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Formal Verification of security protocols

Manual proofs
▶ Error prone
▶ Tedious
▶ Active Adversaries
▶ Guarantees on security ?

Software tools
▶ Automated & semi-automated
▶ Formal proofs
▶ Handle protocols’ complexity
▶ Dedicated approaches
▶ Symbolic & Computational

PROVERIF TAMARIN

SAPIC+
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Target models forWireGuard

G, u, U = gu, x , X = gx , ts, psk G, v , V = gv , y , Y = gy , psk

U

V

[1∥03∥si∥X∥{U}∥{ts}∥maci
1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥macr
1∥016]

[3∥03∥sr∥0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik )}] [3∥0∥si∥rk∥{pad(Prk )}]

Without cookie
G, u, U = gu, x , X = gx , ts, psk G, v , V = gv , y , Y = gy , psk

U

V

[1∥03∥si∥X∥{U}∥{ts}∥maci
1∥016]

[4∥03∥si∥ρ∥{τ}]

G, u, U = gu, x̄ , X̄ = g x̄ , t̄s, psk
[1∥03∥si∥X̄∥{U}∥{t̄s}∥maci

1∥maci
2]

[2∥03∥sr∥si∥Y ∥{∅}∥macr
1∥016]

[3∥03∥sr∥i0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik )}] [3∥03∥si∥rk∥{pad(Prk )}]

With cookie

▶ u, U = gu , v , V = gv ⇝ static keys, x , X = gx , y , Y = gy ⇝ ephemeral keys, psk ⇝ pre-shared key
▶ ts timestamp, si , sr ⇝ session identifiers, i∗ ⇝ counters, P∗ ⇝ plaintexts
▶ {·}⇝ encryption
▶ ρ⇝ nonce, τ ⇝ cookie
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Current analyses

Symbolic

▶ 2018: J. A. Donenfeld and K. Milner, “Formal verification of the WireGuard protocol”WireGuard
▶ 2019: N. Kobeissi, G. Nicolas, and K. Bhargavan, “Noise explorer: Fully automated modeling and verification for arbitrary Noise

protocols” IKpsk2

▶ 2020: G. Girol, L. Hirschi, R. Sasse, D. Jackson, C. Cremers, and D. A. Basin, “A spectral analysis of Noise: A comprehensive,
automated, formal analysis of Diffie-Hellman protocols” IKpsk2

Computationnal

▶ 2018: B. Dowling and K. G. Paterson, “A cryptographic analysis of the WireGuard protocol”WireGuard
▶ 2019: B. Lipp, B. Blanchet, and K. Bhargavan, “A mechanised cryptographic proof of the “WireGuard virtual private network protocol”

WireGuard

Threats
▶ Static private key reveal / set
▶ Ephemeral private key reveal / set
▶ PSK reveal / set
▶ Static key distribution corruption

Security Properties
▶ Message agreement
▶ Key secrecy (incl. PFS)
▶ Anonymity
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Current analyses

What is the scope ofWireGuard analyses ?
▶ Lazy answer: full protocol !

▶ Correct answer: should be studied !

Are IKpsk2 analyses applicable toWireGuard ?
▶ Lazy answer: yes !

▶ Correct answer: should be studied !

Are threat model equivalent ? Are all verification done ?
▶ Lazy answer: come on, we have a proof, it’s enough !

▶ Correct answer: should be studied ! Adversary can

▶ get u, v , x , y , psk before / after protocol execution
▶ set u, v , x , y , psk
▶ compromise U and V distribution
▶ and combine (25+5+5+2 = 217 = 131072 combinations per property) !
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Symbolic analyis ofWireGuard (TAMARIN)
2018: J. A. Donenfeld and K. Milner, “Formal verification of theWireGuard protocol”

G, u, U = gu,V, x , X = gx , psk G, v , V = gv ,U, y , Y = gy , psk

∅∅∅

∅∅∅

[1∥03∥si∥X∥{U}∥{ts}∥MAC1∥MAC2]

[2∥03∥sr∥si∥Y ∥{∅}∥MAC1∥MAC2]

[3∥03∥sr∥0∥{pad(Pi)}]

∅∅∅ ∅∅∅

Threats
▶ Static private key reveal ✓ / set ✗

▶ Ephemeral private key reveal ✓ / set ✗

▶ PSK reveal ✓ / set ✗

▶ Static key distribution corruption ✗

Security Properties
▶ Message agreement ✓

▶ Key secrecy ✓ (PFS ✗)
▶ Anonymity ✓

Verified Combinations
▶ ✗
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Our target threat model forWireGuard

Threats
▶ Static private key reveal ✓ / set ✓

▶ Ephemeral private key reveal ✓ / set ✓

▶ PSK reveal ✓ / set ✓

▶ Static key distribution corruption ✓

▶ New! Pre-computation reveal ✓ / set ✓

Pre-computation ?
▶ Static-static key :

▶ Initiator V u = guv

▶ Responder Uv = guv

before session begins, hence WireGuard maintains it.
Compromise of guv isweaker than compromise of u or v :
▶ u ∧ gv =⇒ guv

▶ however gv ∧ guv ≠⇒ u

uguvgv
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Our symbolic models ofWireGuard (TAMARIN, PROVERIF, SAPIC+)

G, u, U = gu, x , X = gx , ts, psk G, v , V = gv , y , Y = gy , psk

U

V

[1∥03∥si∥X∥{U}∥{ts}∥maci
1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥macr
1∥016]

[3∥03∥sr∥0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik )}] [3∥0∥si∥rk∥{pad(Prk )}]

Without cookie
G, u, U = gu, x , X = gx , ts, psk G, v , V = gv , y , Y = gy , psk

U

V

[1∥03∥si∥X∥{U}∥{ts}∥maci
1∥016]

[4∥03∥si∥ρ∥{τ}]

G, u, U = gu, x̄ , X̄ = g x̄ , t̄s, psk
[1∥03∥si∥X̄∥{U}∥{t̄s}∥maci

1∥maci
2]

[2∥03∥sr∥si∥Y ∥{∅}∥macr
1∥016]

[3∥03∥sr∥i0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik )}] [3∥03∥si∥rk∥{pad(Prk )}]

With cookie

Threats
▶ Static private key reveal ✓ / set ✓

▶ Ephemeral private key reveal ✓ / set ✓

▶ PSK reveal ✓ / set ✓

▶ Static key distribution corruption ✓

▶ New! Pre-computation reveal ✓ / set ✓

Security Properties
▶ Message agreement ✓

▶ Key secrecy ✓ (PFS ✓)
▶ Anonymity ✓

Verified Combinations
▶ New! 221 per property ✓

8 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Our results : necessary and sufficient conditions
▶ Du , Dv : adversary corrupts public keys distribution
▶ Ru , Rv , Rx , Ry , Rs , Rc : adversary gets private keys (u, v , x , y ), psk (s) or pre-comp. value (c)
▶ R∗

u , R∗
v , R∗

s , R∗
c : adversary gets private keys (u, v ), psk (s) or pre-comp. value (c) after protocol execution (for PFS)

Results
▶ agreement of RecHello and TransData (R to I) messages hold unless

(Dv ∧ Rs) ∨ (Rs ∧ Rv ) ∨ (Rc ∧ Rs ∧ Rx ) ∨ (Rs ∧ Ru ∧ Rx )
▶ agreement of TransData (I to R) messages hold unless

(Du ∧ Rs) ∨ (Rs ∧ Ru) ∨ (Rc ∧ Rs ∧ Ry ) ∨ (Rs ∧ Rv ∧ Ry )
▶ Key Secrecy from Initiator’s view, including PFS hold unless

(Dv ∧ Rs) ∨ (Rs ∧ Rv ) ∨ (Rc ∧ Rs ∧ Rx ) ∨ (Rs ∧ Ru ∧ Rx ) ∨ (R∗
s ∧ R∗

u ∧ Rx ) ∨ (R∗
s ∧ R∗

v ∧ Ry ) ∨ (R∗
c ∧ R∗

s ∧ Rx ∧ Ry )
▶ Key Secrecy from Responder’s view, including PFS hold unless

(Du ∧ Rs) ∨ (Rs ∧ Ru) ∨ (Rc ∧ Rs ∧ Ry ) ∨ (Rs ∧ Rv ∧ Ry ) ∨ (R∗
s ∧ R∗

u ∧ Rx ) ∨ (R∗
s ∧ R∗

v ∧ Ry ) ∨ (R∗
c ∧ R∗

s ∧ Rx ∧ Ry )
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Our results : interpretation

Results
▶ agreement of RecHello and TransData (R to I) messages hold unless

(Dv ∧ Rs) ∨ (Rs ∧ Rv ) ∨ (Rc ∧ Rs ∧ Rx ) ∨ (Rs ∧ Ru ∧ Rx )
▶ agreement of TransData (I to R) messages hold unless

(Du ∧ Rs) ∨ (Rs ∧ Ru) ∨ (Rc ∧ Rs ∧ Ry ) ∨ (Rs ∧ Rv ∧ Ry )
▶ Key Secrecy from Initiator’s view, including PFS hold unless

(Dv ∧ Rs) ∨ (Rs ∧ Rv ) ∨ (Rc ∧ Rs ∧ Rx ) ∨ (Rs ∧ Ru ∧ Rx ) ∨ (R∗
s ∧ R∗

u ∧ Rx ) ∨ (R∗
s ∧ R∗

v ∧ Ry ) ∨ (R∗
c ∧ R∗

s ∧ Rx ∧ Ry )
▶ Key Secrecy from Responder’s view, including PFS hold unless

(Du ∧ Rs) ∨ (Rs ∧ Ru) ∨ (Rc ∧ Rs ∧ Ry ) ∨ (Rs ∧ Rv ∧ Ry ) ∨ (R∗
s ∧ R∗

u ∧ Rx ) ∨ (R∗
s ∧ R∗

v ∧ Ry ) ∨ (R∗
c ∧ R∗

s ∧ Rx ∧ Ry )

Key distribution corruption

Agreement and key secrecy hold unless adversary:
▶ compromises U distribution AND gets psk
▶ OR compromises V distribution AND gets psk

=⇒ Shall not be eluded !
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Our results : interpretation

Results
▶ agreement of RecHello and TransData (R to I) messages hold unless
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▶ agreement of TransData (I to R) messages hold unless
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▶ Key Secrecy from Initiator’s view, including PFS hold unless

(Dv ∧ Rs) ∨ (Rs ∧ Rv ) ∨ (Rc ∧ Rs ∧ Rx ) ∨ (Rs ∧ Ru ∧ Rx ) ∨ (R∗
s ∧ R∗

u ∧ Rx ) ∨ (R∗
s ∧ R∗

v ∧ Ry ) ∨ (R∗
c ∧ R∗

s ∧ Rx ∧ Ry )
▶ Key Secrecy from Responder’s view, including PFS hold unless

(Du ∧ Rs) ∨ (Rs ∧ Ru) ∨ (Rc ∧ Rs ∧ Ry ) ∨ (Rs ∧ Rv ∧ Ry ) ∨ (R∗
s ∧ R∗

u ∧ Rx ) ∨ (R∗
s ∧ R∗

v ∧ Ry ) ∨ (R∗
c ∧ R∗

s ∧ Rx ∧ Ry )

Pre-shared key

psk compromise is necessary to break all properties.
=⇒ Shall be mandatory (and not optional) !

11 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Our results : interpretation

Results
▶ agreement of RecHello and TransData (R to I) messages hold unless
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v ∧ Ry ) ∨ (R∗
c ∧ R∗

s ∧ Rx ∧ Ry )
▶ Key Secrecy from Responder’s view, including PFS hold unless
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c ∧ R∗

s ∧ Rx ∧ Ry )

Pre-computation

In some cases, Rc has same impact as Ru or Rv , although weaker.
=⇒ Shall be removed !
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Anonymity

Claim: Identity Hiding Forward Secrecy
▶ a compromise of the responder’s private key and a traffic log of previous

handshakes would enable an attacker to figure out who has sent handshakes
▶ it is possible to trial hash to guess whether or not a packet is intended for a

particular responder
(Identity hiding also proven in 2018 model with TAMARIN)

G, u, U = gu, V1, V2, x , X = gx , ts, psk G, v∗, V∗ = gv∗ , U, y , Y = gy , psk

[1∥03∥si∥X∥{U}∥{ts}∥maci
1∥016]

mac(H(V1), [2∥ · · · ∥{∅}) ?= maci
1mac(H(V1), [2∥ · · · ∥{∅}) ?= maci
1mac(H(V1), [2∥ · · · ∥{∅}) ?= maci
1

mac(H(V2), [2∥ · · · ∥{∅}) ?= maci
1mac(H(V2), [2∥ · · · ∥{∅}) ?= maci
1mac(H(V2), [2∥ · · · ∥{∅}) ?= maci
1

▶ {U} is encrypted with gxv , hence if v leaks then U is known.
▶ InitHello message is [1∥03∥si ∥X∥{U}∥{ts}∥maci

1∥016]
▶ maci

1 = mac(H(V ), [1∥ · · · ∥{ts}]), where V is public =⇒ V can leak !
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▶ it is possible to trial hash to guess whether or not a packet is intended for a

particular responder
(Identity hiding also proven in 2018 model with TAMARIN)

G, u∗, U∗ = gu∗ , V , x , X = gx , ts, psk G, v , V = gv , U1, U2, y , Y = gy , psk

[1∥03∥si∥X∥{U}∥{ts}∥maci
1∥016]

[2∥03∥sr ∥si∥Y ∥{∅}∥macr
1∥016]

mac(H(U1), [2∥ · · · ∥{∅}) ?= macr
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1mac(H(U2), [2∥ · · · ∥{∅}) ?= macr
1

However issue is the same for RecHellomessage ! (explained in “Amechanised cryptographic proof of theWireGuard VPN protocol”)

▶ RecHello message is [2∥03∥sr ∥si ∥Y ∥{∅}∥macr
1∥016]

▶ macr
1 = mac(H(U), [2∥ · · · ∥{∅}]), where U is public =⇒ U can leak !
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⇝ Reality: WireGuard does not provide anonymity at all (key compromise is not necessary) ...
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Anonymity

Claim: Identity Hiding Forward Secrecy
▶ a compromise of the responder’s private key and a traffic log of previous

handshakes would enable an attacker to figure out who has sent handshakes
▶ it is possible to trial hash to guess whether or not a packet is intended for a

particular responder
(Identity hiding also proven in 2018 model with TAMARIN)

⇝ Reality: WireGuard does not provide anonymity at all (key compromise is not necessary) ...

Proposed fixes
▶ Remove mac (i.e. use IKpsk2)
▶ Change mac computation :

▶ macr
1 = mac(H(U∥guv ), [2∥ · · · ∥{∅}])

▶ macr
1 = mac(H(U∥psk), [2∥ · · · ∥{∅}])

=⇒ With these fixes anonymity is verified with PROVERIF
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Conclusion

▶ Currently WireGuard ensures:
▶ Agreement
▶ Key secrecy and PFS

▶ Recommandations for end users:
▶ Use pre-shared key
▶ Care about static key distribution
▶ Do not rely on WireGuard for anonymity

▶ Recommandations for stakeholders:
▶ Remove pre-computation
▶ Fix anonymity
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Conclusion
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▶ Agreement
▶ Key secrecy and PFS

▶ Recommandations for end users:
▶ Use pre-shared key
▶ Care about static key distribution
▶ Do not rely on WireGuard for anonymity

▶ Recommandations for stakeholders:
▶ Remove pre-computation
▶ Fix anonymity

▶ Complete model of WireGuard
▶ Fix for anonymity property
▶ Precise threat model, including initial key distribution and pre-computations
▶ Necessary and sufficient conditions
▶ Process with SAPIC+, PROVERIF, TAMARIN

▶ Thanks for your attention !
▶ Do you have questions ?
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Detailed models analysis Benchmarks Combinations

Computationnal analysis ofWireGuard (manual)
2018: B. Dowling et al., “A cryptographic analysis of theWireGuard protocol”

G, u, U = gu,V, x , X = gx , psk G, v , V = gv ,U, y , Y = gy , psk

∅∅∅

∅∅∅

[1∥03∥si∥X∥{U}∥{ts}∥maci
1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥macr
1∥016]

[3∥03∥sr∥0∥{∅∅∅}]

∅∅∅ ∅∅∅

Threats
▶ Static private key reveal ✓ / set ✗

▶ Ephemeral private key reveal ✓ / set ✗

▶ PSK reveal ✓ / set ✗

▶ Static key distribution corruption ✗

Security Properties
▶ Message agreement ✓

▶ Key secrecy ✓ (PFS ✗)
▶ Anonymity ✗

Verified Combinations
▶ ✗
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Detailed models analysis Benchmarks Combinations

Computationnal analysis ofWireGuard (CRYPTOVERIF)
2019: B. Lipp et al., “Amechanised cryptographic proof of theWireGuard VPN protocol”

G, u, U = gu, x , X = gx , psk G, v , V = gv , y , Y = gy , psk

U

V

[1∥03∥si∥X∥{U}∥{ts}∥∅∅∅∥∅∅∅]

[2∥03∥sr∥si∥Y ∥{∅}∥∅∅∅∥∅∅∅]

[3∥03∥sr∥i0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik )}] [3∥03∥si∥rk∥{pad(Prk )}]

Threats
▶ Static private key reveal ✓ / set ✓

▶ Ephemeral private key reveal ✓ / set ✗

▶ PSK reveal ✓ / set ✓

▶ Static key distribution corruption ✓

Security Properties
▶ Message agreement ✓

▶ Key secrecy ✓ (PFS ✓)
▶ Anonymity ✗

Verified Combinations
▶ ✗
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Symbolic analysis of IKpsk2 (PROVERIF)
2019: N. Kobeissi et al., “Noise explorer: Fully automatedmodeling and verification for arbitrary Noise protocols”

G, u, U = gu,V, x , X = gx , psk G, v , V = gv ,U, y , Y = gy , psk

∅∅∅

∅∅∅

[∅∅∅∥∅∅∅∥∅∅∅∥X∥{U}∥{m0}∥∅∅∅∥∅∅∅]

[∅∅∅∥∅∅∅∥∅∅∅∥Y ∥{m1}∥∅∅∅∥∅∅∅]

∅∅∅

[∅∅∅∥∅∅∅∥∅∅∅∥∅∅∅∥{pad(Pik )}] [∅∅∅∥∅∅∅∥∅∅∅∥∅∅∅∥{pad(Prk )}]

Threats
▶ Static private key reveal ✓ / set ✗

▶ Ephemeral private key reveal ✗ / set ✗

▶ PSK reveal ✓ / set ✗

▶ Static key distribution corruption ✗

Security Properties
▶ Message agreement ✓

▶ Key secrecy ✓ (PFS ✓)
▶ Anonymity ✗

Verified Combinations
▶ ✗

3 / 6



Detailed models analysis Benchmarks Combinations

Symbolic analysis of IKpsk2 (TAMARIN)
2020: G. Girol et al., “A spectral analysis of Noise: A comprehensive, automated, formal analysis of Diffie-Hellman protocols”

G, u, U = gu, x , X = gx , ts, psk G, v , V = gv , y , Y = gy , psk

U

V

[∅∅∅∥∅∅∅∥∅∅∅∥X∥{U}∥{m0}∥∅∅∅∥∅∅∅]

[∅∅∅∥∅∅∅∥∅∅∅∥Y ∥{m1}∥∅∅∅∥∅∅∅]

∅∅∅

[∅∅∅∥∅∅∅∥∅∅∅∥ik∥{pad(Pik )}] [∅∅∅∥∅∅∅∥∅∅∅∥rk∥{pad(Prk )}]

Threats
▶ Static private key reveal ✓ / set ✓

▶ Ephemeral private key reveal ✓ / set ✓

▶ PSK reveal ✓ / set ✓

▶ Static key distribution corruption ✓

Security Properties
▶ Message agreement ✓

▶ Key secrecy ✓ (PFS ✓)
▶ Anonymity ✓

Verified Combinations
▶ ✓
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Detailed models analysis Benchmarks Combinations

Benchmarks

With a dedicated 256 cores server

▶ Evaluation of agreement and secrecy properties (PROVERIF, TAMARIN, SAPIC+) : 9 hours
▶ Evaluation of fix for anonymity, based on guv (PROVERIF) : 12 hours
▶ Evaluation of fix for anonymity, based on psk (PROVERIF) : 2 hours
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Combinations

With pre-computation

Adversary can
▶ get u, v , x , y , psk, guv before / after protocol execution
▶ set u, v , x , y , psk, guv for Initiator and guv for Responder
▶ compromise U and V distribution
▶ and combine (26+6+7+2 = 221 = 2097152 combinations per property) !

6 / 6
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