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Abstract—Browser fingerprinting often provides an attractive
alternative to third-party cookies for tracking users across the
web. In fact, the increasing restrictions on third-party cookies
placed by common web browsers and recent regulations like the
GDPR may accelerate the transition. To counter browser finger-
printing, previous work proposed several techniques to detect its
prevalence and severity. However, these rely on 1) centralized web
crawls and/or 2) computationally intensive operations to extract
and process signals (e.g., information-flow and static analysis).

To address these limitations, we present FP-Fed, the first
distributed system for browser fingerprinting detection. Using
FP-Fed, users can collaboratively train on-device models based
on their real browsing patterns, without sharing their training
data with a central entity, by relying on Differentially Private
Federated Learning (DP-FL). To demonstrate its feasibility and
effectiveness, we evaluate FP-Fed’s performance on a set of 18.3k
popular websites with different privacy levels, numbers of partic-
ipants, and features extracted from the scripts. Our experiments
show that FP-Fed achieves reasonably high detection performance
and can perform both training and inference efficiently, on-device,
by only relying on runtime signals extracted from the execution
trace, without requiring any resource-intensive operation.

I. INTRODUCTION

As users browse the web, they are often tracked across
multiple unrelated websites by means of third-party cookies.
Although this type of tracking can have valid use cases
(e.g., ad conversion [47]), it is generally considered privacy
invasive [79]. To protect users, browsers like Safari [83],
Firefox [84], and Brave [11] have blocked or restricted third-
party cookies by default. Chrome, the most popular web
browser, will also start deprecating them in 2024 [50].

To circumvent these restrictions, trackers are turning to
alternative methods like bounce tracking [82] and browser
fingerprinting [75]. The latter uses client-side information to
build unique user identifiers, typically via Javascript programs
gathering device information, e.g., screen resolution, installed
fonts, etc. [32]. This is then combined and hashed to generate
a unique identifier for the user’s browser, which remains stable
over time regardless of the websites visited [70].

While browser fingerprinting can be used for acceptable
purposes, e.g., web authentication [8, 49], bot [18, 33, 85] or

fraud detection [38, 53], it largely represents a threat to user
privacy [19, 31, 78, 81]. In fact, it can be even more intrusive
than third-party cookies: the latter are easily detectable and
can be cleared at any time, whereas browser fingerprinting is
less transparent, and countermeasures often result in significant
website breakage [10, 39]. Moreover, it can be effective even in
incognito mode [7] and potentially track users for months [70].

Domains using browser fingerprinting have increased in
recent years – from 519 in the top 1M websites in 2016 to
2,349 in the top 100k websites in 2019 [39]. Also considering
that large-scale cross-site tracking will likely move away from
cookie-based tracking, it is fair to assume fingerprinting will
likely continue to grow in prevalence and severity.

Early research on browser fingerprinting facilitated the
creation and manual curation of blocklists [25, 27, 28, 30] and
basic heuristics [2, 32]. More recently, machine learning has
been used to build fingerprinting detectors with high precision
and recall [22, 37, 39]. These methods rely on one entity
performing a large-scale crawl of the web (typically, top-
ranked websites) to collect scripts, which are then labeled and
used to train detection models. These techniques showcase the
feasibility of detecting browser fingerprinting with machine
learning-based approaches.

Limitations of Centralized Approaches. Alas, crawlers can
rarely replicate human-like browsing behavior and interactions
with a site, e.g., they are often identified by bot detec-
tors, cannot operate beyond login and paywalls, or solve
CAPTCHAs [3]. Moreover, the scripts’ behavior may differ
compared to real-world interactions, depending on the type
of device, OS, etc. While it is possible in principle for
a crawler to simulate these attributes (e.g., using different
user-agent headers), in practice, it might be hard to do it
correctly and, perhaps more importantly, to extensively cover
the range of different devices, OS, etc. To this end, we also
conduct a small-scale study on the top 300 domains from
the Tranco ranking list and find that crawls involving real
users (logging in, solving CAPTCHAs, etc.) can capture 3
times more fingerprinting scripts than automated/centralized
ones proposed in previous work [32, 39]. In Appendix A, we
provide an example of a script missed by an automated crawler
but captured by user interaction.

Overall, training data built from centralized crawlers may
fail to visit a non-negligible number of (potentially fingerprint-
ing) websites, including top-ranked ones [39]. One other option
could be gathering real-world observations from different users
as they browse various websites; however, data collected from
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websites might reveal sensitive information such as medical
conditions [23], which could affect users’ privacy. Alterna-
tively, each user could collect their own data and train a
detection model locally; while providing optimal privacy, this
approach is unlikely to provide meaningful accuracy.

Federated Learning and its Challenges. As a result, we opt
to build on Federated Learning (FL) [56], a collaborative learn-
ing approach seeking a reasonable privacy-utility compromise
between local-only and fully centralized training. With FL,
users train models locally but collaborate to build a global
model, which lets them acquire knowledge from other users’
data by only sharing (less sensitive) model updates.

However, it is not trivial to federate high-precision, high-
recall classification algorithms, and in particular, to do so in an
efficient, scalable manner, e.g., adapting to the federated setting
existing classifiers [39] that rely on thousands of complex,
hand-crafted, features extracted from each script. Also, exe-
cuting complex algorithms may severely impact the browser’s
performance, especially when deploying to clients with a wide
range of computational power and resource constraints.

Moreover, although sharing model updates rather than
raw data is inherently less privacy-invasive, inference attacks
are still possible that allow adversaries to learn sensitive
information about users’ training data [58, 65]. Therefore, it
is imperative to provide rigorous privacy guarantees through
the Differential Privacy framework [26]. Alas, this is likely to
introduce a loss in model performance and thus has to be done
in a way that preserves a reasonable privacy-utility tradeoff.

Contributions. This paper introduces FP-Fed (Browser
Fingerprint Detection via Federated Learning) – to the best
of our knowledge, the first distributed system for detecting
fingerprinting in the wild. FP-Fed relies on Differentially
Private Federated Learning (DP-FL) and achieves reasonably
high accuracy, with minimal false positives, while providing
formal privacy guarantees. To assess its feasibility and explore
its deployment challenges, we analyze the performance of FP-
Fed along several axes, including different levels of privacy,
number of participants, and feature sets.

We evaluate FP-Fed on a dataset of 18.3k popular websites,
finding that, with 1M participants, we achieve 0.86 Area
Under the Precision-Recall Curve (AUPRC) while providing
strong (central) differential privacy guarantees (ε = 1). With
ε = 10, FP-Fed achieves a comparable performance to a
fully centralized approach (0.95 vs. 0.97 AUPRC), and overall
offers a significant improvement compared to each client only
training on their local dataset (0.78 AUPRC).

Our experiments shed light on the optimal configurations
balancing the practicality of deployment and detection perfor-
mance. For instance, we show that we do not necessarily need
extensive instrumentation of Javascript APIs or thousands of
features, as done in previous work. In fact, a small set of 149
features is enough, even in the DP-FL setting.

Overall, while centralized techniques might miss websites
and scripts due to bot detection techniques and user login
requirements, the federated architecture of FP-Fed captures
real-world browsing behavior and can detect fingerprinting
more robustly while providing rigorous privacy guarantees.

II. BACKGROUND

This section reviews background topics, namely, Federated
Learning (FL) and Differential Privacy (DP); readers familiar
with them can skip it without loss of continuity.

A. Federated Learning (FL)

Federated Learning (FL) is a decentralized learning ap-
proach where participants collaboratively train a machine
learning model without sharing (possibly sensitive) training
data with a central server [56]. Instead, they train local models
on their individual datasets and only share model updates. The
central server only sees and aggregates the model updates and
propagates the global model to the participants.

There are different ways to instantiate FL; in this paper, we
follow prior work [57, 63] and use the Federated Averaging
(FedAvg) algorithm [56], which builds and iteratively updates
a global model. In each round r, a subset of participants
(C) is chosen from all participants by a central server. The
server sends the aggregated global model parameters from the
previous round θrglobal to these participants, which initialize the
local model with the global model parameters (i.e., participant
i initializes θri = θrglobal). Each participant i performs E
local updates using a given optimization algorithm (typically
Stochastic Gradient Descent) and returns the parameters of the
resulting model, θr+1

i , to the server. Finally, the server averages
the local models to get θr+1

global = 1
|C|

∑
i∈C θ

r+1
i .

B. Differential Privacy (DP)

DP is the established framework to define algorithms
resilient to adversarial inferences. It provides an unconditional
upper bound on the privacy loss of individual data subjects
from the output of an algorithm by introducing statistical
noise [26].

Definition 1 (Differential Privacy (DP)). A randomized mech-
anism M : D → R is (ε, δ)-differentially private if for any
two neighboring datasets d, d′ ∈ D and S ⊆ R

Pr[M(d) ∈ S] ≤ eε Pr[M(d′) ∈ S] + δ

The above definition leaves the definition of neighboring
datasets to possibly depend on the setting, and thus it can
vary [57]. The ε parameter (aka privacy budget) is a numerical
value ranging from 0 to∞ (lower values imply better privacy),
representing the privacy loss due to the mechanism. The addi-
tional parameter δ is referred to as the “failure probability,” i.e.,
the probability with which the mechanism fails to provide any
privacy guarantees. Therefore, δ is set to be an asymptotically
small number (≈ 10−5).

C. DP in FL

In the context of FL, DP can be defined and applied in
various ways, also depending on the trust assumptions in place.

Record-level vs. Participant-level DP. In FL, DP guarantees
can hold at either record or participant level, depending on the
definition of neighboring datasets. When each user contributes
one record (aka a sample or a row), the dataset is defined
as a collection of records. Therefore, neighboring datasets
either add or remove a single record corresponding to whether
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Algorithm 1 DP-FedAvg

1: function MAIN(initial model θ0, # rounds R,
# participants W , sampling probability q, noise scale z,
clipping parameter S, optimizer OPT)

2: θ1
global ← θ0

3: σ ← zS
qW

4: for round r from 1 to R do
5: Pr ← randomly select participants with probability
q

6: for participant k ∈ Pr do
7: ∆r+1

k ← LOCAL UPDATE(k, θrglobal, S,OPT)
8: end for
9: θr+1

global ← θrglobal + 1
qW

∑
k∈Pr ∆r+1

k +N (0, σ2I)
10: end for
11: return θR+1

global
12: end function

13: function LOCAL UPDATE(k, θrglobal, S,OPT)
14: θ ← θrglobal
15: for local epoch i from 1 to E do
16: θ ← OPT(θ,Dk) . local update with OPT
17: ∆← θ − θrglobal
18: θ ← θrglobal + min(1, S

||∆||2 ) ·∆
19: end for
20: return θ − θrglobal . already clipped
21: end function

a single user contributed their record to that dataset. Here,
record-level guarantees [26] ensure the difficulty (bound by
the privacy parameter ε) for an adversary to determine if a
single record was included in the data analysis. Naturally,
there are settings where each user contributes multiple records;
e.g., in healthcare settings, each patient contributes multiple
records corresponding to each hospital visit. Similarly, in FL,
each user contributes all the records in their local dataset;
here, participant-level guarantees [57] are necessary. Thus,
neighboring datasets either add or remove all records that
belong to a single user. In this case, participant-level DP
ensures it is difficult (up to privacy parameter ε) for an
adversary to determine if all the records contributed by a single
user were included in the data analysis.

While in both settings, the DP guarantees correspond to
whether a single user participated in the data analysis, the
resulting definitions of datasets/neighboring datasets vary due
to the amount of data contributed by each user.

Central, Local, and Distributed DP. Another difference in
how DP can be integrated into FL is based on the trust placed
on the server: 1) in Local DP (LDP) [67], each participant adds
noise before sending updates to the server; 2) in Central DP
(CDP) [35, 57], participants send updates without noise, and
the server applies a differentially private aggregation algorithm.

LDP has the advantage that each participant’s model update
is (ε, δ)-differentially private; thus, not even the server is able
to make inferences on them (with probability bounded by ε).
At the same time, however, this also means that a large amount
of local noise may be required, which could severely affect
utility [44]. By contrast, in CDP, individual model updates
are sent unperturbed to the server; the DP guarantees are

primarily with respect to the aggregate model vis-à-vis the
other participants. The server is trusted with the aggregated
model coefficients but not the (sensitive) training data. Since
noise is only added after aggregation, less noise is typically
required, thus resulting in better model utility.

A possible alternative is to combine CDP with secure
aggregation protocols. This setting, known as Distributed
DP [42], uses CDP in that the total amount of noise added to
the model updates is the same as with CDP. Each participant
also adds a small amount of noise to their local model updates
and encrypts them, using additively homomorphic encryption
or secure multiparty computation, before sending them to the
server. The server can then only decrypt the aggregate, but
not the individual users’ model updates. Alas, in practice, the
implementation of secure aggregation protocols in production
systems is not trivial, as the details of finite precision and
modular summation arithmetic are often overlooked [42], noise
has to be sampled from special discrete distributions [6, 36,
42], and the computational complexity of secure aggregation
protocols tend to scale with the total number of participants
(typically very large in FL).

Consequently, our work relies on CDP. Specifically, we
follow prior work [57, 63] and use Algorithm 1, which guaran-
tees that the output of the aggregation function at the server is
indistinguishable (with probability bounded by ε) regardless of
whether a given participant shared their local model updates in
training (participant-level DP). Although the server is trusted
with the model updates and the addition of noise during
aggregation, this is a significantly weaker assumption than
trusting the server with the raw training data [64]. Real-world
deployments of differentially private FL often use CDP, such
as Google’s next-word prediction [55].

III. BROWSER FINGERPRINTING

We now introduce browser fingerprinting and our approach
to collecting samples of fingerprinting scripts in the wild.

A. What is Browser Fingerprinting?

Browser fingerprinting is a stateless online tracking tech-
nique, usually deployed through Javascript, geared to build a
unique identifier tied to a user’s browser. Typically, fingerprint-
ing scripts collect pieces of high-entropy device information
that, combined together, yield unique and stable identifiers.

An example is shown in Script 1: the script builds a list of
fonts installed on a device by rendering text in various fonts
on a Canvas element and measuring the width of the rendered
text—if the font is installed, its width will be different from
when the font is not installed, in which case the user’s device
reverts to rendering the text in some default font. While many
fonts are pre-installed on almost all devices, it is rare to have all
possible fonts installed, and thus the combination of available
fonts becomes virtually unique [29].

Although specific cases of fingerprinting – like the one
discussed above – are well-known, there is no consensus on
one specific definition of fingerprinting [39]. If anything, it is
challenging to identify the intent behind the behavior and to
determine whether it is truly used for fingerprinting purposes.
For example, while the screen resolution can be a source of
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1 // Canvas font fingerprinting script.
2 Fonts = ["monospace" , ... , "sans-serif"];
3

4 CanvasElem = document.createElement("canvas");
5 CanvasElem.width = "100";
6 CanvasElem.height = "100";
7 context = CanvasElem.getContext(’2d’);
8 FPDict = {};
9 for (i = 0; i < Fonts.length; i++)

10 {
11 CanvasElem.font = Fonts[i];
12 FPDict[Fonts[i]] = context.measureText("example").width;
13 }

Script 1: An example of a fingerprinting script [39].

high-entropy information used to potentially fingerprint users,
it can also be used by modern reactive websites to display
content using the appropriate layout and aspect ratio.

Thus, in this work, we follow the approach of FP-
Inspector [39] to identify and refer to browser fingerprint-
ing, which uses a conservative definition based on a set of
well-known heuristics and signatures. While more details are
provided in Section IV-C, in a nutshell, FP-Inspector [39]
focuses on the four most prevalent forms of fingerprinting
– namely, Canvas, Canvas Font, WebRTC, and AudioContext
– and exclude the simple collection of properties from the
Navigator and Screen APIs.

Although this might potentially miss some fingerprinting
scripts and techniques (i.e., false negatives), it tends to mini-
mize the chance of wrongly flagging scripts as fingerprinting
(i.e., false positives). This is an important requirement of
fingerprinting detection, as it directly affects its validity; when
deployed in the wild, false positives might amount to falsely
accusing organizations of doing fingerprinting and potentially
not abiding by their stated privacy policies [24].

B. How to Collect Fingerprinting Scripts?

As mentioned, fingerprinting scripts access Javascript APIs,
e.g., Canvas, WebRTC, and AudioContext, to retrieve high-
entropy information about the device. Therefore, detection
typically entails instrumenting browsers and collecting the
content and execution traces of scripts (i.e., arguments and
return values of APIs called) during web crawls. Our exper-
iments adhere to this approach. While our work introduces a
FL approach to train ML models to detect fingerprinting in-
the-wild, we collected the execution traces and page content
based on a web crawl. Note that this approach, while not fully
representing the distributed browsing behavior of individual
users, has been adapted to simulate different browsing patterns
on the web (see Section V-A).

In contrast to previous work [32, 39], which mainly used
extended versions of OpenWPM [32], we use Puppeteer1

to collect contents and traces from scripts loaded by web-
sites. OpenWPM uses Firefox, while Puppeteer uses Google
Chrome; different browsers expose different Javascript APIs,
which can, in turn, be exploited by different fingerprinting
scripts. For example, although the Battery Status API was
removed from Firefox since v52 (released in 2017), it is still

1https://pptr.dev/

supported in the latest version of Chrome M114. Furthermore,
as Chrome is more widely used than Firefox, we assume it is
more likely that fingerprinting scripts would rely on the API
surface provided by Chrome.

Moreover, rather than extracting both static (e.g., Abstract
Syntax Trees) and dynamic (e.g., execution traces) features,
we only focus on dynamic ones—specifically, the number of
times each API is called, the arguments passed to the API,
and the return values of the API call. This follows previous
work [66] showing that models built using static features are
not robust, as obfuscation techniques can easily evade them.
Additionally, while Javascript APIs can be easily instrumented
in the browser to collect execution traces using extensions,
performing more resource-intensive operations (such as pars-
ing Abstract Syntax Trees and running clustering algorithms) is
inefficient and impractical on resource-constrained devices. As
a result, especially in a distributed setting, it is more practical
to deploy classifiers based on dynamic features alone.

IV. THE FP-FED SYSTEM

In this section, we introduce FP-Fed, a privacy-preserving
federated learning system to detect browser fingerprinting col-
laboratively. We present an overview of the system along with
its key components; then, we discuss in detail the individual
steps involved in the operation of FP-Fed.

A. Overview

Figure 1 provides a high-level diagram of FP-Fed. The
system works as follows:

1) FP-Fed participants visit websites according to their own
interests and preferences. The participants run an instru-
mented browser (e.g., Chrome M114, which supports
native API tracing) on a platform that supports FL (e.g.,
Android).

2) Before federated training begins, each participant’s instru-
mented browser performs the following actions:
a) Collects execution traces when specific (often high-

entropy) monitored APIs are called;
b) Extracts features for each script loaded on any visited

website (see Section IV-B);
c) Generates seed ground truth labels (fingerprinting/non-

fingerprinting) for each script, according to a high-
precision ground-truth heuristic (see Section IV-C);

d) Participates in a pre-processing phase, sharing local
summary statistics (mean and variance) of each feature
with the server, which aggregates the statistics, adds
DP noise, and shares them back with the participants.
Finally, the browser scales each feature according to
the global summary statistics (see Section IV-D).

3) At each round, the server selects a subset of participants
to engage in that round of training. The server then sends
the global model parameters from the previous round to
these participants.

4) Participants instantiate a local model with the global
model’s parameters and update their local model with the
data from the websites they visited.

5) Participants send the updated model parameters to the
server.

4
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Fig. 1: An overview of the FP-Fed system: (1) Participants collect execution traces from the websites they visit. (2) At each round of training,
the server selects a subset of participants and sends the previous round’s global model parameters to them. (3) These participants train a local
model based on data collected from websites they visited, and (4) send the local model updates to the server, (5) which aggregates them, adds
differentially private noise, moves on to the next round, and repeats steps (2) to (5).

6) The server aggregates the updated model parameters, adds
noise to satisfy DP, and generates the new global model
parameters for the next round.

7) Steps 2) to 5) are repeated over multiple rounds until
the global model converges; the global model parameters
are then propagated to all participants to be used for on-
device browser fingerprinting detection.

As the content served by websites and the scripts they load
do not remain static over time, in theory, Steps 1) to 7) can
be repeated regularly (e.g., once a month or once sufficient
scripts are collected by participants) to ensure that the lat-
est fingerprinting techniques remain detectable by the global
model. However, in our experiments, we will only consider a
single data collection phase for the sake of simplicity.

As discussed in Section I, the data collected by our system
in Steps 2a) to 2c) might reveal sensitive information that needs
to be protected. Therefore, FP-Fed needs to provide differential
privacy guarantees (satisfying CDP) when aggregating such
data. That means adding statistical noise to all model updates
and statistics shared with participants, including during the
pre-processing phase (namely, in Steps 1d and 5). We use
DP’s advanced composition theorem [45] and the moments
accountant [1] to keep track of the overall privacy budget. In
other words, FP-Fed provides strong privacy guarantees to the
participants by formally bounding leakage.

Components. We can summarize the three main components
involved in FP-Fed as follows:

• Participants. FP-Fed operates in a distributed setting
where participants collaboratively build a browser finger-
printing detection model based on the websites they visit.

• Server. The aggregation server chooses the participants
for each round, propagates the global model, and aggre-
gates the local model updates (satisfying CDP). Although
participants do not need to trust the server with their
execution traces, etc., they trust it with (significantly less
sensitive) model updates and that it will correctly perform
differentially private aggregation.

• Model. While FP-Fed can potentially be used to train any
neural network-based model, in this work we instantiate
a simple logistic regression model, which can be seen
as a neural network with no hidden layers, one output
neuron, and the sigmoid activation function. We discuss
this choice in detail in Section IV-E.

B. Feature Extraction

The features we extract from the execution traces collected
by FP-Fed’s instrumented browsers include: 1) the number of
times 684 potential fingerprinting Javascript APIs are called,
which we refer to as the API call counts, and 2) 830 custom
features. In total, we consider 1,514 features (684 API call
counts + 830 custom features) from each execution trace.

API Call Counts. Some APIs tap into well-known sources
of high-entropy data (e.g., Navigator.userAgent). Others,
such as CanvasRenderingContext2D.measureText, might do
so only when called multiple times with a specific purpose.
These “patterns” can be encoded into fingerprinting “signa-
tures”, which can then be used in a heuristic to tag scripts as
fingerprinting if they appear to match any such signatures. FP-
Inspector collects call counts from 500 APIs; however, since
it uses Firefox, its crawler does not capture a number of dep-
recated and unimplemented APIs that are present in Chrome,
e.g., BatteryManager.level. Using the same instrumentation
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used by FP-Inspector, our Chrome-based crawler detects an
additional 75 APIs accessed by scripts.

We also instrument 184 APIs available in Chrome that
have been specifically flagged as “High Entropy APIs.” These
are natively traced by Chrome, instead of being separately
instrumented by, e.g., an extension; thus, fingerprinting scripts
will not be able to evade the instrumentation. Therefore,
signals collected from those APIs are much more robust to
fingerprinting evasion in JavaScript, as compared to APIs that
are externally instrumented via extensions.

Custom Features. In addition to the API call counts, we
instrument and use 830 custom hand-crafted features defined
by [39]. Unlike API call counts, which simply involve count-
ing the number of times an API is called, these features
are processed from the arguments and return values of the
calls. For instance, one such feature encodes whether the
WebGL2RenderingContext.fillStyle API is set to fill the
canvas with a gradient color (as opposed to a solid color).
In other words, they often represent signatures that are present
across many known fingerprinting scripts and thus are very
useful in detecting browser fingerprinting.

Note that FP-Inspector originally extracts 2,128 such fea-
tures; however, most of them could not be properly encoded
when execution traces did not contain a call to the correspond-
ing API. Rather, we focus on the 830 features that could be
encoded even when the API was not called. In Table I, we
report a sample of these custom features.

Furthermore, note that, even though these features pro-
cess the raw execution traces heavily, information that might
identify sensitive websites might still persist. Consider, for
instance, a website that contains information about a sensitive
medical condition – e.g., https://www.nhs.uk/conditions/hiv-
and-aids/treatment/. This website might load a script that
accesses a unique combination of APIs that will be visible
from the API call counts. Alternatively, the script might make
an API call with unique arguments, such as storing a first-
party cookie with a unique string length which will be visible
from the custom features. An adversary with access to these
features might then be able to determine if a user has visited
the sensitive website, thus leaking sensitive information about
the user (e.g., the likelihood that the user has HIV).

C. Ground Truth

Unfortunately, there are no definite and readily available
labels for Javascript scripts that can be used for fingerprint-
ing detection, and creating them manually and at scale is
hard. Therefore, we follow an approach similar to previous
work [13, 39], using high-precision heuristics to generate
binary labels (fingerprinting/non-fingerprinting). While these
heuristics have high precision, they are typically narrowly
defined to minimize false positives; as a result, they miss
fingerprinting scripts. However, machine learning classifiers
trained on high-precision heuristics are known to generalize
over fingerprinting behaviors and detect previously unknown
fingerprinting techniques. In prior work [39], machine learning
classifiers were able to detect 26% more fingerprinting scripts
than manually designed heuristics in the wild.

More precisely, our ground-truth labeling heuristic is taken
from [39], which uses a high-precision fingerprinting definition

API Operation

CanvasRenderingContext2D.fillStyle is fill gradient?
CanvasRenderingContext2D.textAlign returns start?
CanvasRenderingContext2D.textBaseline returns top?
CanvasRenderingContext2D.lineJoin returns round?
WebGLRenderingContext.getExtension is first argument EXT blend minmax?
WebGLRenderingContext.getExtension is first argument WEBGL draw buffers?
WebGLRenderingContext.getExtension is first argument WEBGL lose context?
WebGLRenderingContext.pixelStorei is second argument 4?
WebGLRenderingContext.getAttribLocation is second argument r5?
WebGLRenderingContext.depthMask is first argument False?
HTMLCanvasElement.getElementsByTagName is first argument script?
Node.isConnected returns False?
Document.getElementsByTagName is first argument head?
HTMLCanvasElement.nodeName returns canvas?
AnalyserNode.channelInterpretation returns suspended?
AnalyserNode.channelCountMode returns max?
OscillatorNode.type returns triangle?
AudioContext.state returns suspended?
RTCPeerConnection.iceGatheringState returns complete?
RTCPeerConnection.signalingState returns stable?

TABLE I: Sample of custom features extracted from execution traces.

that minimizes the false positive rate. This does not consider
simple access to device information as fingerprinting; rather,
only unwarranted accesses or aggressive calls made to well-
known fingerprinting APIs are considered fingerprinting. Be-
low, we review the four main types of fingerprinting identified
in [39], along with their “definitions.”

Canvas Fingerprinting: The differences in font rendering
across devices are exploited to build a high-entropy identifier.
Canvas fingerprinting is considered to be happening if:

1) Text is written to the canvas element using the fillText
or strokeText method;

2) Style is applied with fillStyle or strokeStyle method;
3) toDataURL is called to extract the image from the canvas;

and
4) save, restore or addEventListener methods are not

called.

Canvas Font Fingerprinting: Scripts rely on accessing the
list of fonts installed on a device. Canvas font fingerprinting
is happening if:

1) font property of canvas element is set to more than 20
different fonts; and

2) measureText is called more than 20 times.

WebRTC Fingerprinting: Scripts use the access to candidate
IP addresses of peers used by the WebRTC protocol [61]. The
following actions define WebRTC fingerprinting:

1) createDataChannel or createOffer method is called on
a WebRTC peer connection; and

2) onicecandidate or localDescription method is called.

AudioContext Fingerprinting: Scripts use differences in how
audio signals are processed by different hardware. The follow-
ing actions define AudioContext fingerprinting:

1) Either createOscillator, createDynamicsCompressor,
destination, startRendering, or oncomplete is called.

D. Differentially Private Federated Pre-Processing

Before training, we need to normalize the extracted features
to have a mean of 0 and a variance of 1. This is known to
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Algorithm 2 DP-FedNorm

1: function MAIN(# features F , # participants W ,
sampling probability q, noise scale z,
mean clipping parameter Sµ,
var clipping parameter Ss)

2: σµ ← zSµ
qW

3: σs ← zSs
qW

4: for feature f from 1 to F do
5: P fµ ← randomly select participants with prob. q
6: for participant k ∈ P fµ do
7: µfk ← LOCAL MEAN(k, f, Sµ)
8: end for
9: µµµf ← 1

qW

∑
k∈P fµ µ

f
k +N (0, σ2

µI)

10: P fs ← randomly select participants with prob. q
11: for participant k ∈ P fs do
12: sfk ← LOCAL VAR(k, f, Ss)
13: end for
14: sf ← 1

qW

∑
k∈P fs s

f
k +N (0, σ2

sI)
15: end for
16: return µµµ, s
17: end function
18:
19: function LOCAL MEAN(k, f, Sµ)
20: n← |Dk| . number of rows
21: vf ← f th column from Dk
22: µ = 1

n

∑n
i=0 v

f
i

23: return min(µ, Sµ) . clip
24: end function
25:
26: function LOCAL VAR(k, f, Ss)
27: n← |Dk| . number of rows
28: vf ← f th column from Dk
29: µ = 1

n

∑n
i=0 v

f
i

30: s = 1
n−1

∑n
i=0(vi − µ)2

31: return min(s, Ss) . clip
32: end function

improve model convergence. In a centralized setting, the mean
and variance of each feature can be trivially calculated by the
data holder. Whereas in a federated setting, the mean and vari-
ance of each feature have to be aggregated in a distributed way
from many participants, while satisfying differential privacy.
To this end, we use Algorithm 2.

For each feature, f , after the mean (µµµf ) and variance (sf )
are calculated, each participant scales the vector of features
extracted from each script (vf ) by computing vf−µµµf

sf
. This

makes the (normalized) features have a mean of 0 and a
variance of 1 throughout.

E. Training

Previous work [37, 39] in the centralized setting used
Support Vector Machines (SVM) and Decision Trees. How-
ever, [37] focuses on the broader problem of “web tracking,”
building a balanced dataset where 57% of the scripts are
tracking. By contrast, browser fingerprinting is a much more
narrow definition: typically, less than 1% of all scripts are
fingerprinting. Additionally, since SVMs do not perform well

in problems with severe class imbalance [14], they are not a
good fit for the problem of browser fingerprinting.

Moreover, decision trees have only been recently adapted
to the federated setting. More precisely, Maddock et al. [54]
recently introduced a framework to deconstruct the decision
tree algorithm into components, with a number of settings
that need to be fine-tuned to the specific application, e.g.,
discretizing continuous features, batching weight updates, etc.

Therefore, as adapting or designing novel DP-FL algo-
rithms is not the focus of our work, we opt for a simple
model architecture based on a logistic regression function,
although FP-Fed can be instantiated with any algorithm. To
ensure fast convergence, we also use the LBFGS optimizer
instead of standard first-order gradient descent techniques, such
as Stochastic Gradient Descent. To the best of our knowledge,
we are the first to empirically show that second-order methods
such as LBFGS can be used to train models with differential
privacy successfully in the federated setting.

V. EXPERIMENTAL EVALUATION

In this section, we discuss the setup of our experimental
evaluation to shed light on the key factors impacting the per-
formance of FP-Fed. We present our strategy to visit popular
webpages and collect fingerprinting scripts. We then discuss
how we distribute these scripts among FP-Fed participants.
Finally, we introduce the different subsets of features we
experiment with.

A. Dataset

Our first step is to collect execution traces. We opt to
simulate a distributed setting by performing a single crawl, and
then split the traces across different participants using different
distributions. We do so for two reasons: 1) arguably, it would
be exceedingly difficult to recruit and instrument large numbers
of users and browsers, e.g., due to privacy, efficiency, cost, and
coverage issues, and 2) simulating a distributed setting enables
us to experiment with script and feature distributions to eval-
uate the impact of different distributions on the performance
of the overall model (see Section V-B).

Popular websites. Our crawl strategy follows that of prior
work [39], as we visit the homepages of 20k popular websites.
We visit the top 10k sites from the Chrome User Experience
Report (CrUX) [20] and randomly sample another 10k sites
ranking between 10k and 100k. Previous studies have often
used the Alexa ranking to sample and visit popular websites;
we use the CrUX ranking instead since the Alexa ranking
has become deprecated since May 2022 [9]. Moreover, recent
research [74] suggests that the CrUX dataset provides a more
accurate ranking than the alternatives.

Samples. Out of the 20k websites, we successfully visit 18,300
(91.5%). That is, our crawl fails to collect traces from 1,700
websites, with the overwhelming majority (64.3%) of them due
to HTTP 403 Forbidden errors. This error is typically returned
by websites requiring user login or bot detection scripts. Of
the 18,300 websites loaded, we collect 181,633 unique scripts
extracting 1,514 features each.

According to our high-precision ground-truth heuristic, 752
out of the 181,633 scripts (0.41%) are fingerprinting. We then
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Fig. 2: Distribution of domains among participants

split the dataset into 80% training (145,307 scripts, 602 finger-
printing) and 20% testing (36,326 scripts, 150 fingerprinting).

Data Distribution. Next, we assign the training data to
the participants in FP-Fed to simulate a realistic distributed
browsing scenario. To do so, we build a distribution among
domains based on the Tranco [69] list as showed in Figure 2.

Although the CrUX dataset used for the crawl does provide
rankings for websites, these are coarse-grained (1k, 10k, 100k,
etc.). Therefore, we assign the fine-grained Tranco ranks to the
websites present on the CrUX list. The distribution follows the
Zipf’s law, which reflects the real-world observation that some
websites are visited much more frequently than others [4, 21].
Thus, each participant k samples a fixed set of D URLs from
the distribution and constructs her local list Dk of URLs, for
which it stores all scripts that were loaded on each of these
URLs from the training dataset.

B. Feature Sets

One key consideration of deploying FL in production is
the limited computing capability available to participants [44].
While this is usually a key factor in deciding the size and
complexity of models and training algorithms involved, in the
context of browser fingerprinting, this consideration addition-
ally impacts the features that the browser can feasibly extract.
As described earlier, FP-Fed extracts two types of features: 1)
API call counts and 2) custom features. The former simply
involves attaching a counter to potential fingerprinting APIs,
while the latter involves reading and processing arguments
and return values of APIs, which might be computationally
intensive and potentially raise privacy concerns.

As a result, we experiment with different smaller subsets
of the 1,514 total features, which are more practical to deploy,
and investigate their impact on model performance. Next, we
define the four main feature sets we experiment with.

All. This feature set comprises all 1,514 features: 1) the 500
features collected in our crawl by instrumenting the full API
surface instrumented by FP-Inspector [39], along with the
additional 184 APIs not included in their work but currently
present in Google Chrome, and 2) 830 custom features.

FP Inspector. This set includes 1,330 features: 1) the 500 API
call counts and 2) the 830 custom hand-crafted features. This
is the set of features considered by FP-Inspector [39].

JShelter. This set consists of 588 features: 96 API call
counts and 492 custom features corresponding to the APIs

instrumented by JShelter [40], a browser extension that, among
other use cases, includes a fingerprinting detector module.
We extract the API surface instrumented by JShelter from its
source code using jsrestrictor.2 As obtaining the exact list of
custom features actually extracted by JShelter would require
significant reverse engineering, we use all custom features
corresponding to the API surface. While this may not be the
exact feature set used by the extension to classify fingerprinting
scripts, it provides a useful upper bound on the number of
features real-world fingerprinting detectors typically have.

High Entropy. This set includes 109 features: no custom
features and the 109 API call counts flagged as “high entropy”
by Chromium.3

C. Metrics

To quantify the model’s performance, we use the Area Un-
der the Precision-Recall Curve (AUPRC) statistic. Rather than
choosing a single threshold for classification and calculating
precision and recall for that threshold, the AUPRC summarizes
the model performance across various thresholds.

Thus, AUPRC is a more robust statistic that captures the
effectiveness of the model as a whole. Also, we repeat and
average all experiments over five runs.

VI. RESULTS

We now present the results of our performance evaluation
of FP-Fed across various settings. We start with assessing
the impact of federated training – specifically, the number of
participants – on model performance, without any differential
privacy guarantees. We then measure FP-Fed’s performance at
various levels of privacy and for different feature sets used.
In the process, we also introduce and experiment with an
additional feature set called Ext High Entropy (Extended High
Entropy). Next, we evaluate the performance improvements
of using the feature normalization step. Moreover, we assess
FP-Fed with respect to Non-IID distributions. Finally, we
conduct a small-scale user study evaluating the effectiveness
and computational overhead of performing a manual crawl
using a prototype browser extension that deploys FP-Fed.

A. Non-DP Federated Training

We first focus on Non-DP training, where no noise is added
to the feature normalization or the training algorithm (z = 0).
Here, we compare the impact of federated training on model
performance compared to a fully centralized setting baseline.
The fully centralized setting corresponds to when a centralized
crawler (e.g., FP-Inspector) can visit all websites present in
our dataset. While this baseline is the closest comparison to
prior work, we emphasize that this is not necessarily the best
comparison as it assumes FP-Fed and prior work encounter
the same number of FP scripts, which may not necessarily
be true in practice (see Section VI-G). Figure 3 plots the
model performance for an increasing number of participants

2https://github.com/polcak/jsrestrictor/blob/master/common/fp config/
wrappers-lvl 0 1.json

3https://github.com/chromium/chromium/blob/
aae7191b27cef1f097b23e7742afb4895ec6a9d3/docs/privacy budget/privacy
budget instrumentation.md?plain=1#L196

8

https://github.com/polcak/jsrestrictor/blob/master/common/fp_config/wrappers-lvl_0_1.json
https://github.com/polcak/jsrestrictor/blob/master/common/fp_config/wrappers-lvl_0_1.json
https://github.com/chromium/chromium/blob/aae7191b27cef1f097b23e7742afb4895ec6a9d3/docs/privacy_budget/privacy_budget_instrumentation.md?plain=1#L196
https://github.com/chromium/chromium/blob/aae7191b27cef1f097b23e7742afb4895ec6a9d3/docs/privacy_budget/privacy_budget_instrumentation.md?plain=1#L196
https://github.com/chromium/chromium/blob/aae7191b27cef1f097b23e7742afb4895ec6a9d3/docs/privacy_budget/privacy_budget_instrumentation.md?plain=1#L196


100 101 102 103

# participants, W

0.0

0.2

0.4

0.6

0.8

1.0

A
U

PR
C

Central (All)
Fed (All)
Fed (FP Inspector)
Fed (JShelter)
Fed (High Entropy)

Fig. 3: Model performance (AUPRC) vs. number of participants (W )
for various feature sets.

with various feature sets. In this setting, all participants train
on each round (q = 1).

First, we observe that FL significantly improves model
accuracy, across the board, compared to local training, which
is the setting with W = 1. Specifically, when all features are
available to the classifier, AUPRC improves by 25.5% when
1,000 participants are training with FL compared to when each
participant only trains on their local dataset.

Second, regardless of the feature set, already with 100
participants, the FL model achieves optimal performance
(AUPRC 0.98 when all features are available); in fact, that only
marginally improves with more than 100 participants, and thus
we cut our plot at W = 103. This is an important observation
from a deployment perspective, as the number of participants
available at each round of training is typically much lower than
the overall number of participants.

Third, models trained with All, FP Inspector, and JShelter
feature sets all perform close to the centralized baseline, which
is trained on all the scripts in the training dataset. This suggests
that having access to the additional API call counts for the
APIs present in Google Chrome (All) does not remarkably
improve model performance compared to only using the APIs
considered by FP-Inspector [39] (FP Inspector). However,
this might be a limitation of the high-precision ground truth
heuristic used in this work, which specifically does not include
certain types of fingerprinting, e.g., Battery API (we discuss
this further in Section VIII-E). These types of fingerprinting
will, by definition, be missed by the FP Inspector feature set.

Finally, even in the Non-DP setting, detecting fingerprint-
ing based on only the API call counts of APIs natively traced
by Google Chrome (High Entropy) is not particularly effective.
Even when the number of participants increases (W = 103),
with this feature set, AUPRC does not go over 0.8.

Overall, this first set of experiments indicates that FL based
on logistic regression shows great promise with respect to
browser fingerprinting detection – even with a relatively small
number of participants, detection performance matches that of
centralized learning.
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Fig. 4: Model performance (AUPRC) vs. the privacy parameter (ε)
for an increasing number of participants (W ).

B. Impact of the Privacy Parameter (ε)

We now evaluate the performance of FP-Fed when adding
differentially private noise. We experiment with three different
levels of privacy (ε ∈ {1.0, 5.0, 10.0}), which we refer to,
respectively, as high, moderate, and low privacy. We also
include the Non-DP results (ε = ∞) for context. In each
round, approximately 100 participants are chosen, using Pois-
son random sampling, from the large pool of participants
(q = 100/W ). We assume all features are available to the
classifier. Figure 4 reports model performance with various
levels of privacy and varying numbers of participants.

With a small number of participants (W = 104), FP-Fed
only achieves AUPRC below 0.7, especially, at high levels of
privacy (ε = 1.0). However, when the number of participants
increases to W = 105, the model starts to perform better,
with AUPRC above 0.8 even at high privacy levels (ε = 1.0).
When the number of participants is high (W = 106), the model
performance without DP can be recovered albeit only at a low
level of privacy (ε = 10.0). Additionally, when the number of
participants is large (W ≥ 105), the model performs similarly
(within 2 standard deviations) at high and moderate privacy
levels (ε = {1.0, 5.0}). Note that this is not the number of
participants per round but the total number of participants
available. This confirms that, as it is common in DP-FL,
having more than a handful of participants is imperative to
improve model performance, even if not all of them participate
in the training each round due to privacy amplification by
sampling. In other words, for the same privacy level, the more
participants exist, the less noise needs to be added.

Overall, we show that FP-Fed achieves acceptable perfor-
mance (AUPRC ≥ 0.8) even with high privacy guarantees
(ε = 1.0) when enough participants are present (W ≥ 105).

C. Impact of the Feature Sets

Next, we evaluate the feasibility of training lighter-weight
classifiers with DP. Once again, ≈ 100 participants are chosen
for each round, using Poisson random sampling. However, the
total number of participants is now fixed at W = 106. In
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Fig. 5: Model performance (AUPRC) with different feature sets for
increasing levels of privacy.

Figure 5, we plot the model performance at various levels of
privacy for different feature sets.

We observe that when enough features are available (All,
FP Inspector, and JShelter), the model performs well even at
high privacy levels. Interestingly, at moderate to high privacy
levels, the JShelter feature set has comparable performance
(within 2 standard deviations) to the FP Inspector and All
feature sets even though it only contains 40% of the features
present in the All feature set. This is most likely due to the
differentially private feature normalization step used in FP-Fed.
Since the noise added to the mean and variance of each feature
scales with the number of features used by the classifier, having
fewer but more informative features can be enough to recover
the model performance compared to having more, potentially
uninformative features.

Also, the model continues to perform poorly when limited
to the High Entropy feature set under differentially private
training. In fact, even at a low level of privacy (ε = 10.0),
the model performance is very poor (AUPRC < 0.6), which
suggests that the model has little to no utility at any reasonable
privacy level.

D. Extended High Entropy Feature Set

One of the main objectives of FP-Fed is to build a
lightweight system that does not depend on complex hand-
crafted features that are 1) hard to extract on the fly while
executing scripts and 2) not robust to new types of finger-
printing that might emerge. However, our experiments thus far
show that the API call counts of APIs natively instrumented
by Chrome (High Entropy feature set) do not really yield good
model performance. Therefore, it remains an open question to
determine how many features FP-Fed requires to perform well.
More precisely, we set to answer two main questions: 1) how
many APIs and 2) how many custom features are needed for
FP-Fed to reliably detect fingerprinting scripts?

First, we sort the features extracted by our crawl according
to the feature importance score, which quantifies the impact
each feature has on the final classification result. That is,
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Fig. 6: Model performance (AUPRC) with an increasing number of
API call counts only available to the model.

features with higher scores are more informative and corre-
spondingly are more important to include in a minimal feature
set compared to features with lower scores. Since FP-Fed
includes a feature normalization step, the weights of a trained
classifier are unaffected by the scale of each feature. Therefore,
we use the absolute weights of the trained classifier as our
feature importance score. After sorting according to feature
importance, we add additional features to the High Entropy
feature set (more informative features are added first) and plot
the model performance against the number of features added.

Adding API Call Counts. Figure 6 plots the model per-
formance as the number of API call counts available to the
model increases from 109 (High Entropy feature set) to 684
(total number of API call counts captured by the crawl) at
various privacy levels. We set the total number of participants
to W = 106 as before. Regardless of the number of API call
counts available to the model, the performance only improves
marginally and remains low (AUPRC < 0.8). In fact, even
when there is no DP noise added, there is a significant drop in
model performance of 6.8% from a model with access to all
features, which answers the first question: no number of APIs
(for which only call counts are collected) by themselves is
enough for the model to reliably detect browser fingerprinting.

Adding API Call Counts & Custom Features. Figure 7 plots
the model performance as the number of (potentially custom)
features increases from 109 (High Entropy feature set, API
call counts only), in 5 small increments of 20 features, to 209.
(We stop after adding 100 additional features, as we find an
optimal configuration where the model performance improves
significantly after adding a small number of features.)

Once again, we set W = 106. When ε ≥ 5.0, the per-
formance of the model improves with the number of features
available, plateauing after 20 additional features are added to
the High Entropy feature set. For ε = 1.0 on the other hand,
AUPRC improves until 40 additional features are added, after
which performance momentarily drops. This is most likely due
to the differentially private feature normalization step, where
the number of features impacts the amount of noise in training,
therefore causing a tradeoff between adding more (informative)
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Fig. 8: Model performance (AUPRC) vs ε for various feature sets.

features and adding more noise in training. In general, across
all privacy levels, we find that 40 additional features provide an
optimal tradeoff between adding a minimal number of features
and achieving good model performance. More precisely, these
40 features consist of 17 API call counts and 23 custom
features. This shows that to achieve good model performance,
custom features are indeed necessary—although a minimal set
of 23 out of the original 830 features seems to be enough.

Among these 40 additional features, we find the
BatteryManager.level API call count to be highly informa-
tive in detecting browser fingerprinting behavior. Note that
Battery API was not used in defining the high-precision ground
truth heuristic. Rather, we find that it is often used together
with other APIs used by the heuristic.

The Ext High Entropy set. We define the union of the High
Entropy feature set and the 40 additional features identified
above as the Extended High Entropy (Ext High Entropy)
feature set. In Figure 8, we compare the model performance
with this set to All and High Entropy feature sets at various
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Fig. 9: Model performance (AUPRC) vs ε for various feature sets.
The dotted lines represent results without feature normalization.

levels of privacy. As expected, Ext High Entropy yields much
better performance at all levels of privacy than High Entropy.
Furthermore, as observed with the JShelter feature set earlier,
at a high privacy level (ε = 1.0), Ext High Entropy performs
comparably to All (most likely due to feature selection) with
only 9.8% of the features available to the former.

E. Impact of Feature Normalization

To the best of our knowledge, ours is the first work to use
differentially private feature normalization in the FL setting.
Therefore, we also investigate its effects on performance. To
that end, Figure 9 plots the model performance at various levels
of privacy for different feature sets. Specifically, we plot the
model performances when FP-Fed is run with (in solid lines)
and without (in dotted lines) the feature normalization step.

First, except for a few settings (High Entropy feature set,
ε ≤ 10.0), adding the differentially private feature normaliza-
tion step always improves model performance. However, this
is a specific setting where the model has access to very little,
possibly uninformative features; thus, model training is easily
impacted by the addition of even small amounts of noise.

When the model has access to richer custom features, it
always performs appreciably better due to feature normaliza-
tion. Specifically, at a high privacy level (ε = 1.0), model
performance improves by up to 20.8% (JShelter feature set).

Consequently, we believe that feature pre-processing can
indeed be an important step when training with DP. Allocating
privacy budgets for feature pre-processing steps, such as nor-
malization, can be advantageous, even though this may come
at the cost of higher noise at each round of training.

F. Impact of Non-IID distributions

So far, participants have drawn scripts from domains ac-
cording to the Tranco ranking, thus resulting in Independent
and Identically Distributed (IID) training data. However, in
practice, training data might be distributed in more complex
ways, which might impact the performance of FP-Fed.
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%Participants with Non-IIDness
Limited Knowldege Score

0 1.00
50 6.50

100 9.05

TABLE II: Non-IIDness scores vs. percentage of participants with
limited knowledge, with 0% corresponding to an IID distribution and
100% to an extreme non-IID distribution.
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Fig. 10: Model performance (AUPRC) vs. various percentages of
participants with limited knowledge.

Consequently, we stress-test FP-Fed with respect to in-
creasingly Non-IID distributions by introducing “Participants
with Limited Knowledge”, following recent work by Naseri et
al. [63]. These only have access to at most one type of fin-
gerprinting script (Canvas, Canvas Font, Audio, or WebRTC),
thus yielding a different distribution of fingerprinting scripts
encountered by each participant. By varying the percentage
of these participants in FP-Fed, we vary the Non-IIDness of
the distributions and quantify “how Non-IID” the resulting
distributions are using the Non-IIDness score from [64]; please
refer to Appendix B for details on how the score is computed.
We report the Non-IIDness scores for three settings in Table II,
which confirms that the Non-IIDness level does increase with
increasing numbers of participants with limited knowledge.

We then fix the number of participants to W = 106, use
the Ext High Entropy feature set, and plot the corresponding
AUPRC scores at various privacy levels in Figure 10. As
expected, the model performance drops with more participants
with limited knowledge. However, the drop is pronounced only
when more than 80% of participants have limited knowledge
(with ε = 5), which is highly unlikely in practice. Note
that, although ε = 1 appears to yield higher AUPRC than
ε = 5 with 100% limited-knowledge participants, the scores
are actually within ± standard deviation of each other. There-
fore, we conclude that FP-Fed is reasonably resistant to Non-
IID distributions which might be encountered in real-world
settings.

G. Prototype Deployment

To evaluate the deployability of FP-Fed, we built a proto-
type Chrome extension that performs the data collection steps

Type of FP Manual Basic Auto Advanced Auto

Canvas 189 49 40
Canvas Font 8 8 5

Audio 32 27 21
WebRTC 49 10 8

Total 220 54 43

TABLE III: Number of fingerprinting scripts captured by manual vs.
automated crawls. NB: The same script can perform multiple types
of fingerprinting.

(Steps 2a to 2c). These steps have the greatest impact on
browser performance as every call to the Javascript APIs from
every script has to be instrumented and captured, while the
machine learning steps might only happen once a day.

Effectiveness. We manually visit the top 300 domains from
the Tranco ranking, excluding domains that do not expose
a website (e.g., content delivery networks) and adult enter-
tainment websites. In this manual crawl, we imitate real user
interactions by logging in using a temporary Google account
whenever possible, solving CAPTCHAs, and consenting to all
cookie notices. We then compare the number of fingerprinting
scripts encountered by the manual crawl with that of two
automated crawlers (a basic and an advanced one). Both
automated crawlers use the same Puppeteer architecture used
in the rest of the paper. However, the advanced crawler uses the
puppeteer-extra-stealth-plugin [15] commonly used in prior
work [41, 71] that includes bot detection evasion techniques
that are continuously updated to remain highly effective. By
closely mimicking human-operated browsers [41], the plugin
enables the browser to appear legitimate, and crucially bypass
bot detectors that might otherwise prevent a crawler from
visiting a website.

The difference in the number of fingerprinting scripts
collected by each crawl technique is reported in Table III.
This showcases the advantage of FP-Fed: when a real user
logs in and goes through the authentication flow, the system
captures 3.07× more fingerprinting scripts than the automated
crawlers. Additionally, although the advanced crawler encoun-
ters slightly fewer fingerprinting scripts than the basic counter-
part, we believe this may be because bot detection scripts may
only fingerprint suspicious activity. Since the crawler deploys
evasion techniques against bot detection, it may not appear
suspicious enough to be fingerprinted as often as the basic
crawler, thus resulting in this discrepancy.

Computational Overhead. Finally, we compare the compu-
tational overhead of deploying FP-Fed using the lighthouse
performance metrics, which are widely used to evaluate the
performance of webpages.4 The metric produces an overall
“score” between 0 and 1, which is the weighted average of
several factors, such as the time taken for the first element to be
painted and for the webpage to be fully interactive. We repeat
the top-300 crawl with and without the prototype extension
and evaluate the difference in the overall “score” assigned by
the metric. We find that there was a mean performance drop
of 0.0018 and a maximum drop of 0.078 when the extension
is enabled, which shows that FP-Fed introduces a negligible
computational overhead.

4https://github.com/GoogleChrome/lighthouse
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VII. RELATED WORK

In this section, we review prior work on browser finger-
printing and Federated Learning (FL).

A. Browser Fingerprinting

Early research on detecting browser fingerprinting mainly
resulted in the creation and manual curation of blocklists,
managed by vendors such as Disconnect [25], EasyList [27],
EasyPrivacy [28], and PrivacyBadger [30]. However, maintain-
ing these lists can be difficult due to constantly changing Web
APIs and fingerprinting techniques; thus, more sophisticated
methods have been proposed, ones that rely on hand-crafted
heuristics and machine learning.

Heuristics-based detection. Acar et al. [3] and Roesner et
al. [73] use a combination of heuristics and manual inves-
tigations to detect fingerprinting in the wild. In follow-up
work, Acar et al. [2] introduce the first heuristic to detect
canvas fingerprinting automatically, based on the arguments
and return values of fillText, strokeText, and toDataURL.
Englehardt and Narayanan [32] expand on these heuristics to
detect three additional types of fingerprinting: Canvas Font,
WebRTC, and AudioContext. This heuristic was also used by
Iqbal et al. [39] and Das et al. [22]. The former also note that
these heuristics often have to be defined narrowly, thus leading
to fingerprinting scripts potentially being missed. Additionally,
maintaining these heuristics in the face of a constantly evolving
web platform can be difficult.

Machine Learning-based detection. Ikram et al. [37] use a
one-class SVM to detect browser fingerprinting scripts using
static features extracted from the Javascript code. Iqbal et
al. [39] build a Decision Tree classifier that used features based
on both dynamic (execution traces) and static (abstract syntax
trees) analysis. However, as both studies trained classifiers on
a centralized dataset, they might potentially miss webpages
that only load fingerprinting scripts after waiting for user
interaction or after a user has logged in [3].

Other mitigation strategies. Extensions like Canvas De-
fender [62] and privacy-focused browsers like Tor [48] and
Brave [17] address browser fingerprinting by either normal-
izing Javascript APIs to return exactly the same value for all
devices, or by randomizing the outputs of potential fingerprint-
ing APIs. However, in almost all cases, this leads to some
amount of website breakage and loss in functionality [39]. For
example, Tor keeps the browser window at a standard size to
prevent it from being used for fingerprinting, thus disabling
the ability for users to maximize it to fit their screens.

B. DP in FL

DP is being increasingly integrated into FL applications,
ranging from next-word prediction [57] to medical image
analysis [5], and spam classification [68]. As discussed in
Section II-C, the DP variants used in FL can be distinguished
as Local DP (LDP) or Central DP (CDP). While LDP has
been deployed in FL applications [64, 76, 77], it often reduces
model performance even at moderately large privacy param-
eters. On the other hand, CDP has been more successfully
applied to FL [5, 57, 63, 64] and has been deployed in large-
scale production systems [43]. However, CDP requires the

users to trust the aggregation server with their raw model
updates and to aggregate and add differentially private noise
correctly. Relaxing this trust assumption can make inference
attacks possible [58, 65].

In our work, we chose the CDP approach for FL as this
is the first work applying federated learning to the prob-
lem of browser fingerprinting detection. Providing formal DP
guarantees in this setting is already challenging due to the
significant class imbalance between fingerprinting and non-
fingerprinting scripts. Therefore, we focus on experimenting
with and adapting DP-FL techniques rather than introducing
novel DP release algorithms or FL schemes.

C. FL for Security Tasks

Previous work has also used FL in security-oriented appli-
cations, e.g., to detect or predict security events [51, 52, 63].
This makes sense as it is often useful to have multiple data
contributors, given that these are often relatively rare events.
However, as data could be sensitive, data owners may not be
willing to openly share them with a central repository. There-
fore, FL has been used to fill this gap, enabling more accurate
machine learning models to be built without compromising the
privacy of the data owners.

For instance, Cerberus [63] uses FL to train a recurrent
neural network (RNN) model to predict future security events
based on past events contributed by participating organizations.
DeepFed [51] is a framework that collaboratively trains a deep
neural network to detect intrusions into cyber-physical systems
(CPSs). Furthermore, Liu et al. [52] present a framework that
collaboratively trains an attention-based deep neural network
model to detect anomalies in Industrial Internet of Things (IoT)
devices. Additionally, FL has also been used to detect malware
and intrusions into IoT and mobile devices [34, 46, 59, 72].

VIII. DISCUSSION & CONCLUSION

A. Summary

In this paper, we experimented with using Differentially
Private Federated Learning (DP-FL) in the context of browser
fingerprinting detection. We introduced and evaluated FP-
Fed, a federated system to detect fingerprinting based on the
collective browsing behavior of many users while providing
formal differential privacy guarantees. We collected finger-
printing scripts in the wild using Puppeteer, Google Chrome,
and the CrUX website ranking. This allowed us to capture
more APIs than prior work and more accurately characterize
the prevalence of browser fingerprinting on popular websites.

We conducted several experiments evaluating the impact
of different feature sets and privacy levels, aiming to assess
the impact of real-world constraints on model performance.
We also developed a model based on a minimal feature set
comprising only 149 API call counts and 23 custom features,
which achieves AUPRC above 0.8 even at high privacy levels
(ε = 1.0). This is a significantly smaller feature set compared
to prior work that used 500 API call counts and 2,128
custom features and is thus far more practical for real-world
deployment on end-user devices.
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B. Privacy & Robustness

As mentioned, from a security point of view, there are two
main challenges when using FL in real-world applications:
privacy and robustness to poisoning attacks.

Membership/Property Inference. Previous work [58] has
shown that membership and property inference attacks are
possible in FL when only a handful of participants are involved
(e.g., less than 100). However, FP-Fed is not vulnerable to
them as it is meant to be deployed in settings with many
users. Moreover, it provides (Central) DP guarantees, which
provably mitigate membership inference attacks, as recently
shown by Naseri et al. [64], with ε = 5.8 and as little as
four participants. Furthermore, by providing participant-level
instead of record-level DP guarantees, we also protect against
property inference.

Malicious Servers. Model updates are sent to the FP-Fed
server unperturbed/unencrypted; thus, a malicious server can
potentially infer the presence of specific records in users’
training data [65]. However, as discussed in Section II-C, in
this context, we believe that trusting the server with access to
model updates – rather than raw data – is a reasonable compro-
mise. Our work is the first to use FL in the context of browser
fingerprinting; we focus on assessing the feasibility of this
approach and measuring the impact of different settings (data
distribution, feature sets, privacy levels, number of participants,
etc.), while leaving it to future work to relax this assumption
by extending FP-Fed to support Local or Distributed DP.

Poisoning Attacks. Data poisoning and backdoor attacks
are also significant concerns in FL due to the distributed
nature of the computation with untrusted participants [12]. In
generic data poisoning attacks, adversarial participants attempt
to compromise the utility of the global model by contributing
malicious model updates. In targeted (aka backdoor) attacks,
the adversary wants the FL system to deliberately misclassify
specific samples or records to an adversary-defined class. In
the context of browser fingerprinting, malicious participants
could try to mount backdoor attacks so that FP-Fed will
classify fingerprinting scripts as non-fingerprinting. However,
even though previous work [63, 64] shows that CDP can
defend against backdoor attacks, we leave it to future work
to include a full experimental evaluation of data poisoning
attacks against FP-Fed.

C. Practical Deployments

An important aspect of the real-world deployability of FP-
Fed is whether a large range of devices with different com-
puting power and resource constraints can support it. Browser
fingerprinting detection is inherently relevant to a large variety
of devices, from powerful computers/laptops to mobile devices
and embedded devices. This setting is typically referred to
as cross-device FL [16]. Therefore, having a lightweight FL
system is very important. The choice of using a simple logistic
regression model rather than a deep neural network means that
models are small and training them does not require specialized
hardware like GPUs.

Furthermore, as discussed in Section V-B, the complexity
of the features that can be extracted from the scripts is
also affected by the capabilities of the devices. In previous

work, fingerprinting detectors are deployed through browser
extensions like JShelter [40], instrumenting well-known APIs
used for fingerprinting. However, a relevant percentage of web
browsing happens on mobile devices where browser extensions
cannot always be installed.5 Therefore, using browser exten-
sions as a deployment method is a significant limitation with
respect to learning fingerprinting behaviors.

By contrast, our work focuses on natively traced APIs by
Google Chrome. By doing so, FP-Fed can be deployed directly
in the browser, regardless of the kind of device, and increase
the coverage of participants, thus improving utility as a whole.
Furthermore, by restricting to a small subset of features, we
ensure that FP-Fed does not add significant performance costs
to normal browser operation across a wide range of devices.

D. Implications for Browsers

The web ecosystem is crucial for an accessible and free
Internet. As such, it has to continue to bring powerful ca-
pabilities for developers and users to complement dedicated
apps available on mobile and desktop platforms. However,
powerful web capabilities and APIs need to be evaluated for
their potential to track end users’ devices. Any API with
a sufficiently high entropy can simultaneously be used for
legitimate purposes and abused as a fingerprinting surface.
Therefore, although this is relevant not only to FP-Fed but
to the fingerprinting ecosystem as a whole, we advocate for
a common way to evaluate new web APIs for “fingerprinting
potential” before they are deployed. This type of evaluation
could guide their specifications and implementation to balance
the creation of new capabilities with legitimate privacy and
tracking concerns for users.

For example, while the recently announced WebGPU
API [60] can significantly assist high-performance computa-
tions and complex graphics rendering from within the browser,
it might also enable potential fingerprinting scripts to more
precisely identify the GPU hardware present in a machine
compared to the old WebGL standard. In fact, this has already
been acknowledged in the working draft of the WebGPU
specification as increasing the risk of browser fingerprinting
from the old WebGL standard [80].

E. Limitations & Future Work

Simulating distributed settings. Although FP-Fed is designed
to learn from distributed real-world user behavior, due to cost
and privacy challenges with collecting real-world browsing
data (e.g., execution traces) from a large number of users, we
chose to gather fingerprinting scripts using a centralized crawl
and instead simulate a distributed setting. Having demonstrated
a proof of concept for FP-Fed and its effectiveness, our
next step is to focus on these challenges and evaluate its
performance in an actual distributed setting.

Accuracy. FP-Fed achieves reasonably high accuracy even at
strong privacy levels (with 1M participants, 0.86 AUPRC with
ε = 1) and significantly improves over the local-only setting,
i.e., all clients only train on their local datasets (0.78 AUPRC).

5As of May 2023, 52% of Web traffic is from mobile, as reported
from https://gs.statcounter.com/platform-market-share/desktop-mobile-
tablet/worldwide#monthly-202102-202202
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W ε=1 ε=5 ε=10 No DP

104 0.61 0.85 0.87 0.96
105 0.86 0.89 0.90 0.96
106 0.86 0.85 0.94 0.97

TABLE IV: Summary of Area Under the Precision-Recall Curve
(AUPRC) values with different numbers of participants (W ) and
levels of privacy (using the All feature seat). For comparison, a fully
centralized setting yields 0.97 AUPRC, while local only results in an
average of 0.78 AUPRC.

However, there is still a non-negligible drop in performance
compared to fully centralized settings (0.97 AUPRC) – please
see Table IV, which provides a concise summary of FP-Fed’s
performance for different numbers of participants and privacy
budgets. However, this drop is due to the use of differentially
private algorithms rather than the federated nature of FP-Fed,
as when we experiment with lower privacy settings, we quickly
approach the fully centralized model’s performance (e.g., 0.94
AUPRC with ε = 10).

This suggests there should be ample room to improve FP-
Fed’s performance. First, the effectiveness of inference attacks
drops with large numbers of participants [58]; thus, FP-Fed
does not necessarily need small values of ε. Second, there are
possible optimizations from the point of view of DP through
the use of newer differentially private optimization algorithms
like DP-Follow-The-Regularized-Leader [43], which performs
better than DP-SGD at moderate to high levels of privacy.
Finally, more advanced neural network architectures and per-
forming feature selection on top of feature pre-processing,
etc., can also be experimented with to achieve higher utility
at the same level of privacy. Since our main objective is to
experiment with and assess the feasibility of a first-of-its-kind
federated architecture for fingerprinting detection, we believe
these improvements can be addressed in future work.

Moreover, we find that the overwhelming majority of
misclassifications reducing AUPRC are false negatives. These
could be considered less problematic than false positives in
the context of fingerprinting and, more importantly, could be
reduced with access to larger datasets covering more finger-
printing scripts. Also, as discussed, centralized crawls likely
miss a number of fingerprinting scripts due to bot detection and
user login walls, so their actual recall is likely much lower.

FL Bootstrap. While FP-Fed provides formal privacy guar-
antees, any real-world deployments of DP-FL face a num-
ber of practical challenges. For instance, devices often join
and drop out of FL systems in unpredictable ways, which
makes it difficult to sample users in a truly random manner.
However, recent work [55] introduces new algorithms and
privacy analysis techniques that mitigate this concern while
providing comparable utility, at least in theory. Since we
use second-order methods (LBFGS) instead of the first-order
methods (SGD) as in [55], adapting their algorithms in a
straightforward manner might potentially degrade FP-Fed’s
model performance, and thus we leave this to future work.

Heuristics. Finally, our ground truth relies on heuristics de-
veloped by FP-Inspector in 2019 [39]. We did so since this
is a well-established, high-precision heuristic. However, the
introduction of new APIs, such as WebGPU, and the imminent

removal of third-party cookies from Chrome can potentially re-
sult in new types of fingerprinting being introduced. Detecting
these new scripts would require new heuristics to be defined.
Therefore, future work should continue to explore new avenues
for fingerprinting and to define new high-precision heuristics.
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F. Piessens, and B. Preneel. FPDetective: Dusting the Web for
Fingerprinters. In ACM CCS, 2013.

[4] L. A. Adamic and B. A. Huberman. Zipf’s law and the Internet.
Glottometrics, 3(1), 2002.

[5] M. Adnan, S. Kalra, J. C. Cresswell, G. W. Taylor, and H. R.
Tizhoosh. Federated learning and differential privacy for medi-
cal image analysis. Scientific reports, 12(1), 2022.

[6] N. Agarwal, P. Kairouz, and Z. Liu. The Skellam Mechanism
for Differentially Private Federated Learning. NeurIPS, 2021.

[7] S. A. Akhavani, J. Jueckstock, J. Su, A. Kapravelos, E. Kirda,
and L. Lu. Browserprint: An Analysis of the Impact of Browser
Features on Fingerprintability and Web Privacy. In Information
Security Conference, 2021.

[8] F. Alaca and P. C. Van Oorschot. Device fingerprinting for
augmenting web authentication: classification and analysis of
methods. In ACM CCS, 2016.

[9] Amazon. We will be retiring Alexa.com on May 1,
2022. https://web.archive.org/web/20220102200605/https://
support.alexa.com/hc/en-us/articles/4410503838999, 2022.

[10] A. H. Amjad, Z. Shafiq, and M. A. Gulzar. Blocking
JavaScript without Breaking the Web: An Empirical Investiga-
tion. arXiv:2302.01182, 2023.

[11] P. Arntz. Brave browser goes the extra mile to block third
party cookies. https://www.malwarebytes.com/blog/news/2022/
03/brave-browser-goes-the-extra-mile-to-block-third-party-
cookies, 2022.

[12] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov.
How to backdoor federated learning. In International Confer-
ence on Artificial Intelligence and Statistics, 2020.

[13] P. N. Bahrami, U. Iqbal, and Z. Shafiq. FP-Radar: Longitudinal
Measurement and Early Detection of Browser Fingerprinting.
PETS, 2022, 2022.

[14] R. Batuwita and V. Palade. Class Imbalance Learning Methods
for Support Vector Machines. Imbalanced Learning: Founda-
tions, Algorithms, and Applications, 2013.

[15] Berstend. puppeteer-extra-plugin-stealth. https://github.com/
berstend/puppeteer-extra, 2023.

[16] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan,
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APPENDIX A
MISSED SCRIPTS

As mentioned, since centralized crawlers cannot replicate
real human interactions, they might miss scripts on web-
pages protected by bot detectors, CAPTCHAs, and web-
pages that require user login. One specific example is avail-
able at https://docs.google.com/document/d/1luaU5I8oU8wVt-
QFy5muGjM47GkW57I8rO8n8dcyX-8/.6 This script, found in
the wild during our top 300 crawl (see Section IV-D), enu-
merates various device properties, i.e., screen size, language,
device timezone, plugins installed, and WebGL configuration,
on top of performing canvas and audio fingerprinting.

Even though we use a bot detection evasion tool7, our
automated crawler was detected as a bot and prevented from
visiting the website, thus missing the script. On the other hand,
our manual crawl with real user interaction was able to visit
the website and flag the script as fingerprinting.

APPENDIX B
NON-IIDNESS SCORE

To quantify the Non-IIDness of the distributions tested,
we follow an approach inspired by previous work [63], which
introduces and uses the so-called Non-IIDness score. This
calculates the average pairwise distance, expressed in terms
of Kullback–Leibler (KL) divergence, between the distribu-
tion of classes among participants. For instance, when the
training data is IID distributed, the distribution of classes
among participants is roughly similar, which leads to a small
average distance and a small Non-IIDness score. However,
when the training data is unevenly distributed, the distribution
of classes is starkly different, resulting in a high average
pairwise distance between distributions and thus high Non-
IIDness score.

To use it in our setting, we need to introduce some
modifications. First, while [63] calculates the average distance
across all participants, the number of participants in our setting
is much greater than in theirs (we have millions of users,
whereas they only had a few thousand). Thus, we cannot enu-
merate (possibly) trillions of pairwise combinations. Rather,
we calculate the average over a sample of 1000 participants
(corresponding to roughly 1M pairwise combinations).

Next, since browser fingerprinting is a heavily class-
imbalanced problem, the distribution of fingerprinting scripts
in participants does not change the overall distribution of
scripts significantly. Therefore, in this work, we calculate the
distance between the distribution of only fingerprinting scripts
by type (excluding non-fingerprinting scripts).

Finally, since scripts can contain multiple types of fin-
gerprinting behavior, the distribution of fingerprinting scripts
consists of not just each individual type of fingerprinting
but all combinations of types of fingerprinting as well (e.g.,
Canvas, Canvas Font, Audio, WebRTC, Canvas and Canvas
Font, Canvas and Audio, etc.).

6In the spirit of responsible disclosure, we omit the domain name where the
script has been found along with any identification detail.

7https://www.npmjs.com/package/puppeteer-extra-plugin-stealth
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