
dRR: A Decentralized, Scalable, and Auditable
Architecture for RPKI Repository

Yingying Su∗‡, Dan Li∗†, Li Chen†, Qi Li∗†, and Sitong Ling∗
∗Tsinghua University, †Zhongguancun Laboratory, ‡BNRist

{su-yy19, lingst21}@mails.tsinghua.edu.cn, lichen@zgclab.edu.cn, {tolidan, qli01}@tsinghua.edu.cn

Abstract—Although Resource Public Key Infrastructure
(RPKI) is critical for securing inter-domain routing, we find
that its key component, the RPKI Repository, is under studied.
We conduct the first data-driven analysis of the existing RPKI
Repository infrastructure, including a survey of worldwide AS
administrators and a large-scale measurement of the existing
RPKI Repository. Based on the findings of our study, we identify
three key problems. Firstly, misbehaving RPKI authorities can
easily manipulate RPKI objects, and Internet Number Resources
holders (INRs holders) and Relying Parties (RPs) can neither
prevent malicious behaviors of misbehaving authorities nor hold
them accountable. Secondly, RPKI Repository is sensitive to
failures: An attack or downtime of any repository Publication
Point (PP) will prevent RPs from obtaining complete RPKI object
views. Finally, we identify scalability issues with the current
RPKI Repository, which are expected to worsen with the further
deployment of Route Origin Authorization (ROA).

To address these problems, we propose dRR, an architecture
that enhances the security, robustness, and scalability of the
RPKI Repository while being compatible with standard RPKI.
By introducing two new entities: Certificate Servers (CSs) and
Monitors, dRR forms a decentralized federation of CSs, which
enables the RPKI Repository to proactively defend against
malicious behavior from authorities and to tolerate PPs’ failures.
dRR is also scalable for future large-scale deployment. We present
the design of dRR in detail and implement a prototype of dRR
on a global Internet testbed spanning 15 countries. Experimental
results show that, although new security features are introduced,
dRR only incurs negligible latency for certificate issuance and
revocation. The throughput of certificate updates achieved by
dRR is 450 times higher than the current maximum RPKI
certificate update frequency.

I. INTRODUCTION

RPKI [38] is promoted by IETF [29] to secure inter-
domain routing against IP prefix hijackings, i.e., Autonomous
Systems (ASes) mis-originate IP prefixes that they do not own
to illegitimately attract traffic [8], [45]. After a decade of
deployment, RPKI has indeed demonstrated its effectiveness
in protecting the Internet.1 As shown in Figure 1, to establish
a trustworthy mapping between ASes and prefixes, RPKI
arranges the Certificate Authorities (CAs) in a hierarchy that
mirrors IP address allocation, and five RIRs are trust anchors.

1On March 28, 2022, RPKI successfully protected Twitter (AS13414) from
prefix hijacking by Russian ISP JSC RTComm.RU (AS8342) [17].

RIR

NIR

ISP

AS
sign ROA

PP for RIR

PP for NIR

PP for ISP

upload RC

upload RC

upload ROA

RPKI Repository

RP
sync

Router

verified ROAs

sign RC

sign RC

Fig. 1: RPKI architecture. RIR, NIR, and ISP represent the
Regional Internet Registry, the National Internet Registry,
and the Internet Service Provider, respectively.

Each CA holds a Resource Certificate (RC) issued by its parent
authority, which records its allocated INRs. CAs can issue
subordinate RCs to reallocate their resources or issue ROAs
to authorize ASes to originate specific IP prefixes. Each CA
will upload the objects it signs to the repository Publication
Point (PP) it operates. These PPs collectively form the global
RPKI Repository. Relying Parties (RPs), as entities that request
RPKI data to make BGP routing decisions, periodically fetch
and validate RPKI objects, and then use the verified ROAs to
guide routers to perform Route Origin Validation (ROV) [11].2

Although the industry and the research community have
been continuously strengthening RPKI [23], [52], [13], [19],
[39], we find that a key component of RPKI remains neglected:
the RPKI Repository. In this work, we conduct the first data-
driven security analysis of the RPKI Repository, and identify
three key problems that affect the integrity and accuracy of
the stored RPKI objects and hinder future large-scale RPKI
deployment.
• Problem 1 (P1): Unilateral reliance on authority. We
observe that RPKI authorities (CA and its corresponding
repository PP manager) have significant unilateral power,
which poses three issues:
P1.1 Since the current RPKI Repository is not tamper-

resistant, authorities can unilaterally undermine any
RPKI objects without consent from subordinate INR
holders. Malicious or breached authorities can perform
arbitrary operations on INR holders’ certificates (e.g.,
deletion, corruption, modification, or revocation), while
they can also compromise RPs (e.g., show incomplete
or inaccurate RPKI object views to RPs).

P1.2 INR holders and RPs can only rely on RPKI au-
thorities without the ability to verify that their security
requirements are being met. INR holders cannot know
if their certificates are securely stored in PPs and can
be publicly seen and fetched by all RPs; RPs cannot

2We have summarized all abbreviations used in dRR in Appendix B

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24368
www.ndss-symposium.org

ETAR in Detail

CS
federation

cert

CP

RP

Monitor
CUL

INR
holder manifest/CRL

CAs' PPs

cert

RP

CA

CP
cert

CA

INR
holder

cert

(a) the current RPKI Repository.

ETAR in Detail

CS
federation

cert

CP

RP

Monitor
CUL

INR
holder manifest/CRL

CAs' PPs

cert

RP

CA

CP
cert

CA

INR
holder

cert

(b) dRR

Fig. 2: Comparison of the RPKI Repository and dRR

verify the integrity and accuracy of the RPKI objects
they synchronize from PPs.

P1.3 The history of RPKI objects is not easily auditable.
A complete longitudinal view of RPKI objects is nec-
essary to defend against malicious manipulation of
the RPKI Repository and to resolve conflicts between
authorities and INR holders. Although RPs can pe-
riodically fetch RPKI objects to keep track of their
historical versions, it is costly, without any guarantee of
completeness. We believe auditability is best provided
by the RPKI Repository, which naturally tracks all
RPKI objects.

• Problem 2 (P2): Every RPKI object is a singleton in
RPKI Repository. Although the current RPKI Repository
is globally distributed, each CA only stores the RPKI
objects it issues in the unique PP it runs. If any PP fails
(malfunctions or is attacked), RPs will not be able to fetch
the RPKI objects issued by its CA, and the integrity of
the global RPKI object view cannot be guaranteed. Addi-
tionally, the singleton nature of RPKI objects introduces
unwanted interdependence between the accessibility of a
CA’s PP and the reachability of the AS that the PP locates.
Since RPKI ensures the routing security and reachability
of ASes, it is fair to expect PPs to remain accessible
during any incident when corresponding ASes become
unreachable.
• Problem 3 (P3): The current RPKI Repository is costly

in RP refreshing and lacks scalability. Refreshing the
local cache of each RP involves traversing all PPs to fetch
the updated RPKI objects. In the past five years, the number
of PPs has grown more than 12 times and is expected to
increase dramatically with the further deployment of ROA.
The growth in the number of PPs increases the cost of RP
refreshes, which may prevent RPs from obtaining routing
information in a timely manner, and also prohibits the
release of use cases such as temporary ROAs to enable ISPs
to perform tactical traffic engineering to ease congestion.
Furthermore, the low barriers to running PPs and joining
RPKI Repository will introduce unforeseen risks to RPs,
as some PPs may emerge with unexpected intentions.

Existing work [23], [52], [39] has been devoted to ad-
dressing some of the above problems. However, they cannot
comprehensively address our concerns but partially mitigate
the threats from authorities. We present a detailed introduction
of these works in § VII. Furthermore, Google’s Certificate
Transparency (CT) [21] is a successful industry practice for
web PKI security. However, web PKI and RPKI face entirely
different threats: in webPKI, malicious CAs will issue fake
certificates; whereas, in RPKI, malicious CAs may unilater-
ally compromise legitimate certificates. Since RPKI certificate
signing and management are under the control of CAs, the
core idea of CT, which requires CAs to log issued certificates,
cannot proactively defend against RPKI certificate compro-

mise. Therefore, in this paper, we propose a new architecture,
dRR (decentralized RPKI Repository), based on the above
observations to enhance the security, robustness, and scalability
of the current RPKI Repository.

dRR is an extension and upgrade of the existing RPKI
Repository to address these problems in a comprehensive way.
As shown in Figure 2, dRR can incrementally replace the
RPKI Repository with two new entities: Certificate Servers
(CSs) and Monitors. With the core idea of ”separating dis-
tribution from signing”, dRR’s differentiating design choice
is that, instead of binding a PP to a CA, dRR’s CSs form a
distributed federation. All CSs are equal in the CS federation,
and the federation, as a whole, can partially or completely
replace the current PPs to host RPKI objects. INR holders can
proactively upload their certificates to the CSs they trust. And
any certificate issuance and revocation will be publicized in the
CS federation in the form of Certificate Policies (CPs, defined
in § IV-A2). Each CS will proactively push the publicized CPs
to its connected dRR Monitors. Based on the CPs, Monitors
can then provide verifiable Certificate Update Lists (CULs) to
RPs, and also provide INR holders with services to check the
authenticity and validity of specific certificates.

dRR can solve or at least mitigate the problems we
identified:
• dRR’s CS federation and Monitors collectively solve P1.

INR holders can freely choose the CSs they trust to provide
certificate hosting services for them. The specially defined
CPs can provide proof that the relevant CAs and INR
holders have confirmed the issuance and revocation of the
certificates. Thus, dRR can prevent malicious manipula-
tion of certificates by RPKI authorities (P1.1). For P1.2,
Monitors provide RPs with verifiable CULs based on the
maintained M-Tree, which is a domain-adapted Merkel
Hash Tree for dRR. It allows RPs to check the integrity
and accuracy of the obtained RPKI object views. With
M-Tree, Monitors can also help INR holders verify the
authenticity and validity of specific certificates. Finally, the
chronologically recorded CPs by the CS federation can
provide a widely recognized longitudinal view of RPKI
objects for auditing (P1.3).
• dRR breaks the coupling between CAs and PPs, and

solves P2 by allowing INR holders to store certificates in
multiple trusted CSs. This guarantees a truly distributed
RPKI Repository, and the failure of one CS will not affect
the integrity of RPKI object views.
• Regarding P3, the access mechanism of the CS federation

effectively restricts the number of CSs that RPs need to
access. It not only enhances the scalability of the RPKI
Repository, but also mitigates the unforeseen risks caused
by casually joined PPs.
We implement a prototype of dRR and evaluate its perfor-

mance on the Internet using a 100-node testbed that spans 15
countries. We deploy our distributed CSs primarily based on
the geographic location of the current PPs, and use the Hotstuff
protocol [56] to achieve the consensus of the CS federation
on CPs. Our evaluation shows that the new security features
of dRR introduce minimal overhead. With the expanding
scale of CSs, the CS federation incurs only a latency of less
than 2 seconds for the certificate issuance and revocation.
The Monitor can fetch the newly confirmed CPs and refresh
the M-Tree in 0.5 seconds. The experimental results show

2

that the additional closed-loop time from CAs’ signing to
RPs’ synchronizing of certificates is no more than 3 seconds.
Additionally, we evaluate the CS federation’s throughput for
handling certificate updates, which shows 450 times higher
than the current frequency of RPKI certificate renewals.

In summary, we make the following contributions:
(1) We conduct a data-driven RPKI threat analysis, which
involved a worldwide survey to understand the industry’s
concerns about RPKI, as well as the first large-scale
measurement on the RPKI Repository. Based on these key
insights, we propose the essential properties that a secure,
robust, and scalable RPKI Repository should possess.

(2) We present dRR, an RPKI-compatible architecture to
replace the current vulnerable RPKI Repository. To the
best of our knowledge, dRR is the first solution designed
to proactively defend against malicious behavior by RPKI
authorities from the perspective of RPKI Repository.

(3) We break the current model that each RPKI object is
a singleton in RPKI Repository and achieve the truly dis-
tributed storage of RPKI data. We also effectively solve the
scalability problems caused by RPs to establish connections
with a large number of PPs so that RPKI can better cope
with large-scale deployment in the future.

(4) We implement a prototype of dRR and evaluate the
performance of dRR on a global testbed with 100 nodes.
We also demonstrate the effectiveness of our system.

II. BACKGROUND AND THREAT ANALYSIS

In this section, we overview the RPKI architecture and then
perform the first data-driven RPKI threats analysis.

A. RPKI Overview
RPKI follows a PKI-based [53] architecture and the cer-

tificates are organized in a hierarchical structure. At the top of
the hierarchy are the trust anchors. The five widely recognized
trust anchors of RPKI are AFRINIC [1], APNIC [4], ARIN [5],
LACNIC [36], and RIPE NCC [49]. As shown in Figure 3,
each RIR holds a root RC that encompasses all INRs. CAs
in RPKI can issue subordinate RCs that bind a subset of their
INRs to the public keys of the sub-CAs (e.g., APNIC assigning
prefixes 27.111.32.0/19 and 43.224.168.0/22 to
Indonesia) or ROAs (leaf nodes) that authorize ASes to origi-
nate specific IP prefixes (e.g., PT.Inet.Global.Indo authorizing
AS24532 to announce prefixes 27.111.39.0/19-24).
Entities that possess RCs are CAs (such as APNIC, In-
donesia, and PT.Inet.Global.Indo); entities holding ROAs or
RCs are INR holders (such as Indonesia, PT.Inet.Global.Indo,
AS45101, and AS24532, with their parent CAs being the
certificate issuers).
RPKI Repository. Each CA operates a publicly accessible
PP [26] to host the RPKI objects it has issued. The URL of the
PP is recorded in the Subject Information Access
(SIA) field in its RC. As shown in Figure 3, Indonesia’s PP
stores the RCs and ROAs it has signed for subordinate INR
holders, a Certificate Revocation List (CRL) [14] that records
the revoked RPKI objects, and a manifest [7] that records all
valid objects in the PP. RPs will ignore the RPKI objects that
are present in PPs but not listed in the manifest or have been
listed in the CRL. Hereby, each CA’s PP exclusively stores the
RPKI objects issued by the respective CA, while collectively,
all PPs form the global RPKI Repository that maintains a
comprehensive view of the RPKI objects.

 APNIC (RIR)
ASN: 0 - (232-1)

IPv4: 0.0.0.0/0, IPv6: 0:0:/0

 Indonesia (NIR)
27.111.32.0/19

43.224.168.0/22 ...

PT.Inet.Global Indo (ISP)
27.111.32.0/19

43.224.168.0/22 ...

43.224.168.0/22-24
① AS 45101

27.111.39.0/19-24
AS 24532

Manifest

CRL

①

②

②

ROA RC

PP

Fig. 3: Example of RPKI hierarchical structure.

Route origin validation. RPs utilize RPKI Repository Delta
Protocol (RRDP) [10] or Rsync protocol to periodically tra-
verse all PPs and fetch RPKI data to their local caches.
After synchronization, RPs follow the hierarchical structure,
starting from the top of the certificate tree, to verify all RCs
and ROAs [28]3. Then, they use the valid ROAs to generate
a prefix-to-AS mapping table and install the table to border
routers which then can use it to verify incoming BGP updates.
IETF recommends that border routers should discard all invalid
BGP updates and allow valid and unknown ones [11], [44].
B. Data-driven RPKI Threat Analysis

We conduct a data-driven threat analysis for RPKI Repos-
itory, and summarize three problems, as listed in § I. We
identify P1 and P3 from a worldwide survey to understand
industry concerns about malicious RPKI authority and running
PPs. We received valid responses from 68 AS administrators
(ROA adopters), and their feedback confirmed the urgency
of addressing these problems. Appendix D shows the de-
tails of our survey. For P2, we conduct the first large-scale
measurement on the RPKI Repository and reveal the current
deployment status of PPs.

1) Malicious RPKI Authorities: RPKI authorities control
the signing and management of RPKI objects in their PPs.
Therefore, they have the ability to unilaterally undermine
the INR authorization to subordinate INR holders by mali-
ciously manipulating RPKI objects, especially RCs and ROAs.
For example, Indonesia’s revocation of RC 2⃝ will lead to
PT.Inet.Global Indo losing the resource authorization for its
prefixes, consequently invalidating the ROA for AS24532.
Compromised signed objects would prevent RPs from ob-
taining authentic and complete RPKI data, thereby affecting
the accuracy of ROV. The malicious behaviors of the RPKI
authority that we are concerned about include:
• Revocation: listing RCs or ROAs in the CRL. Revoked

objects will be considered invalid by RPs.
• Deletion: deleting RCs or ROAs from the PP. Malicious

deletions will prevent RPs from obtaining these objects.
• Corruption: corrupting RCs or ROAs. The corrupted

objects will fail the verification and be rejected by RPs.
• Modification: modifying RCs and ROAs. Malicious mod-

ifications often involve a reduction in the authorized INRs
or changes to the authorized entities.
Any malicious actions against the will of INR holders may

undermine the authority of RPKI data. Therefore, the prefix-
to-AS mappings in the affected ROAs will be compromised,
resulting in relevant valid or unknown BGP updates becoming

3Currently, there are several open-source relying party software [35], [54],
[12], [41], [34], [50] available to assist the RP in automating the certificate
synchronization and validation processes.

3

ROV invalid and then being rejected by border routers (P1.1).
However, INR holders and RPs rely heavily on the RPKI
authorities, making it difficult for them to promptly perceive
that their will has been compromised (P1.2). Since RPKI
lacks a trustworthy historical RPKI object record, it is also
challenging, if not impossible, to hold authorities accountable
even if attacks are detected after the fact (P1.3).

In our survey, 44.1% of the AS administrators explicitly
expressed concerns about malicious RPKI authorities (11.5%
of them chose ”not sure”). Two administrators provided addi-
tional feedback, indicating that they consider the threat from
the RPKI authorities to be the most serious problem. One
of them said they had lost all their ROAs due to adminis-
trative/human reasons. It can be seen that threats from RPKI
authorities are also widely recognized in the industry.

2) Vulnerability of RPKI Repository: We then analyze the
vulnerability of the PP based on the measurement of the current
RPKI repository, which will lead to P2.

To analyze the RPKI Repository, we obtained a complete
RPKI snapshot on April 1, 2023. There are 36,976 RCs
and 122,251 ROAs. For each RC, we extract the SIA field
that records the URL of its HTTPS-based RRDP file. We
find that there are currently 61 independent PPs4. We use
20,000 globally distributed DNS resolvers to resolve their
domain names, with the aim of finding all IP address records
for each PP. Then, we use the routing data maintained by
RIPE NCC[48] to obtain the AS where each PP is located.
Appendix C shows our detailed measurement results.

Our analysis shows that although RRDP is designed to
leverage CDN infrastructure for resilient service, we find that
only 8 out of 61 PPs are hosted in CDNs, with 7 being hosted
on Cloudflare AS13335 and 1 on Amazon AS16509. We
also find that out of 61 PPs, 58 of them are hosted in a
single AS. This means that the availability of these PPs is
highly dependent on the reachability of a single AS. Worse
still, among the PPs whose corresponding ASes have deployed
ROAs, we have identified that 14 of them carry the ROA of the
ASes in which they are located. Once the PP goes down and
the RPs cannot fetch its ROAs, the route of the AS that the PP
locates in may be downgraded by ROV adopters. Then, even
if the PP is restored, those ROV adopters still cannot access
the PP, in which case the access of the PP depends on the
reachability of the AS it locates in, while the reachability of
the AS also depends on the access of the PP.

Real-world incidents of PP breakdowns do occur at times.
On 6 April 2020 [42], the PP maintained by RIPE NCC
suffered a sudden increase in connection to service, resulting in
it appearing as down to many RPs for 7 hours (RIPE’s services
are now hosted on CDNs). On 15 May 2020, the Japan-
operated PP was out of service for 10 hours due to hardware
failure [30], and between 26 Jan 2022 and 2 Feb 2022, due to
full disk space, all ROAs in its PP again became invalid [31].
The current storage mode of RPKI objects implies that a
single point of failure in PPs may hinder RPs from obtaining
complete RPKI views. Since a truly distributed and highly
reliable RPKI Repository is crucial for RPKI security, we

4Since all PPs now support RRDP and serve RPs through RRDP files, our
analysis of the RPKI Repository focuses primarily on RRDP. SIA fields of
RCs held by the same organization will point to the same PP. Therefore, the
number of PPs is much lower than that of RCs.

2015 2016 2017 2018 2019 2020 2021 2022 2023
Years

10
20
30
40
50
60

of

 P
P

Fig. 4: The number of independent PPs over nine years.

expect that RPKI Repository does not rely on the availability
of a single PP or even the reachability of a single AS.

3) Scalability of RPKI Repository: Finally, we analyze the
scalability of the RPKI Repository from the perspective of the
growth in the number of repository PPs (P3).

As shown in Figure 4, RPKI Repository has grown from 5
PPs run by five RIRs to more than 60 PPs. On the one hand,
with a deeper understanding of RPKI, ROA deployers prefer to
adopt delegated RPKI to flexibly control their RPKI objects. 5

On the other hand, RPKI Repository is designed without a
strict admission mechanism, allowing entities to register as
delegated CAs and operate PPs with a small fee and identity
verification[2], [3], [6], [37], [46]. Therefore, some PPs for
unwanted purposes (measurement, attack experiments, etc.)
are gradually emerging. Since RPs are required to check the
updates of all PPs when refreshing their local caches, the in-
creasing number of PPs will result in higher refresh costs. Even
worse, a malicious CA can create a large number of descendant
RCs and operate numerous PPs to make RPs endlessly retrieve
PPs, thus exhausting and paralyzing RPs. We find that Koen
van Hove has demonstrated the feasibility of this attack by
manipulating his PP (parent.rov.koenvanhove.nl) [55].

For P3, we asked AS administrators using hosted RPKI
about their willingness to adopt delegated RPKI in the future.
45.3% of them say they have plans to run their own PPs
for flexible certificate control. The result shows that delegated
RPKI will emerge as a trend, and the number of PPs will
inevitably increase. The growth in the number of PPs not only
threatens the scalability of RPKI but also brings unexpected
risks to RPs. Since each PP connects to all RPs in the world,
we urge that the Internet community pays more attention to
this scalability issue.

C. Threat Model
The main participants in dRR include CAs, INR holders,

RPs, and CSs. dRR focuses on solving the problems we
defined in § II-B, including malicious RPKI authorities with
excessive unilateral power (P1), and the vulnerability (P2) and
scalability (P3) issues of the RPKI Repository.

In dRR, honest INR holders expect their certificates to
be securely stored in the repository and accessible to all
RPs; honest RPs hope to obtain trustworthy RPKI object
views and timely perceive RPKI data updates. For a malicious
RPKI authority, it can unilaterally manipulate its issued RPKI
certificates, using cryptographic (revocation or modification) or
non-cryptographic (deletion or corruption) means, to diminish
the set of resources associated with the victim INR holders. It

5RIRs offer hosted RPKI [9] to help entities quickly deploy RPKI. For
hosted CAs, RIRs allow them to apply for RCs. The difference is that RIRs
will help them issue ROAs, and the RC and ROAs will be stored in RIRs’
PPs. CAs deploying delegated RPKI will sign RPKI objects by themselves
and run their own PPs to store objects.

4

ETAR in Detail

Monitor

CA

INR holder

①Request INR
②CRP

CS

③Upload RC/ROA & CIP ④Host RC/ROA

②RC/ROA & CIP
①Revoke RC/ROA

③Upload CRP

CS Federation

⑤Publicize
 CIP/CRP

Monitor RP

⑥Push CIP/CRP

⑧Request CULs

⑨Fetch RC/ROA⑦Check RC/ROA status

...

CS

CS

Fig. 5: The dRR architecture and the workflow.

can also show incomplete and inaccurate RPKI views to RPs.
Malicious actions taken by authorities undermine the goal of
INR holders and RPs. In dRR, malicious INR holders may
abuse IP prefixes to launch Internet attacks or attempt to falsely
claim ownership of certificates that belong to others. Malicious
CSs may delete or corrupt the certificates they host or disrupt
the CS federation’s efforts to maintain a widely recognized
RPKI object global ledger. An attacker may compromise the
private keys of INR holders and CSs. Note that other attacks
that are unrelated to the exploitation of weakness in the RPKI
Repository architecture, such as DDoS, are beyond the scope
of our paper.

III. ARCHITECTURAL OVERVIEW

A. Design Goals
Our design goals of dRR are as follows: First, dRR

should balance the disproportionate power between the RPKI
authorities and INR holders. It should actively defend against
malicious behavior by RPKI authorities, ensure the secure
storage of INR holders’ certificates, and provide trustworthy
RPKI object views to RPs. Second, dRR should implement a
truly distributed RPKI Repository. Any single point of failure
should not affect the integrity of the data obtained by RPs.
Third, dRR should be sufficiently scalable to accommodate
the future deployment of RPKI, especially the delegated RPKI.
dRR should not affect the existing RPKI certificate issuance
and validation, and should be compatible with RPKI while
supporting incremental deployment.

B. dRR Overview
Towards these goals, we aim to design a new RPKI

Repository, to serve as a decentralized, scalable, and auditable
intermediary between the certificate issuance system and RPs.
As a key component connecting the certificate supply side
and the certificate demand side, it is important to ensure the
robustness and security of the RPKI Repository. For current
RPKI, binding the Repository to CAs not only grants signifi-
cant power to RPKI authorities and enables them to engage in
unilateral malicious actions towards their issued certificates,
but also affects the scalability of RPKI. Therefore, dRR
defends threats to RPKI by constructing an enhanced RPKI
Repository that is independent of the certificate supply side. As
shown in Figure 5, dRR serves as a new RPKI Repository with
two entities: the CS federation, which is formed by Certificate
Servers (CSs) and can be seen as upgraded PPs, and the
Monitors.
CS Federation. CS federation inherits the responsibility for
hosting RCs and ROAs for INR holders. Compared to tra-
ditional PPs, the CS has two main improvements: (1) they

are independent of CAs, all CSs are equal and together form
the CS federation, and (2) while helping INR holders host
the certificates, the CS will also publicize the fingerprint and
operation (issuance or revocation) of these certificates they host
among CS members. Specifically, INR holders are no longer
required to store certificates in the PP controlled by the parent
CA, but they can freely choose multiple CSs they trust to
provide services for them. Along with the new certificate, the
CA will also provide a Certificate Issuance Policy (CIP), which
can be used to prove the authenticity of the certificate to the
INR holder. The CIP will then be publicized among the CS
federation to show that it is widely recognized (Step 1 to Step
5 in Figure 5, marked in black). When a certificate is to be
revoked, the CA that signed the certificate should publish a
Certificate Revocation Policy (CRP) to the federation. It can
be used to prove all affected INR holders have agreed on the
revocation (Step 1 to Step 3, marked in red). After the CS
federation confirms the CPs, the corresponding certificates can
be successfully issued or revoked.
Monitors. The Monitor has two responsibilities: (1) provide
RPs with verifiable Certificate Update Lists (CULs) to allow
them to verify the authenticity and integrity of the RPKI object
view, and (2) provide INR holders with services to check the
authenticity and validity of specific certificates. Specifically,
whenever the CS federation confirms a batch of CPs, each CS
will proactively push the newly added CPs to the Monitors it
serves so that Monitors can update their locally maintained M-
Trees (Step 6). RPs no longer traverse all PPs to check updates
but fetch verifiable CULs from the Monitor they trust. Then,
based on CULs, RPs synchronize the newly added certificates
and delete the revoked ones to complete the local cache refresh
(Step 8 to Step 9). INR holders can also ask the Monitor
whether the certificate they are concerned about has been
protected by dRR, and the Monitor returns the result and the
proof to INR holders (Step 7).

In dRR, the certificate hosting service provided by the
CS federation meets the needs of INR holders to actively
control their certificates, while also ensuring that RPs will
not fail to fetch certificates due to the failure of a single CS.
Additionally, the admission mechanism of the federation also
mitigates the scalability issues caused by the arbitrary growth
of PPs. Furthermore, with Monitors, RPs can easily verify the
integrity of the obtained RPKI views. dRR replaces the RPKI
Repository with the more powerful CS federation, which is the
key to achieving the expected properties of RPKI Repository.

IV. DESIGN DETAILS

In this section, we describe the main components of dRR
in detail. We start by introducing the CS federation, including
CS operations and certificate policies. Next, we present the
M-Tree data structure maintained by Monitors and how they
serve RPs and INR holders. Finally, we discuss the incremental
deployment mechanism for dRR.

A. CS Federation
CS federation consists of multiple CSs. The fundamental

design principles of CSs are as follows: (1) unlike the PP
which is bound to a specific CA, the CS is independent of the
CA. All CSs are equal and together form a CS federation; (2)
entities that want to operate a CS in the federation must pass
security and reliability verification by existing CS members;
(3) INR holders can freely choose any CSs they trust to provide

5

ETAR in Detail

AFR_reg
LAC_reg
APN_reg
RIPE_reg
ARIN_reg

five RIR_reg

Genesis block
previous hash

CS1_reg
CIP
CIP
CRP
CIP

Block 1
previous hash

CIP
CIP

CS2_reg
CIP
CRP

Block 2
previous hash

Block N
previous hash

CIP
CIP

INRh_reg
CIP
CIP

...

CS signature CS signature CS signature CS signature

Fig. 6: The global ledger maintained by the CS federation.
Genesis block contains the RIR registration messages, and
subsequent blocks contain CS and INR holder registration
messages (CS reg and INRh reg), CIPs, and CRPs.

certificate hosting services for them. These principles ensure
the freedom of trust for INR holders as well as the security and
reliability of the CS federation. We envision five RIRs to begin
the deployment of dRR, forming the initial CS federation.
Other eligible entities can join the federation as CSs with the
approval of five RIRs and existing CS members. All members
of the CS federation collaborate to ensure secure certificate
storage and enable public auditability of certificate operations.
To achieve that, we design a series of CS operations that each
CS should support.

1) CS Operations: CS operations include registration of
CSs and INR holders, hosting certificates, and publicizing
certificate policies. In dRR, new CS members and INR holders
who deploy dRR must complete identity registration in the
federation first. All the registration information and CPs will
be uploaded to the CS federation. With the consensus of the
existing CS members, the operations will be appended to the
tamper-resistant global ledger maintained by the federation.
The ledger provides a complete longitudinal view of RPKI
objects for effective auditing. In dRR, CS members can use
any security-proven consensus protocol [22], [57], [56], [40],
[43] to achieve consensus on these operations.
CS Registration. The CS registration is conducted with CS
Registration Message (the format is shown in Table I), which
consists of the following fields: CS_ID, the registration type
T_R, the latest public key P_K and its corresponding signature
CS_SIG, and the signature with the previous key Pre_SIG
(optional). To initialize the federation, we expect five RIRs to
register and join the federation first. They should also register
a shared identity for joint decision-making. For the shared
identity, the CS_ID will be All-RIRs and the P_K will be
jointly held by all RIRs in the form of threshold signatures[51].
As shown in Figure 6, the initialization registration message
of the five RIRs will be written into the genesis block of the
ledger when the system is initialized.

For an entity that wants to run a CS, its initial registration
message (I R) must be submitted to the federation by five
RIRs using their jointly held identity. If a CS wants to change
its P_K, the update message (U R) can be submitted by
itself, with the requirement that a signature signed with the
previous private key should be attached to Pre_SIG field.
For a CS who wants to leave the federation, its deregistration
message (D R) should also be submitted by five RIRs. After
existing CS members reach a consensus, these messages will
be written into the global ledger (shown in Figure 6), and the
corresponding entity will either officially run a CS, leave the
CS federation, or complete updating the P_K.

The eligibility of entities operating CS must be verified by
all RIRs and existing CS members. To ensure the security of
certificates and the stability of serving RPs, it is important that

CS operators possess a robust, secure, and reliable service in-
frastructure, such as CDNs. Additionally, CS members should
also have a good reputation and be diversified in affiliations.
For example, state-run institutions and large ISPs (e.g.,Akamai,
Amazon, Cloudflare, etc.) are suitable candidates. The strict
eligibility requirements not only guarantee the quality of
services provided by the CS federation but also address the
issue of uncontrolled expansion of CS members.

TABLE I: CS Registration Message.
Field Name Content
CS_ID ID of the CS. This field uniquely identifies a CS.
T_R The type of registration, e.g., initializing registration (I R),

update registration (U R), or deregistration (D R).
P_K The latest public key (P K) of the CS whose private key is

used for consensus on CPs and CS/INR holder registrations.
CS_SIG The CS’s signature on current registration signed with the

P_K’s corresponding private key.
Pre_SIG When the T_R field is U R, this field will contain the CS’s

signature on current registration signed with previous P K’s
corresponding private key.

TABLE II: INR holder Registration Message.
Field Name Content

INR_holder_ID ID of the INR holder.
T_R The type of registration, e.g., initializing registra-

tion (I R), update registration (U R, update P_K or
Trusted_CSs), or deregistration (D R).

P_K The latest public key (P K) of the INR holder whose
private key is used to sign the CPs.

Trusted_CSs IDs of all CSs trusted by the INR holder. It can be
represented as a sequence: [CS1 ID, CS2 ID, ...
,CSn ID].

INR_holder_SIG The signature on current registration signed with the
P_K’s corresponding private key.

Pre_SIG When the T_R field is U R and the P_K is changed, this
field will contain the signature on current registration
signed with the previous P K’s corresponding private
key.

INR holder Registration. Each INR holder deploying dRR
should register its identity in the CS federation. The registra-
tion message must contain the fields listed in Table II.

The INR_holder_ID field descriptively represents a
unique entity, containing identity-distinguishable information
such as the name of the organization that owns the certificates
(e.g., Google). Each INR holder will host its certificates in the
CSs it trusts, which are listed in the Trusted_CSs field. The
INR_holder_SIG field contains its signature on the current
registration, which is signed with the P_K’s corresponding
private key. The T_R field indicates the type of registration:
initialization (I R), update (U R), or deregistration (D R).
Update registration messages allows INR holder to update their
keys and Trusted_CSs lists. For updating the key, the P_K
field will contain a new public key and a signature signed with
the previous P_K’s corresponding private key must be attached
to Pre_SIG field.

After confirming the identity, one of the CSs trusted by
the INR holder will submit the registration message to the
CS federation. As shown in Figure 6, after the CS members
verify the signature, the INR holder registration message will
be recorded in the global ledger.

Hosting Certificates and Publicizing CPs. INR holders are
free to choose their trusted CSs to host their RCs and ROAs.
The INR holder should also choose one of the CSs hosting the
certificates to publicize the corresponding certificate policies
to the CS federation. As shown in Figure 6, every CP that
has been verified by the CS members will be recorded in the

6

TABLE III: Fields in Certificate Issuance Policy (CIP).
Field Name Content
VERSION The version of the current CIP.
ISSUER INR_holder_ID of the certificate issuer (i.e., CA).
SUBJECT INR_holder_ID of the certificate owner.
CERT The hash of the protected certificate.
CERT_T The type of the protected certificate, RC or ROA.

ISSUER_RC The hash of the protected certificate’s parent RC.
VALIDITY The validity period of this certificate. It is a tuple: (notBefore,

notAfter), and must be the same as the validity period in the
certificate.

CS_SET IDs of the CSs hosting this certificate. It is represented as a
sequence: [CS1 ID, CS2 ID, ... , CSn ID].

CIP_HASH The hash of this CIP.
CIP_SIG The issuer’s signature on this CIP.

TABLE IV: Fields in Certificate Revocation Policy (CRP).
Field Name Content
VERSION The version of the current CRP.
R_M Method of revoking the certificate: self or rir.

CRP_ISSUER The issuer of this CRP.
CERT_SET The hash list of the revoked certificates. It is represented as

a sequence: [CERT1, CERT2, ... ,CERTn].
CRP_HASH The hash of this CRP.
CRP_SIG The CRP_ISSUER’s signature on this CRP.

global ledger in chronological order.
2) Certificate Policies: dRR has two certificate policies,

CIP and CRP, which represent the certificate issuance and
revocation, respectively. The CIP contains the necessary in-
formation to prove that this specified certificate has been
recognized by both the CA and the INR holder. It can serve as
proof of the real existence of the certificate. The CRP contains
information that proves the mutual agreement of the CA and all
affected INR holders in revoking the certificate. It can prevent
CAs from unilaterally revoking the certificates.
Certificate Issuance Policy. When a CA issues RCs and ROAs
for subordinate INR holders, it also provides them with CIPs
to show the authorization of these certificates. CIPs provided
by the CA (ISSUER) to the INR holder (SUBJECT) contain
the fields listed in Table III. The ISSUER and SUBJECT
fields must match the INR holder ID in their registration
messages, and the CERT field uniquely identifies the certificate
protected by this CIP. For an INR holder, its certificates can
be hosted in different CS sets. For more important ones, the
INR holder may prefer to host them in more CSs to enhance
robustness. Note that CS_SET in CIPs must be a subset of the
Trusted_CSs in INR holders’ registration messages.
Certificate Revocation Policy. When revoking an RC or ROA,
the CA that signed the object needs to obtain a CRP from
downstream INR holders to confirm that the revocation has ob-
tained the consent of all affected parties. The CRP contains the
fields listed in Table IV. dRR also allows five RIRs to jointly
sign CRPs for mandatory certificate revocation. For example, if
INR holders exploit IP prefixes for malicious activity, it may
be necessary to consider forcibly reclaiming their resources.
In this case, the R_M field, which indicates the revocation
method, will be recorded as rir and the CRP_ISSUER will be
All-RIRs. When a CA performs certificate revocation, it must
ensure that the certificate in the CERT_SET has no descendant
certificates or that the certificate and its descendant certificates
belong to the same INR holder. It means that the revocation of
an RC must recursively start from the lowest-level descendant
certificate to ensure that all affected INR holders have agreed
on the revocation. But for mandatory revocation, regardless
of the status of descendant certificates, the revocation will be

TABLE V: The table shows the total number of RCs
(RC num) and the cumulative distribution of the number
of CRPs that need to be issued to revoke RCs of five RIRs.
For example, for LACNIC, the revocation of 91.59% RCs
(4,529) requires at most two CRs to be issued. The statistic
is generated from the RPKI snapshot on April 1, 2023.

RIR 1 CRP 2 CRPs 3 CRPs 4 CRPs 5 CRPs RC num
AFRINIC 21.88% 91.97% 96.41% 98.12% 98.46% 585
LACNIC 46.11% 91.59% 97.04% 97.31% 98.65% 4945
APNIC 29.23% 80.89% 92.22% 96.16% 97.64% 8047

RIPE NCC 24.39% 78.82% 90.47% 94.48% 96.16% 19821
ARIN 22.05% 67.92% 84.82% 91.48% 94.41% 3578
RIRs 28.07% 80.12% 91.31% 95.16% 96.74% 36976

enforced, and all certificates will be invalidated.
We count the number of descendant certificates of each RC

to estimate the number of CRPs that need to be issued for RC
revocation. The result is shown in Table V, which indicates
that 90% of RC revocations requires only less than 3 CRPs to
be issued. It should be noted that the actual number of CRPs
that need to be issued will be less than our estimation because
the revoked RC and its descendant certificates may belong to
the same owner, and in this case, only one CRP is required.
Certificate Policy Validation. CPs provided by INR holders
during the certificate issuance and revocation will be submitted
to the CS federation and validated by CS members. If the CP
is verified and recognized by the majority of CS members, it
will be permanently recorded in the global ledger.

Algorithm 1: CIP Validation
1 CIP: dict{key=field, value=values}, the CIP that needs to be verified.
2 INRh reg: dict{key=INR holder ID, value=registration msg}, all INR

holders’ registration messages.
3 CIPs: dict{key=cert hash, value=CIP info}, all valid CIPs.
4 CRPs: hash list of all revoked certificates.
5 Function VALIDATION(CIP, INRh reg, CIPs, CRPs):
6 if CIP [VERSION] ̸= 1 then
7 return false

8 if CIP [CERT] /∈ CRPs and CIP [CERT] ∈ CIPs.keys then
9 return false

10 if CIP [ISSUER] /∈ INRh reg.keys or CIP [SUBJECT] /∈
INRh reg.keys then

11 return false

12 if CIP [CS_SET] ̸⊂ INRh reg[CIP [SUBJECT]][Trusted_CSs)]
then

13 return false

14 if CIP [ISSUER_RC] ∈ CRPs or CIP [ISSUER_RC] /∈
CIPs.keys then

15 return false

16 CIPrc = CIPs[CIP [ISSUER]] // Get the CIP of the
ISSUER_RC

17 if CIPrc[SUBJECT] ̸= CIP [ISSUER] then
18 return false

19 if CIPrc[CERT_T] ̸= RC then
20 return false

21 if !(CheckV alidity(CIPrc,CIP)) then
22 return false

23 KEY = INRh reg[CIP [ISSUER]][P_K]
24 if !(CheckSignature(CIP, KEY)) then
25 return false

26 return [B_NUM,CIP_HASH,CERT];

Algorithm 1 shows the pseudocode of the CIP validation
process. The algorithm starts by verifying the certificate status
and the identities of the ISSUER and the SUBJECT. Then, it
will verify whether the CS_SET in the CIP is a subset of the
Trusted_CSs in the SUBJECT registration message. Next,
the validity of the ISSUER_RC and whether it is truly owned
by the ISSUER will be verified. Since ROAs are leaf nodes and

7

ETAR in Detail

h11 h12 h21 h22 h31 h32 h41 h42

l10 l11 l13 l14

l20 l21

C4C3

none

C4
'

l20
l13

l21

h32h31

l14

(b) h32 presence proof
 h31-1 absence proof

C4
'

l10

h22_newh21

l11 l13

h41 h42

l14

l20 l21

B_NUM: 4
CERT: abcd...
ISSUER_RC: efgh...
VALIDITY: [2022.4.2-2023.5.6]
CS_SET: [CS1, CS2..]
CIP_HASH: hjki...

h22 _Old: ghyu...
B_NUM: 4
CERT: hjsu...
CRP_HASH: oplk...

B_NUM: 3
CERT: aaab...
...

B_NUM: 3
CERT: acab...
...

C3
'

l10

h22_oldh21

l11 l13 none

l20 l21

 (c) Consistency proof

B_NUM: 1
CERT: jkop...
ISSUER_RC: huly...
VALIDITY: [2019.5.6-2020.5.6]
CS_SET: [CS5, CS6..]
CIP_HASH: kkul...

 (a) An overview of M-Tree

PT_B PT_C

PT_A

Fig. 7: This picture shows the process of inserting CIPs and CRPs in block 4. Sub-Figure(a) shows the overview of M-Tree,
and → indicates the change from the C3 version M-Tree to the C4 version M-Tree. Nodes with boxes in Sub-Figure(a)
show the nodes that have changed. Sub-Figure(b) shows the pruned tree that proves the presence of entry h32 and the
absence of entry h31 1. Sub-Figure(c) shows the consistency proof of the changes from the C3 version M-Tree to the C4

version M-Tree.

sub-certificates cannot be issued by ROAs, when the algorithm
detects that the type of ISSUER_RC is ROA, it will return an
error. Finally, the algorithm will verify the CIP’s validity and
the ISSUER’s signature on this CIP. Any verification failure
will result in the CIP not being accepted by the CS federation.
After CS members reach a consensus, the CS uploading the
CIP will return the metadata of this CIP to the INR holder,
including the block height (B_NUM) of the CIP, the hash of
the CIP (CIP_HASH), and the hash of the certificate (CERT)
protected by dRR. The INR holder can use the metadata to
confirm the status of its certificate.

We have presented pseudocode for the validity verification
process CheckValidity(), the signature verification process
CheckSignature(), and the CRP verification algorithms in
Appendix A.
B. Monitor

In this section, we introduce the Monitor’s core data
structure, M-Tree. Then, we describe how Monitors serve INR
holders and RPs based on M-Trees.

1) Verifiable Data Structures Maintained by Monitors: The
Monitor in dRR accepts queries from INR holders about the
existence and status of a specific certificate and provides ver-
ifiable CULs to RPs. Therefore, the data structure maintained
by the Monitor must be able to provide three proofs:
• Proof of presence. Given an element, proof of the
existence of the element can be given. It can be used to
provide the INR holder with proof of the existence of a
specific certificate.
• Proof of absence. Given an element, proof of the non-
existence of the element can be given. It can be used to
provide the INR holder with proof of the non-existence of
a specific certificate.
• Proof of consistency. Given two versions of the data
structure, it can be proven that modifications between log
revisions are trustworthy and that the log does not contain
non-existing elements or exclude existing ones. It can be
used to provide RPs with credible proof of the certificate
changes (CULs) between two-time points.

Typically, MHTs [15] are binary trees that contain entries
in leaves, while the intermediate nodes and the root of the tree
contain the hash of concatenated child nodes. When a new

entry is inserted chronologically, a commitment (root hash of
the tree) of the current tree version will be generated. An MHT
can efficiently insert a new entry with ⌈log2L⌉ time overhead,
and it can also provide proofs of presence and consistency with
size ⌈log2L⌉, while L is the number of leaves6. The classical
MHT can satisfy our need to provide proof of presence and
consistency, but it cannot provide proof of the absence of an
entry. We improve the MHT in combination with our specific
scenario so that it can also provide proof of absence.
M-Tree. We call the data structure maintained by the Monitor
an M-tree. M-Tree is an MHT with leaf nodes containing CP
information. We make three design choices to make MHT
meet our needs: (1) M-Tree will generate a commitment after
inserting a block’s CIPs and CRPs; (2) the newly added CIPs
in one block will be appended into the M-Tree according to
the lexicographical order of their certificate hashes; (3) M-tree
records the newly added CRP by modifying the CIP entry
of the certificate to be revoked in the CRP. Figure 7 gives
an overview of the M-Tree, showing the process of inserting
two CIPs and one CRP of block 4 to the M-Tree and the
corresponding commitment changes (C3 to C4).
Inserting CIPs. As shown in Figure 7(a), h41 and h42 are new
entries added for two CIPs in block 4. Each entry contains the
necessary content for RPs to obtain the certificate, including
the block number B_NUM of the CIP and the ISSUER_RC,
CERT, VALIDITY, CS_SET, and CIP_HASH fields in the
CIP. h41 and h42 are inserted in the lexicographic order of their
certificate hash values. M-Tree requires ⌈log2L⌉ overhead to
insert a new CIP, and the new entry format is as follows:

h41 = HASH(B_NUM || ISSUER_RC || CERT ||
VALIDITY || CS_SET || CIP_HASH)

Updating CRPs. The CRP in block 4 is the revocation of
the h22 certificate in block 2. The M-Tree will not create a
new entry for the CRP but will update h22. The new entry
h22 new will include the old h22 old, the block number B_NUM
of the CRP, and the CERT and the CRP_HASH fields in the
CRP. M-tree also needs ⌈log2L⌉ time overhead to complete the
updating of a CRP. The updated entry format is as follows:

6We denote the proof size in terms of the number of hashes that need to
be computed to verify the proof.

8

h22 new = HASH(h22 old || B_NUM || CERT || CRP_HASH)
Commitments. When the Monitor completes the update of
the CIPs and CRPs in one block, it will generate a com-
mitment of the current M Tree version. Each Monitor must
publish the metadata of its M-tree historical versions, i.e., the
block number and the corresponding commitment. The publicly
available metadata can be used to verify the consistency of
the commitment provided by the Monitors. To do this, each
Monitor should maintain a Commitment Update File that can
be accessed via HTTPS. Its specific format can be as follows:

<commits, xmlns = "https://.../monitor",
B_NUM = 11 >

<B_NUM = 11, commit = "abcd...">
<B_NUM = 10, commit = "bkdk...">
...
<B_NUM = 1, commit = "klod...">

</commits>

2) Serving INR holders: The INR holder may be concerned
about whether its CIP has been publicized in the CS federation
and the corresponding certificate has been protected by dRR.
If so, what is the certificate’s status, i.e., whether it has been
marked as expired or revoked? The INR holder should provide
the tuple ⟨B_NUM,CERT⟩, which records the block number of
the CIP and the hash of the certificate to the Monitor, and the
Monitor returns the result along with the proof.
Certificate existence proof. As shown in Figure 7(b),
when the INR holder asks whether the certificate in h32

⟨B_NUM = 3,CERT = acab...⟩ exists, the Monitor will return
a pruned tree that contains the entry of h32 and the hash
of h31, intermediate nodes I20 and I14 to the INR holder.
With the pruned tree, the INR holder can easily reconstruct
the commitment of C

′

4. Then the INR holder can access the
Commitment Update Files provided by other Monitors to check
the authenticity of C

′

4. After verification, the INR holder can
confirm that its certificate has been protected by dRR.
Certificate absence proof. Supposing that the INR
holder is concerned about the existence of the certificate
⟨B_NUM = 3,CERT = abab...⟩. If the certificate exists, it must
be between h31 and h32 according to the lexicographic order.
Obviously, it does not exist. Then, as shown in Figure 7 (b),
the Monitor will return the pruned tree that contains the entry
of h31 and h32, and the intermediate nodes of I20 and I14 to
the INR holder. Based on the pruned tree, after confirming that
there is no problem with the reconstructed commitment, the
INR holder can know that the certificate does not exist.

The service provided by Monitors allows INR holders to
monitor the status of their certificates, thereby enabling them
to deal with any anomalies that may arise in time.

3) Serving RPs: Since RPs need to synchronize newly
added certificates and remove revoked ones periodically, the
Monitor can provide RPs with verifiable CULs. Then, the RPs
delete revoked certificates and synchronize the new certificates
from the designated CS based on CULs to complete their
local cache refreshment. To obtain the latest CUL, RPs should
submit a tuple ⟨B_NUM,C⟩, which records the last synchro-
nized block number and the corresponding commitment to the
Monitor, and the Monitor feeds back the updated entry along
with the integrality proof to RPs.

ETAR in Detail

D RC a

R RC b

D RC c

D RC a

D RC b1

D RC c1

R RC b2

D RC c2

R RC d2

(a) (b)

R RC c3

R RC d3D ROA d1R ROA d

Fig. 8: The certificate chains in a semi-deployed state of
dRR. Mark D means that the certificate is dRR-protected,
while Mark R is not.

Certificate update list. As shown in Figure 7 (c), the RP
has completed the synchronization of the first three blocks
and now needs to synchronize the block 4 incrementally. The
RP submits ⟨B_NUM = 3,C = C3⟩ to the Monitor, and the
Monitor will return a pruned tree (PT B) that contains the
CUL (the entry of h22 new, h41 and h42) and the proof (the
hash of h21, the intermediate nodes of I10 and I13) to the
RP. Based on the pruned tree, the RP needs to perform two
verification steps:

1. Verify that C
′

4 reconstructed from PT B is trusted.
2. Verify that PT C can be deduced from PT B, which can
prove that C

′

4 evolved from C3. The consistency proof
can prove that the updated entry from C3 to C

′

4 has
only h22 new, h41, and h42, thus proving the integrity
of the CUL. To do this, the RP can perform a version
rollback of M-Tree, i.e., replace h22 new with h22 old in
h22 new’s entry, and delete h41 and h42 (replace with none)
to reconstruct the pruned tree of C

′

3. Finally, the RPs check
whether the reconstructed C

′

3 is equal to C3.

After the above verification, the RPs can confirm the
integrity and consistency of the CUL provided by the Monitor.
Then, RPs can delete revoked certificates and fetch new ones
according to the newly added CRPs and CIPs. A newly added
certificate may be stored in several CSs; RPs can request any
of them to complete the certificate synchronization.
Initializing a new Monitor. We suggest that national/regional
institutions or large ISPs can operate Monitors to serve their
responsible INR holders and RPs. In the initial phase of dRR,
due to the limited number of historical blocks, an entity that
wants to run a Monitor can obtain the historical global ledger
for building its local M-Tree. After dRR has been running for
some time, subsequent new Monitors can download the M-
tree from any existing Monitor and compare the M-tree root
hash with the commitments provided by other Monitors to
confirm data integrity. This approach can avoid the overhead
of traversing the historical global ledger while ensuring the
integrity of the M-Tree. Then, the Monitor can request newly
added blocks to dynamically update its M-Tree.
C. Incremental Deployment

Like traditional RPKI, the incremental deployment of dRR
also follows the top-down deployment model. If a certificate
wants to be protected by dRR, its parent RC must already be
protected by dRR. Two main considerations make it necessary:
security and compatibility. As shown in Figure 8 (a), RC c is
protected by dRR, but RC b is not. If RC b is maliciously
deleted or revoked by the owner of RC a, the security of RC c
cannot be guaranteed. Furthermore, when the owner of RC a
wants to revoke RC b, the unilateral revocation mechanism of
RPKI will conflict with the requirement of dRR that the revo-
cation must be approved by the affected INR holder. Therefore,

9

as shown in Figure 8 (b), the certificates protected by dRR
naturally form unbroken chains. The chain is not necessarily
complete (just like the chain of RC a→RC b1→RC c2,
without RC d2), but it must be from the root certificate of
RIR to the lowest dRR deployer.

1) Certificate Management: When a CA has deployed dRR
and can sign CIPs for its subordinate INR holders, INR holders
are free to choose whether to deploy dRR or not. Therefore,
a CA can retire its PP only if all sub-certificates have been
protected by dRR. Otherwise, the CA should keep running
the PP to serve subordinate INR holders.

For INR holders that do not deploy dRR, their certificate
management remains unchanged. Certificates are still stored in
the PP of the parent CA and can be unilaterally manipulated
by the parent CA.

For INR holders that have deployed dRR, their certificates
will not be stored in PPs, and the manifest in the parent
CAs’ PP will not record their certificates. Revocation of their
certificates must be done in the CS federation. As shown in
Figure 8 (b), if the owner of RC a wants to revoke RC b1
which is protected by dRR, it must first complete the recursive
revocation of RC c1, RC c2, and ROA d1. The recursive
revocation of RC b1 will not cause additional harm to RC d2,
because RPKI allows the unilateral revocation of RC b1, which
will also invalidate RC d2. In contrast, the deployment of
dRR by RC c2 may indirectly benefit RC d2 as it avoids
RC d2 from being threatened by higher-level CAs (the owners
of RC b1 and RC a).

2) Certificate Synchronization: When dRR is partially de-
ployed, the RP should complete two synchronization phases
in each round of local cache refresh: (1) complete the refresh
of dRR-protected certificates according to CULs. Specifically,
RPs should fetch the newly added certificates and build cer-
tificate chains according to the ISSUER_RC field that records
the parent RCs. Then, the RPs delete the revoked certificate
recorded in the CERT field of the CRPs; (2) complete the re-
fresh of RPKI objects (RCs and ROAs without dRR deployed,
CRLs, and manifests) through Rsync or RRDP. The RP must
traverse all PPs to fetch certificates without dRR deployed.
Furthermore, when CUL and CRL conflict, i.e., the hash of
a dRR-protected certificate is listed in the CRL of its parent
CA, the RP should refuse to revoke this certificate. Both initial
synchronization and incremental synchronization of RPs need
to fetch all dRR-certificate and other RPKI objects.

V. DRR ANALYSIS

In this section, we give the analysis of dRR, including the
dRR property analysis and the security analysis.

A. Properties of dRR
We summarize four core properties of dRR and elaborate

on the key insights that lead to these core design decisions. We
also discuss the rationale and effectiveness of each property.
Decentralization. dRR addresses the issue of disproportionate
division of power between RPKI authorities and INR holders.
By decoupling certificate issuance and management, dRR aims
to achieve a fair balance of rights between CAs and subordinate
INR holders. It empowers INR holders with proactive control
over their certificate management, including storage and revo-
cation. This proactive control ensures that INR holders are not

solely reliant on RPKI authorities, preventing potential abuse
or unilateral actions that could compromise the authenticity of
their certificates, such as deletion, corruption, modification, or
unauthorized revocation.
Trust flexibility. dRR ensures the freedom of trust for both
INR holders and RPs. INR holders are empowered to freely
choose trusted CSs to provide certificate hosting services for
them, thus preventing their certificates from being compro-
mised by RPKI authorities. Furthermore, dRR enables RPs to
choose trusted Monitors to provide them with verifiable CULs.
This empowers RPs to verify the integrity and accuracy of the
RPKI object views they obtained, which is very important to
routing security.
Public auditability. All certificates protected by dRR are pub-
licly auditable. dRR naturally fulfills the need for auditability
by letting CSs form a federation. Each CS proactively uploads
the fingerprints of the certificates it hosts to the federation so
that a widely recognized global ledger of all RPKI certificates
and certificate operations can be maintained. Based on this
ledger, dRR ensures that all certificates’ status can be veri-
fied and that the historical RPKI certificates can be audited.
Ensuring the transparency of all certificates is important to
prevent certificates from being arbitrarily manipulated and hold
accountability after the fact.
Robustness and Security. We design dRR to be robust and
secure. dRR selects competent candidates to act as CSs to store
all RPKI objects. It can significantly enhance the robustness
and effectively ensure stable service for tens of thousands
of RPs. The truly distributed storage architecture mitigates
the risk of a single point of failure in the RPKI Repository.
Furthermore, decoupling the repositories from CAs addresses
the problem of unlimited expansion of PPs. The federation’s
access mechanisms further enhance the scalability of the
RPKI Repository while significantly reducing the potential for
malicious behavior by CS members.

With these core properties, dRR is a more robust, secure,
and scalable RPKI Repository, and can proactively defend
against attacks from malicious RPKI authorities and better
cope with future RPKI deployment.

B. Security Analysis
We discuss the potential attacks to dRR according to

the threat model in § II-C, and show how dRR defends
against them. We consider the threat from external attackers,
especially for the compromise of the private keys. Since the
main participants in dRR are INR holders and CSs, we also
discuss the threats from both.
Compromised private keys. For an INR holder, the key for
signing certificates (RC K) or signing CPs (CP K) may be
compromised: (1) only RC K is compromised. For the INR
holder acting as a CA, if dRR protect all its sub-certificates
and it no longer maintains a PP, the CA will not be threatened.
The attacker cannot maliciously sign sub-certificates with valid
CIPs nor revoke CA’s dRR-protected sub-certificates. If the
CA still runs a PP that the attacker can access, the attacker may
revoke or sign sub-certificates, which the current RPKI also
faces; (2) only CP K is compromised. Suppose the attacker
can also access the INR holder’s trusted CS. In this case, the
attacker may sign CRPs to maliciously revoke the INR holder’s
ROAs or those RCs with no sub-certificates and resign the
registration message to change CP K. But the attacker cannot

10

sign a valid CIP for resource authorization; (3) both keys
are compromised. In this extreme case, the attacker can issue
malicious sub-certificates, sign CRPs to perform revocations,
or change the CP K. Once CP Ks are compromised, we expect
INR holders to update the P_K in the registration message as
soon as possible. They should also immediately roll back the
CPs to revoke the maliciously signed certificates and recover
the original valid ones. In general, dRR is more resilient to
key compromise than current RPKI, because for RPKI, when
RC K is compromised, the attacker can issue and revoke
certificates at will.

CSs’s private keys may also be compromised, the attacker
may attempt to upload fake CPs to consume the CS federation
or disrupt the consensus process to compromise global ledger’s
integrity. Since fake CPs cannot be verified by other CSs, the
attacker cannot affect the ledger’s integrity. Furthermore, if a
CS is found to submit a large number of fake CPs, the CS
federation can prohibit it from submitting CPs (i.e., ignore all
its fake CPs). Once a CS’s private key is compromised, the
CS can apply to RIRs to have the old registration information
deregistered and submit a new CS registration with a new key.
Malicious INR holders. A malicious INR holder may abuse IP
prefixes to launch Internet attacks. In this case, dRR’s design
allows RIRs to enforce the revocation of their IP prefix usage
rights. A malicious INR holder may also want to consume the
CS federation or claim fake ownership of certificates belonging
to others. For consuming the CS federation, a malicious INR
holder may upload fake certificates and CPs to exhaust the CS
federation (e.g., uploading broken certificates). dRR expects
the services provided by CSs to operate in a paid mode, so
an attacker with a finite budget will be unwise to exhaust the
federation. Furthermore, dRR expects CSs trusted by the INR
holder to verify the holder’s certificates and CPs in advance.
If a CS is found to help malicious INR holders upload fake
CPs, it will face the risk of being kicked out of the federation.
For claiming fake ownership of certificates, the malicious
IRN holder will not succeed, because they cannot provide
corresponding valid CIPs that record the signature of issuers.
Malicious CSs. A malicious CS may deliberately not submit
the INR holders’ CIPs or CRPs to the CS federation. In
this case, INR holders can easily confirm whether the CS
has provided services for them by asking the Monitor for
their certificates’ status. A malicious CS may also delete or
corrupt the certificates it hosts or submit many fake CPs to
consume CS federation. Since dRR allows INR holders to
freely choose multiple CSs to host their certificates, RPs can
always synchronize with their certificates at one honest CS.
Furthermore, if a CS is found to act maliciously, the CS
federation can limit the number of CPs it can submit, and five
RIRs can also initiate a CS deregistration operation to kick
it out of the federation. We envision the penalties for CSs to
be agreed upon by the CS federation. A malicious CS may
also disrupt the consensus process to affect the global ledger’s
integrity. For the Hotstuff consensus protocol chosen by dRR,
as long as the number of malicious nodes does not exceed one-
third of the total nodes, the malicious nodes will be isolated
and their behaviors will not affect the global ledger’s integrity
(details on this topic can be found in [56]).

As discussed above, dRR may face several threats, but
dRR can resist most of them, and the potential damage from
these attacks is mostly limited and recoverable.

2015.01
2016.01

2017.01
2018.01

2019.01
2020.01

2021.01
2022.01

2023.01

Dates

0

10

20

30

#(
k)

 o
f u

pd
at

ed

 c
er

ts Revoked
Added

0

10

20

30

Fig. 9: The number of added and revoked certificates per
day from Jan 1, 2015 to Apr 1, 2023.

VI. EVALUATING DRR ON A GLOBAL TESTBED

In this section, we implement our prototype of dRR, and
evaluate it on a 100-node global testbed.

A. Implementation

We describe the implementation of the CS federation and
Monitor and then introduce the real testbed we built for dRR.

CS federation. We use the Hotstuff protocol, which has
an open-source implementation [25] to accomplish consensus
among CS members. Hotstuff [56] is a leader-based Byzantine
Fault-Tolerant (BFT) replication protocol for the partially
synchronous model. By rotating leaders, this protocol only
needs to send a linear number of messages to reach consensus.
While providing high throughput for processing operations,
it never sacrifices decentralization. The security of Hotstuff
is also well-proven (see the paper [56] for more details).
We believe Hotstuff is suitable for CS members to achieve
consensus on operations, especially on CIP and CRP.

We use Protocol Buffers 3.16 [20] to define our message
format according to the field in the CS and INR holder
registration, CIPs, and CRPs. The hash value in our CPs and
registration message is done with the sha-256 algorithm, and
the signature algorithm is implemented with sha-256 RSA.
Then, we follow the detailed design in § IV-A to implement the
CS with 512 lines of Golang. Each CS supports uploading and
verifying CS operations and CPs, and will proactively push the
CPs confirmed by the CS federation to Monitors it serves. In
addition, each CS runs the Hotstuff protocol and participates
in the CS federation. Among multiple Hotstuff versions, we
choose the Chained Hotstuff, and the leader in each consensus
round is selected in a round-robin way.

Monitor. For each of our Monitors, we implement the M-
Tree data structure using 328 lines of Python. The hash value
calculation of M-Trees is based on sha-256 algorithm.

Deployment on a Global Testbed. We build an 100-node
testbed that spans 15 countries or regions7 to fully evaluate
dRR. Among them, 50 nodes are CS servers, and the remain-
ing are Monitor servers. For different CS federation scales,
we evenly distribute the CS nodes among all our regions. The
geographical distribution of the Monitor nodes also follows
that of the CSs. Each of our CSs and Monitors runs on a
Ubuntu 18.04 server with 4 cores and 8GB RAM. We allocate
a peak bandwidth of 200Mbps to each CS node, and 100Mbps
to each Monitor node.

7Regions and countries include Australia (7), India(7), China(7),
Hongkong,China(7), Singapore(7), Japan(7), Germany(7), Britain(7), Silicon
Valley,USA(7), Virginia,USA(7), Indonesia(6), Malaysia(6), Dubai,UAE(6),
Philippines(6), and Thailand(6). All on Alibaba Cloud.

11

100 200 300 400 500 600 700 800
Throughput(/sec)

1

2

3
La

te
nc

y(
se

c)

(68,0.72) (152,0.74) (362,0.77) (729,91)

bs-10
bs-20

bs-50
bs-100

Fig. 10: The throughput and average latency under differ-
ent batch sizes. Data in the circle represents the maximum
throughput and the corresponding average latency.

280 300 320 340 360

Throughput(/sec)

1

2

3

4

La
te

nc
y(

se
c)

(292,0.90) (347,0.81) (370,0.78)

C_Num = 1

C_Num = 50

C_Num = 100

Fig. 11: The throughput and average latency under differ-
ent numbers of revoked certificates in one CRP.

B. Evaluation

In the following, we start by setting up a baseline per-
formance of the current RPKI Repository by collecting a
public data set. With this baseline, we proceed to evaluate
the performance of both the CS federation and the Monitors.

Current certificate update frequency. We can estimate the
required performance of the RPKI Repository by the frequency
of current RPKI certificate renewals. To obtain this statistic, we
download daily verified RCs and ROAs maintained by RIPE
NCC [47] and evaluate the number of daily updated certificates
over the past eight years. We generate a hash snapshot for
the daily RPKI certificates and obtain the number of newly
added and revoked certificates by calculating the new and
missing hash elements every day. Figure 9 shows our results.
We observe that the number of newly added and revoked
certificates per day has increased over time, especially after
2020, which is closely related to the rising deployment rate of
RPKI. On average, the number of newly added and revoked
certificates per day is below 5,000, but the peak also reaches
60,000. The cause of this peak, we suspect, is the key rollover
performed by RPKI CAs.

Evaluating CS federation. We focus on two performance
metrics: the throughput of the CS federation and the latency
of a CP from submission to confirmation. We first perform
extensive experiments to obtain appropriate parameters for
dRR. We then evaluate the scalability of dRR using the
selected parameters.

Since the throughput of Hotstuff is closely related to the
number of CPs (batch size) that can be contained in one block,
we test the throughput and latency of our system with the
batch size of 10, 20, 50, and 100, respectively. Specifically,
given the batch size, we vary the CIP sending rate for each
CS until the system is saturated. Each experimental data is
the average result of 20 identical experiments. It can be seen
from Figure 10 that as the batch size increases, the throughput
also increases. For each given batch size, when the CIP
sending rate exceeds the maximum throughput, the latency
will increase significantly, because some CIPs may wait in

10 20 30 40 50
of CSs

0

100

200

300

Th
ro

ug
hp

ut
(/s

ec
)

Throughput
0.5

1.0

1.5

2.0

La
te

nc
y(

se
c)

Fig. 12: The maximum throughput and the corresponding
latency distribution of the system under different CS scales.
Candlesticks show the maximum and minimum latency
and the average latency (green triangle).

(1.45,655)

(1.45,755)

0 2 4 6 8 10

Certificate number(*1e5)

600

650

700

750

800

850

Pr
oo
f
si
ze
(b
yt
es
)

Presence proof

Absence proof

Fig. 13: The size of proofs
provided to INR holders
under different certificate
scales. The red dot indicates
the current certificate scale.

25 50 75 100 125 150 175 200
of updated certificates

0

10

20

30

40

50

60

CU
L
si
ze
 i
n
KB 10% CRP

20% CRP

50% CRP

Fig. 14: The size of CULs
provided by Monitors to
RPs under different number
of updated certificate and
CRP ratios.

the queue to be processed; and the throughput increases little
or even decreases. Balancing between throughput and latency,
we fix the batch size at 50 in the following experiments.

The size of CRP also affects the throughput and latency.
To understand its impact, we adjust the number of revoked
certificates in each CRP’s CERT_SET field to evaluate the
performance of the federation in processing CRPs. We fix the
batch size to 50 and evaluate the throughput and latency when
the certificate number is 1, 50, and 100, respectively. As shown
in Figure 11, we observe that the throughput drops by 6%
when the certificate number is less than 50 but drops by 20%
when the number rises to 100. Considering the system should
maintain high throughput, we expect to limit the number of
revoked certificates in each CRP to 50.

Finally, with the parameters for dRR chosen, we expand
the number of CSs to evaluate the system’s scalability. Under
different numbers of CS, we fix the batch size to 50 and let
CSs randomly send CIPs and CRPs to measure the system’s
maximum throughput and the corresponding latency distribu-
tion. As shown in Figure 12, with the expansion of the scale of
the CS federation, the system’s throughput decreases, and the
latency increases, which follows our expectation. We would
like to highlight that when the number of CSs reaches 50, the
throughput can exceed 310 per second, which means 26.78
million CPs can be processed per day. This number is 450
times higher than the current maximum RPKI certificate update
frequency in Figure 9. At such high throughput, we observe
that the CP can still be confirmed within 2 seconds.

Evaluating Monitor. We examine two performance metrics:
the size of proofs and CULs provided by Monitors and the
latency for Monitors to get a new block and update the
corresponding M-Trees.

Figure 13 shows the proof size provided by Monitors to
INR holders. The proof size grows logarithmically with the
number of total certificates. At the current RPKI certificate

12

100 150 200 250 300 350

Latency(ms)

0.00

0.25

0.50

0.75

1.00

CD
F

Fig. 15: The latency distribution of Monitors.

scale, both presence and absence proof sizes are within 1 KB.
We also evaluate the size of the verifiable CUL provided by
the Monitor to RPs under the different number of updated
certificate and CRP ratios (10%, 20%, and 50%). As shown in
Figure 14, the size of the CUL is positively correlated with the
number of updated certificates. For dRR, the average size of
the verifiable update information for one certificate is between
100 B and 300B. For current RPKI, both manifest and CRP
are about 3KB in size, and more than 97% of CAs currently
have less than ten certificates in their PPs, which means that
the average size of one certificate’s update information will
occupy 300B to 3KB. Therefore, the size of CULs provided
by dRR will not consume more bandwidth than the manifests
and CRLs provided by CAs.

In dRR, each CS will proactively push the new block to
the Monitors it serves so that Monitors can extract the CIPs
and CRPs in the block and update their M-Trees. We let a CS
server in Silicon Valley serve 50 Monitors distributed in 15
countries (regions). We keep the CS federation running and let
the CS continuously pushes 10,000 new blocks to 50 Monitors.
Figure 15 shows the latency distribution (from sending the
block by the CS to the Monitor completing the M-Tree update
about this block) of 500,000 blocks received by 50 Monitors.
It can be seen that when the CS federation confirms a new
block, the Monitor can complete the update of its M-Tree for
this block within 500 milliseconds (ms), which means that the
latency caused by the Monitor is less than 500 ms.

Finally, we estimate the additional closed-loop time over-
head introduced by dRR.

dRR only changes the certificate management, the certifi-
cate issuance on the CA side and the certificate validation
on the RP side remain the current way. As shown in Fig-
ure 16, with dRR, CS federation needs to publish CPs after
uploading certificates, which will cause a delay of no more
than 2 seconds. Additionally, Monitors will introduce a delay
of no more than 1 second for obtaining newly added CPs
and updating their M-Trees. For RPs to refresh their local
caches, we expect that dRR does not cause more latency.
Because in dRR, RPs do not need to traverse all PPs to
check the updating information but only need to obtain CULs
from one Monitor and fetch RPKI data from CSs. Therefore,
the additional closed-loop time overhead introduced by dRR
will be no more than 3 seconds. Note that, currently, the
bottleneck of the time overhead is the time required for signing
certificates and the time interval for RPs to refresh local caches,
which are highly variable and take about tens of minutes
to several hours [18], [33], [9]. Furthermore, with dRR, the
certificate update throughput will not decrease because the
throughput achieved by dRR is 450 times higher than the
current maximum update frequency. In summary, we believe
that the additional overhead introduced by dRR is negligible.

ETAR in Detail

RP

④request CULs

③check updates

⑤RP requests certs

<2 s

dRR

RPKI Repository

<0.5 s

CS
federation

CAs' PPs

Monitor③push CPs

④RP requests certs

CA

INR
holder

①sign cert

②upload cert

②upload cert

Fig. 16: The workflow of dRR and current RPKI which
highlights the possible latency introduced by dRR.

VII. DISCUSSION

Modification required for RPKI RFCs. As described above,
dRR implements a new RPKI Repository through two entities,
the CS federation and Monitor. Therefore, the RFCs that need
to be modified primarily involve RFC 6481 [26], which defines
the profile of the resource certificate repository structure, and
RFC 8182 [10], which defines the RP synchronization protocol
(RRDP). RFC 6481 needs to be updated to describe the
architecture of the dRR CS federation. Similarly, RFC 8182
also needs to be updated to describe the Monitor and the format
of CUL. Additionally, the section in RFC 8897 [16] (involving
requirements for RP software) that describes how RPs fetch
and cache RPKI objects also needs to be updated. Note that the
other more than 40 RFCs related to RPKI’s core mechanisms,
such as certificate issuance and validation, remain unchanged.
We believe that the changes required by dRR represent only
a small portion of the overall RPKI design, while the security
benefits introduced by it are significant.
The deployment of hosted RPKI. To support the early RPKI
adopters in deploying ROAs, RIRs introduced hosted RPKI
to assist them in signing and managing certificates. In dRR,
entities that originally deploy hosted RPKI can still have
RIRs assist them in signing sub-certificates and CPs, but their
certificates can be hosted in the trusted CSs. Furthermore,
we expect INR holders can entrust the sub-certificate or CP
signing right to the CSs they trust, not just RIRs. As a result,
dRR provides a non-single source of trust for ROA deployers.
However, the hosted model is insecure, and the potential risks
it may bring are similar to ”Compromised private keys” (as
described in § V-B). Therefore, we expect INR holders to take
responsibility for managing their certificates and CPs.
Potential benefits of dRR. RPKI requires CAs to periodically
refresh their private keys for signing sub-certificates to ensure
certificate security [27]. Each key rollover of a CA means
that all sub-certificates must be re-signed, which undoubtedly
burdens RPs to refresh their local caches. In dRR, the issuance
and revocation of certificates are naturally protected by CPs.
Therefore, dRR does not require CAs to frequently perform
key rollover but requires them to periodically refresh the key
for signing CPs. Since CP key updating is completed by
CS members and is nontransparent to RPs, it imposes no
additional burden on RPs. Additionally, based on verifiable
CULs, dRR can also resist mirror world attacks from RPKI
authorities [23], which involves showing different views to
different RPs and causing conflicting routing decisions. In
current RPKI, RPKI authorities can also compromise RCs and
ROAs by manipulating manifests or CRLs [32]. For example,
they can hide their certificates by not recording certificate
hash entries in the manifest. Since dRR no longer relies on
manifests and CRLs to verify the certificate validity, dRR also
provides defense against such attacks.
Limitations. dRR only protects the existing certificates and

13

does not address the issue of CAs unwilling to sign new
certificates for INR holders or modify old certificates according
to INR holders’ wishes. dRR also does not actively prevent the
CA from reallocating its resources. For this threat, INR holders
can use the INR conflict detection algorithm [58] to verify
whether there is a duplicate allocation of their obtained INRs.
dRR does not focus on attacks against the Internet protocols
on which RPKI depends, such as disabling RPKI by attacking
the DNS system that RPKI relies on [24]. We believe these
issues can be addressed by dedicated security mechanisms.

VIII. RELATED WORK

Since the standardization of RPKI, both the academic and
industrial communities have been dedicated to enhancing the
security and scalability of RPKI.

Consent [23] and DRPKI [52] are schemes that aim to ad-
dress the problem of malicious RPKI authorities. Consent [23]
has developed a tool to detect changes in the RPKI object that
can cause legitimate status changes in BGP updates. However,
the detector can only detect attacks after the fact, and it
is difficult to differentiate between legitimate operations by
authorities and malicious behavior. Consent has also designed
a new signed RPKI object .dead, which serves as confirmation
that the INR holder consents to the RPKI authority revoking
their RPKI objects. Although the new object can prevent
malicious revocations by RPKI authorities, it cannot prevent
them from maliciously deleting or corrupting certificates.

DRPKI means distributed RPKI. It proposes that each
RPKI object can be collaboratively signed by five RIRs
through threshold signature, thus limiting the unilateral power
of a single authority. Since DRPKI gives all rights to RIRs and
requires all RPKI objects to be signed by them, it breaks the
current RPKI certificate issuance hierarchy and may further in-
tensify the centralization of power in RPKI. Therefore, DRPKI
is only applicable to hosted RPKI, and it is not compatible
with the emerging trend of delegated RPKI. Additionally, RFC
8211 [32] and the paper [13] also analyze potential threats from
RPKI authorities, but they do not propose any solutions.

Since Rsync imposes a significant CPU and memory re-
source overhead on server sides, RRDP is standardized by
IETF to offload the computation burden on PP servers. This
is accomplished by utilizing HTTPS-based Snapshots and
Delta Files, thereby allowing RPKI Repository to serve more
RPs and accommodate the further deployment of RPKI ROV.
However, RRDP cannot solve the scalability problem caused
by the increase in the number of PPs. As the number of PPs
increases, it will have an impact on RPs’ real-time awareness
of global RPKI data changes.

In summary, with these efforts, RPKI can become more
secure and scalable. However, these solutions have limitations
and cannot fully solve the problems that we are concerned
about. These limitations motivated the design of dRR.

IX. CONCLUSION

In this paper, we present a comprehensive data-driven
analysis of threats to RPKI, which involves a worldwide survey
and large-scale measurement. Our analysis uncovers three key
problems that pose significant threats to RPKI. Based on these
insights, we propose dRR, a new RPKI-compatible Repository
architecture to balance the rights between RPKI authorities

and INR holders while enhancing the robustness, security,
and scalability of the current RPKI Repository. To achieve
this, dRR introduce two new components: the CS federation
and Monitors. We implement and evaluate a prototype of
dRR on a global testbed in the real Internet environment.
Our experiments show that the new security features of dRR
introduce minimal overhead. Although dRR cannot solve all
the threats to RPKI, we also see an urgent need to make the
RPKI Repository more secure, robust, and scalable. dRR is a
concrete first step towards this goal.

In the future, we will consider enabling Monitors to proac-
tively push new CULs to RPs while retrieving newly added
certificates from CSs and delivering them to RPs. In this way,
PRs only need to establish a connection to a single entity
and can avoid the periodic refresh of their local caches. This
enables RPs to obtain RPKI update data more timely.

ACKNOWLEDGMENT

We thank our shepherd and the anonymous reviewers
for their thoughtful comments. Li Chen is the corresponding
author. This work is supported by the National Key R&D
Program of China (2022YFB3104800) and in part supported
by NSFC under Grant 62132011.

REFERENCES
[1] AFRINIC, “African network information centre,” https://afrinic.net/.
[2] “Afrinic membership,” https://afrinic.net/membership.
[3] APNIC, “Apnic membership,” 2023, https://www.apnic.net/get-ip/

apnic-membership/.
[4] “Asia-pacific network information centre,” 2023, https://www.apnic.net/.
[5] ARIN, “American registry for internet numbers,” https://www.arin.net/.
[6] “Arin membership,” 2023, https://www.arin.net/participate/oversight/

membership/.
[7] R. Austein, G. Huston, S. Kent, and M. Lepinski, “Manifests for the

resource public key infrastructure (rpki),” RFC6486, vol. 2, 2012.
[8] H. Ballani, P. Francis, and X. Zhang, “A study of prefix hijacking and

interception in the internet,” ACM SIGCOMM Computer Communica-
tion Review, vol. 37, no. 4, pp. 265–276, 2007.

[9] A. Band and the RPKI Community, “The rpki documentation,” RPKI
Community, 2022.

[10] T. Bruijnzeels, O. Muravskiy, B. Weber, and R. Austein, “The rpki
repository delta protocol (rrdp),” Tech. Rep., 2017.

[11] R. Bush, “Origin validation operation based on the resource public key
infrastructure (rpki),” IETF RFC7115 (January 2014), 2014.

[12] cloudflare, “Octorpki,” 2023, https://github.com/cloudflare/cfrpki.
[13] D. Cooper, E. Heilman, K. Brogle, L. Reyzin, and S. Goldberg, “On

the risk of misbehaving rpki authorities,” in Proceedings of the Twelfth
ACM Workshop on Hot Topics in Networks, 2013, pp. 1–7.

[14] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“Internet x. 509 public key infrastructure certificate and certificate
revocation list (crl) profile,” Tech. Rep., 2008.

[15] S. A. Crosby and D. S. Wallach, “Efficient data structures for tamper-
evident logging.” in USENIX security symposium, 2009, pp. 317–334.

[16] S. K. D. Ma, “Requirements for resource public key infrastructure (rpki)
relying parties,” RFC8897, 2020.

[17] T. Eyes, “Twitter outage analysis: March 28, 2022,” 2022, https://www.
thousandeyes.com/blog/twitter-outage-analysis-march-28-2022.

[18] R. Fontugne, A. Phokeer, C. Pelsser, K. Vermeulen, and R. Bush, “Rpki
time-of-flight: Tracking delays in the management, control, and data
planes,” in International Conference on Passive and Active Network
Measurement. Springer, 2023, pp. 429–457.

[19] Y. Gilad, O. Sagga, and S. Goldberg, “Maxlength considered harmful
to the rpki,” in Proceedings of the 13th International Conference on
emerging Networking EXperiments and Technologies, 2017, pp. 101–
107.

14

[20] google, “Protocol buffers,” 2022, https://developers.google.com/
protocol-buffers.

[21] Google, “Working together to detect maliciously or mistakenly issued
certificates,” 2023, https://certificate.transparency.dev/.

[22] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous bft protocols,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp. 803–
818.

[23] E. Heilman, D. Cooper, L. Reyzin, and S. Goldberg, “From the consent
of the routed: Improving the transparency of the rpki,” in Proceedings
of the 2014 ACM conference on SIGCOMM, 2014, pp. 51–62.

[24] T. Hlavacek, P. Jeitner, D. Mirdita, H. Shulman, and M. Waidner,
“Behind the scenes of rpki,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, 2022, pp.
1413–1426.

[25] “Hotstuff,” 2022, https://github.com/relab/hotstuff.
[26] G. Huston, R. Loomans, and G. Michaelson, “Rfc 6481: A profile for

resource certificate repository structure. internet engineering task force
(ietf), 2012,” 2012.

[27] G. Huston, G. Michaelson, and S. Kent, “Certification authority (ca)
key rollover in the resource public key infrastructure (rpki),” Tech. Rep.,
2012.

[28] G. Huston, G. Michaelson, C. Martinez, T. Bruijnzeels, A. Newton,
and D. Shaw, “Resource public key infrastructure (rpki) validation
reconsidered,” Tech. Rep., 2018.

[29] IETF, “The internet engineering task force,” 2022, https://www.ietf.org/.
[30] JAPNIC, “Service outage: Roaweb and rpki repository (resolved),”

2020, https://www.nic.ad.jp/en/topics/2020/20200521-01.html.
[31] “Service outage: Disk full caused lost roa validity,” 2022, https://www.

nic.ad.jp/en/topics/2022/20220202-01.html.
[32] S. Kent and D. Ma, “Adverse actions by a certification authority (ca)

or repository manager in the resource public key infrastructure (rpki),”
IETF, Fremont, CA, USA, RFC, vol. 8211, 2017.

[33] J. Kristoff, R. Bush, C. Kanich, G. Michaelson, A. Phokeer, T. C.
Schmidt, and M. Wählisch, “On measuring rpki relying parties,” in
Proceedings of the ACM Internet Measurement Conference, 2020, pp.
484–491.

[34] D. R. Labs, “rsynic,” 2023, https://github.com/dragonresearch/rpki.net.
[35] N. Labs, “Routinator,” 2021, https://github.com/NLnetLabs/routinator.
[36] LACNIC, “African network information centre,” https://lacnic.net/.
[37] “Lacnic membership,” 2023, https://www.lacnic.net/1008/2/lacnic/

how-to-become-a-member.
[38] M. Lepinski and S. Kent, “An Infrastructure to Support Secure

Internet Routing,” RFC 6480, Feb. 2012. [Online]. Available:
https://rfc-editor.org/rfc/rfc6480.txt

[39] D. Ma, D. Mandelberg, and T. Bruijnzeels, “Simplified local internet
number resource management with the rpki (slurm),” Tech. Rep., 2018.

[40] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of bft protocols,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 31–42.

[41] México, “Fortrpki,” 2023, https://github.com/NICMx/FORT-validator.
[42] R. NCC, “Rsync rpki repository downtime,” 2020, https://www.ripe.net/

support/service-announcements/rsync-rpki-repository-downtime.
[43] R. Neiheiser, M. Matos, and L. Rodrigues, “Kauri: Scalable bft

consensus with pipelined tree-based dissemination and aggregation,”
in Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, 2021, pp. 35–48.

[44] L. Qin, L. Chen, D. Li, H. Ye, and Y. Wang, “Understanding rov
deployment in the real world and why manrs action 1 is not followed,”
in Network and Distributed System Security Symposium (NDSS), 2024.

[45] L. Qin, D. Li, R. Li, and K. Wang, “Themis: Accelerating the detection
of route origin hijacking by distinguishing legitimate and illegitimate
{MOAS},” in 31st USENIX Security Symposium (USENIX Security 22),
2022, pp. 4509–4524.

[46] “Ripe ncc membership,” 2023, https://www.ripe.net/participate/
member-support.

[47] “Ripe rpki dataset,” 2021, https://ftp.ripe.net/rpki/.

[48] “Routing history,” 2023, https://stat.ripe.net/docs/02.data-api/
routing-history.html.

[49] “Ripe network coordination centre,” 2023, https://www.ripe.net/.
[50] “Rpki-prover,” 2023, https://github.com/lolepezy/rpki-prover.
[51] V. Shoup, “Practical threshold signatures,” in International Conference

on the Theory and Applications of Cryptographic Techniques. Springer,
2000, pp. 207–220.

[52] K. Shrishak and H. Shulman, “Privacy preserving and resilient rpki,”
in IEEE INFOCOM 2021-IEEE Conference on Computer Communica-
tions. IEEE, 2021, pp. 1–10.

[53] S. Tuecke, V. Welch, D. Engert, L. Pearlman, M. Thompson et al.,
“Internet x. 509 public key infrastructure (pki) proxy certificate profile,”
RFC 3820 (Proposed Standard), Tech. Rep., 2004.

[54] “Validator3,” 2023, https://github.com/RIPE-NCC/rpki-validator-3.
[55] K. van Hove, J. van der Ham, and R. van Rijswijk-Deij, “Rpkiller:

Threat analysis from an rpki relying party perspective,” arXiv preprint
arXiv:2203.00993, 2022.

[56] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hot-
stuff: Bft consensus with linearity and responsiveness,” in Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing,
2019, pp. 347–356.

[57] Y. Zhang, S. Setty, Q. Chen, L. Zhou, and L. Alvisi, “Byzantine ordered
consensus without byzantine oligarchy,” in 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), 2020, pp.
633–649.

[58] H. Zou, D. Ma, Q. Shao, and W. Mao, “The horizontal inr conflict-
detection algorithm: Revealing inr reallocation and reauthorization
in rpki,” in 2021 IFIP/IEEE International Symposium on Integrated
Network Management (IM). IEEE, 2021, pp. 459–465.

APPENDIX A
CERTIFICATE POLICY VERIFICATION ALGORITHM

In the following, we present pseudocode for the valid-
ity verification CheckV alidity(), the signature verification
CheckSignature(), and the CRP verification algorithms.

Algorithm 2: Check VALIDITY field in CIP
1 CIPrc: dict{key = field, value = values} // the CIP of the
ISSUER_RC

2 CIP: dict{key=field, value=values}
3 Function CheckValidity(CIPrc, CIP):
4 Vrc = CIPrc[VALIDITY]
5 V = CIP [VALIDITY]
6 if V.notBefore ≥ V.notAfter then
7 return false

8 if V.notAfter ≥ Time.now then
9 return false

10 if V.notBefore < Vrc.notBefore or V.notAfter >
Vrc.notAfter then

11 return false

12 return true;

Algorithm 2 shows the verification process of the
VALIDITY field in CIP. If the validity period of the protected
certificate is earlier than the current time or outside the validity
period of the ISSUER_RC, the algorithm will return an error.
Algorithm 4 verifies the signatures of the CIP and CRP. The
algorithm first obtains the hash and signature of the CP, then
calculates whether the hash is correct, and finally decodes the
signature.

Algorithm 3 shows the CRP validation process in pseu-
docode. dRR Tree maintains all certificates currently pro-
tected by dRR, i.e., certificates that have CIPs and have
not been revoked. The algorithm first verifies whether the
certificate to be revoked in the CERT_SET field is the currently
protected certificate. Then, the algorithm gets the certificate
revocation method. If the R_M field is rir, the algorithm

15

will further verify the identity of the CRP_ISSUER field,
and obtain the P_K of All-RIRs to verify the signature (line
12˜17). After all the verification is done, the certificate in
the CERT_SET field and their descendant certificates will be
marked as revoked (line 18˜22). If the certificates are revoked
by the INR holder, the algorithm will first verify the signature
of the INR holder (line 25˜28). Then, the algorithm verifies
whether the real owner of each revoked certificate is the
CRP_ISSUER and whether it has descendant certificates. If
the revoked certificate or its descendant certificate does not
belong to the CRP_ISSUER, the algorithm will return an error.
Otherwise, the certificate and its descendant certificates will be
revoked (line 29˜38).

Algorithm 3: CRP Validation
1 CRP: dict{key=field, value=values}
2 INRh reg: dict{key=INR holder ID, value=registration msg}, all INR

holders’ registration messages.
3 CS reg: dict{key=CS ID, value=registration msg}, all CSs’ registration

messages.
4 CIPs: dict{key=cert hash, value=CIP info}, all valid CIPs.
5 dRR Tree: dict{key=cert hash, value=descendant certificate list}, the

current dRR-protected certificates tree.
6 Function VALIDATION(CRP, INRh reg, CS reg , CIPs, dRR Tree):
7 if CRP [VERSION] ̸= 1 then
8 return false

9 if CRP [CERT_SET] ̸⊂ dRR Tree.keys then
10 return false

11 if CRP [R_M] == rir then
12 if CRP [CRP_ISSUER] ̸= All−RIRs then
13 return false

14 else
15 KEY = (CS reg[All−RIRs][P_K])

16 if !(CheckSignature(CRP,KEY)) then
17 return false

18 else
19 for cert in CERT_SET do
20 for subcert in dRR Tree[cert] do
21 Revoke(subcert)

22 Revoke(cert)

23 return [B_NUM,CRP_HASH]

24 else
25 subject = CRP [CRP_ISSUER]
26 KEY = (INRh reg[subject][P_K])
27 if !(CheckSignature(CRP, KEY)) then
28 return false

29 for cert in CRP [CERT_SET] do
30 if CIP [cert][SUBJECT] ̸= subject then
31 return false

32 else
33 Revoke(cert)

34 for subcert in dRR Tree[cert] do
35 if subcert[SUBJECT] ̸= subject then
36 return false

37 else
38 Revoke(subcert)

39 return [B_NUM,CRP_HASH]

APPENDIX B
THE ABBREVIATIONS USED IN THE PAPER

In the following, we present the abbreviations used in the
paper, including the standard RPKI-related abbreviations in
Table VII and the abbreviations specifically defined in dRR
in Table VI.

Algorithm 4: Check the signature on the CP
1 CP: dict{key=field, value=values} // the certificate policy: a
CIP or a CRP

2 KEY: the key used to sign the certificate policy
3 Function CheckValidity(CP, KEY):
4 CPhash = NULL
5 CPsig = NULL
6 if CP.type == CIP then
7 CPhash = CP [CIP_HASH]
8 CPsig = CP [CIP_SIG]

9 else
10 CPhash = CP [CRP_HASH]
11 CPsig = CP [CRP_SIG]

12 if HASH(CP) ̸= CPhash then
13 return false

14 if Decode(CPsig,KEY) ̸= CPhash then
15 return false

16 return true;

TABLE VI: The list of abbreviations defined in dRR
The abbreviation The full form

dRR decentralized RPKI Repository
CS Certificate Server
CP Certificate Policy

CUL Certificate Update List
CIP Certificate Issuance Policy
CRP Certificate Revocation Policy

TABLE VII: The list of standard abbreviations
The abbreviation The full form

INR holder Internet Number Resource holder
RP Relying Party
pp Publication Point

ROA Route Origin Authorization
CA Certification Authority
RC Resource Certificate
RIR Regional Internet Registry
NIR National Internet Registry
ISP Internet Service Provider

ROV Route Origin Validation
SIA Subject Information Access
CRL Certificate Revocation List

RRDP RPKI Repository Delta Protocol

APPENDIX C
THE MEASUREMENT OF RPKI REPOSITORY

We utilize 20,000 globally distributed DNS resolvers to
resolve the domain name of 61 RRDP files, with the aim of
finding the CNAME and all IP address records for each PP.
Then, we use the IP-to-AS mapping information maintained by
RIPE NCC [48] to map the IP addresses to ASNs. We try to
determine whether the services are hosted on CDNs from the
following aspects: (1) Whether the domain name and CNAME
record contain information about CDN service providers; (2)
The number of IP addresses returned by DNS resolvers and the
geographical distribution of these IP addresses; (3) Whether
the HTTPS request headers contain information about main-
stream CDN providers; (4) The latency of accessing RRDP
files from different geographic locations around the world.
Typically, CDN service providers will display their information
in the domain name and CNAME record, such as including
”cdn.cloudflare.net,” or specify the CDN in the X-Via-CDN
field, cache status field, or Server field in the HTTPS
headers. In addition, if CDN acceleration is used, the latency of
requesting HTTPS services from different geographic locations
around the world will be relatively low.

16

TABLE VIII: The measurement results of 61 repository publication points.
RRDP domain name (CNAME) IPv4 IPv6 ASN Silicon

Valley (ms)
Frankfurt

(ms)
Sao Paulo

(ms)
Bombay

(ms) HTTPs header CDN Affiliation

sakuya.nat.moe 141.193.21.22 2602:feda:4:dead:216:3eff:fec7:efab AS46997 189 222 186 239 nginx - NATO lab (organization)

rrdp-rps.arin.net
199.5.26.148
199.71.0.148
199.212.0.148

2001:500:13::148
2001:500:31::148
2001:500:a9::148

AS394018
AS393220
AS393225

- - - - nginx - ARIN (RIR)

rrdp.twnic.tw 103.235.88.190 2406:da14:7c1:9201:34e6:8d27:69af:4b87 AS16509 103 250 377 139 nginx - TWNIC (Region)
rrdp.taaa.eu 62.109.150.6 2001:1ab0:7e1e:150::6 AS29134 159 8.1 221 131 nginx - -

rrdp.sub.apnic.net 203.119.101.91 2001:dd8:9:2::101:91 AS4608 164 297 332 154 Apache - APNIC (RIR)
rrdp.rp.ki
(r.rp.ki) 5.161.43.0 2a01:4ff:f0:9fe::1 AS213230 68 96 120 289 nginx - -

rrdp.roa.tohunet.com 104.21.68.185
172.67.197.210

2606:4700:3030::6815:44b9
2606:4700:3031::ac43:c5d2 AS13335 3.3 1.0 113 71 cloudflare cloudflare -

rrdp.ripe.net
(rrdp.ripe.net.akamaized.net)

104.18.8.176
104.18.9.176

2606:4700::6812:8b0
2606:4700::6812:9b0 AS13335 1.8 1.0 2.1 1.3 cloudflare cloudflare RIPE NCC (RIR)

rrdp.paas.rpki.ripe.net
(rrdp.paas.rpki.ripe.net.cdn.cloudflare.ne)

104.18.12.188
104.18.13.188

2606:4700::6812:cbc
2606:4700::6812:dbc AS13335 2.2 1.0 2.1 1.3 cloudflare cloudflare -

rrdp.lacnic.net 200.3.14.186 2001:13c7:7002:4128::186 AS28001 60.0 193 134 324 nginx - LACNIC (RIR)
rrdp.krill.cloud

(prod-ps.krill.cloud) 64.227.73.107 2a03:b0c0:2:d0::126b:3001 AS14061 138.0 13 206 132 nginx - -

rrdp.arin.net
199.71.0.149
199.5.26.149
199.212.0.149

2001:500:13::149
2001:500:31::149
2001:500:a9::149

AS393220
AS394018
AS393225

- - - - nginx - ARIN (RIR)

rrdp.apnic.net
(rrdp.apnic.net.cdn.cloudflare.net)

104.18.235.68
104.18.236.68

2606:4700::6812:eb44
2606:4700::6812:ec44 AS13335 2.6 0.9 2.3 1.2 cloudflare cloudflare APNIC (RIR)

rrdp.afrinic.net 196.216.2.29 2001:42d0:0:201::29 AS33764 337 218 361 410 nginx - AFRINIC (RIR)

rpki-test-repo.net.kagl.me 104.37.40.238 - AS970 24 145 190 246 nginx - Keaton Alexander Guger
(individual)

rpki-rrdp.us-east-2.amazonaws.com
(d27hng7mrok6ld.cloudfront.net)

108.138.246.4
108.138.246.98
108.138.246.62
108.138.246.15

- AS16509 1.3 1.5 8.2 1.4 AmazonS3 Amazon -

rpki-rrdp.mnihyc.com
(rpki-rrdp.mnihyc.com.cdn.cloudflare.net)

104.21.23.24
172.67.208.113

2606:4700:3035::6815:1718
2606:4700:3037::ac43:d071 AS13335 1.8 0.9 113 57 cloudflare cloudflare -

rpki-repository.nic.ad.jp 192.41.192.213 2001:dc2:1000:8000::2 AS2515 106 268 289 140 Apache - JPNIC (Country)
rpki-repo.registro.br 200.160.2.50 2001:12ff:0:2::50 AS22548 179 187 1.8 321 nginx - Brasil (Country)

rpki-publication.haruue.net 172.67.146.105
104.21.33.146

2606:4700:3037::6815:2192
2606:4700:3032::ac43:9269 AS13335 3.2 1.0 113 69 cloudflare cloudflare -

rpkica.mckay.com 51.75.161.87 - AS16276 149 13.5 198 123 Apache - -
rpki1.terratransit.de 77.237.224.23 2a01:6f0:101:17::1 AS42366 155 6.7 216 115 nginx - TerraTransit AG (ISP)

rpki1.rpki-test.sit.fraunhofer.de 141.12.174.14 - AS28714 152 1.8 210 115 Apache - Fraunhofer (ISP)
rpki.zappiehost.com 23.160.160.185 2602:fd92:a85:: AS39618 45 121 136 245 nginx - -

rpki.xindi.eu 185.173.16.136 2a0b:2f00:0:234::136 AS48112 178 27 234 143 Apache - XINDI Networks (ISP)
rpki.tools.westconnect.ca 23.129.32.54 2602:fd60:11::54 AS53356 2.2 143 173 256 Apache - -

rpki.telecentras.lt 86.38.8.173 - AS15419 - - - - nginx - -
rpki.sailx.co 208.82.103.214 - AS396097 2.5 140 177 261 nginx - sail.X (Company)
rpki.roa.net 62.133.35.21 2a09:0:8::21 AS3214 147 4.3 194 129 nginx - xTom GmbH (ISP)

rpki.rand.apnic.net 203.133.248.19 2401:2000:6660::19 AS4608 167 292 328 160 nginx - APNIC (RIR)
rpki.qs.nu

(rpki-repo.qs.nu) 95.216.140.6 2a01:4f9:c010:cbd::1 AS24940 168 28 221 166 nginx - -

rpki.pedjoeang.group 104.167.215.189 - AS60841 40 121 148 268 Caddy - -
rpki.owl.net 5.161.48.81 2a01:4ff:f0:d40::1 AS213230 68 92.2 121 306 nginx - -

rpki.multacom.com 198.211.9.2 - AS35916 9 144 178 243 Apache - MULTACOM (ISP)

rpki.luys.cloud
(ias.agent.idns.cloud)

108.166.211.224
45.145.75.91

185.249.221.37
185.249.221.38
185.249.221.39

-
AS35916
AS201106
AS40065

160 159 206 107 openresty - -

rpki.kitten.network 104.167.215.30 - AS60841 46 120 151 263 KittenSystems - -
rpki.folf.systems 45.79.192.20 2600:3c02::f03c:92ff:fe46:72f0 AS63949 60 103 122 235 nginx - -
rpki.ezdomain.ru - - - - - - - - - -

rpki.cnnic.cn 218.241.105.61
42.83.145.17 - AS24151 145 215 286 186 Apache - CNNIC (country)

rpki.caramelfox.net 149.56.154.148 2001:678:f68:1099:5054:ff:fec3:d6c3 AS16276 - - - - nginx - CaramelFox Networks (ISP)
rpki.berrybyte.network 104.167.214.10 - AS60841 159 18 220 313 Caddy - BerryByte Limited (ISP)

rpki.august.tw 165.140.142.125 2602:fc23:18::3 AS50058 48 133 149 282 nginx - August Internet Limited (ISP)
rpki.apernet.io 141.164.40.93 2401:c080:1c01:6da:5400:2ff:fedc:c925 AS20473 136 280 332 353 nginx - -
rpki.akrn.net 43.129.24.158 - AS132203 147 193 371 106 nginx - -

rpki.admin.freerangecloud.com 172.98.192.101 - AS31863 68 117 130 308 Apache - -
rpki.0i1.eu - 2a03:4000:20:b7::106 AS197540 - - - - Apache - -

rov-measurements.nlnetlabs.net 64.225.72.59 2a03:b0c0:2:d0::87b:e001 AS14061 139 18.3 207 133 nginx - NLnet lab (organization)
repo-rpki.idnic.net 116.193.189.25 - AS63515 186 164 394 66 nginx - IDNIC (country)

parent.rov.koenvanhove.nl 203.119.23.1 2a04:b905:8000::1 AS211321 - - - - - - Koen van Hove (individual)

magellan.ipxo.com
104.22.46.221
172.67.20.88
104.22.47.221

2606:4700:10::6816:2edd
2606:4700:10::ac43:1458
2606:4700:10::6816:2fdd

AS13335 1.9 0.96 2.5 1.3 cloudflare cloudflare -

krill.rayhaan.net
(pr01.rue.rayhaan.net) 185.95.219.37 2a05:fc87:1:12::b AS39540 150 26 204 130 Apache - -

cloudie.rpki.app 192.189.65.154 2607:2c40:beef:1b::44 AS12186 49 123 146 249 nginx - -
chloe.sobornost.net 46.23.94.25 2a03:6000:6f66:615::25 AS60131 148 8 207 124 OpenBSD httpd - -

ca.rg.net 198.180.152.6 2001:418:3807::6 AS4128 47 117 137 272 Apache - -
ca.nat.moe

(kanako.nat.moe) 208.167.242.134 2001:19f0:5:3b99:5400:2ff:fead:cf71 AS20473 70 85 118 193 nginx - -

0.sb 185.255.55.88 2a0c:59c0::88 AS3214 145 8.1 191 125 nginx - -
repo.kagl.me 104.37.40.237 - AS970 23 151 192 248 nginx - -

rpki.co 69.197.133.102 2606:b0c0:1001::65 AS50058 46 116 149 275 openresty - -
rpki.cc 104.167.215.30 - AS60841 43 120 146 260 KittenSystems - -

krill.accuristechnologies.ca 96.126.104.114 2600:3c03::f03c:93ff:fe17:c5b3 AS63949 65 88 129 196 nginx - -
rpki-01.pdxnet.uk 212.111.43.214 2a01:7e00::f03c:93ff:fe17:38fe AS63949 148 13 181 136 Caddy - -

Table VIII presents our measurement results. Among them,
8 RRDP files are explicitly hosted on CDN, with signifi-
cantly lower global access latency compared to others, and
the HTTPS headers also contain information about the CDN
service provider. Among the remaining RRDP files, 50 of them
resolved to a single IPv4 address, while 3 of them resolved to
multiple IPv4 addresses. For these 50 single-address RRDP
files, their global access latency is an order of magnitude
higher than that of services hosted in CDNs, and there is no
obvious CDN provider information in the domain name and
HTTPS header. Therefore, it is highly likely that they are not

hosted on a CDN. Among the 3 multi-address RRDP files,
”rpki.luys.cloud” has three different geographical locations
for the IP addresses. We speculate that it might be utilizing
multiple servers to host RPKI objects. Furthermore, based on
the domain information or corresponding webpage (if they
have one), we also inferred the affiliation of the PPs. The
results are presented in the last column, which shows that there
are two PPs operated by individuals. Additionally, we found
that the RRDP files for some PPs were in an inaccessible state,
which showed that the service was unstable.

17

APPENDIX D
THE REAL WORLD SURVEY

We obtained a list of ASes that have deployed ROA from
ROA data and conducted a survey with the administrators of
2,500 randomly selected ASes. We distributed our question-
naires via email. We also randomly sent questionnaires to the
administrators of 3,000 ASes that have not deployed ROA.

The main issues we focus on include (1) Future consider-
ation of adopting delegated RPKI; (2) Deployment status of
ROV; (3) Reasons for not deploying ROV; (4) Considerations
regarding malicious behavior from RPKI authorities. We have
received responses from administrators of 68 ASes that have
deployed ROA and 35 ASes that have not deployed ROA.
Figure 17 to Figure 21 show the results from ROA deployers,
while Figure 22 to Figure 25 show the results from non-ROA
deployers. We believe our result can somewhat represent the
industry’s concerns about RPKI.

邮件-ROA 部署者反馈

p If you are currently using the hosted model, will you choose to use a more secure delegated
mode in the future?

Hosted RPKI

Delegated RPKI

Not sure

42, 61.8%15, 22.1%

11, 16.2%

Fig. 17: Which RPKI ROA deployment mode does your
organization use? (w/ROA).

邮件-ROA 部署者反馈

p Which RPKI ROA deployment mode does your organization use?

No

Yes

Skip(Already used)

29, 48.3%

24, 35.3%

15, 22.1%

Fig. 18: For P3. Will you consider using delegated RPKI
and running your own PP in the future? (w/ROA).

邮件-ROA 部署者反馈

p Has your AS deployed ROV (Use RPKI certificates to verify all BGP advertisements you
receive)?

No

Yes

Not sure

45, 66.2%
21, 30.8%

2, 2.9%

Fig. 19: Has your AS deployed ROV (Use RPKI data to
verify the BGP updates that you receive)? (w/ROA).

邮件-ROA 部署者反馈

p If no for the previous question, what are the reasons for not deploying ROV? (multi-selection)

0 10 20 30

Skip (We have deployed ROV)

Other reasons

Worried that RPKI may inaccurately
verify BGP updates

Have doubts about the authenticity of
RPKI data

Lack of or understanding of RPKI ROV 19, 21.9%

11, 16.2%

15, 22.1%

17, 25.0%

21, 30.9%

Fig. 20: What are the reasons for not deploying ROV?
(multi-selection) (w/ROA).

邮件-ROA 部署者反馈

p Since RPKI is a PKI-based facility, are you concerned about RPKI authorities maliciously or
forcibly compromising your certificates, which could affect the legitimacy of your BGP
advertisements?

No

Yes

Not sure

31, 45.6%

31, 44.1%

7, 11.5%

Fig. 21: For P1. Are you worried that RPKI authorities
maliciously compromise your certificates, which could
affect the legitimacy of your BGP updates? (w/ROA).

邮件-ROA 未部署者反馈

p If you are currently using the hosted model or you have not deployed ROA, will you choose to
use a more secure delegated mode in the future?

No

Yes

Will not deploy ROA

Not sure
19, 57.6%

8, 24.2%

2, 6.1%
3, 9.1%

Fig. 22: For P3. If you deploy ROA in the future, would
you consider adopting delegated RPKI and running your
own PP? (wo/ROA).

邮件-ROA 未部署者反馈

p Has your AS deployed ROV (Use RPKI certificates to verify all BGP advertisements you
receive.)?

No

Yes

Not sure
19, 57.6%

3, 9.1%

5, 15.1%

Fig. 23: Has your AS deployed ROV (Use RPKI data to
verify all BGP advertisements that you receive)? (wo/ROA).

邮件-ROA 未部署者反馈

p If no for the previous question, what are the reasons for not deploying ROV? (multi-selection)

0 5 10 15 20

Skip (We have deployed ROV)

Other reasons

Worried that RPKI may inaccurately
verify BGP updates

Have doubts about the authenticity of
RPKI data

Lack of or understanding of RPKI ROV 19, 57.6%

6, 18.2%

8, 24.2%

11, 33.3%

3, 9.1%

Fig. 24: What are the reasons for not deploying ROV?
(multi-selection) (wo/ROA).

邮件-ROA 未部署者反馈

p Since RPKI is a PKI-based facility, are you concerned about RPKI authorities maliciously or
forcibly compromising your certificates, which could affect the legitimacy of your BGP
advertisements?

No

Yes

Not sure

11, 33.3%12, 36.4%

9, 27.3%

Fig. 25: For P1. Are you worried that RPKI authorities
maliciously compromise your certificates, which could
affect the legitimacy of your BGP updates? (wo/ROA).

18

