-sdk-common-android-components--mobile-20873
https://github.com/openatx/uiautomator2
https://github.com/openatx/uiautomator2
https://developers.google.com/android/images
https://developer.android.com/guide/topics/manifest/manifest-intro/
https://developer.android.com/guide/topics/manifest/manifest-intro/
https://developer.android.com/guide/components/intents-common
https://developer.android.com/guide/components/intents-common
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0015
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0015
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0394
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0394
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-0314
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-0314
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-0333
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-0333
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-0391
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-0391
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-0523
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-0523
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-0538
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-0538
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-0837
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-0837
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-0992
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-0992
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1016
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1016
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20212
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-20212
https://www.pnfsoftware.com/
https://support.google.com/googleplay/android-developer/answer/13438822
https://support.google.com/googleplay/android-developer/answer/13438822
https://developer.android.com/develop/ui/views/components/dialogs
https://developer.android.com/develop/ui/views/components/dialogs
https://developer.apple.com/forums/thread/78360
https://developer.apple.com/forums/thread/78360
https://cs.android.com/android/platform/superproject/+/master:packages/modules/Permission/PermissionController/src/com/android/permissioncontroller/permission/ui/GrantPermissionsActivity.java
https://cs.android.com/android/platform/superproject/+/master:packages/modules/Permission/PermissionController/src/com/android/permissioncontroller/permission/ui/GrantPermissionsActivity.java
https://cs.android.com/android/platform/superproject/+/master:packages/modules/Permission/PermissionController/src/com/android/permissioncontroller/permission/ui/GrantPermissionsActivity.java
https://cs.android.com/android/platform/superproject/+/master:packages/modules/Permission/PermissionController/src/com/android/permissioncontroller/permission/ui/GrantPermissionsActivity.java
https://www.imore.com/how-use-slide-over-and-split-view-ipad
https://www.imore.com/how-use-slide-over-and-split-view-ipad
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://cnbj1.fds.api.xiaomi.com/src/ppt/srcrule.pdf
https://cnbj1.fds.api.xiaomi.com/src/ppt/srcrule.pdf
https://home.miui.com/
https://developer.samsung.com/one-ui
https://www.vivo.com/originos
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://developer.android.com/reference/android/view/View#setFilterTouchesWhenObscured(boolean)
https://developer.android.com/reference/android/view/View#setFilterTouchesWhenObscured(boolean)
https://developer.android.com/reference/android/view/View#setFilterTouchesWhenObscured(boolean)
https://cs.android.com/android/platform/superproject/+/refs/heads/master:frameworks/base/core/java/android/view/Window.java;l=1070
https://cs.android.com/android/platform/superproject/+/refs/heads/master:frameworks/base/core/java/android/view/Window.java;l=1070
https://cs.android.com/android/platform/superproject/+/refs/heads/master:frameworks/base/core/java/android/view/Window.java;l=1070
https://developer.android.com/reference/android/view/MotionEvent
https://developer.android.com/reference/android/view/MotionEvent
https://bughunters.google.com/learn/invalid-reports/android-platform/5148417640366080/bugs-with-negligible-security-impact
https://bughunters.google.com/learn/invalid-reports/android-platform/5148417640366080/bugs-with-negligible-security-impact
https://bughunters.google.com/learn/invalid-reports/android-platform/5148417640366080/bugs-with-negligible-security-impact
https://developer.android.com/reference/android/view/Window
https://developer.android.com/reference/android/view/Window

[44] M. Alhanahnah, Q. Yan, H. Bagheri, H. Zhou, Y. Tsutano,
W. Srisa-An, and X. Luo, “Detecting vulnerable android
inter-app communication in dynamically loaded code,” in
Proc. INFOCOM, 2019.

[45] S. Aonzo, A. Merlo, G. Tavella, and Y. Fratantonio,
“Phishing attacks on modern android,” in Proc. CCS, 2018.

[46] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel,
“Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps,” Acm
Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[47] M. Backes, S. Bugiel, E. Derr, P. D. McDaniel, D. Octeau,
and S. Weisgerber, “On demystifying the Android appli-
cation framework: re-visiting Android permission specifi-
cation analysis,” in Proc. USENIX Security, 2016.

[48] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio,
C. Kruegel, and G. Vigna, “What the app is that? deception
and countermeasures in the android user interface,” in
Proc. S&P, 2015.

[49] D. Bove, “SoK: The Evolution of Trusted UI on Mobile,”
in Proc. AsiaCCS, 2022.

[50] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into your
app without actually seeing it: UI state inference and
novel android attacks,” in Proc. USENIX Security, 2014.

[51] A. P. Felt and D. Wagner, “Phishing on mobile devices,”
2011.

[52] E. Fernandes, Q. A. Chen, J. Paupore, G. Essl, J. A.
Halderman, Z. M. Mao, and A. Prakash, “Android ui
deception revisited: Attacks and defenses,” in Proc. FC,
2017.

[53] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee, “Cloak
and dagger: from two permissions to complete control of
the UI feedback loop,” in Proc. S&P, 2017.

[54] G. Hernandez, D. J. Tian, A. S. Yadav, B. J. Williams, and
K. R. Butler, “BigMAC: Fine-Grained Policy Analysis of
Android Firmware,” in Proc. USENIX Security, 2020.

[55] A. Kalysch, D. Bove, and T. Muller, “How android’s UI
security is undermined by accessibility,” in Proceedings
of the 2nd Reversing and Offensive-oriented Trends
Symposium, 2018.

[56] Y.-T. Lee, W. Enck, H. Chen, H. Vijayakumar, N. Li,
Z. Qian, D. Wang, G. Petracca, and T. Jaeger, “PolyScope:
Multi-Policy Access Control Analysis to Compute Au-
thorized Attack Operations in Android Systems,” in Proc.
USENIX Security, 2021.

[57] L. Li, T. F. Bissyande, D. Octeau, and J. Klein, “Droidra:
Taming reflection to support whole-program analysis of
android apps,” in Proc. ISSTA, 2016.

[58] L. Li, T. F. Bissyande, M. Papadakis, S. Rasthofer,
A. Bartel, D. Octeau, J. Klein, and L. Traon, “Static
analysis of android apps: A systematic literature review,”
Information and Software Technology, vol. 88, pp. 67–95,
2017.

[59] T. Luo, X. Jin, A. Ananthanarayanan, and W. Du, “Touch-
jacking attacks on web in android, ios, and windows
phone,” in Proceedings of 5th International Symposium
on Foundations and Practice of Security, 2013.

[60] M. Niemietz and J. Schwenk, “Ui redressing attacks on
android devices,” Black Hat Abu Dhabi, 2012.

[61] A. Possemato, A. Lanzi, S. P. H. Chung, W. Lee, and
Y. Fratantonio, “Clickshield: Are you hiding something?
towards eradicating clickjacking on android,” in Proc.

CCS, 2018.
[62] A. Possemato, D. Nisi, and Y. Fratantonio, “Preventing

and Detecting State Inference Attacks on Android,” in
Proc. NDSS, 2021.

[63] S. Rasthofer, I. Asrar, S. Huber, and E. Bodden, “An
investigation of the android/badaccents malware which
exploits a new android tapjacking attack,” Technical report,
Technische Universitt Darmstadt, 2015.

[64] C. Ren, P. Liu, and S. Zhu, “WindowGuard: Systematic
Protection of GUI Security in Android,” in Proc. NDSS,
2017.

[65] C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu, “Towards
discovering and understanding task hijacking in android,”
in Proc. USENIX Security, 2015.

[66] G. Tao, Z. Zheng, Z. Guo, and M. R. Lyu, “MalPat:
Mining patterns of malicious and benign Android apps
via permission-related APIs,” IEEE Transactions on
Reliability, vol. 67, no. 1, pp. 355–369, 2017.

[67] G. S. Tuncay, J. Qian, and C. A. Gunter, “See no evil:
phishing for permissions with false transparency,” in Proc.
USENIX Security, 2020.

[68] S. Wang, Z. Ling, Y. Zhang, R. Liu, J. Kraunelis, K. Jia,
B. Pearson, and X. Fu, “Implication of animation on
Android security,” in Proc. ICDCS, 2022.

[69] M. Y. Wong and D. Lie, “Intellidroid: a targeted input
generator for the dynamic analysis of android malware,”
in Proc. NDSS, 2016.

[70] Z. Xu and S. Zhu, “Abusing Notification Services on
Smartphones for Phishing and Spamming,” in Proc.
WOOT, 2012.

[71] J. Yan, H. Liu, L. Pan, J. Yan, J. Zhang, and B. Liang,
“Multiple-entry testing of android applications by con-
structing activity launching contexts,” in Proc. ICSE, 2020.

[72] L. Yan, Y. Guo, X. Chen, and H. Mei, “A study on power
side channels on mobile devices,” in Proceedings of the
7th Asia-Pacific Symposium on Internetware, 2015.

[73] Y. Yan, Z. Li, Q. A. Chen, C. Wilson, T. Xu, E. Zhai, Y. Li,
and Y. Liu, “Understanding and detecting overlay-based
android malware at market scales,” in Proc. MobiSys,
2019.

[74] G. Yang, J. Huang, and G. Gu, “Iframes/popups are
dangerous in mobile webview: Studying and mitigating
differential context vulnerabilities.”

[75] L. Ying, Y. Cheng, Y. Lu, Y. Gu, P. Su, and D. Feng,
“Attacks and defence on android free floating windows,”
in Proc. AsiaCCS, 2016.

[76] L. Yu, X. Luo, J. Chen, H. Zhou, T. Zhang, H. Chang,
and H. K. Leung, “Ppchecker: Towards accessing the
trustworthiness of android apps’ privacy policies,” IEEE
Transactions on Software Engineering, vol. 47, no. 2, pp.
221–242, 2018.

[77] H. Zhou, X. Luo, H. Wang, and H. Cai, “Uncovering Intent
based Leak of Sensitive Data in Android Framework,” in
Proc.CCS, 2022.

[78] H. Zhou, H. Wang, X. Luo, T. Chen, Y. Zhou, and T. Wang,
“Uncovering Cross-Context Inconsistent Access Control
Enforcement in Android,” in Proc. NDSS, 2022.

15

(a) Facebook messenger. (b) Youtube.

Fig. 11: Android overlay window.

(a) Grant overlay permission
to an app in Settings.

overlays disappear before the user actually sees the noti�ca-
tion. For this, an app has to detect when the user is activating
the status bar or looking at the noti�cation. A practical way
for an app to do this is to put an own Activity in the fore-
ground (e.g., by repeatedly opening the activity) and using the
onWindowFocusChanged callback to detect when the focus is
taken from the Activity. If the screen is obscured by an overlay,
the only remaining action for the user is to pull down the status
bar. In that case, the callback is triggered, and the malicious app
can temporarily hide its overlays to make the OS noti�cation
disappear.
More elegant ways to detect and hide noti�cations from the
user might use side-channels of the OS. We argue that while
timing attacks are complex and hard to execute in practice, they
are a viable way and can be very e�ective against unaware
users.

Figure 1: Above: Custom app noti�cation with a clickable
“overlay” icon in the top-right corner. Below: noti�cation af-
ter touching the icon.

All the above methods that Google implemented for detecting
overlays and identifying apps that use them are useless if there
would be no way to disable them. This is where more visible defense
mechanisms are introduced.

D04.Hiding overlays for critical dialogs: Since overlays have
the capability not only to cover the screen, but also to catch any in-
put, they are e�ectively capable to lock up the screen. As discussed
in section 3, overlays can also be used to hide context information
and trick the user into enabling critical system settings. Therefore,
Android has implemented a method to hide all visible and invis-
ible overlays during certain interactions. After the interactions,
the overlays are restored to their original position. This security
measure is pretty much unknown, but it can be found in the source
code of the Settings app [17].

By looking through the code and inspecting di�erent OS versions
(from Android 7.1.2 to 10.0) on a Pixel 3 device, we identi�ed several
situations where this defense is triggered:

• During manual app installation (side-loading)
• Con�rmation dialog when enabling accessibility services

• Con�rmation dialog when enabling device admin apps
• App permissions screen
• Overlay Settings screen (for Android < 10). Android 10 re-

moved this feature, which most likely is an oversight, as it
was introduced again in Android R.

Most of these situations include a con�rmation dialog that en-
ables a critical system setting, but there are more situations where
we would expect this measure to work:

(1) In the Noti�cation settings of an app
(2) The “Install Unknown Apps” setting of an app that enables

an app to install other apps
(3) When con�rming a factory reset
(4) In the “Device Security” dialog when enabling or disabling a

screen lock
(5) For the “OEM unlocking” setting in the Developer Settings

that unlocks the bootloader
(6) For the “USB debugging” option in the Developer Settings
(7) In the Play Store when installing an app

For Android 11, we found that the hiding overlay defense was
fully implemented for the whole Settings app and the App set-
tings, therefore covering item 1–6 of the list above. There was no
protection regarding the Play Store (item 7).

Since only system apps are allowed to trigger the overlay hiding
feature, it can not be used by developers to protect their apps. While
some authors argue that this defense technique is “too powerful to
be made available to third-party apps” [46], it would make sense
to open up the API and make developers decide for themselves.
Overlays are overpowered windows, and allowing apps to limit
this power would counterbalance the feature and stop many of the
issues caused by overlay attacks. The defense could be implemented
as every other regular API with respect to Android’s security model,
using the permission model to “allow an app to temporarily hide
overlays” and limiting its use to when an app is active. In this case,
backward compatibility is a non-issue, as any case of abuse may
lead to the user removing the o�ending app, especially if it breaks
other overlay apps.

In summary, the new overlay implementation limits some third-
party usage of overlays, prioritizes system overlays and is able to
hide third-party apps. A new permanent indicator is used to signal
the user that an app may be covering the screen. We observed an
increased use of the “hiding overlays” technique among system apps
and might be seeing more system apps use them. A last feature was
identi�ed in recent Android versions that may improve on some
issues with UI security. This feature is backed by the TEE solution
that is used in most modern Android devices and thus o�ers an
increased defense even in the situation of a full takeover of the
operating system.

D05. Secure system dialogs: Android 9 introduces the Android
Protected Con�rmation functionality, which allows apps to prompt
the user to con�rm a statement. While the API is available through
the SDK, the functionality requires special hardware support, which
initially was only o�ered by Google through their Pixel 3 and Pixel
4 devices. From the user perspective, Protected Con�rmation is a
screen that is shown in full-screen mode and which displays a small
message to con�rm. A con�rmation of the message is done either

Session 5B: Software Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

621

(b) Android system notification in-
dicating overlay Use by an App.

Fig. 12: Illustration of overlay permission handling in Android.

APPENDIX

A. Threat Model

According to the details about overlay attack, we assume
that attackers can trick victims into installing and launching a
malicious app. This could be achieved through various methods,
such as publishing the app on app market or through other
distribution channels. This malicious app would then request
the SYSTEM_ALERT_WINDOW permission from the user,
requiring the user to grant this permission through the settings
app. Given that many video-related and accessibility apps
request this permission, it’s very likely that users won’t raise
any suspicions during this process. Once this permission is
granted, the malicious app, when interacted with by the user,
can launch certain Activity in system apps and overlay a fake
UI onto it.

B. Recommendations to Google

Establish Clear Guidelines. Google needs to provide clearer
guidelines to instruct system developers accurately on which
system app Activities necessitate overlay protection. Our

research revealed that there are instances of missing overlay
protection within AOSP, and some overlay protection patches
lack clear justifications. This suggests that system developers
may inadvertently introduce potential issues due to a lack of
clear directives. A well-formulated guideline should strike a
careful balance, ensuring adequate protection without hamper-
ing system flexibility. Because over-approximation of protection
could restrict system functionality and flexibility. Conversely,
under-approximation of protection might leave system security
and user privacy exposed. Meanwhile, a clear guideline should
not merely consist of instructions, they should be enriched
with concrete examples and case studies. Such an approach
can transform these guidelines into an intuitive manual that
developers can readily understand and apply.

Expand User Notification. The Android system currently
features a security alert in the notification drawer whenever
an overlay is drawn (see Figure 12b). However, these alerts
often go unnoticed due to their subtle presentation. To address
this issue, Google could refine the alert system to make the
notifications more conspicuous, thus increasing the chance of
users noticing them (e.g. changing notification color, size, or
adding a mandatory vibration). Additionally, the notification’s
text currently uses an ambiguous description, such as "[APP
NAME] is Displaying Over Other Apps." Instead, the notifica-
tion should provide more precise details, specifically indicating
which app is currently overlaying which. Moreover, when users
manually grant the SYSTEM_ALERT_WINDOW permission
to apps, system should provide clear descriptions about the
nature of the overlay and its potential security implications to
raise users’ awareness.

Strengthen PlayStore Vetting. Google could further enhance
its vetting process for apps in the Play Store, particularly focus-
ing on the apps that request the SYSTEM_ALERT_WINDOW
permission. The vetting process could leverage some important
features of overlays (e.g., Type, Flag, and Format), and
incorporate machine learning techniques to detect suspicious
overlay usage within apps.

Improve Policy Transparency. Google PlayStore should
implement more strict requirements concerning the disclosure
of app permissions in the privacy policies, especially for the
SYSTEM_ALERT_WINDOW permission. This action would
provide clarity for Play Store’s vetting processes and enable the
removal of apps that unnecessarily request this permission. As
stated in the Google Play Developer Policy Center, developers
are required to clearly state in their privacy policy why their
application requests certain permissions [25]. However, our
investigation reveals a concerning lack of adherence to this
directive. We randomly downloaded 20 apps from the PlayStore
that request the SYSTEM_ALERT_WINDOW permission.
Unfortunately, none of these apps provided a clear explanation
in their privacy policy outlining the specific purpose of this
permission.

C. Recommendations to User

Update Regularly. Given Google’s ongoing efforts to fix
vulnerabilities related to overlay issues and release security
patches to bolster system app protection, it is important for
users to keep their Android devices updated. This practice not
only mitigates weaknesses present in outdated versions but

16

also makes users benefit from the latest, most robust security
mechanisms introduced by Google.

Permission Awareness. Users should exercise caution
when granting permissions to apps, especially the SYS-
TEM_ALERT_WINDOW permission. Because this permission
is quite powerful and many forms of Android malware and
ransomware are known to exploit it [73]. According to Google’s
developer documentation, this permission should only be
necessary and used under specific circumstances. Therefore,
user should only granted this permission if it’s essential to the
app’s functionality and if the app comes from a trusted source.

Download Carefully. Users should ensure to only download
apps from trusted sources like the Google Play Store, which
have protective measures in place to filter out potentially
malicious apps. Extreme caution should be employed when
downloading apps from unknown sources or clicking on
links in unsolicited messages, especially when granting these
applications permissions.

Security Alerts. Attention should be given to any security
alerts on the device. Starting from Android 8.0, a security alert
is displayed in the notification drawer whenever an overlay
is drawn on the screen. If user see this alert and weren’t
expecting an overlay, immediate investigation is recommended.
Meanwhile, users should avoid disabling the notification by
changing the configuration of the Android System app, doing
so might prevent these vital notifications from appearing.

D. Recommendations to Third-party ROMs

Update Security Patches Promptly. Update Security Patches
Promptly. Google’s team often releases security patches that
address various types of vulnerabilities, including those that
could be exploited via overlay attacks. Therefore, it is critical for
custom ROM developers to promptly implement these security
patches. Delaying these updates potentially exposes users to
unnecessary risks.

Collaborate with security researchers Actively. Since custom
ROMs are often developed by smaller teams with limited
resources for testing and quality assurance, they may encounter
more bugs and stability issues. Thus, it is highly recommended
for custom ROM developers actively engage with security
researchers and encourage broader participation in vulnerability
disclosure programs. By engaging with the security community,
ROM developers can stay updated on emerging threats and
receive valuable feedback to improve their security.

E. Current Status of iOS Overlay Window

iOS, another leading mobile operating system, takes a
fundamentally different approach. Unlike Android, it does not
permit apps to draw floating windows over other apps, thereby
closing off this security risk by not supporting screen overlays
at all [27]. The only exception is found in the iPad, where
specific APIs and frameworks provided by Apple, such as
Slide Over and Split View, can be utilized [29]. A rational
explanation for this is that the design philosophy of iOS puts
a strong emphasis on user privacy. To protect user privacy
and data security, iOS strictly limits inter-app interactions to
prevent improper influences on other apps or system behavior.
In contrast, Android, known for its more open nature, offers

developers more extensive control over the operating system
with fewer restrictions.

17

	Introduction
	Background
	User Interface of Android App
	Architecture of Android System
	Overlay
	Hide Non-System Overlay Windows Flag

	Motivation
	Guideline
	Overview of OverlayChecker
	Discovery Module
	Criteria 1: One-Step Launch
	Criteria 2: Sensitive Operation
	Criteria 3: Simplistic Interaction

	PoC Creator Module
	Launching Target Activity
	Manual Attack Design

	Evaluation
	Reliability of Guidelines (RQ1)
	Unprotected Windows in Official Android Systems (RQ2)
	Unprotected Windows in Third-party Android Systems (RQ3)
	False Alarms

	Case Study
	Google
	VIVO

	Discussion
	Limitations
	Threats to Validity
	Other Future work
	Recommendation

	Related Work
	Conclusion
	Appendix
	Threat Model
	Recommendations to Google
	Recommendations to User
	Recommendations to Third-party ROMs
	Current Status of iOS Overlay Window

