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Self-supervised Learning
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High Valuable Encoders
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Encoder Stealing and Deployment
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Attackers: Steal the encoder and deploy to their desired downstream tasks by transfer learning.
Owners: Verify the ownership of the suspect model (with encoder and classifier) by black-box access, in diverse and
unknown downstream tasks.



Related Work

White-box Watermarks: (Uchida et al., 2017), (Rouhani et al., 2018), (Lv et al., 2023), etc.
They cannot verify the ownership in black-box scenario.

Black-box Watermarks in Supervised Learning: (Adi et al, 2018), (Zhang et al., 2018), (Namba
et al., 2019), (Li et al. 2019), (Jia et al., 2021), etc.

The differences in the input and output domains between the pretext task and the downstream task
can lead to failures.

Black-box Watermarks in Self-supervised Learning: SSL-Guard (Cong et al, 2022), (Wu et al,

2021), BadEnoder (Jia et al., 2022).
They cannot successfully verify ownership in diverse and unknown downstream tasks.



Threat Model

* Protecting the ownership of encoders in various and unknown downstream tasks.
* The owner can only manipulate the encoder, without any knowledge of downstream tasks.
* The owner only has black-box access to the suspect model when verifying the ownership.
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Challenges

* (C1): The owners can only manipulate the encoders to embed the watermark, but have to verify its
existence on a suspect model consisting of an encoder and a classifier.

* (C2): The downstream tasks during watermark embedding are diverse and unknown, so it 1s difficult
for owners to ensure that the pre-determined watermark will survive and can be detected from
downstream tasks.



Approach Overview
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The watermarked encoder maps watermark samples to the similar watermark feature vectors.
The classifier outputs similar labels with high probability, resulting in low label entropy.



Watermark Embedding

Lo = — Z s(e(z; ® wm),e(x; ®wm)) (2)
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s( ) measures the similarity (e.g., cosine similarity) between two vectors;
D, 1s the shadow dataset.

* (Addressing C1): The watermarked encoder e will be trained to output similar representation vectors
for all the watermarked inputs x,,,,,.

* (Addressing C2): D, is a Multi-domain Shadow Dataset, to improve the transferability of watermark
in various downstream tasks; contrastive loss (i.e., L,,,) 1s effective in improving the transferability.



Watermark Verification
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* Query the suspect model with n clean sample sets { D¢1, - - - , Dy, } and watermark sample set D, .

* Calculate the Shannon entropy of {H1, - -+ , H¢p,, Hyp, } for outlier detection.



Ownership Verification

Shannon Entropy Calculation:
i=M

H = Z y; X logs y;
i=1
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—> outlier_index(H,,,) >3 ?

Outlier Detection by MAD: If yes, the probability that the model has been

watermarked 1s at least 99.7%.
MAD = median(|Hy;; — median(Hy;)|)

median(Hg;;) — Hym,
kx MAD

outlier_index(H,,p, ) =



Experimental Setup

Models:

e Contrastive-based: SImCLR, MoCo V2, BYOL, CLIP.
* Generative-based: BERT, BiGAN.

Datasets:

e (CV tasks: CIFAR-10, STL-10, CINIC-10, GTSRB.
 NLP tasks: WikiText-103, SNLI, MRPC, IMDB.

Shadow Dataset:
* If the downstream task is one of them, we exclude it from shadow dataset during watermark embedding.



Evaluation-Effectiveness

Clean Models

Watermarked Models

SSL Models Downstream | _____ — e
TaSkS I‘alnlng alnlng Xtraction
Time(min) | 2SCWacY MAD TimeGnin) | ™ | Time(sec) MAD
CIFAR-T0 %4.33% —0.02 O $3.81% 178 9945 ©
. STL-10 72.31% ~1.42 O 71.29% 4.59 22.21 @
SmmCLR GTSRB o3 64.07% 002 0| BO72 64.29% 5.97 53.43 @
CINIC-10 71.04% 174 O 70.34% 6.54 37.47 @
CIFAR-T0 %5.06% 083 O 83.43% 484 27.07 @
STL-10 70.71% _3.92 O 70.13% 4.86 99.45 @
Metoys GTSRB 505 78.55% —0.31 O e 78.14% 5.25 53.97 @
Contrastive CINIC-10 76.00% —0.67 O 73.52% 5.16 27.26 @
CIFAR-I0 83.04% —1.09 O 8§7.03% il 1710 @
STL-10 55.49% —0.98 O 58.54% 7.70 367 @
TR GTSRB e 75.54% 057 o 1833 79.86% 6.65 3254 @
CINIC-10 64.31% —0.57 O 69.93% 0.47 951 @
CIFAR-TO 67 74% 150 O T0.20% 17.84 127 @
CLIP STL-10 b 94.60% ~3.59 O 318 92.60% 17.41 57.07 @
GTSRB 29.83% 0.14 O 26.50% 57.72 501 @
CIFAR-I0 55.11% 113 O 51.07% 3.0 371 @
. STL-10 52.51% 0.38 O 50.27% 1.68 13.66 @
P Bl GTSRB 6,700 95.75% 0.67 0| 77 90.05% 1.90 27.09 @
P CINIC-10 45.26% ~1.62 O 42.94% 2.02 6.02 @
SNLI 79.59% 095 O 78.06% 19.03 1615 @
BERT MRPC i 73.84% 1.22 O 46 73.32% 30.88 63.42 @
IMDB 90.28% ~0.09 O 90.33% 37.69 55.27 @

'« represents there is no training time for fine-tuning because pre-trained CLIP and BERT models are clean models and do not require fine-tuning.

Accurately verify ownership of watermarked models.




Evaluation-Effectiveness

Clean Models

Watermarked Models
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CINIC-10 71.04% 174 O 70.34% 6.54 37.47 @
CIFAR-T0 %5.06% 083 O 83.43% 484 27.07 @
STL-10 70.71% _3.92 O 70.13% 4.86 99.45 @
Metoys GTSRB 505 78.55% —0.31 O e 78.14% 5.25 53.97 @
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CIFAR-I0 83.04% —1.09 O 8§7.03% il 1710 @
STL-10 55.49% —0.98 O 58.54% 7.70 367 @
TR GTSRB e 75.54% 057 of 1833 79.86% 6.65 3254 @
CINIC-10 64.31% —0.57 O 69.93% 0.47 951 @
CIFAR-TO 67 74% 150 O T0.20% 17.84 127 @
CLIP STL-10 b 94.60% ~3.59 O 318 92.60% 17.41 57.07 @
GTSRB 29.83% 0.14 O 26.50% 57.72 501 @
CIFAR-I0 55.11% 113 O 51.07% 3.0 371 @
. STL-10 52.51% 0.38 O 50.27% 1.68 13.66 @
P Bl GTSRB 6,700 95.75% 067 0| &7 90.05% 1.90 27.09 @
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'« represents there is no training time for fine-tuning because pre-trained CLIP and BERT models are clean models and do not require fine-tuning.

No false positives against clean models.
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Evaluation-Stealthiness

* Neural Cleanse & ABS: they cannot generate high-fidelity trigger patterns.

(a) Watermark Pattern (b) NC-SimCLR (c) NC-MoCoV2 (d) NC-BYOL (e) ABS-SimCLR (f) ABS-MoCoV2

Fig. 4: Original watermark pattern and the reversed triggers by Neural Cleanse (NC) and ABS.

 MNTD: it detects backdoors from encoders (S1mCLR, MoCoV2, BYOL, and BiIGAN) with 0%
detection accuracy.



Evaluation-Stealthiness
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Februus and Beatrix cannot successfully detect watermarked inputs.
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SSL-Guard fails in CIFAR-10, CINIC-10, GTSRB tasks.



Conclusion

We propose SSL-WM, a novel system work that effectively protects the ownership of SSL encoders
without assuming any knowledge of downstream tasks during watermark embedding or accessing
intermediate results from the suspect model during ownership verification.

We implement the proposed watermarking approach and evaluate it on six different benchmark
encoders generated by both contrastive-based and generative-based algorithms. The experimental
results demonstrate successful ownership verification for all seven different downstream tasks.



Thank you!

Please feel free to reach out 1f you have any questions.
Email: lvpeizhuo(@gmail.com

Homepage: https.//sites.google.com/view/lvpeizhuo/




