

dRR: A Decentralized, Scalable, and Auditable Architecture for RPKI Repository

Yingying Su, Dan Li, Li Chen, Qi Li and Sitong Ling

Tsinghua university

February, 2024

Resource Public Key Infrastructure

Hierarchical Architecture of RPKI

- RPKI is standardized by **IETF** to prevent **prefix hijackings**
- □ CA or RPKI authority can sign Resource Certificate (RC) and Route Origin Authorization (ROA) to INR holder
 - ➤ RC → reallocate INRs
 - ➤ ROA → authorize ASes to originate specific IP prefixes
- Each CA runs a **Publication Point (PP)** to store RCs and ROAs issued for INR holders
 - All PPs collectively form the RPKI Repository
- Relying Parties (RP) periodically traverse all PPs, download and validate all RPKI objects
 - Generate Verified ROA Payloads (VRPs) to help border routers make routing decisions

RPKI Repository Design Leads to Three Problems

P1. Unilateral Reliance on RPKI Authority

■ RPKI Repository is not **tamper-resistant**, authorities can **unilaterally undermine** any RPKI objects **without** INR holders' **consent**

P2. Vulnerable to Single Point of Failure

- ☐ Any PP' s failure will hinder RPs from obtaining complete RPKI object views
- □ Introduce interdependence between the accessibility of a PP and the reachability of the PP's AS

P3. Poor Scalability

- RP local cache refresh involves **traversing all PPs** to fetch updated data
- ☐ The number of PPs is expected to **increase dramatically** with the further deployment of ROA

The problems will affect the **integrity** and **accuracy** of the stored RPKI objects and hinder future large-scale RPKI deployment!

Data-driven Threat Analysis

□The first data-driven threat analysis for RPKI Repository

P1 and P3 Worldwide Survey

P2 RPKI Repository Measurement

P1. Unilateral Reliance on RPKI Authority

Malicious actions by RPKI authority

Unilateral deletion, revocation, corruption, modification

Q: Are you worried that RPKI authorities maliciously compromise your certificates, which could affect the legitimacy of your BGP updates? (w/ROA)

□ Real-World Concerns

- ➤ 44.1% of the AS operators expressed concerns about malicious authorities
- One operator considers the threat from authorities to be the most serious problem
- Two operators had lost all their ROAs due to administrative/human reasons

P2. Vulnerable to Single Point of Failure

☐ CDN deployment

- Only 8 PPs are hosted in CDNs
 - **7** in cloudflare' AS13335, **1** in Amazon' AS16509
- > 58 PPs are hosted in a single AS
 - The availability of these PPs is highly dependent on the reachability of a single AS
- 14 PPs carry the ROA of the ASes they located
 - The accessibility of PPs will form a circular dependency on the reachability of ASes

Real-world incidents of PP

Service outage: ROAWeb and RPKI repository (resolved)

Service outage: Disk full caused lost ROA validity

Service Announcement: RPKI Outage

RIPE RPKI Outage on 23 June 2022

• • • •

Any **single point of failure** in PPs may **hinder** RPs from obtaining **complete RPKI object views!**

P3. Poor Scalability

- The number of PPs has grown more than 12 times
- Many AS operators consider running PPs
- If ROA is fully deployed, the number of PPs will reach
 10k [Hlavacek et.al, sigcomm 2023]

Q: Will you consider using delegated RPKI and running your own PP in the future? (w/ROA).

potential problems

- Threaten the scalability of RPKI
- Increase the **cost** of RP refreshing
- Bring unexpected **risks** to RPs

key Idea of dRR

Separating RPKI object distribution from signing!

- Decouple PP and RPKI Authority
- Design a third-party repository for RPKI \longrightarrow dRR

Design Goal of dRR

dRR means Decentralized RPKI Repository

Be **compatible** with RPKI architecture and supports **incremental** deployment

CS federation

VS

Fig. current RPKI Repository

Key new entities for dRR: CS federation and Monitor

Fig. dRR architecture

dRR Workflow

dRR new entity

Cert Server (CS)

Monitor

dRR new data structure

Certificate Issuance Policy (CIP)

Certificate Revocation Policy (CRP)

Certificate Update List (CUL)

RPKI entity

INR holder

RPKI Authority

Relaying Party

Monitor

- Monitor
 - > Fetch CIP/CRP, updates M-Tree
 - > Server RPs: provide verifiable CUL for RPs
 - > Serve INR holders: allow RPs verify certificate status

dRR

For P1:

- INR holders can freely select trusted CSs to hoste RC/ROA
- CIPs and CRPs provide a trusted RPKI historical ledger
- M-Tree meet the security requirements of RPs and INR holders

For P2:

One certificate can be hosted on multiple CS nodes

For P3:

The access mechanism effectively limits the number of CS nodes

Who can be CS_nodes or monitor?

State-run institutions and large ISPs (e.g., Akamai, Amazon, Cloudflare, etc.) that have reliable service infrastructure, such as CDNs and good reputation

Key Properties of dRR

Evaluating dRR on a Global Testbed

Global Testbed

- 100 server nodes across 15 countries
- 50 nodes for CS, 50 nodes for Monitors

Two performance metrics

- The throughput of the CS federation
- The additional latency introduced by dRR

Evaluating dRR on a Global Testbed

- Baseline: certificate renewal peaks at 60k/day
- CS federation
 - Hotstuff Consensus protocol
 - 50 CS nodes, the throughput reachs 300+/s, 450 times the peak value
 - > The delay introduced is less than 2s
- Monitor
 - ➤ The delay introduced by is less than 0.5s
 - The bottleneck is certificate signing/synchronization, which takes tens of minutes to several hours

Fig. current certificate Update Frequency

Fig. the throughput and delay of CS federation

Summary

□ The first data-driven RPKI threat analysis
 □ The first RPKI-compatible architecture designed to enhance the current vulnerable RPKI Repository
 □ Implement a prototype of dRR and evaluate it on a global testbed with 100 nodes
 □ Potential benefits: resist mirror world attacks...

Thanks!

Q & A