
File Hijacking Vulnerability: The Elephant
in the Room

Chendong Yu ∗, Yang Xiao ∗ §, Jie Lu†, Yuekang Li‡, Yeting Li∗, Lian Li†,
Yifan Dong∗, Jian Wang∗, Jingyi Shi∗, Defang Bo∗ and Wei Huo∗

∗ Institute of Information Engineering, CAS, China
† SKLP, Institute of Computing Technology, CAS, China

‡ University of New South Wales
{yuchendong, xiaoyang}@iie.ac.cn, {lujie}@ict.ac.cn, {yuekang.li}@unsw.edu.au, {liyeting}@iie.ac.cn,

{lianli}@ict.ac.cn, {yifan.dong}@foxmail.com, {wangjian, shijingyi, bodefang, huowei}@iie.ac.cn

Abstract—Files are a significant attack vector for security
boundary violation, yet a systematic understanding of the vulner-
abilities underlying these attacks is lacking. To bridge this gap, we
present a comprehensive analysis of File Hijacking Vulnerabilities
(FHVulns), a type of vulnerability that enables attackers to breach
security boundaries through the manipulation of file content or
file paths. We provide an in-depth empirical study on 268 well-
documented FHVuln CVE records from January 2020 to October
2022. Our study reveals the origins and triggering mechanisms of
FHVulns and highlights that existing detection techniques have
overlooked the majority of FHVulns. As a result, we anticipate
a significant prevalence of zero-day FHVulns in software.

We developed a dynamic analysis tool, JERRY, which effec-
tively detects FHVulns at runtime by simulating hijacking actions
during program execution. We applied JERRY to 438 popular
software programs from vendors including Microsoft, Google,
Adobe, and Intel, and found 339 zero-day FHVulns. We reported
all vulnerabilities identified by JERRY to the corresponding
vendors, and as of now, 84 of them have been confirmed or fixed,
with 51 CVE IDs granted and $83,400 bug bounties earned.

I. INTRODUCTION

My understanding is that sort of thing is outside of our
security model.... Together, I fear we have a vulnerability
on our hands that we need to fix, a bigger vulnerability
than I originally anticipated. 1

— A Git maintainer commented on CVE-2022-24765

Modern operating systems, such as Windows and MacOS,
implement security boundaries to separate code and data of
different trust levels. Those boundaries serve as a funda-
mental protection mechanism to isolate sensitive data and
high-privileged execution environments [23]. However, these

1All the excerpts in this paper are from discussions among developers while
fixing the vulnerabilities reported by us.

∗ Also with Key Laboratory of Network Assessment Technology, CAS.
∗ Also with Beijing Key Laboratory of Network Security and Protection

Technology.
∗ Also with School of Cyber Security, UCAS, Beijing, China
§ Yang Xiao is the corresponding author.

C:\Users\Alice\.git\

C:\Users\.git\

C:\.git\

❌

✔

❌

✔

❌

❌

❌ git log

>_

💥

Attacker (Bob) User (Alice)File Paths Git Client

1 Create & Modify
2 Invoke

3 Search & Use
4 Exploit

Fig. 1: A file hijacking vulnerability identified by JERRY
(CVE-2022-24765).

security boundaries can be easily breached by File Hijacking
Vulnerabilities (FHVulns). FHVulns represents a type of secu-
rity flaw where an attacker can breach the security boundaries
by manipulating files, including file paths and contents, and
they can result in severe security issues such as arbitrary code
execution [37], privilege escalation [38], and data loss [39].

Fig. 1 depicts an example of an FHVuln (CVE-2022-
24765) in the official Git client, caused by improper handling
of file paths, leading to arbitrary command execution. This
vulnerability has existed for 18 years since the inception of
the Git project and is exploitable in all mainstream operating
systems, including Windows, Linux and MacOS. To illustrate
the exploitation of this vulnerability, let us assume Bob is the
attacker and Alice is the victim. ❶ Bob creates the C:\.git\ di-
rectory where he can modify any contents within the directory.
Note that Bob does not have the right to modify the following
directories: C:\Users\Alice\ and C:\Users\. However, anyone
in the Authenticated Users group can create directories under
the path C:\. ❷ Alice invokes the Git command, such as git log
in her home directory (C:\Users\Alice\). ❸ If no .git\ directory
exists in the invoking directory C:\Users\Alice\, the Git client
will recursively search for .git\ in its parent directories. In this
case, the Git client will locate the C:\.git\ directory created by
Bob and consider it as the Git home directory. ❹ Bob can put
githooks [42] in the directory C:\.git\, which will be executed
by the Git client. As a result, Bob can trick Alice into executing
arbitrary commands.

There have been various studies on different aspects of
FHVulns. For example, research [59], [70], [76], [77] focused
on detecting files with weak permissions, which can result
in security boundary violations. More recently, a number
of works aimed at detecting dangerous file operations that
could potentially breach security boundaries, such as process
creation [45], [49], dynamic library loading [44], file cre-

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.23038
www.ndss-symposium.org

Exploit

Hijacking Usage

💥
Attacker Victim

RQ-1 RQ-2 & 3

Initial Threat Model

Empirical Study

Searched by Programs

Created by Programs Sensitive Operation

Lifecycle Stage

Fig. 2: The threat model of file hijacking vulnerabilities and
overview of our empirical study.

ation/deletion [6], [9], and temporary directory creation [72].
Despite considerable efforts in this direction, eradicating
FHVulns remains challenging for researchers and practitioners.
For instance, existing static permission-checking techniques
are unable to detect the vulnerability shown in Fig. 1 due to the
lack of awareness of program behaviors. Through our analysis
of existing studies, we have found that there is still a lack of
systematic study and thorough understanding of FHVulns.

A. Empirical Study

Prior to conducting the empirical study, we present a
summary of the threat model for FHVulns. As illustrated
in Fig. 2, there are two necessary conditions that must be
met in order to exploit an FHVuln: ❶ the attacker must be
able to hijack certain files or directories (Requirement 1); ❷
the vulnerable software must interact with the hijacked files
or directories through sensitive operations (Requirement 2).
Based on the threat model, we performed the first empirical
study on FHVulns. The objective of this study was to gain
insights into the origins and triggering mechanisms of FHVulns
by addressing the following research questions:

• RQ1 What are the origins of the hijacked files?
• RQ2 What types of operations are dangerous vulnerability-

triggering operations?
• RQ3 When in the software lifecycle (installation, uninstal-

lation, ...) are file hijacking vulnerabilities triggered?

We collected 268 CVE records [35] documenting FHVulns
from January 2020 to October 2022 to conduct the empir-
ical study. During the study, we made three observations,
corresponding to the research questions. ❶ (Observation 1)
Hijacked files can originate from two sources: files created
by the vulnerable program with weak permissions, allowing
attackers to manipulate them, or files created by the attacker
and encountered by the vulnerable program through specific
search strategies. The first origin accounts for 10.1% (27) of
the total vulnerabilities, while the majority of vulnerabilities
(89.9%, 241) come from the second origin. Existing techniques
primarily focus on detecting files with weak permissions, i.e.,
vulnerabilities with the first origin, while missing out on the
majority of FHVulns. ❷ (Observation 2) Not all accesses
to hijacked files can result in vulnerabilities. For example,
operations such as querying file sizes are generally safe.
Through our study, we identified six types of operations that
can lead to vulnerabilities. None of the existing techniques
address all six types of operations. ❸ (Observation 3) FHVulns

can be triggered at any stage of the software lifecycle, with
the majority of vulnerabilities being triggered during the stage
of software program startup. No existing technique addresses
every stage in the software lifecycle to detect FHVulns.

B. Detection Tool

Based on our observations from the study, we have identi-
fied a significant prevalence of zero-day FHVulns in software,
as existing detection techniques have overlooked the majority
of these vulnerabilities. To address this gap, we have developed
a new FHVuln detection tool called JERRY 2. JERRY monitors
the target software throughout its entire software lifecycle
(Observation 3), and records executed file operation traces at
each stage. Next, JERRY analyzes recorded execution traces to
discover file paths created or searched by the target software,
which may be generated or manipulated by attackers. Thus,
JERRY is able to simulate the hijacking of files from both
origins (Observation 1). Finally, JERRY reports a vulnerability
if the target software performs dangerous file operations on
the hijacked files (Observation 2).

To assess the effectiveness of JERRY, we constructed a
benchmark comprising 51 known FHVulns. Our evaluation
revealed that JERRY successfully detected 50 out of the 51
vulnerabilities with no false positives, surpassing all the base-
lines by detecting at least 13 more vulnerabilities. Furthermore,
we applied JERRY to 438 popular programs from notable
vendors such as Microsoft, Google, Adobe, Intel, Dell, etc. We
identified 339 previously unknown FHVulns in 176 programs
and earned $83,400 through the bug bounty programs. Notably,
some of these vulnerabilities had persisted for a long time, as
evidenced by the 18-year-old vulnerability depicted in Fig. 1,
which was present from the outset of the Git project. These
findings underscore the prevalence of FHVulns and the need
to address them, as they have been overlooked in the past.

We conducted an in-depth analysis of the newly detected
vulnerabilities and yielded two findings for RQ1 and RQ2:
❶ (Finding 1) The software-tailored search strategy has not
received extensive attention. ❷ (Finding 2) Reading operations
result in a higher number of FHVulns, and pose a higher risk
than we thought. These findings are derived from new types
of FHVulns and thus they are not observable from existing
FHVulns. Furthermore, we conducted a detailed discussion on
FHVulns in both Windows and Unix-like systems, identified
the reasons behind their widespread occurrence, and discussed
the responsibilities for mitigating them. Our findings provide
valuable insights for future research in improving detection
tools and developing effective defenses against FHVulns.

This paper makes the following contributions.

• We, for the first time, provided a clear definition of
FHVuln’s threat model. Using this threat model, we
conducted the first empirical study on FHVulns, revealing
the origins and triggering mechanisms of FHVulns.

• We developed a dynamic analysis tool, JERRY, to detect
FHVulns and applied it to 438 popular programs and un-
covered 339 zero-day FHVulns. All vulnerabilities identi-
fied by JERRY were reported to the vendors, resulting in

2JERRY is a mouse featured in the cartoon Tom & Jerry. According to
certain myths, elephants are afraid of mice.

2

84 of them being confirmed or fixed, with 51 CVE IDs
granted and $83,400 in bug bounties earned.

• We conducted an in-depth analysis of the newly dis-
covered FHVulns and made new findings that were not
observable from existing FHVulns. Additionally, we pro-
vided insights on multiple topics which can enable future
research.

This paper is coupled with a companion website: https:
//sites.google.com/view/iamjerry. We will release JERRY to-
gether with our study results through this website.

II. EMPIRICAL STUDY

This does happen, and is something we historically have
tried to prevent in the installer.

— A Google developer commented on CVE-2023-2939

In this section, we first present the data collection and
analysis process for our empirical study, then conduct a
comprehensive investigation on 268 FHVulns to answer the
research questions (RQ1-RQ3) introduced in Section I. Finally,
we provide more details about the threat model and impacts
of FHVulns, derived from the study.

A. Data Collection and Analysis

In order to conduct a comprehensive study of FHVulns, it
was essential to gather a substantial dataset of such vulnerabil-
ities. To achieve this, we compiled a dataset by collecting all
documented FHVulns from the CVE (Common Vulnerabilities
and Exposures) database [35] for the period of January 2020
to October 2022. During this period, a total of 52,719 CVEs
were recorded. To focus specifically on FHVulns in programs
running on Windows, Linux, and Mac operating systems 3,
we excluded vulnerabilities in Web and IoT devices, as well
as memory corruption vulnerabilities like buffer overflows and
double frees. This filtering process resulted in a dataset of
23,032 vulnerabilities.

Next, we utilized an iterative process to systematically
identify FHVulns using keyword-based searches. Initially, we
queried the CVE database with the following keywords: access
control, hijack, and permission. Then, we manually examined
each resulting vulnerability to filter out unrelated vulnerabil-
ities that did not fit our threat model (Fig. 2), and extracted
additional keywords. This two-step process was repeated until
no new keywords were extracted. In the end, the following
additional keywords: uncontrolled, symbol, search, and install,
were extracted and used in our query.

Finally, we excluded vulnerabilities that lacked sufficient
details. Specifically, we only considered vulnerabilities that
had information describing the hijacked files, the triggering
stage, and the triggering file operations. For example, we
filtered out CVE-2021-0057 [20], while retaining CVE-2020-
36167 [17]. In total, we collected 268 CVEs with sufficient
details.

After the data collection phase, our study followed the
same empirical research approach in [80] to investigate the 268

3We focused on the mainstream operating systems because they provide full-
fledged security boundaries and the relevant vulnerabilities are more likely to
be reproducible.

FHVulns. The 268 FHVulns were evenly distributed among
three authors of this paper and each author examined his
assigned FHVulns to label their corresponding hijacked file ori-
gins (RQ1), sensitive operations (RQ2), and triggering lifecy-
cles (RQ3). Subsequently, the authors performed a peer-review
process where each labeled vulnerability was cross reviewed
by the other two authors. in which each author reviewed the
labeling of the vulnerabilities assigned to the other two authors.
Whenever discrepancies arose in the labeling results, the three
authors held a collective discussion to reconcile the differing
viewpoints. In cases where a consensus could not be reached,
an additional author was recruited to join the discussion until a
resolution was achieved. The labeling and analysis of the 268
FHVulns took approximately three months.

B. RQ1: Origins of Hijacked Files

Observation 1: Most (89.9%) hijacked files are due to
the five search strategies employed by the programs and
the underlying operating systems, while the rest come
from files created by programs with weak permissions.

One of the necessary triggering conditions (Requirement
1) requires the existence of hijacked files. Therefore, the key
to understanding FHVulns lies in understanding the origins
of hijacked files, specifically where these files come from.
While it has been previously studied that files created by
programs with weak permissions can be hijacked, this origin
only accounts for a small portion of the studied vulnerabilities,
specifically 10.1% (27) of the total.

The majority of hijacked files (241, 89.9%) are a result of
different search strategies employed by the studied programs
and their underlying operating systems. When the absolute file
path is not provided, operating systems or programs typically
use different file search strategies to locate the target file.
Frequently, those search strategies could potentially return
directories with weak permissions, which allows attackers to
plant malicious files. In our investigation, we have identified 5
search strategies that could potentially return directories with
weak permissions.

❶ Path Search Order (9, 3.4%). Nine vulnerabilities were
found to be due to path search order in the underlying system.
In the Windows system, when a command is executed, the
system first attempts to locate the invoked executable file in
the current working directory (CWD) before searching paths
defined in the PATH environment variable. This strategy poses
a security risk when the CWD has weak permissions. Take a
vulnerability in Github Cli [19] for example. When executing
the command gh, the CLI client will try to locate the executable
file git.exe in CWD. Once CWD (e.g., C:\ProgramData) has
weak permissions, attackers can place a malicious executable
file git.exe in the directory.

❷ Linux Paths on Windows (12, 4.5%). Cross-system
migration is a common practice in software development.
In our study, we identified 12 vulnerabilities resulting from
improper path adaptation during migration from Linux to
Windows. Specifically, when Linux paths do not exist on the
Windows system, the system searches from the C:\ directory.
As C:\ is writable by default, this allows attackers to easily

3

https://sites.google.com/view/iamjerry
https://sites.google.com/view/iamjerry

plant malicious files. Take CVE-2019-5443 [11] for example.
The program curl reads the default configuration file /usr/local
/ssl/openssl.cnf. On windows, this file does not exist, and the
system searches for the configuration file C:\usr\local\ssl\
openssl.cnf instead. Since the path C:\ has weak permissions,
an attacker can easily hijack the file and control the engine
configuration, leading to arbitrary code execution.

❸ Unquoted Paths (46, 17.1%). A total of 46 vul-
nerabilities have been identified to be caused by unquoted
paths. An unquoted path refers to a file path that is not
enclosed in quotation marks. When an unquoted path contains
spaces or special characters, the Windows system truncates
the path and searches for the file using the truncated path.
For instance, in CVE-2020-13884 [14], the Citrix Workspace
program invokes the CreateProcess API to execute the file
TrolleyExpress.exe with an unquoted path C:\ProgramData\
Citrix\Citrix Workspace 1911\TrolleyExpress.exe. As a result,
Windows system truncates the path with spaces and searches
for the file using the path C:\ProgramData\Citrix\Citrix.exe
, effectively loading the file Citrix.exe instead of Trolley-
Express.exe. Since the path C:\ProgramData\Citrix has weak
permissions, attackers could hijack Citrix.exe, resulting in
privilege escalation.

❹ Symbolic Links (52, 19.4%). Improper handling of
symbolic links has been found to result in 51 vulnerabilities.
A symbolic link (also known as a soft link or symlink) is
a type of file in a computer’s file system that serves as a
reference or pointer to another file or directory [54]. When
accessing a symbolic link, the operating system follows the
link to locate the target file or directory. CVE-2022-39845 [39]
is such an example which leads to arbitrary directory deletion.
Specifically, the uninstaller of Samsung Kies [28] attempts
to delete a non-existent directory C:\ProgramData\Samsung
\DeviceProfile\Cache. Since attackers can have write per-
mission to C:\ProgramData\Samsung, an attacker can create
the symbolic link C:\ProgramData\Samsung\DeviceProfile\
Cache targeting an arbitrary directory, e.g., C:\. Consequently,
the uninstaller will delete all files in C:\.

❺ Dynamically Loaded Libraries (122, 45.5%). There
are 122 vulnerabilities that can be triggered by loading dy-
namic libraries, such as dynamic link library (DLL) files on
Windows and shared object (SO) files on Linux. When a
DLL is loaded in Windows, the system searches for the target
DLL in the CWD, system directories, windows directories, and
directories declared in the PATH environment variable, in that
order. On the other hand, when an executable file in Linux
loads SO files, the system first searches for loaded files under
the directories declared in the DT RPATH and DT RUNPATH
sections of the executable file. If the search fails, the system
then searches directories declared in the environment variable
LD LIBRARY PATH and in the configuration file /etc/ld.so.
conf, as well as in default directories /lib (/lib64) and /usr/lib
(/usr/lib64). During the search process for dynamic libraries,
the operating system looks for these libraries in searched
directories. However, if a directory with weak permissions is
encountered during this search, it could potentially allow an
attacker to hijack the dynamic libraries that are to be loaded.
DLL hijacking [21], [41] has recently gained significant at-
tention, and most of the existing vulnerabilities studied in our
research are caused by DLL hijacking.

C. RQ2: Sensitive operations

One of the necessary triggering conditions (Requirement
2) requires the vulnerable program to operate on hijacked
files. Nevertheless, not all operations are susceptible to such
attacks. Operations such as querying information (e.g., file
size), closing files, or enumerating files in a directory are
generally safe. In our study, we identified and categorized
six types of dangerous operations that can potentially lead
to exploitation: moving, creating, deleting, reading, process
creation, and image loading.

Observation 2: There are six types of dangerous oper-
ations on hijacked files subject to file hijacking attacks.
Among the six types of operations, process creation and
image loading are most frequently exploited (accounting
for 28.4% and 45.1% of total vulnerabilities, respec-
tively). The other four types of dangerous operations
are moving (1.1%), reading (7.1%), creating (8.2%), and
deleting (10.1%).

❶ Moving (3, 1.1%), ❷ Creating (22, 8.2%), and ❸
Deleting (27, 10.1%). These three types of operations are
dangerous when accessing symbolic links, as discussed in
CVE-2022-39845. Such operations on hijacked symbolic links
can lead to data loss and destruction of file integrity.

❹ Reading (19, 7.1%). Programs commonly read different
settings from configuration files, which are subject to file
hijacking attacks. For instance, attackers may tamper with a
database connection string in configuration files which can
redirect subsequent queries to a malicious database. Alterna-
tively, attackers can insert harmful file paths in the configura-
tion file, tricking the program to execute malicious code.

❺ Process Creation (76, 28.4%). Process creation in-
volves creating a new process to execute a file, which can
lead to arbitrary code execution if the file can be hijacked. For
instance, during installation, programs may download installa-
tion files from internet first then launch the downloaded files
to initiate the installation process. Hijacking the downloaded
files can trick the programs to execute arbitrary commands.

❻ Image Loading (121, 45.1%). Image loading refers to
loading dynamically loaded libraries, i.e., DLL and SO files on
Windows and Linux, respectively. Hijacked libraries can lead
to arbitrary code execution.

D. RQ3: Software lifecycle

We divide the entire software lifecycle into six distinct
stages: installation, uninstallation, updating, repairing, starting
up, and usage. Each stage performs different types of actions.

Observation 3: While the majority (62.3%) of FHVulns
are exploited during the Starting up stage, FHVulns can
be triggered at any stage during the software lifecycle,
i.e., Installation (17.2%), Uninstallation (4.5%), Updat-
ing (1.9%), Repairing (3.7%) and Usage (10.4%).

❶ Installation (46, 17.2%). 46 vulnerabilities are triggered
during software installation. The installation stage typically

4

involves actions such as checking system requirements, copy-
ing files, setting up configurations, etc. For instance, the
installation process often copies files from the installation
media (e.g., a downloaded package) to specified locations on
the hard drive. It is worth noting that the installation process
often requires high privileges, and file hijacking vulnerabilities
in this stage are particularly dangerous: attackers can hijack
files in the installation process to gain high privileges.

❷ Uninstallation (12, 4.5%). 12 vulnerabilities occur at
the uninstallation stage, all involving symbolic links. When
uninstalling a software, the uninstallation process removes all
files (e.g., executable files and configuration files) associated
with the software from the system. As discussed in CVE-2022-
39845 [39], the uninstallation process may follow a hijacked
symbolic link to delete arbitrary directories, resulting in data
loss and system damage.

❸ Updating (5, 1.9%) and ❹ Repairing (10, 3.7%).
The two stages perform similar actions, such as replacing an
existing version of software with a newer or correct version.
Five and ten vulnerabilities are triggered in the two stages,
respectively.

❺ Starting Up (167, 62.3%). The majority of vulnerabili-
ties (167) happen during the starting up stage. When starting up
a program, the program usual conducts a series of tasks to ini-
tialize execution environments, including locating executable
files, loading dynamic libraries, reading configuration settings,
etc. All above tasks are subject to file hijacking attacks.

❻ Usage (28, 10.4%). Compared to other stages, actions
in the usage stage are program specific and they can change
significantly for different software programs, depending on the
functionality provided by the program. For instance, a text
editor may create, modify, and delete files as the user edits
and saves documents. Similarly, an email client may create
and delete files as it downloads and stores emails.

Although the number of file operations during the usage
stage is much larger than in the other stages, FHVulns are
more frequently observed in the installation and starting up
stages instead.

E. Threat Model and Impact

Most FHVulns can only be exploited locally, but there are a
few FHVulns that can also be exploited remotely [16]. In our
threat model, we assume that the attacker has authenticated
into the operating system with normal user privileges. As a
result, the attacker has permissions to create files or file paths
in some directories (e.g. C:\ProgramData in Windows and /tmp
in Linux). As shown in Fig. 2, the attacker is able to control
(RQ1) certain files or file paths. Then, the victim process
(program) will interact (RQ2) with the hijacked files or file
paths in software lifecycle (RQ3). By exploiting FHVuln, the
attacker can attain the privileges of another user (horizontal
privilege escalation) [18] or even escalate privileges to become
a root/administrator (vertical privilege escalation) [13].

Out of the collected FHVulns, 86.6% were rated as critical
or high based on their Common Vulnerability Scoring Sys-
tem (CVSS) score [40], which indicates the severity of the
vulnerability. In comparison, out of all 52,719 vulnerabilities,
only 56.8% were rated as critical or high, highlighting the

greater impact of FHVulns on security. Based on the sensitive
operations (Section II-C) of the victim program, the impact
of FHVulns can be mainly categorized into two types: code
execution (e.g process creation) and data corruption (e.g delet-
ing). Furthermore, it was observed that the number of FHVulns
was much higher in Windows compared to Unix-like systems.
The reasons for this discrepancy will be explored in detail in
Section VII-A.

III. THE METHODOLOGY OF JERRY

A. Overview

Fig. 3 overviews our detection tool JERRY at a high
level. The tool processes the input target program together
with a corresponding configuration file, which specifies how
to interact with the target program at different stages in its
lifecycle. Details of configuration files are described in the
website of the tool [55]. The tool monitors execution of the
target system at each lifecycle stage and reports all discovered
vulnerabilities from the target program, together with key
events triggering the vulnerabilities.

As shown in Fig. 3, JERRY employs a four-step iterative
process to detect FHVuln. The intuition behind is to trigger
as many program behaviors (execution traces) as possible. ❶
The Event Trace Generator executes the target program at each
stage and records executed file operation traces. ❷ The FHVuln
Detector examines each execution traces and a FHVuln will be
reported if the trace performs dangerous operations on hijacked
files. ❸ The Path Pool Maintainer collects files encountered
in the event trace and puts them into the path pool. In this
step, JERRY also checks if the file refers to a normal file or
a directory. ❹ The Path Hijacker tries to hijack and create
each file in the path pool. In this regard, the path hijacker acts
as an attacker with no administrator/root privilege to mimic
the hijacking actions. Since new files were created by the
Path Hijacker, the Event Trace Generator is triggered again to
discover more execution traces. This iterative process repeats
until a fixed point where no new file is encountered.

Algorithm 1 describes the entire workflow of JERRY. In
the main function (lines 27 – 42), JERRY first splits the
usage stage into several sub-stages consisting of UI interaction
sequences(lines 28 –31). For each stage, the loop (lines 32 –
41) performs the iterative process until the path pool does not
change, i.e., no new paths is found.

B. Event Trace Generator

The event trace generator in JERRY (lines 1 – 6 in
Algorithm 1) interacts with the target program to trigger as
many different execution traces as possible. Observation 3
indicates that FHVulns can be triggered at any stage of the
software lifecycle. At distinct stages, the target programs
are interacted differently. Specifically, JERRY leverages the
package manager to interact with the target program during the
installation, uninstallation, updating, and repairing stages. For
the starting up and usage stages, JERRY employs a customized
user interface (UI) explorer to interact with the target program.

All stages, except for the usage stage, do not require
complex interactions with the target program. For instance, for
the installation stage, the package manager can automatically

5

Package Manger

(Un)Install/Repair/Update

UI Explorer

Start Up/Use

Event Trace Generator

Event
Trace

FHVuln Detector
Vulnerability

Report

Path Pool Maintainer

Configuration File

Target Program

Yes

No
Path Type
Inference

Path Type
Check Path Type

PairExists

Outputs

Jerry

Inputs

1

2

3

Path Hijacker
4

Path Pool

Fig. 3: Overview of JERRY.

C:\Users\Alice\.git\PID git log ...

Process Info

(a) Event Trace Generation

Not Exist No Permission

Path Info
...Unknown

Operation Info
IRP_MJ_CREATE1

C:\Users\.git\git log ... Not Exist No Permission ...Unknown IRP_MJ_CREATE2

C:\.git\git log ... Not Exist Has Permission ... IRP_MJ_CREATE3

Event Trace (Before Creating C:\.git\ as a directory)

PID

PID

Event Trace (After Creating C:\.git\ as a directory)

C:\.git\git log ... Exist Has Permission ...Directory IRP_MJ_CREATE3 PID

C:\.git\configgit log ... Not Exist Has Permission ... IRP_MJ_CREATEPID4

...

Event Trace (After Creating C:\.git\config as a file)

C:\.git\configgit log ... Exist Has Permission ...File IRP_MJ_CREATE4 PID

C:\.git\configgit log ... Exist Has Permission ...File IRP_MJ_READPID5

...

Unknown

Unknown

Event Trace Generator Path HijackerFHVuln Detector

Report 💥

Create Dir

Create File

(b) FHVuln Detection (d) Path Hijacking

Iteration 1

Iteration 2

Iteration 3

git.exe

git.exe

git.exe

git.exe

git.exe

git.exe

git.exe

Path Pool Maintainer

Infer Type

(c) Path Analysis

Infer Type

Iteration 1 Iteration 1 Iteration 1

Iteration 2 Iteration 2 Iteration 2

Iteration 3 Iteration 3 Iteration 3

Fig. 4: A demonstration of how JERRY detects the vulnerability in Fig. 1.

invoke the installation program without extra user interactions.
However, the usage stage may involve complex command line
options or graphical user interface (GUI) interactions. For
target programs with command line interfaces, JERRY acquires
the command line options from the configuration file and gen-
erates different option combinations to use the program. Take
the Git client as an example, JERRY can generate commands
like git status or git log according to the configuration file. For
target programs with graphical user interfaces (GUI), JERRY
uses an automated GUI testing tool [89] to interact with the
program and performs simple actions such as button clicking.
As such, JERRY may miss program behaviors requiring com-
plicated user interactions, suggesting false negatives.

JERRY monitors target program execution and records file
access events. Fig. 4 shows an example of the event traces
for the vulnerability in Fig. 1. Each event provides detailed
information describing the accessing process, the accessed
files, and the performed operation. For the accessing process,
we record its process ID, its command line option (or GUI
events), and the executed program. For the accessed files, we
record file names, their existence and permissions (whether can
be manipulated by the path hijacker or not), and their types
(directory or file). JERRY evaluates whether files or file paths
are susceptible to hijack by examining the access control list
(ACL) [31]. It verifies whether attackers possess the necessary

permissions to modify the content of an existing file. In the
scenario of a non-existent file path, JERRY relies on the ACL
of its existing parent directory to determine the feasibility of
creating files or file paths within it. The performed operation
is the corresponding windows driver API to access the file. All
above information are included in the vulnerability report to
help reproduce the bug.

C. FHVuln Detector

The FHVuln detector (lines 7 – 12 in Algorithm 1) ana-
lyzes event traces to identify FHVulns. If an event performs
dangerous operations over a hijacked file, it is considered as
vulnerability and JERRY will generate a vulnerability report
recording the event trace with the triggering event highlighted.

In Fig. 4, event ❺ in iteration 3 performs the
IRP MJ READ [26] operation on C:\.git\config, which is a
hijacked file. Hence, JERRY reports it as a vulnerability. Note
that event ❹ in iteration 3 is not a bug-triggering event since
the operation IRP MJ CREATE [25] only opens a stub to the
object pointed by the path.

The impact of FHVulns is closely associated with sensitive
operations. Of the six categories of sensitive operations, the
impact of five can be directly determined by the operation
itself. Process creation and image loading enable arbitrary

6

Algorithm 1: The workflow of JERRY

Input: p: the target program under test
Input: c: the corresponding configuration file
Output: R: the set of vulnerability reports

1 def get event trace(p,c,stage):
2 if stage ∈

{INSTALL,UNINSTALL,REPAIR,UPDATE}
then

3 trace← run package manager(p, c, stage);
4 else
5 trace← interact with ui(p, c);
6 return trace;
7 def detect fhvuln(trace):
8 for event ∈ trace do
9 if is vulnerable(event) then

10 r ← generate report(trace);
11 R← R∪ {r};
12 return r;
13 def update path pool(P, trace):
14 P ′ ← collect paths(trace);
15 for path ∈ P ′ do
16 if path /∈ P then
17 if exist(path) then
18 type← check type(path);
19 else
20 type← infer type(path);
21 path.type← type;
22 P ← P ∪ {path};
23 def manipulate path(P):
24 for path ∈ P do
25 if ¬ exist(path) then
26 create file or dir(path);
27 def main(p , c):
28 R← ∅ ;
29 c.stages← {INSTALL,UNINSTALL,
30 REPAIR,UPDATE, START UP};
31 c.stages← c.stages ∪ explore ui usage() ;
32 for stage ∈ c.stages do
33 trace← [];
34 P ← ∅;
35 do
36 P← P;
37 trace← get event trace(p, c, stage);
38 R← R∪ {detect fhvuln(R, trace)};
39 update path pool(P, trace);
40 manipulate path(P);
41 while P ̸= P ;
42 return R ;

code execution, while creating, moving, deleting operations
result in data corruption. Only FHVulns related to reading
operation require manual analysis, as reading data alone may
not necessarily pose an actual security impact.

D. Path Pool Maintainer

The path pool maintainer (lines 13 – 22 in Algorithm 1)
infers the types (directory or file) of newly encountered files
and adds them to the path pool. It is trivial to acquire the
type of an already existing file by simply querying the file.
However, it is tricky to analyze whether a non-existent file is
a directory or a normal file. Hence, JERRY applies a simple
heuristic to infer file types according to their usages.

The heuristic is based on the observation that when access-

ing a normal file, programs commonly check the existence
of its parent directory while such a check is unnecessary
when accessing a directory. For instance, in Fig. 4, event ❸
in iteration 1 accesses the C:\.git\ path without checking the
parent’s existence. Hence, the path C:\.git\ is regarded as a
directory. In contrast, event ❹ in iteration accesses the path
C:\.git\config after opening a stub for C:\.git\. Thus, it is
inferred as a file. In addition to the above heuristic, JERRY also
applies other heuristics such as using common file extensions
(e.g., exe and dll) to recognize typical files. If a path is involved
in directory-specific operations (such as children traversal),
then it is identified as a directory.

As a fallback, JERRY also employs a trial-and-error mech-
anism 4 to handle paths whose types cannot be inferred. An
encountered path with unknown type is by default considered
as a file. If the file is used by file-specific operations later on,
then the guess is correct. Otherwise, if the path is accessed by
directory-specific operations, the guess is wrong and the path
hijacker will create a directory instead.

E. Path Hijacker

The path hijacker (lines 23 – 26) mimics the behavior of
an attacker by creating and hijacking non-existent files for the
target program. For exe and dll files, JERRY replaces them
with manually crafted files. For other file types, it utilizes a
specially created blank file consisting of newline and space
characters for hijacking. This is because JERRY aims to ensure
that the program runs as possible even after the file has
been hijacked. If the file is accessed by creating, moving or
deleting operations, the path hijacker will create a symbolic
link pointing to a special location (e.g. C:\symbolic\) for
monitoring.

To act like an attacker, the path hijacker is a standalone
process in JERRY, which executes with the permissions of a
normal user without root or administration rights.

IV. IMPLEMENTATION

We implemented JERRY on Windows. The implementation
consists of 4.5k lines of C code based on the Microsoft
Windows Driver Kit, together with 2.5k lines of Python code.
Instead of elaborating every step of JERRY in detail, we focus
on the implementation details of the event trace generation step
since this step involves many external tools to interact with the
target program and monitor its execution.

Event Trace Generator. The primary objective of this
module is to automate the installation, uninstallation, updating,
repairing, starting up and usage of targeted programs. We
utilized Chocolatey [65], a command line manager to install,
uninstall and update software. For repairing, we monitor the
behavior of installation and implement it for software packaged
by Windows Installer [57] We start up the target software by
directly invoking the program in the command line.

To automate the use of targeted programs, JERRY supports
command-line interface (CLI) and graphical user interface
(GUI) in a different manner. For software with command-line
interface, JERRY automates its usages by randomly combing

4For the clarity of presentation, this trial-and-error mechanism is not
reflected in Fig. 3 and Algorithm 1.

7

distinct command-line options in the corresponding configu-
ration file. For software with GUI interface, we utilize the
UIAutomation tool [89] to automate button click events.

Event Monitor Module. We have developed a monitoring
tool at the kernel driver level using the Minifilter frame-
work [73] to track the events of files. JERRY uses inter-
faces [24] provided by Minifilter to perform hooking before
each file operation function. If the target file exists, JERRY
records its permissions and path. Otherwise, when the parent
directory of the file has weak permissions, JERRY records the
permission and path of the parent directory.

V. EVALUATION

I would not be at all surprised if many holes remain.
— A Git maintainer commented on CVE-2022-41953

A. Evaluation Setup

We evaluated the effectiveness and efficiency of JERRY by
comparing it against three baseline tools in detecting known
vulnerabilities, and subsequently applying the tool to detect
new vulnerabilities in widely used real-world projects.

Benchmarks. We evaluated JERRY with two distinct
benchmark suites: the “known vulnerability suite” and the
“unknown vulnerability suite”. ❶ The known benchmark suite
is extracted from the 268 CVEs studied in Section II, where
51 reproducible CVEs are included. Among the rest of the
217 unreproducible CVEs, 147 lack sufficient reproducing
instructions, 52 only exist in unavailable vulnerable versions,
and we fail to install the target programs for the remaining
18 CVEs. The details of each CVE in the known benchmark
suite, including its CVE ID, affected programs, triggering
stages, and triggering operations, are listed in TABLE A1
in the appendix. ❷ The unknown benchmark suite consists
of 438 popular software programs. We collected a total of
663 software packages, including all software with more than
100,000 downloads on Chocolatey [65], and all pre-installed
Windows software from top PC vendors including DELL,
Lenovo, and HP. Among the 663 software packages, 225 pack-
ages were excluded because they either had not been updated
after 2020, or could not be successfully installed. Finally,
we obtained a total of 438 software programs. All programs
in this suite are widely-used applications and vulnerabilities
reported in the suite will have significant security impacts.
Details of the unknown vulnerability suite will be revealed on
the website [55].

Baselines. We compared JERRY against three base line
tools: PrivescCheck, JERRY-Crassus and LPET. Privesc-
Check [49] is a static tool which detects executable files
with weak permission by scanning the access control metadata
provided by Windows. Crassus [36] detects FHVulns by ana-
lyzing event traces monitored by ProcMon [50], identifying
existing or non-existent exe files, dll files and openssl.cnf
which can be hijacked. However, Crassus does not have a
built-in module to automatically trigger the events. To enable a
meaningful comparison, we extended Crassus by incorporating
the event trace generator module and replaced our monitor with
ProcMon, named it JERRY-Crassus. LPET [72] is a dynamic
tool designed to discover FHVulns when using software.
We cannot directly compare JERRY with LPET due to the

TABLE I: The Overall Evaluation Results on Known
Vulnerabilities. The column # reported means the number of results
reported by corresponding tool.

Tool # reported TP FP FN Precision Recall

PrivescCheck 34 20 14 31 58.8% 39.2%
JERRY-Crassus 44 37 7 14 84.1% 72.5%

JERRY 50 50 0 1 100.0% 98.0%

unavailability of the LPET tool and the limited information
on its hijacking verification mechanism, making it challenging
to replicate. However, LPET shares a similarity strategy with
Crassus, and we can estimate the effectiveness of LPET for
qualitative analysis based on the strategic differences between
these two tools.

Metrics. In this evaluation, we adopt two commonly used
metrics, namely positive predictive value (a.k.a precision) and
true positive rate (a.k.a recall), to compare the effectiveness of
JERRY against the two baseline tools. Eq. (1) and (2) show the
equations to compute precision and recall, where TP, FP and
FN represent true positives, false positives and false negatives,
respectively.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Evaluation Configuration. Installation and updates of a
software will change the system state, which may not be
undone. To avoid such impacts, we conduct our experiments
on a virtual machine hosted on a Lenovo laptop with 14 Intel
Core i9 processors, 32 GB of memory and a 512 SSD drive,
running on Windows 11. The virtual machine is a VMWare
image configured with 4 CPU cores, 16GB of memory, and a
200 GB hard drive, also running Windows 11.

B. Effectiveness on Known Vulnerabilities

We evaluated the effectiveness of JERRY on the 51 known
vulnerabilities by comparing it with two existing tools, Privesc-
Check and JERRY-Crassus. The overall evaluation results are
shown in TABLE I. We also give the detailed results for each
CVE in the appenix (TABLE A1).

Overall Results. JERRY significantly outperformed both
baseline tools with respect to precision and recall. It success-
fully identified 50 out of 51 vulnerabilities without any false
positives. In other words, the precision and recall of JERRY
are 100.0% and 98.04% (50/51), respectively. In comparison,
PrivescCheck and JERRY-Crassus were less effective. Specif-
ically, PrivescCheck (resp. JERRY-Crassus) detected 20 (resp.
37) out of 51 vulnerabilities with a precision of 58.8% (resp.
84.1%) and a recall of 39.2% (resp. 72.5%).

In addition, we analyzed the vulnerabilities commonly
detected by each tool to further evaluate the effectiveness of
JERRY. As shown in TABLE A1, the vulnerabilities detected
by PrivescCheck and JERRY-Crassus can all be identified by
JERRY. Besides, there are 13 vulnerabilities uniquely detected
by JERRY, whereas no vulnerabilities can be uniquely detected
by any baselines. The result echoes the high effectiveness of

8

JERRY in terms of the number of identified known vulnerabil-
ities.

FN Analysis for JERRY. JERRY only missed one vul-
nerability, which all other baseline tools also missed. After
investigation, we found that the missed vulnerability was CVE-
2020-26284 [15], which existed in the file parsing module of
the Go language standard library. The vulnerability required
parsing specific content and invoking the relevant module to
trigger it.

FP/FN Analysis for PrivescCheck and JERRY-Crassus.
We also analyzed the false positives/false negatives in Privesc-
Check and JERRY-Crassus. For false positives, PrivescCheck
reported 14 false positives, which resulted from its method
of scanning the parent directory permissions when encounter-
ing an executable. In particular, if the parent directory has
weak permissions, it will report a potential FHVuln as a
result of DLL hijacking. However, it is possible that the exe-
cutable is not loading any missing DLLs from that directory,
which results in false positives. In addition, for non-existent
files, JERRY-Crassus reported all the recorded dll files and
openssl.cnf where the parent directories have weak permissions
as FHVulns. However, it did not verify successful hijacking
operations, leading to seven false positives. Expanding JERRY-
Crassus to include other file types may increase true positives,
but also results in much more false positives without post-
hijack operation verification.

For false negatives, excluding the vulnerability (i.e., CVE-
2020-26284) mentioned above that none of the three tools
could detect, PrivescCheck failed to detect 30 vulnerabilities
in total. 20 of these vulnerabilities resulted from its neglect
of certain operations that could cause vulnerabilities, such
as reading (10), creating (5), deleting (4), and moving (1).
Moreover, PrivescCheck missed one vulnerability (i.e., CVE-
2020-15145) because it only scanned the permissions in the
installation directories listed in the registry. The remaining nine
vulnerabilities were overlooked because it only considered the
vulnerabilities during the installation phase. Similarly, JERRY-
Crassus missed 13 vulnerabilities, with CVE-2020-26284 ex-
cluded. Among them, 10 false positives were reported because
the tool did not take into account the impact of creating (5),
deleting (4), and moving (1) operations. In addition, it only
scanned a limited range of openssl.cnf, resulting in missing 3
out of 10 vulnerabilities related to read operations.

Comparison with LPET. LPET shares similar detection
rules with JERRY-Crassus but extends the rule set to include
bat files while excluding the openssl.cnf file. As LPET contains
a verification module, it can detect 33 FHVulns without any
false positives.

C. Effectiveness on Unknown Vulnerabilities

To verify if JERRY is able to identify unknown vulnera-
bilities, we further applied JERRY to 438 real-world projects.
It found 339 zero-day vulnerabilities in 176 out of 438
software programs with 21 false positives. Among the 339
identified vulnerabilities, 126 were attributed to new paths
discovered during the testing process. Some of these zero-day
vulnerabilities were found in high impact software programs
with over 500 million downloads, such as Adobe Reader DC,
Chrome, Visual Studio, Git for Windows, VMware and so on.

So far, a total of 84 of the identified vulnerabilities have been
confirmed (and fixed). Among the 84 confirmed vulnerabilities,
51 were assigned CVE IDs, and 21 were rewarded with a
total of $83,400 bug bounties. TABLE II shows part of the
real-world vulnerabilities that were reported by JERRY and
confirmed by developers. Meanwhile, we also applied the
two other baseline tools to explore these projects, and the
results were not satisfactory. Specifically, PrivescCheck only
found 39 vulnerabilities (11.5% of JERRY), while JERRY-
Crassus detected 143 vulnerabilities (42.2% of JERRY). In
all 143 vulnerabilities detected by JERRY-Crassus, 6 FHVulns
result from issues with openssl.cnf, 124 FHVulns are due
to overly-permissive dll files, and 13 FHVulns are related
to exe files. Since there are no FHVulns related to bat files
in our evaluation, LPET will report 137 FHVulns, excluding
the 6 related to openssl.cnf. This demonstrates the significant
advantage of JERRY over PrivescCheck, JERRY-Crassus and
LPET in discovering zero-day FHVulns.

FP Analysis for JERRY. JERRY has reported 21 false
positive issues, all of which are related to read operation.
For example, we discovered instances where a program reads
file content without utilizing it or where the data is rendered
useless. For instance, the Azure CLI leverages the “knack”
package to load configuration settings, utilizing a bottom-up
search policy to locate the “.azure/config” file. This process
involves reading the contents of all identified files during
initialization. However, the configuration settings used can be
controlled by a parameter, making the content of the configura-
tion file useless. It is worth noting that some configuration files
may not be suitable for Windows systems due to the use of
Linux file paths, which may lead to hijacking. Additionally, it
is important to mention that certain configurations can only be
utilized in Linux systems (e.g., C:\etc\gcrypt\fips enabled).

Case Studies. We present two examples to demonstrate
how the user interface exploration and path inference features
of JERRY facilitate the detection of critical FHVulns.

Case-A. While testing Visual Studio, the UI Explorer of
JERRY initially clicks the button labeled as “Git” and opens a
menu list. Subsequently, from the menu list, the UI Explorer
selects the item labeled as “Open git in cmd”. Visual Studio
then searches for git.exe in CWD, which has weak permissions.
JERRY detects this file operation and places a malicious git.exe
in CWD. Moreover, it confirms that the malicious git.exe is
successfully loaded into Visual Studio. JERRY automatically
documents the detailed steps of the entire exploit process, as
well as the potential security impacts (i.e., arbitrary code ex-
ecution) for this vulnerability. We reported this FHVuln along
with the generated steps to MSRC and received confirmed
feedback quickly. Due to its severity, MSRC rewarded us with
$30,000.

Case-B. Gem [52] is a package manager of Ruby pro-
gramming language. While starting up, Gem attempts to access
a file or directory with the path C:\ProgramData\gemrc. As
the path does not exist, Gem stops to access the file or
directory and continues executing the rest of the code. During
testing, JERRY detected this behavior and attempted to create a
malicious file with the path C:\ProgramData\gemrc for Gem.
Gem was able to access the file and continued executing
the rest of the code. As the rest of the code includes a
reading operation, the malicious file was successfully loaded

9

TABLE II: Part of Real-world FHVulns Detected by JERRY
and Confirmed by Developers. The abbreviations Ins, Uni, Up, Rep,
SU and Us represent Installation, Uninstallation, Updating, Repairing, Starting
Up and Usage, respectively. The abbreviations PC, IL, RD, CT, MV and
DT represent Process Creation, Image Loading, Reading, Creating, Moving
and Deleting, respectively. The Symbol “⋆” indicates that the corresponding
software is pre-installed.

No. Software Name # Download Stage Operation Status

1 Adobe Reader DC 465,124,436 Ins CT Confirmed

2 Adobe Reader DC 465,124,436 Uni DT Confirmed

3 Chrome 97,544,900 Ins CT CVE-2023-2939

4 Chrome 97,544,900 Ins RD Fixed

5 Firefox 40,111,618 Uni DT CVE-2023-4052

6 JRE8 24,394,580 Ins CT Fixed

7 Visual Studio 10,670,579 Ins CT CVE-2023-21567

8 Visual Studio 10,670,579 Us PC Confirmed

9 Git for Windows 10,256,420 Ins PC CVE-2022-31012

10 Git for Windows 10,256,420 SU RD CVE-2022-24765

11 Git for Windows 10,256,420 Us PC CVE-2022-41953

12 Git for Windows 10,256,420 Us PC CVE-2023-23618

13 Git for Windows 10,256,420 SU PC CVE-2023-29012

14 Git for Windows 10,256,420 SU RD CVE-2023-29011

15 Openssh for Windows 5,884,392 SU RD CVE-2022-26558

16 Sysinternals 5,859,086 SU IL Confirmed

17 Nodejs 5,353,689 SU RD Confirmed

18 DellCommandUpdate 4,210,082 Ins DT CVE-2023-23698

19 DellCommandUpdate 4,210,082 Ins CT CVE-2023-28071

20 Visual Studio Code 4,172,599 Us PC CVE-2022-38020

21 Dotnet SDK 3,016,753 SU IL CVE-2023-28260

22 Dotnet SDK 3,016,753 Us IL CVE-2023-33126

23 Dotnet SDK 3,016,753 Us RD CVE-2023-33135

24 iTunes for Windows 2,382,592 SU IL CVE-2023-32351

25 Dropbox 2,290,276 Uni DT Confirmed

26 Azure Cli 1,197,993 SU IL Fixed

27 Gvim 1,897,408 Ins PC CVE-2022-37172

28 Php 1,665,675 Ins PC CVE-2022-45307

29 Azure pipeline agent 1,376,209 Ins PC CVE-2022-45306

30 Ruby 1,369,541 Ins PC CVE-2022-45301

31 Ruby 1,369,541 SU RD Fixed

32 StrawberryPerl 1,187,107 Ins PC CVE-2022-36564

33 Intel Software 1 945,347 Ins CT Fixed

34 Intel Software 1 945,347 Ins DT Fixed

35 VMWare Tools 819,878 SU RD CVE-2022-22977

36 VMWare Tools 819,878 SU DT Fixed

37 Msys2 683,078 Ins PC CVE-2022-37172

38 Bazel 314,066 SU RD Confirmed

39 MySQL 278,425 SU PC CVE-2022-39403

40 MySQL 278,425 SU RD CVE-2022-39402

41 MySQL 278,425 SU RD CVE-2022-39404

42 Github Cli 226,930 SU PC Fixed

43 ZeroTierOne 177,047 SU IL CVE-2022-1316

44 WPS Office 122,094 Ins IL Fixed

45 WPS Office 122,094 Ins IL Fixed

46 WPS Office 122,094 SU IL Fixed

47 Intel Software 2 ⋆ Ins CT Fixed

48 Intel Software 3 ⋆ Ins PC Fixed

49 Intel Software 4 ⋆ Ins PC Fixed

50 Intel Software 5 ⋆ SU IL Fixed

51 Dell Command Intel
vPro

⋆ Uni DT CVE-2023-23697

52 Dell Command Inte-
gration Suite

⋆ Uni DT CVE-2023-24572

53 Dell Command Moni-
tor

⋆ Uni DT CVE-2023-24573

54 Dell Command Moni-
tor

⋆ Uni DT CVE-2023-28049

TABLE III: Average Running Time (s) of JERRY-NoInfer
and JERRY. The columns Ins, Uni, Upd, Rep, and SU mean Installation,
Uninstallation, Updating, Repairing, and Starting Up, respectively.

Tool Ins Uni Upd Rep SU Usage

JERRY-NoInfer 8039.4 1417.6 3871.9 1206.9 556.17 33.8
JERRY 1128.1 414.2 893.5 254.7 115.5 15.8

by Gem. Since C:\ProgramData\gemrc contains a URL to the
central repositories, this FHVuln affects thousands of software
packages built with Ruby. In other words, attackers can hijack
links that lead to software package downloads. By redirecting
these links to repositories under their control, attackers can
plant malicious code in the software within the repositories.
This nefarious activity has the potential to cause significant
damage to the software supply chain.

However, all existing methods are unable to detect it as
they can only be performed on existing files.

D. Efficiency

In addition to the effectiveness of JERRY, another im-
portant evaluation metric is the time it takes to detect these
vulnerabilities. In this section, we evaluated the efficiency of
JERRY by performing an ablation study on all 489 software
programs from the benchmark and real world. In particular, we
considered JERRY-NoInfer, which does not use our proposed
path type inference and tested these paths which cannot decide
whether file or directory by our heuristics directly one by one.
Our experience shows that the strategies we used can increase
speed without reducing false positives.

The results of this evaluation are shown in TABLE III. As
we can see here, in terms of average running time, JERRY
achieved at least 2.14 faster in the usage stage and 7.13 faster
in the installation stage because there are only a few paths
that can be hijacked in the usage stage, but in the installation
stage, there are much more paths that can be hijacked than
other stages. Therefore, overall, JERRY significantly reduces
its running time while ensuring the same effect.

E. Responsible Disclosure

As demonstrated in Section II, FHVulns can lead to se-
vere consequences, such as arbitrary code execution, privilege
escalation, data loss, and open redirect attacks. In light of
these risks, we took the responsibility of disclosing all the 339
vulnerabilities we identified in 176 software programs with
a detailed report and Proof of Concept (PoC) to vendors of
the affected software. We reported 48 of these vulnerabilities
via third-party vulnerability coordination platforms, including
HackerOne [43], Bugcrowd [34], and Intigriti [46]. Further-
more, we reached out to 107 companies or organizations
to report 291 vulnerabilities through their dedicated email
addresses and forms for reporting security vulnerabilities.
As per responsible disclosure practices, we will not publicly
release any unfixed vulnerabilities until the developers address
them. It is worth noting that all vulnerabilities with detailed
information in our paper have been fixed by developers. At
present, 84 of the identified vulnerabilities have been either
confirmed or fixed, and 51 CVE identifiers have been assigned
to these issues.

10

30%

23%

32%

4%

6%
3%

2%
Weak Permission

Linux Path Search In Windows

Unquoted Path Search

Path Search Order

Symbol-Link Follow Search

Dynamic-Link Library Search

Bottom-up Search

(a) Origins

1%

30%
30%

17%

5%

17%

Process Creation

Image Loading

Reading

Creating

Moving

Deleting

1%

(b) File Operations

1%

60%

5%

31%

3%

0%

Installation

Uninstallation

Updating

Repairing

Starting Up

Usage

(c) Stages
Fig. 5: Distribution of new FHVulns on different origins, file operations, and stages.

VI. ANALYSIS OF NEW FHVULNS

To provide guidance for future studies on FHVulns, we
conducted an empirical analysis of the 339 newly detected
vulnerabilities to re-address RQ1 and RQ2.

A. Distribution of New FHVulns

Origin Distributions. Fig. 5(a) shows the distribution
of new FHVulns based on their origins. The chart clearly
indicates that weak permissions of existing files was the most
common origin of FHVulns, accounting for more than one-
third (32%) of all occurrences. Dynamically loaded libraries
was the second most frequent origin, accounting for 30% of the
FHVulns. The remaining 38% was distributed among several
other categories, including Linux paths on Windows (4%),
unquoted paths (3%), path search order (6%), and bottom-up
search (2%).

Operation Distributions. Fig. 5(b) illustrates the distri-
bution of various file operations. The chart shows the most
prevalent types of file operations are reading (30%) and
image loading (30%), followed by process creation (17%) and
creating (17%). On the other hand, deleting (5%) and moving
(1%) are the least frequent operations.

Stage Distributions. Fig. 5(c) presents the distribution of
various stages. The starting up stage accounts for the majority
of FHVulns, representing 60% of the total occurrences. The
installation stage follows with 31%, while the remaining
stages, namely usage, uninstallation, and updating, account for
only a minor fraction of 9%.

B. New Findings

Our investigation has yielded two noteworthy findings that
differ from the existing observations and can provide guidance
for future studies.

Finding 1: The bottom-up search strategy, a software-
tailored search strategy that led to eight new FHVulns in
fundamental software like Git and Dotnet SDK that had
gone unnoticed for 18 years, has not received extensive
research attention.

Observation 1 reveals that five search strategies account
for the majority (89.9%) of hijacked files, which also applies
to newly detected 223 FHVulns (65.8%). However, all five
strategies listed in the observation are built-in search strategies
of the operating systems. After investigating the newly detected

FHVulns, we found a new type of search strategy, the bottom-
up search strategy, which is software-tailored. The bottom-
up search strategy employs an iterative approach, starting
the search in the current working directory and progressively
navigating upwards towards parent directories. Unlike built-in
search strategies, this new type of strategy is OS-neutral and
also results in eight FHVulns in our real-world experiment
results. For instance, the vulnerability illustrated in Fig. 1
remained concealed in Git for 18 years, from the initial release
of Git. Another similar FHVuln, CVE-2023-33135 [75], was
found in Dotnet SDK [48], which is the core functionality
required to create Dotnet projects. Dotnet uses its own search
strategies to locate the .config directory from the CWD to
the root directory. When Dotnet is executed in a directory
without a Dotnet project, it will eventually locate C:\.config
, which can be hijacked by the attackers as C:\ is world-
writable. By controlling the configuration in C:\.config\dotnet
−tools.json, attackers can execute arbitrary code by making
Dotnet download malicious tools from websites.

Finding 2: Reading operations result in more FHVulns
than we studied (30.4% vs 7.1%), and they are more
dangerous than we think.

Observation 2 reveals that there are six types of sensitive
operations that can be exploited, which aligns with our findings
on new vulnerabilities. However, a notable difference exists
between existing and new FHVulns. Specifically, among exist-
ing FHVulns, only 7.1% of them involved reading operation,
with 89.5% (17/19) of these cases attributed to reading the
hijacked openssl.cnf file in the OpenSSL library. In contrast,
for new FHVulns, the percentage of reading operation is as
high as 30.4% (103/339), representing a significant increase.
Furthermore, the types of FHVulns involving reading operation
in new FHVulns are more diverse than those in existing ones.
Hijacking files with reading operation can lead to severe
consequences, including arbitrary code execution (as illustrated
in Fig. 1), URL redirection, and sensitive information dis-
closure. For example, CVE-2023-2939 identified by JERRY
enables attackers to hijack the settings.dat file, which contains
a URL that Chrome uses to transmit diagnostic information
to its servers. Attackers can replace the URL with their
own URL to obtain the diagnostic information. Thus, reading
operation poses greater risks than previously considered and
requires more attention in the future, as will be discussed in
Section VIII.

11

VII. DISCUSSIONS

It is actually incomplete on Windows: a malicious user can
create C:\.git !

— A Git developer commented on CVE-2022-24765

A. What is the reason for the higher number of FHVulns in
Windows compared to Unix-like systems?

We conducted a thorough analysis of FHVulns in Windows
and Unix-like systems (Linux and Mac) [56] and identified
two root causes based on the design principles that govern
these operating systems.

More Existing Directories with Weak Permissions. In
Unix-like system, only the /tmp directory is world-writable. Its
purpose is to accommodate data that is only required for a brief
period, such as temporary files generated by programs running
on the system. In Windows system, besides the directory C:\
Windows\Temp which is like /tmp, there are another two di-
rectories with weak permissions that lead to FHVulns, i.e., C:\
ProgramData and C:\ root directories. While C:\ProgramData
is designed to be used for storing shared program data and
configuration files, some software programs may mistakenly
store sensitive configuration files and executable files in this
directory. This can increase the risk of FHVulns occurring.
Moreover, the C:\ root directory has weak permissions due
to historical reasons [4], [82]. This has resulted in numerous
hijacking issues. When new folders are created in C:\, they
inherit the permissions of C:\ and become world-writable,
which further exacerbates security risks.

More Searched Directories with Weak Permissions.
Many search strategies, like bottom-up search strategy, path
search order, symbolic links and dynamically loaded libraries,
are applicable to both Unix-like systems and Windows sys-
tems. However, these strategies are associated with relatively
fewer FHVulns in Unix-like systems compared to Windows.
One reason for this is that in Windows, when searching
for executable files, the operating system looks in CWD as
well as in directories specified in the PATH environment
variable. In contrast, Unix-like systems limit their search to
directories listed in the PATH variable only [3]. In terms of
symbolic links, Windows has special directory links known as
junction points [27], which do not undergo strict permission
checks during creation. This feature is not present in Unix-
like systems. Additionally, Windows searches for dynamically
loaded libraries (DLLs) within the software program direc-
tory and the CWD, whereas Unix-like systems do not [21].
These differences mean that search-related vulnerabilities have
a larger attack surface in Windows compared to Unix-like
systems.

B. Why do FHVulns still widely exist?

While there have been efforts to identify FHVulns, they
continue to persist in real-world software. In fact, our research
identified 339 zero-day FHVulns in 438 popular software pro-
grams, including Git, Adobe, and Chrome. After conducting
a detailed analysis, we concluded that there are two main
categories of reasons contributing to the widespread existence
of these vulnerabilities.

Lack of Awareness. During the process of reporting and
fixing these vulnerabilities, we had in-depth discussions with

the developers and identified three main reasons why they
introduced FHVulns. Firstly, they were not aware of the
existence of FHVulns. Many of them only learned about
FHVulns for the first time through our reports. Interestingly,
some developers initially disagreed with the threat model we
proposed in Fig. 2, thinking that their software was only
for single-user, until they had deeper discussions with other
developers and realized that their software was for multi-
user. Secondly, developers lacked secure usage of APIs. The
operating system provides many secure API options for devel-
opers to use. For example, in the API LoadLibraryEx [47], the
parameter LOAD LIBRARY SEARCH can specify the search
priority to avoid malicious DLLs being loaded before the target
DLLs. However, in actual development, developers may not
deliberately use these parameters. Thirdly, developers lacked
security responsibility. During the discussion, we found that
some developers believed that files with weak permissions
were introduced due to users’ incorrect usage, and the software
itself did not need to strengthen its defenses.

Lack of Effective Tool. Due to the lack of systematic
research on FHVulns, existing tools have difficulty detecting
FHVulns comprehensively. Based on Observation 1, it can be
concluded that the majority of FHVulns are caused by five
search strategies, and the paths of the hijacked files are often
nonexistent. As a result, existing approaches are ineffective in
identifying these vulnerabilities, since they do not take into
account the search strategies and generate limited event traces
(Section III-B). Furthermore, these approaches have limited
scope, as they only focus on a subset of file operations, leading
to numerous FHVulns going undetected.

C. Who is responsible for the FHVulns?

The responsibility for the security of a file or directory with
weak permissions lies with the software developer in cases
where the software creates the file or directory. When such a
file or directory is created by the administrator (e.g., global
configure file for all users), the system administrator assumes
responsibility for its security. However, if a user provides
a potentially hijacked file or directory that is subsequently
used by the software, the party responsible for its security
is unclear. Through deep discussions with developers, most
of them tend to rely on providing warnings to users when
there is a risk with the current file or directory. However,
some developers believe that merely warning users without
taking measures to prevent or limit potential risks may be
viewed as irresponsible. Developers should, therefore, consider
implementing protective measures in the software. For exam-
ple, to address CVE-2022-24765, Git now requires users to
whitelist trusted files and directories with weak permissions.
However, such defenses may be inconvenient for some users,
limiting their ability to use the software. After fixing CVE-
2022-24765, many users complained on social media platforms
about Git’s whitelist mechanism. Therefore, developers must
strike a balance between protecting user safety and experience
to provide secure and accessible software products. Moreover,
it is recommended that developers of the Windows operating
system revisit the system design to address the issue of
FHVulns at the root level. However, it may be not realistic
since the new design of the operating system has introduced
challenges for backward compatibility.

12

VIII. LIMITATION AND FUTURE WORK

It’s probably much more effective to make certain git config
variables require that the user that runs the command also
owns the file.

— Linus Torvalds commented on CVE-2022-24765

In this section, we discuss limitation, possible improve-
ments for JERRY and suggestions for defending against
FHVulns based on our observations (Section II), new findings
(Section VI-B) and the discussions (Section VII).

A. What are the limitations of JERRY?

As mentioned in Section III-C, JERRY detects FHVuln
when both hijacking and sensitive operations are satisfied.
However, FHVulns related to read operation can lead to
false positives, necessitating supplementary manual analysis
to accurately evaluate the impact. This represents a major
limitation of the JERRY framework. In addition, JERRY uti-
lizes chocolatey to automate the installation, uninstallation, and
updating stage of software. When testing software not hosted
on the Chocolatey website, it is necessary to implement a
corresponding local script. In the usage stage, JERRY only
supports simple user interactions, which may lead to false
negatives.

B. Where can we make improvements to JERRY?

Mitigating False Positives and False Negatives. To im-
prove the effectiveness of JERRY, we can employ several
strategies to reduce both false positives and false negatives.
First, for FHVulns that involve reading operations, JERRY does
not consider the specific way in which the hijacked file content
is used by the software, leading to 21 false positives. For
example, JERRY reported a false positive for the libgcrypt
library [69], which attempts to read the configuration file at C:\
etc\gcrypt\fips enabled on Windows. However, the configura-
tion in this file is only used in libgcrypt for Linux [68]. In other
words, even if the content of C:\etc\gcrypt\fips enabled is
read, it is not used by libgcrypt for Windows and therefore does
not pose any security impacts. Therefore, we may combine
taint analysis [63], [90] and program understanding [78], [87]
techniques to figure out where the file content propagates.

In addition, we can employ static analysis techniques [64],
[91] to detect more FHVulns by identifying potential vul-
nerabilities. It is challenging to trigger certain components
of software that contain FHVulns through dynamic testing.
Hence, static analysis can be utilized to identify suspected
FHVulns along with the trigger conditions, which can guide
JERRY to trigger these vulnerabilities. Furthermore, we found
that some FHVulns (e.g., CVE-2020-26284) can only be
triggered via specific user-provided contents. To address this
issue, mutation-based techniques [61], [79] can be employed
to generate diverse contents.

More Attack Vectors. In addition to files, other resources
such as registries and named pipes can also breach security
boundaries. For example, a study found that two service
registry keys with weak permissions were present on Windows
7, and can enable attackers to obtain SYSTEM privilege by
modifying their value [32]. Additionally, hijacked named pipes
can also be used for privilege escalation [33]. Therefore,

further exploration of resource objects for hijacking is worth
considering. Moreover, some FHVulns can exist in multiple
operating systems simultaneously. For example, software can
be designed with system-independent search strategies (e.g.,
bottom-up search strategy in Finding 1), which can be the
origins of FHVulns.

C. How to defend against and mitigate FHVulns?

After reporting the new FHVulns to developers, we en-
gaged in many discussions with them about how to fix and
mitigate FHVulns. We conducted an extensive analysis and
summary of these discussions to provide software developers,
system administrators, and users with effective recommenda-
tions for defending against FHVulns.

Suggestions for Software Developers. To address
FHVulns, software developers should avoid using paths with
weak permissions (Requirement 1) and verify the status of files
before using them (Requirement 2). To block Requirement 1,
❶ Avoiding using Built-in directories with weak permissions.
Software developers should either place sensitive files to paths
with strict permissions (i.e., C:\Program Files) or public paths
(i.e., C:\ProgramData) while actively setting right permissions
for sensitive files. For example, most public configuration files,
such as system config of rubygem, are placed in public paths
such as C:\ProgramData, to ensure that all users can assess and
share them. Therefore, during the installation, software should
create a new configuration file and assign high-level permis-
sions to it. ❷ Correcting API Usages. It is necessary to read the
API document carefully to ensure that they correctly use the
API and its parameters. Our study revealed that the majority
of FHVulns arising from the dynamic loaded libraries search
strategy can be attributed to the CWD. Consequently, it is rec-
ommended that developers employ LoadLibraryEx instead of
LoadLibraryA and manage the search strategy by configuring
the LOAD LIBRARY SEARCH flag to prevent including CWD
in the search paths. [41] Moreover, when performing sensitive
actions like creating or deleting files, it is crucial to proactively
set relevant parameters to prevent symbolic link resolution
issue [58]. Specifically, the function CreateFileA requires the
FILE FLAG OPEN REPARSE POINT parameter, as stated in
the document [74]. ❸ Design software-tailored search strate-
gies cautiously. Based on Finding 1, it is evident that software-
tailored search strategies may lead to various FHVulns. Thus,
developers need to design search strategies with caution, taking
into account multiple user scenarios. To block Requirement 2,
❹ Checking file status before use. Developers ought to verify
whether sensitive files have been hijacked by checking their
ownership. If the file’s owner differs from that of the user,
the software should either terminate its operation or prompt
users to confirm whether they wish to proceed with potentially
“hijacked” sensitive files.

Suggestions for System Administrators. It was observed
that approximately 23 software programs in our real-world ex-
periments were installed in directories with weak permission,
and only four of them set an appropriate permissions to files. ❶
As a result, software developers should consider changing their
software’s default installation directory (the first suggestion
for software developers), and system administrators can ensure
double security by employing the custom installation mode and
installing the software in a directory with high permissions.

13

Additionally, we found that various direct subdirectories of
the root directory C:\, which were not initially present in
the system, were vulnerable to hijacking due to the exces-
sively permissive permission settings of the Windows OS
during initialization. ❷ Therefore, it is advisable for system
administrators to remove the write permission of Authenticated
Users [29] group from the C:\ directory. This action can
significantly decrease the likelihood of path hijacking, while
having minimal side effects. (Requirement 1)

Suggestions for Software Users. Besides, it is crucial for
software users to be aware of security risks and follow safe
practices when using software. Particularly, users should avoid
launching software program in paths with weak permissions,
such as C:\ProgramData\. (Requirement 1) Additionally, be-
fore using software in publicly writable paths, users need to
check for any suspicious files. (Requirement 2) For instance,
when using software downloaded from the internet in publicly
writable paths, users ought to verify its integrity by checking
the checksum.

IX. RELATED WORK

A. File-related Vulnerability Detection

Static Analysis. To detect file-related vulnerabilities, var-
ious static analysis techniques have been proposed. Some
techniques [62], [70], [76] focused on identifying weak permis-
sions in the Windows system by scanning permission metadata.
PrivescCheck [49] statically scanned the permission metadata
in Windows and report potential file-related vulnerabilities.
Bauer et al. [59] employed association rule mining techniques
to detect access control misconfiguration, while Parkinson et
al. [77] utilized rule mining methods to identify incorrect
permission configurations. Shaikh et al. [81] proposed a deci-
sion tree and data classification-based approach for detecting
incomplete and inconsistent (allow or deny) policies in access
control datasets. These methods analyzed the permissions of
existing files statically to identify file-related vulnerabilities.
In the context of FHVulns, these techniques can only detect
the FHVulns with the first origin, neglecting the majority of
the FHVulns (Observation 1).

Dynamic Analysis. Many approaches employed dynamic
techniques to detect file-related vulnerabilities. Spartacus [53]
analyzed the traces recorded by ProcMon [50] to detect DLL
hijacking or binary hijacking. Crassus [36] considered the per-
missions of the path when detecting file-related vulnerabilities.
Researchers also focused on finding file-related vulnerabilities
caused by symbolic link automatically by triggering APIs pro-
vided by Windows service [10]. Vetle [86] utilized ProcMon
to monitor file system events with “NOT FOUND” result, and
verified file hijacking vulnerabilities through manual testing.
Similarly, LPET [72] designed a dynamic file system event
monitor to detect temporary directories with weak permissions
during the software installation, updating, and uninstallation
stage. In the context of FHVulns, these techniques are like
the FHVuln detector module in JERRY. They may miss out
on some sensitive operations (Observation 2). Moreover, most
of them lack the ability to generate the event traces during
different software lifecycle stages (Observation 3).

B. File-related Vulnerability Exploitation

Several researchers have focused on exploiting DLL hi-
jacking vulnerabilities while minimizing the impact on the
normal functioning of software programs. As a promising
approach, they have proposed DLL proxying attacks [12],
[22]. Numerous studies have been conducted on security issues
caused by symbolic links [1], [5]–[8], [58], [92]. Some of
the researchers [9] used symbolic link testing tools [2] to dig
into these vulnerabilities and investigated how symbolic links
can be used to execute arbitrary code [92]. Basu et al. [58]
discovered that on case-insensitive systems, symbolic links can
lead to problems such as content overwriting and permission
modification. These approaches can be combined with JERRY
to amplify the security impacts of detected FHVulns.

C. General Hijacking Studies

Researchers have explored various types of hijacking be-
yond file hijacking. For instance, hijacking named pipes on
Windows can result in privilege escalation, and a tool called
PipeViewer [30] has been developed to identify such vulnera-
bilities. Account hijacking has also been studied comprehen-
sively by researchers like Avinash Sudhodanan et al. [85]. In
web security, session hijacking [60], [66] and cookie hijack-
ing [67], [83], [84] are common types of hijacking incidents.
Additionally, techniques like control flow hijacking [51], [88]
and data flow hijacking [71] are often used to exploit memory
corruption vulnerabilities. However, our research specifically
focuses on file hijacking, which can lead to a breach of
security boundaries in operating systems. This type of attack
can compromise software security and allow attackers to gain
elevated privileges, execute arbitrary code, and so on, making
it critical to understand file hijacking.

X. CONCLUSION

This paper presents the first empirical investigation of
FHVulns. The study observations inspired us to create a dy-
namic analysis tool, known as JERRY, for detecting FHVulns.
To date, JERRY has identified 339 zero-day FHVulns in 438
real-world software programs. We have taken full responsi-
bility for disclosing all of the zero-day FHVulns, of which 84
have been either confirmed or resolved, with 51 being assigned
CVE identifiers. Moreover, our findings on the existing and
newly detected vulnerabilities can further help to guide future
work on detecting and fixing FHVulns.

ACKNOWLEDGMENT

The authors would like to express their gratitude to the
anonymous reviewers for their helpful feedback on an earlier
version of this paper. This work is partly supported by National
Key R&D Program of China under Grant #2022YFB3103900,
Strategic Priority Research Program of the CAS under Grant
#XDCO2030200 and Chinese National Natural Science Foun-
dation (Grants #62032010, #62202462).

REFERENCES

[1] “A link to the past - abusing symbolic links on windows,”
https://infocon.org/cons/SyScan/SyScan%202015%20Singapore/
SyScan%202015%20Singapore%20presentations/SyScan15%
20James%20Forshaw%20-%20A%20Link%20to%20the%20Past.pdf,
15.

14

https://infocon.org/cons/SyScan/SyScan%202015%20Singapore/SyScan%202015%20Singapore%20presentations/SyScan15%20James%20Forshaw%20-%20A%20Link%20to%20the%20Past.pdf
https://infocon.org/cons/SyScan/SyScan%202015%20Singapore/SyScan%202015%20Singapore%20presentations/SyScan15%20James%20Forshaw%20-%20A%20Link%20to%20the%20Past.pdf
https://infocon.org/cons/SyScan/SyScan%202015%20Singapore/SyScan%202015%20Singapore%20presentations/SyScan15%20James%20Forshaw%20-%20A%20Link%20to%20the%20Past.pdf

[2] “Symoliclink testing tools,” https://github.com/googleprojectzero/
symboliclink-testing-tools, 15.

[3] “How does unix search for executable files,” https://superuser.com/
questions/238987/how-does-unix-search-for-executable-files, 2010.

[4] “Windows 7 Special Directories (Folders),” https://wiki.carleton.edu/
pages/viewpage.action?pageId=9961710, 2011.

[5] “Between a Rock and a Hard Link,” https://
googleprojectzero.blogspot.com/2015/12/between-rock-and-hard-
link.html, 2015.

[6] “Windows 10 Symbolic Link Mitigations,” https://
googleprojectzero.blogspot.com/2015/08/windows-10hh-symbolic-
link-mitigations.html, 2015.

[7] “Windows Exploitation Tricks: Arbitrary Directory Creation to Ar-
bitrary File Read,” https://googleprojectzero.blogspot.com/2017/08/
windows-exploitation-tricks-arbitrary.html, 2017.

[8] “Windows exploitation tricks: Exploiting arbitrary file writes for local
elevation of privilege,” https://googleprojectzero.blogspot.com/2018/04/
windows-exploitation-tricks-exploiting.html, 2018.

[9] “Abusing privileged file operations,” https://troopers.de/
downloads/troopers19/TROOPERS19 AD Abusing privileged file
operations.pdf, 2019.

[10] “Battle Of Windows Service:A Silver Bullet To Discover File Privilege
Escalation Bugs Automatically,” https://i.blackhat.com/USA-19/
Wednesday/us-19-Wu-Battle-Of-Windows-Service-A-Silver-Bullet-
To-Discover-File-Privilege-Escalation-Bugs-Automatically.pdf, 2019.

[11] “CVE-2019-5443,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-5443/, 2019.

[12] “Windows Privilege Escalation - DLL Proxying,” https:
//itm4n.github.io/dll-proxying/, 2019.

[13] “CVE-2020-13542,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-13542/, 2020.

[14] “CVE-2020-13884,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-13884/, 2020.

[15] “CVE-2020-26284,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-26284, 2020.

[16] “CVE-2020-27955,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-27955/, 2020.

[17] “CVE-2020-36167,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
2020-36167, 2020.

[18] “CVE-2020-8224,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-8224/, 2020.

[19] “GitHub CLI can execute a git binary from the current directory,” https:
//github.com/cli/cli/security/advisories/GHSA-fqfh-778m-2v32/, 2020.

[20] “CVE-2021-0057,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
2021-0057, 2021.

[21] “ld.so(8) — Linux manual page,” https://man7.org/linux/man-pages/
man8/ld.so.8.html/, 2021.

[22] “SuperDllHijack,” https://github.com/anhkgg/SuperDllHijack/, 2021.
[23] “Windows security servicing criteria,” https://www.microsoft.com/en-

us/msrc/windows-security-servicing-criteria, 2021.
[24] “Writing Preoperation and Postoperation Callback Routines,”

https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/
writing-preoperation-and-postoperation-callback-routines/, 2021.

[25] “IRP MJ CREATE,” https://learn.microsoft.com/en-us/windows-
hardware/drivers/kernel/irp-mj-create, 2022.

[26] “IRP MJ READ,” https://learn.microsoft.com/en-us/windows-
hardware/drivers/ifs/irp-mj-read, 2022.

[27] “Junction Point,” https://learn.microsoft.com/en-us/sysinternals/
downloads/junction, 2022.

[28] “Samsung Kies,” https://www.samsung.com/cn/support/kies/, 2022.
[29] “Understand special identities groups,” https://learn.microsoft.com/

en-us/windows-server/identity/ad-ds/manage/understand-special-
identities-groups/, 2022.

[30] “A tool that shows detailed information about named pipes in Win-
dows,” https://github.com/cyberark/PipeViewer/, 2023.

[31] “Access Control List,” https://learn.microsoft.com/en-us/windows/
win32/secauthz/access-control-lists, 2023.

[32] “An Unconventional Exploit for the RpcEptMapper Registry Key
Vulnerability,” https://itm4n.github.io/windows-registry-rpceptmapper-
exploit/, 2023.

[33] “Breaking Docker Named Pipes SYSTEMatically: Docker Desktop
Privilege Escalation,” https://www.cyberark.com/resources/threat-
research-blog/breaking-docker-named-pipes-systematically-docker-
desktop-privilege-escalation-part-1, 2023.

[34] “Bugcrowd,” https://bugcrowd.com/, 2023.

[35] “Common Vulnerabilities and Exposures,” https://cve.mitre.org/, 2023.

[36] “Crassus Windows privilege escalation discovery tool,” https://
github.com/vu-ls/Crassus/, 2023.

[37] “CVE-2022-25969,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
2022-25969, 2023.

[38] “CVE-2022-26319,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
2022-26319, 2023.

[39] “CVE-2022-39845,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
2022-39845, 2023.

[40] “CVSS,” https://nvd.nist.gov/vuln-metrics/cvss, 2023.

[41] “Dynamic link library search order,” https://learn.microsoft.com/en-us/
windows/win32/dlls/dynamic-link-library-search-order/, 2023.

[42] “githooks - Hooks used by Git,” https://git-scm.com/docs/githooks,
2023.

[43] “HackerOne,” https://hackerone.com/, 2023.

[44] “Hijack Execution Flow: DLL Search Order Hijacking,” https://
attack.mitre.org/techniques/T1574/001/, 2023.

[45] “Hijack Execution Flow: Path Interception by Search Order Hijacking,”
https://attack.mitre.org/techniques/T1574/008/, 2023.

[46] “Intigriti,” https://www.intigriti.com/, 2023.

[47] “LoadLibraryEx,” https://learn.microsoft.com/en-us/windows/win32/
api/libloaderapi/nf-libloaderapi-loadlibraryexa, 2023.

[48] “.NET is the free, open-source, cross-platform framework for
building modern apps and powerful cloud services.” https://
dotnet.microsoft.com/en-us/, 2023.

[49] “PrivescCheck- Privilege Escalation Enumeration Script for Windows,”
https://github.com/itm4n/PrivescCheck, 2023.

[50] “Process Monitor,” https://learn.microsoft.com/en-us/sysinternals/
downloads/procmon, 2023.

[51] “Return Oriented Programming,” https://en.wikipedia.org/wiki/Return-
oriented programming/, 2023.

[52] “RubyGems,” https://rubygems.org/, 2023.

[53] “Spartacus,” https://github.com/Accenture/Spartacus, 2023.

[54] “Symbolic link,” https://en.wikipedia.org/wiki/Symbolic link, 2023.

[55] “The website of Jerry,” https://sites.google.com/view/iamjerry, 2023.

[56] “Unix like,” https://en.wikipedia.org/wiki/Unix-like, 2023.

[57] “Windows Installer,” https://learn.microsoft.com/en-us/windows/win32/
msi/windows-installer-portal, 2023.

[58] A. Basu, J. Sampson, Z. Qian, and T. Jaeger, “Unsafe at any copy: Name
collisions from mixing case sensitivities,” in 21st USENIX Conference
on File and Storage Technologies (FAST 23), 2023, pp. 183–198.

[59] L. Bauer, S. Garriss, and M. K. Reiter, “Detecting and resolving policy
misconfigurations in access-control systems,” ACM Transactions on
Information and System Security (TISSEC), vol. 14, no. 1, pp. 1–28,
2011.

[60] M. Bugliesi, S. Calzavara, R. Focardi, and W. Khan, “Cookiext:
Patching the browser against session hijacking attacks,” Journal of
Computer Security, vol. 23, no. 4, pp. 509–537, 2015.

[61] S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive mutational
fuzzing,” 2015 IEEE Symposium on Security and Privacy, pp. 725–741,
2015.

[62] H. Chen, N. Li, C. S. Gates, and Z. Mao, “Towards analyzing complex
operating system access control configurations,” in Proceedings of the
15th ACM symposium on Access control models and technologies, 2010,
pp. 13–22.

[63] L. Chen, Y. Wang, Q. Cai, Y. Zhan, H. Hu, J. Linghu, Q. Hou, C. Zhang,
H. Duan, and Z. Xue, “Sharing more and checking less: Leveraging

15

https://github.com/googleprojectzero/symboliclink-testing-tools
https://github.com/googleprojectzero/symboliclink-testing-tools
https://superuser.com/questions/238987/how-does-unix-search-for-executable-files
https://superuser.com/questions/238987/how-does-unix-search-for-executable-files
https://wiki.carleton.edu/pages/viewpage.action?pageId=9961710
https://wiki.carleton.edu/pages/viewpage.action?pageId=9961710
https://googleprojectzero.blogspot.com/2015/12/between-rock-and-hard-link.html
https://googleprojectzero.blogspot.com/2015/12/between-rock-and-hard-link.html
https://googleprojectzero.blogspot.com/2015/12/between-rock-and-hard-link.html
https://googleprojectzero.blogspot.com/2015/08/windows-10hh-symbolic-link-mitigations.html
https://googleprojectzero.blogspot.com/2015/08/windows-10hh-symbolic-link-mitigations.html
https://googleprojectzero.blogspot.com/2015/08/windows-10hh-symbolic-link-mitigations.html
https://googleprojectzero.blogspot.com/2017/08/windows-exploitation-tricks-arbitrary.html
https://googleprojectzero.blogspot.com/2017/08/windows-exploitation-tricks-arbitrary.html
https://googleprojectzero.blogspot.com/2018/04/windows-exploitation-tricks-exploiting.html
https://googleprojectzero.blogspot.com/2018/04/windows-exploitation-tricks-exploiting.html
https://troopers.de/downloads/troopers19/TROOPERS19_AD_Abusing_privileged_file_operations.pdf
https://troopers.de/downloads/troopers19/TROOPERS19_AD_Abusing_privileged_file_operations.pdf
https://troopers.de/downloads/troopers19/TROOPERS19_AD_Abusing_privileged_file_operations.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Wu-Battle-Of-Windows-Service-A-Silver-Bullet-To-Discover-File-Privilege-Escalation-Bugs-Automatically.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Wu-Battle-Of-Windows-Service-A-Silver-Bullet-To-Discover-File-Privilege-Escalation-Bugs-Automatically.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Wu-Battle-Of-Windows-Service-A-Silver-Bullet-To-Discover-File-Privilege-Escalation-Bugs-Automatically.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5443/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5443/
https://itm4n.github.io/dll-proxying/
https://itm4n.github.io/dll-proxying/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13542/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13542/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13884/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13884/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26284
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26284
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27955/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27955/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-36167
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-36167
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8224/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8224/
https://github.com/cli/cli/security/advisories/GHSA-fqfh-778m-2v32/
https://github.com/cli/cli/security/advisories/GHSA-fqfh-778m-2v32/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-0057
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-0057
https://man7.org/linux/man-pages/man8/ld.so.8.html/
https://man7.org/linux/man-pages/man8/ld.so.8.html/
https://github.com/anhkgg/SuperDllHijack/
https://www.microsoft.com/en-us/msrc/windows-security-servicing-criteria
https://www.microsoft.com/en-us/msrc/windows-security-servicing-criteria
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/writing-preoperation-and-postoperation-callback-routines/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/writing-preoperation-and-postoperation-callback-routines/
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-create
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-create
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/irp-mj-read
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/irp-mj-read
https://learn.microsoft.com/en-us/sysinternals/downloads/junction
https://learn.microsoft.com/en-us/sysinternals/downloads/junction
https://www.samsung.com/cn/support/kies/
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-special-identities-groups/
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-special-identities-groups/
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-special-identities-groups/
https://github.com/cyberark/PipeViewer/
https://learn.microsoft.com/en-us/windows/win32/secauthz/access-control-lists
https://learn.microsoft.com/en-us/windows/win32/secauthz/access-control-lists
https://itm4n.github.io/windows-registry-rpceptmapper-exploit/
https://itm4n.github.io/windows-registry-rpceptmapper-exploit/
https://www.cyberark.com/resources/threat-research-blog/breaking-docker-named-pipes-systematically-docker-desktop-privilege-escalation-part-1
https://www.cyberark.com/resources/threat-research-blog/breaking-docker-named-pipes-systematically-docker-desktop-privilege-escalation-part-1
https://www.cyberark.com/resources/threat-research-blog/breaking-docker-named-pipes-systematically-docker-desktop-privilege-escalation-part-1
https://bugcrowd.com/
https://cve.mitre.org/
https://github.com/vu-ls/Crassus/
https://github.com/vu-ls/Crassus/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2022-25969
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2022-25969
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2022-26319
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2022-26319
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2022-39845
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2022-39845
https://nvd.nist.gov/vuln-metrics/cvss
https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order/
https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order/
https://git-scm.com/docs/githooks
https://hackerone.com/
https://attack.mitre.org/techniques/T1574/001/
https://attack.mitre.org/techniques/T1574/001/
https://attack.mitre.org/techniques/T1574/008/
https://www.intigriti.com/
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexa
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexa
https://dotnet.microsoft.com/en-us/
https://dotnet.microsoft.com/en-us/
https://github.com/itm4n/PrivescCheck
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://en.wikipedia.org/wiki/Return-oriented_programming/
https://en.wikipedia.org/wiki/Return-oriented_programming/
https://rubygems.org/
https://github.com/Accenture/Spartacus
https://en.wikipedia.org/wiki/Symbolic_link
https://sites.google.com/view/iamjerry
https://en.wikipedia.org/wiki/Unix-like
https://learn.microsoft.com/en-us/windows/win32/msi/windows-installer-portal
https://learn.microsoft.com/en-us/windows/win32/msi/windows-installer-portal

common input keywords to detect bugs in embedded systems,” in
USENIX Security Symposium, 2021.

[64] Q. A. Chen, Z. Qian, Y. Jia, Y. Shao, and Z. M. Mao, “Static detection
of packet injection vulnerabilities: A case for identifying attacker-
controlled implicit information leaks,” Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, 2015.

[65] Chocolatey Community, “Chocolatey Package,” https:
//community.chocolatey.org/packages, 2023.

[66] K. Drakonakis, S. Ioannidis, and J. Polakis, “The cookie hunter:
Automated black-box auditing for web authentication and authorization
flaws,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020, pp. 1953–1970.

[67] M. Ghasemisharif, A. Ramesh, S. Checkoway, C. Kanich, and J. Polakis,
“O single sign-off, where art thou? an empirical analysis of single sign-
on account hijacking and session management on the web.” in USENIX
Security Symposium, 2018, pp. 1475–1492.

[68] Gnupg, “Gnupg,” https://www.gnupg.org/documentation/manuals/
gcrypt/Configuration.html, 2023.

[69] Google, “Crashpad,” https://chromium.googlesource.com/crashpad/
crashpad, 2023.

[70] S. Govindavajhala and A. W. Appel, “Windows access control demys-
tified,” Princeton university, 2006.

[71] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic gen-
eration of data-oriented exploits,” in 24th USENIX Security Symposium
(USENIX Security 15), 2015, pp. 177–192.

[72] C. Huang, X. Han, and G. Yu, “LPET–mining MS-windows software
privilege escalation vulnerabilities by monitoring interactive behavior,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 2089–2091.

[73] MSDN, “Minifilter Framework,” https://learn.microsoft.com/en-us/
windows-hardware/drivers/ifs/filter-manager-concepts, 2021.

[74] MSDN, “CreateFileA,” https://learn.microsoft.com/en-us/windows/
win32/api/fileapi/nf-fileapi-createfilea, 2023.

[75] msrc, “CVE-2023-33135,” https://msrc.microsoft.com/update-guide/
vulnerability/CVE-2023-33135, 2023.

[76] P. Naldurg, S. Schwoon, S. Rajamani, and J. Lambert, “Netra: seeing
through access control,” in Proceedings of the fourth ACM workshop
on Formal methods in security, 2006, pp. 55–66.

[77] S. Parkinson, V. Somaraki, and R. Ward, “Auditing file system permis-
sions using association rule mining,” Expert Systems with Applications,
vol. 55, pp. 274–283, 2016.

[78] J. Patrick-Evans, M. Dannehl, and J. Kinder, “Xfl: Naming functions
in binaries with extreme multi-label learning,” 2021.

[79] H. Peng, Z. Yao, A. A. Sani, D. J. Tian, and M. Payer, “Gleefuzz:
Fuzzing webgl through error message guided mutation,” USENIX Se-
curity’23, 2023.

[80] C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Transactions on software engineering, vol. 25, no. 4,
pp. 557–572, 1999.

[81] R. A. Shaikh, K. Adi, and L. Logrippo, “A data classification method
for inconsistency and incompleteness detection in access control policy
sets,” International Journal of Information Security, vol. 16, pp. 91–
113, 2017.

[82] C. Siechert and E. Bott, Microsoft Windows XP inside out. Microsoft
Press, 2002.

[83] S. Sivakorn, A. D. Keromytis, and J. Polakis, “That’s the way the cookie
crumbles: Evaluating https enforcing mechanisms,” in Proceedings of
the 2016 ACM on Workshop on Privacy in the Electronic Society, 2016,
pp. 71–81.

[84] S. Sivakorn, I. Polakis, and A. D. Keromytis, “The cracked cookie jar:
Http cookie hijacking and the exposure of private information,” in 2016
IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp. 724–
742.

[85] A. Sudhodanan and A. Paverd, “Pre-hijacked accounts: An empirical
study of security failures in user account creation on the web,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 1795–
1812.

[86] Vetle, “Finding privesc with procmon,” https://bordplate.no/
presentations/finding privesc with procmon.pdf, 2019.

[87] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understand-
ing and generation,” ArXiv, vol. abs/2109.00859, 2021.

[88] W. Wu, Y. Chen, X. Xing, and W. Zou, “Kepler: Facilitating control-
flow hijacking primitive evaluation for linux kernel vulnerabilities.” in
USENIX Security Symposium, 2019, pp. 1187–1204.

[89] yinkaisheng, “UIAutomation,” https://github.com/yinkaisheng/Python-
UIAutomation-for-Windows, 2023.

[90] X. Zhang, X. Wang, R. Slavin, and J. Niu, “Condysta: Context-aware
dynamic supplement to static taint analysis,” 2021 IEEE Symposium on
Security and Privacy (SP), pp. 796–812, 2021.

[91] Y. Zheng and X. Zhang, “Path sensitive static analysis of web appli-
cations for remote code execution vulnerability detection,” 2013 35th
International Conference on Software Engineering (ICSE), pp. 652–661,
2013.

[92] S. Zuckerbraun, “Abusing arbitrary file deletes to escalate privilege and
other great tricks,” https://www.thezdi.com/blog/2022/3/16/abusing-
arbitrary-file-deletes-to-escalate-privilege-and-other-great-tricks, 22.

APPENDIX

In this appendix, we list detailed evaluation results on
known vulnerabilities in TABLE A1, including CVE-ID, af-
fected software, stage, operation, and results of PrivescCheck,
JERRY-Crassus, and our tool JERRY.

16

https://community.chocolatey.org/packages
https://community.chocolatey.org/packages
https://www.gnupg.org/documentation/manuals/gcrypt/Configuration.html
https://www.gnupg.org/documentation/manuals/gcrypt/Configuration.html
https://chromium.googlesource.com/crashpad/crashpad
https://chromium.googlesource.com/crashpad/crashpad
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts
https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2023-33135
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2023-33135
https://bordplate.no/presentations/finding_privesc_with_procmon.pdf
https://bordplate.no/presentations/finding_privesc_with_procmon.pdf
https://github.com/yinkaisheng/Python-UIAutomation-for-Windows
https://github.com/yinkaisheng/Python-UIAutomation-for-Windows
https://www.thezdi.com/blog/2022/3/16/abusing-arbitrary-file-deletes-to-escalate-privilege-and-other-great-tricks
https://www.thezdi.com/blog/2022/3/16/abusing-arbitrary-file-deletes-to-escalate-privilege-and-other-great-tricks

TABLE A1: The Detailed Evaluation Results on Known Vulnerabilities. The abbreviations Ins, Uni, Up, Rep, SU and Us
represent Installation, Uninstallation, Updating, Repairing, Starting Up and Usage, respectively. The abbreviations PC, IL, RD,
CT, MV and DT represent Process Creation, Image Loading, Reading, Creating, Moving and Deleting, respectively.

No. CVE ID Affected Software Stage Operation PrivescCheck JERRY-Crassus JERRY

1 CVE-2022-41604 ZoneAlarm Ins MV ✓

2 CVE-2022-39845 Samsung Kies Uni DT ✓

3 CVE-2022-39286 Jupyter Core Us PC ✓ ✓

4 CVE-2022-38611 Watchdog Anti-Virus SU IL ✓ ✓ ✓

5 CVE-2022-36415 Scooter Beyond Compare Uni IL ✓ ✓

6 CVE-2022-35861 pyenv Us RD ✓

7 CVE-2022-29320 MiniTool Partition Wizard SU PC ✓ ✓ ✓

8 CVE-2022-28964 Avast Premium Security Us CT ✓

9 CVE-2022-27535 Kaspersky VPN Us DT ✓

10 CVE-2022-27094 Sony PlayMemories Home SU PC ✓ ✓ ✓

11 CVE-2022-24826 git-lfs Us PC ✓ ✓

12 CVE-2022-24767 Git for Windows Uni IL ✓ ✓

13 CVE-2021-46368 TRIGONE Remote System Monitor SU PC ✓ ✓ ✓

14 CVE-2021-45975 Acer Care Center Up IL ✓ ✓ ✓

15 CVE-2021-43463 Ext2Fsd SU PC ✓ ✓ ✓

16 CVE-2021-43460 System Explorer SU PC ✓ ✓ ✓

17 CVE-2021-43455 FreeLAN SU PC ✓ ✓ ✓

18 CVE-2021-43454 AnyTEXT Seacher SU PC ✓ ✓ ✓

19 CVE-2021-42923 ShowMyPC SU IL ✓ ✓

20 CVE-2021-38570 Foxit Readinger Uni DT ✓

21 CVE-2021-37363 Gestionale Open Ins PC ✓ ✓ ✓

22 CVE-2021-36753 Sharkrdp bat Us PC ✓ ✓ ✓

23 CVE-2021-3606 OpenVPN SU RD ✓ ✓ ✓

24 CVE-2021-31847 McAfee Agent Rep IL ✓ ✓

25 CVE-2021-30490 ViewPower Ins PC ✓ ✓ ✓

26 CVE-2021-28098 Forescout CounterACT SU CT ✓

27 CVE-2021-22000 VMware Thinapp SU IL ✓ ✓

28 CVE-2020-9442 OpenVPN Connect client SU IL ✓ ✓

29 CVE-2020-8224 Nextcloud Desktop Client SU RD ✓ ✓

30 CVE-2020-6654 Eaton’s 9000x Programming
and Configuration Software Ins IL ✓ ✓ ✓

31 CVE-2020-5992 NVIDIA GeForce NOW SU RD ✓ ✓

32 CVE-2020-5977 NVIDIA GeForce Experience SU RD ✓

33 CVE-2020-27643 1E Client Us CT ✓

34 CVE-2020-26941 NOD32 Antivirus ESET Ins CT ✓

35 CVE-2020-26538 Foxit Readinger SU PC ✓ ✓

36 CVE-2020-26284 Hugo Us PC

37 CVE-2020-26050 SaferVPN SU RD ✓ ✓

38 CVE-2020-25744 SaferVPN Us CT ✓

39 CVE-2020-25043 Kaspersky Secure Connection Ins DT ✓

40 CVE-2020-22809 Windscribe SU PC ✓ ✓ ✓

41 CVE-2020-15843 ActFax SU IL ✓ ✓ ✓

42 CVE-2020-15264 Boxstarter SU IL ✓ ✓ ✓

43 CVE-2020-15261 Veyon SU PC ✓ ✓ ✓

44 CVE-2020-15145 Composer Ins PC ✓ ✓

45 CVE-2020-13885 Citrix Workspace App Uni IL ✓ ✓

46 CVE-2020-13884 Citrix Workspace App Uni PC ✓ ✓

47 CVE-2020-13866 WinGate Ins PC ✓ ✓ ✓

48 CVE-2020-13542 LogicalDoc Ins PC ✓ ✓ ✓

49 CVE-2020-12431 Splashtop Software Up RD ✓

50 CVE-2020-10143 Macrium Reflect SU RD ✓ ✓

51 CVE-2020-10140 Acronis True Image SU IL ✓ ✓

17

	Introduction
	Empirical Study
	Detection Tool

	Empirical Study
	Data Collection and Analysis
	RQ1: Origins of Hijacked Files
	RQ2: Sensitive operations
	RQ3: Software lifecycle
	Threat Model and Impact

	The Methodology of Jerry
	Overview
	Event Trace Generator
	FHVuln Detector
	Path Pool Maintainer
	Path Hijacker

	Implementation
	Evaluation
	Evaluation Setup
	Effectiveness on Known Vulnerabilities
	Effectiveness on Unknown Vulnerabilities
	Efficiency
	Responsible Disclosure

	Analysis of New FHVulns
	Distribution of New FHVulns
	New Findings

	Discussions
	What is the reason for the higher number of FHVulns in Windows compared to Unix-like systems?
	Why do FHVulns still widely exist?
	Who is responsible for the FHVulns?

	 Limitation and Future Work
	What are the limitations of Jerry?
	Where can we make improvements to Jerry?
	How to defend against and mitigate FHVulns?

	Related Work
	File-related Vulnerability Detection
	File-related Vulnerability Exploitation
	General Hijacking Studies

	Conclusion
	References

