

LiDAR Spoofing Meets the New-Gen: Capability Improvements, Broken Assumptions, and New Attack Strategies

<u>Takami Sato</u>*, Yuki Hayakawa*, Ryo Suzuki*, Yohsuke Shiiki*, Kentaro Yoshioka, and Qi Alfred Chen

<u>Autonomous & Smart Systems</u> <u>Guard Research Group</u>

LiDAR plays an essential role in Autonomous Driving (AD)

Current Level-4 AD heavily relies on LiDAR sensing for object detection

LiDAR spoofing attack

LiDAR spoofing attack

 $distance = Light Speed \times Flight Time \div 2$

LiDAR senses distance to object based on ToF (time-of-flight)

LiDAR spoofing attack

 $distance = Light Speed \times Flight Time \div 2$ LiDAR senses LiDAR distance to object based on ToF (time-of-flight) Pulse Paser Generally vulnerable to Laser from other source by design, **LiDAR Spoofing Attack**

Limitations in prior works

No prior attack shows precise injection pattern control: Chosen Pattern Injection (CPI)

- Despite CPI is **essential assumption for their adversarial attack** against ML models
- Only evaluated on a specific LiDAR (VLP-16) w/o recent security-related features
 - e.g., timing randomization and pulse fingerprinting

Limitations in prior works

No prior attack shows precise injection pattern control: Chosen Pattern Injection (CPI)

- Despite CPI is **essential assumption for their adversarial attack** against ML models
- Only evaluated on a specific LiDAR (VLP-16) w/o recent security-related features
 - e.g., timing randomization and pulse fingerprinting
- Concurrent work [Jin et al., IEEE S&P'23] has demonstrated CPI attack capability, but, only on 2 LiDARs (VLP-16 and RS-16) w/o systematic study on security-related features
 - Meanwhile, our attack is >1.5x stronger with >7k (vs ~4.2k) point injection

	Velodyne			Leddar	Ouster	Intel	Livox	Hesai	Robosense
	Wisdyne		Websyne						
	VLP-16 [15]	VLP-32c [18]	VLS-128 [39]	Pixell [40]	OS1-32 [22]	Realsense L515 [41]	Horizon [42]	XT32 [24]	Helios 5515 [23]
Gen. (year)	1st-G (2016)	1st-G (2017)	1st-G (2017)	New-G (2019)	New-G (2019)	New-G (2019)	New-G (2020)	New-G (2020)	New-G (2021)
Scanning Type	Rotating	Rotating	Rotating	Flash	Rotating	MEMS	MEMS	Rotating	Rotating
8 Wavelength	905 nm	905 nm	905 nm	905 nm	865 nm	860 nm	905 nm	905 nm	905 nm
√ Vertical FOV	30°	40°	40°	16°	45°	55°	25.1°	31°	70°
∃ Horizontal FOV	360°	360°	360°	180°	360°	70°	81.7°	360°	360°
Max. Range [m]	100	200	300	56	120	9	260	120	150
⁵ Min. Range [m]	1	1	0.5	0.1	0.3	0.25	0.5	0	0.2
Vertical Channel	16	32	128	8	32	(#)	-	32	32
Simul. Firing	1	2	8	3	32	1	1	1	1
Timing Random.				~	~	✓	~		/
[∞] Fingerprinting								~	

18	Velodyne			Leddar	Ouster	Intel	Livox	Hesai	Robosense
	Wilsolyne		Widostyre		100				
	VLP-16 [15]	VLP-32c [18]	VLS-128 [39]	Pixell [40]	OS1-32 [22]	Realsense L515 [41]	Horizon [42]	XT32 [24]	Helios 5515 [23]
Gen. (year)	1st-G (2016)	1st-G (2017)	1st-G (2017)	New-G (2019)	New-G (2019)	New-G (2019)	New-G (2020)	New-G (2020)	New-G (2021)
Scanning Type	Rotating	Rotating	Rotating	Flash	Rotating	MEMS	MEMS	Rotating	Rotating
8 Wavelength	905 nm	905 nm	905 nm	905 nm	865 nm	860 nm	905 nm	905 nm	905 nm
∽ Vertical FOV	30°	40°	40°	16°	45°	55°	25.1°	31°	70°
∃ Horizontal FOV	360°	360°	360°	180°	360°	70°	81.7°	360°	360°
ម្លី Max. Range [m]	100	200	300	56	120	9	260	120	150
Min. Range [m]	1	1	0.5	0.1	0.3	0.25	0.5	0	0.2
Vertical Channel	16	32	128	8	32	(#)	-	32	32
> Simul. Firing	1	2	8	3	32	1	1	1	1
Timing Random.				/	~	✓	/		/
Fingerprinting								✓	

- Cover 9 LiDARs including both 1st and New-Gen LiDARs

System-on-Chip (SoC) approach allows New-Gen LiDARs more complex signal processing. e.g., timing randomization & pulse fingerprinting

	Velodyne			Leddar	Ouster	Intel	Livox	Hesai	Robosense
	Widelyn Wodyn				Trans.				
	VLP-16 [15]	VLP-32c [18]	VLS-128 [39]	Pixell [40]	OS1-32 [22]	Realsense L515 [41]	Horizon [42]	XT32 [24]	Helios 5515 [23]
Gen. (year)	1st-G (2016)	1st-G (2017)	1st-G (2017)	New-G (2019)	New-G (2019)	New-G (2019)	New-G (2020)	New-G (2020)	New-G (2021)
Scanning Type	Rotating	Rotating	Rotating	Flash	Rotating	MEMS	MEMS	Rotating	Rotating
8 Wavelength	905 nm	905 nm	905 nm	905 nm	865 nm	860 nm	905 nm	905 nm	905 nm
√ Vertical FOV	30°	40°	40°	16°	45°	55°	25.1°	31°	70°
∃ Horizontal FOV	360°	360°	360°	180°	360°	70°	81.7°	360°	360°
Max. Range [m]	100	200	300	56	120	9	260	120	150
⁵ Min. Range [m]	1	1	0.5	0.1	0.3	0.25	0.5	0	0.2
Vertical Channel	16	32	128	8	32	170		32	32
占 Simul. Firing	1	2	8	3	32	1	1	1	1
Timing Random.				~	~	✓	~		✓
Fingerprinting								✓	

- Cover 9 LiDARs including both 1st and New-Gen LiDARs
- Evaluate 3 security-related features in mainly New-Gen LiDARs
 - Simultaneous Laser Firing
 - Laser Timing Randomization
 - Pulse Fingerprinting

	Velodyne			Leddar	Ouster	Intel	Livox	Hesai	Robosense
	Webdyne Webyne			17.64			The same of		
	VLP-16 [15]	VLP-32c [18]	VLS-128 [39]	Pixell [40]	OS1-32 [22]	Realsense L515 [41]	Horizon [42]	XT32 [24]	Helios 5515 [23]
Gen. (year)	1st-G (2016)	1st-G (2017)	1st-G (2017)	New-G (2019)	New-G (2019)	New-G (2019)	New-G (2020)	New-G (2020)	New-G (2021)
Scanning Type	Rotating	Rotating	Rotating	Flash	Rotating	MEMS	MEMS	Rotating	Rotating
Wavelength	905 nm	905 nm	905 nm	905 nm	865 nm	860 nm	905 nm	905 nm	905 nm

- Identify 15 novel research findings through the large-scale study
- Design a new practical removal attack against New-Gen LiDARs
 High-Frequency Removal (HFR) Attack
- Evaluate 3 security-related features in mainly New-Gen LiDARs
 - Simultaneous Laser Firing
 - Laser Timing Randomization
 - Pulse Fingerprinting

Main security-related features in New-Gen LiDARs

Laser Timing Randomization

Randomly perturb laser firing timing

Pulse Fingerprinting

Authenticate their own laser

Main security-related features in New-Gen LiDARs

Laser Timing Randomization

Randomly perturb laser firing timing

Pulse Fingerprinting

Authenticate their own laser

Main security-related features in New-Gen LiDARs

Laser Timing Randomization

Randomly perturb laser firing timing

Pulse Fingerprinting

Authenticate their own laser

Sounds ultimate defense But, we found that current one is not strong enough

Attack Device Improvements

- Our new attack device can achieve inject >6k points in >80°
- **CPI attack is feasible** on VLP-16 with our device
- Model-level vulnerability may not be necessary to attack object detector

Attack Device Improvements

- Our new attack device can achieve inject >6k points in >80°
- **CPI attack is feasible** on VLP-16 with our device
- Model-level vulnerability may not be necessary to attack object detector

New-Gen LiDAR Measurements & Attack Modeling

Attack Device Improvements

- Our new attack device can achieve inject >6k points in >80°
- **CPI attack is feasible** on VLP-16 with our device
- Model-level vulnerability may not be necessary to attack object detector

New-Gen LiDAR Measurements & Attack Modeling

Security Analysis w/ 9 object detectors & AD Simulator
(Autonomous Driving)

New Attack Modeling

Attack Device Improvements

- Our new attack device can achieve inject >6k points in >80°
- **CPI attack is feasible** on VLP-16 with our device
- Model-level vulnerability may not be necessary to attack object detector

New-Gen LiDAR Measurements

& Attack Modeling

New Attack

Injection Attack

- CPI attack is feasible only on VLP-16

Modeling

- Pulse fingerprinting is not strong enough to perfectly prevent injection
- Error modeling has major impact

Security Analysis w/ 9 object detectors & AD Simulator (Autonomous Driving)

- Pulse fingerprinting is effective mitigation against injection attacks
- Timing randomization is effective mitigation against injection

Removal Attack

- Latest removal attack is not feasible on New-Gen LiDARs
- Our HFR attack can be effective even against New-Gen LiDARs

- Pulse fingerprinting is effective mitigation against removal attacks
- Vulnerability of object detector heavily depends on their training data
- HFR attack can be effective against autonomous driving scenarios

Attack Device Improvements

- Our new attack device can achieve inject >6k points in >80°
- **CPI attack is feasible** on VLP-16 with our device
- Model-level vulnerability may not be necessary to attack object detector

New-Gen LiDAR Measurements
& Attack Modeling
New Attack

Injection Attack

- CPI attack is **feasible only on VLP-16**

Modeling

- Pulse fingerprinting is not strong enough to perfectly prevent injection
- Error modeling has major impact

Security Analysis w/ 9 object detectors & AD Simulator (Autonomous Driving)

- Pulse fingerprinting is effective mitigation against injection attacks
- Timing randomization is effective mitigation against injection

Removal Attack

- Latest removal attack is not feasible on New-Gen LiDARs
- Our HFR attack can be effective even against New-Gen LiDARs

- Pulse fingerprinting is effective mitigation against removal attacks
- Vulnerability of object detector heavily depends on their training data
- HFR attack can be effective against autonomous driving scenarios

CPI attack is feasible, but only on VLP-16

- Successfully inject 6.5k points in 83° wide range (99% success rate)
 - Significantly improve the optics and electronics of spoofer devise

CPI attack is feasible, but only on VLP-16

- Successfully inject 6.5k points in 83° wide range (99% success rate)
 - Significantly improve the optics and electronics of spoofer devise
- Furthermore, CPI attack only works on VLP-16
 - Other LiDARs have at least one new security-related features
 - -Particularly, due to timing randomization and fingerprinting

Scan pattern of VLP-16 (1st Gen LiDARs) is **deterministic** and thus **predictable**

Attacker first learn the redictable scan nattern via - Timing randomization can directly disrupt this attack - 5 out of 6 New-Gen LiDARs in our study have timing randomization

- Existing black-box attack is not strong enough for AD
 - Saturating attack [Sin et al, 2017] can dismiss only small area (42 cm \times 42 cm) in a short time (~4 sec)

Our attack: High-Frequency Removal (HFR) attack

Our attack: High-Frequency Removal (HFR) attack

Our attack: High-Frequency Removal (HFR) attack

HFR attack indoor demo

HFR attack indoor demo

HFR attack outdoor demo

5 cars are not detected by Apollo 6.0's PointPillars object detector

HFR attack outdoor demo

Modeling HFR attack capability

- Measure removal success rates for each azimuth angle for each LiDAR
 - PRA attack (prior work) can only work on 1st Gen (VLP-16)

- Measure removal success rates for each azimuth angle for each LiDAR
 - PRA attack (prior work) can only work on 1st Gen (VLP-16)

- Measure removal success rates for each azimuth angle for each LiDAR
 - PRA attack (prior work) can only work on 1st Gen (VLP-16)

- Measure removal success rates for each azimuth angle for each LiDAR
 - PRA attack (prior work) can only work on 1st Gen (VLP-16)

Our observations on XT32's Fingerprinting

- XT32 emits couple of lasers for each point measurement
- We suspect that the fingerprinting is embedded in the interval
 - High freq. lasers may sometimes hit the interval
 - No official documentation is available on this

HFR attack evaluation in AD Scenarios

Benign

HFR attack on LiDAR w/ timing rand.

- AD Stack: Apollo 7.0 (x2 faster) (x2 faster)
- Simulator: LGSVL
- Speed: 40 km/h
- Attack Model: Helios (HFR)
- Attack starts at 20 m away from the obstacle (sedan car)

HFR attack evaluation in AD Scenarios

Benign HFR attack on LiDAR w/ timing rand.

- AD Stack: Apollo 7.0
- Simulator: LGSVL
- Speed: 40 km/h
- Attack Model: Helios (HFR)
- Attack starts at 20 m away from the obstacle (sedan car)

Attack Device Improvements

- Our new attack device can achieve inject >6k points in >80°
- **CPI attack is feasible** on VLP-16 with our device
- Model-level vulnerability may not be necessary to attack object detector

New-Gen LiDAR Measurements

& Attack Modeling

New Attack

Injection Attack

- CPI attack is feasible only on VLP-16

Modeling

- Pulse fingerprinting is not strong enough to perfectly prevent injection
- Error modeling has major impact

Security Analysis w/ 9 object detectors & AD Simulator (Autonomous Driving)

- Pulse fingerprinting is effective mitigation against injection attacks
- Timing randomization is effective mitigation against injection

Removal Attack

- Latest removal attack is not feasible on New-Gen LiDARs
- Our HFR attack can be effective even against New-Gen LiDARs

- Pulse fingerprinting is effective mitigation against removal attacks
- Vulnerability of object detector heavily depends on their training data
- HFR attack can be effective against autonomous driving scenarios

Attack Device Improvements

- Our new attack device can achieve inject >6k points in >80°
- CPI attack is feasible or VLP-16 with our device
- Model-level vulnerability may not be necessary to attack object detector

New-Gen LiDAR Measurements

Error modeling is important.

Prior work's model is not

accurate [Hallyburton et al., 2022]

enough to perfectly pro-

mjection

- Error modeling has major impact

Removal Attack

- Latest removal attack is not feasible on New-Gen LiDARs
- Our HFR attack can be effective even against New-Gen LiDARs

Security Analysis w/ 9 object detectors & AD Simulator (Autonomous Driving)

ng

- Pulse fingerprinting is effective mitigation against injection attacks
- Timing randomization is effective mitigation against injection

- Pulse fingerprinting is effective mitigation against removal attacks
- Vulnerability of object detector heavily depends on their training data
- HFR attack can be effective against autonomous driving scenarios

Attack Device Improvements

- Our new attack device can achieve inject >6k points in >80°
- **CPI attack is feasible** on VLP-16 with our device
- Model-level vulnerability may not be necessary to attack object detector

New-Gen Li Timing randomization is & Att effective mitigation strategy both for injection and - CPI attack is removal attack

ysis w/ 9 object **AD Simulator** nomous Driving)

Injection At

- Pulse fingerprinting is not strong **enough** to perfectly prevent injection
- Error modeling has major impact

nting is effective

tion against injection attacks

- Timing randomization is effective mitigation against injection

Removal Attack

- Latest removal attack is not feasible on New-Gen LiDARs
- Our HFR attack can be effective even against New-Gen LiDARs

- Pulse fingerprinting is effective mitigation against removal attacks
- Vulnerability of object detector heavily depends on their training data
- HFR attack can be effective against autonomous driving scenarios

Attack Device Improvements

- Our new attack device can achieve inject >6k points in >80°
- **CPI attack is feasible** on VLP-16 with our device
- Model-level vulnerability may not be necessary to attack object detector

New-Gen LiDAR Measurements & Attack Modeling

Security Analysis w/ 9 object detectors & AD Simulator (Autonomous Driving)

New Attack Modeling

Injection Attack

- CPI attac
- enough t
- Error mo

Removal

- Pulse fin Selection of training data is important. Some model is very sensitive to small number of points.

- Latest re feasible on New-Gen LIDAKS

- Our HFR attack can be effective even against New-Gen LiDARs

ngerprinting is effective **on** against injection attacks randomization is effective **on** against injection

ngerprinting is effective mugation against removal attacks

- Vulnerability of object detector heavily depends on their training data
- HFR attack can be effective against autonomous driving scenarios

Conclusion

- First large-scale measurement study on New-Gen LiDARs
 - Uncover 15 novel research findings
 - Significantly improve spoofing capability with enhanced optics and electronics
 - Show that common assumptions in 1st Gen LiDARs do not hold on New-Gen
- Design more accurate attack modeling of LiDAR spoofing attacks
 - Model attack capabilities both for injection and removal attacks
 - Evaluate 3 major object detectors trained on 5 datasets with the attack models
 - Identify that timing randomization and pulse fingerprinting have high mitigation capability against LiDAR spoofing attacks
- Design first practical black-box removal attack on New-Gen LiDARs
 - HFR shows high effectiveness on New-Gen LiDARs with timing randomization
- Performed Responsible Vulnerability Disclosure
 - Informed 7 LiDAR suppliers and 3 AD companies. 5 are investigating our report

Thank you!

For **demos, data & other details**, Please visit our project website:

https://sites.google.com/view/cav-sec/new-gen-lidar-sec

or

Contact me, Takami Sato <takamis@uci.edu>

<u>Autonomous & Smart Systems</u> <u>Guard</u> Research Group

