
File Hijacking Vulnerability:
The Elephant in the Room

Chendong Yu1,2, Yang Xiao1,2, Jie Lu3, Yuekang Li4, Yeting Li1,2, Lian Li3, 

Yifan Dong1,2, Jian Wang1,2, Jingyi Shi1,2, Defang Bo1,2, Wei Huo1,2

1. School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
2. Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

3. Institute of Computing Technology of the Chinese Academy of Sciences
4. University of New South Wales, Sydney, Australia



Security Boundary



Security Boundary

How to break security boundary?



Security Boundary

How to Break security boundary?

File Hijacking Vulnerability (FHVuln): A type of 
security flaw where an attacker can breach the 
security boundaries by manipulating files, including 
file paths and contents, and they can result in 
severe security issues such as arbitrary code 
execution, privilege escalation, and data loss



Example Case

Fig: A FHVuln of Git identified by JERRY (CVE-2022-24765)



Example Case

Fig: A FHVuln of Git identified by JERRY (CVE-2022-24765)



Example Case

Fig: A FHVuln of Git identified by JERRY (CVE-2022-24765)



Example Case

Fig: A FHVuln of Git identified by JERRY (CVE-2022-24765)



Threat Model & Study Questions



Threat Model & Study Questions

RQ1: What are the origins of the hijacked files?



Threat Model & Study Questions

RQ2: What types of operations are dangerous 
vulnerability-triggering operations?



Threat Model & Study Questions

RQ3: When in the software lifecycle (installation, 
uninstallation, ...) are FHVulns triggered?



Threat Model & Study Questions

We collect 268 well-document FHVulns from the 
CVE database for the period of January 2020 to 

October 2022 to answer these three RQs



RQ1 Origins of hijacked files
Observation 1: Most (89.9%) hijacked files are due to
the five search strategies employed by the programs and
the underlying operating systems, while the rest come from 
files created by programs with weak permissions.



RQ1 Origins of hijacked files
Observation 1: Most (89.9%) hijacked files are due to
the five search strategies employed by the programs and
the underlying operating systems, while the rest come from 
files created by programs with weak permissions.

Strategy Proportion

Created By Program —— 10.1%

Searched By Program

Path Search Order 3.4%

Linux Path On Windows 4.5%

Unquoted Path 17.1%

Symbolic Links 19.4%

Dynamically Loaded Libraries 44.5%



RQ2 Sensitive operations
Observation 2: There are six types of dangerous operations 
on hijacked files subject to file hijacking attacks. Among the 
six types of operations, process creation (28.4%) and image
loading (45.1%) are most frequently exploited. The other fo-
ur types of dangerous operations are moving (1.1%), reading
(7.1%), creating (8.2%), and deleting (10.1%).



RQ2 Sensitive operations
Observation 2: There are six types of dangerous operations 
on hijacked files subject to file hijacking attacks. Among the 
six types of operations, process creation (28.4%) and image
loading (45.1%) are most frequently exploited. The other fo-
ur types of dangerous operations are moving (1.1%), reading
(7.1%), creating (8.2%), and deleting (10.1%).

Observation 3: While the majority (62.3%) of FHVulns are
exploited during the Starting up stage, FHVulns can be tri-
ggered at any stage during the software lifecycle, i.e., Insta-
llation (17.2%), Uninstallation (4.5%), Updating (1.9%),
Repairing (3.7%) and Usage (10.4%).

RQ3 Software lifecycle



Overview of JERRY

• Event Trace Generator: Execute the target program at each stage and records executed 
file operation traces



Overview of JERRY

• Event Trace Generator: Execute the target program at each stage and records executed 
file operation traces

• FHVuln Detector: Examine each execution traces and a FHVuln will be reported if the 
trace performs dangerous operations on hijacked files.



Overview of JERRY

• Event Trace Generator: Execute the target program at each stage and records executed 
file operation traces

• FHVuln Detector: Examine each execution traces and a FHVuln will be reported if the 
trace performs dangerous operations on hijacked files.

• Path Pool Maintainer: Collect files encountered in the event trace and puts them into 
the path pool. Check if the file refers to a normal file or a directory.



Overview of JERRY

• Event Trace Generator: Execute the target program at each stage and records executed 
file operation traces

• FHVuln Detector: Examine each execution traces and a FHVuln will be reported if the 
trace performs dangerous operations on hijacked files.

• Path Pool Maintainer: Collect files encountered in the event trace and puts them into 
the path pool. Check if the file refers to a normal file or a directory.

• Path Hijacker: Hijack file or file path as an attacker



Event Trace Generator

• Event Trace Generator: Execute the target program at each stage and 
records executed file operation traces



Event Trace Generator

• Event Trace Generator: Execute the target program at each stage and 
records executed file operation traces

• (Un)Install/Repair/Update: 
• Automate execution with package manager



Event Trace Generator

• Event Trace Generator: Execute the target program at each stage and 
records executed file operation traces

• (Un)Install/Repair/Update: 
• Automate execution with package manager

• Start Up/Use：
• For GUI, simple interactive like bottom click
• For command line, read config from configure file (e.g. git log)  



Event Trace Generator

• Event Trace Generator: Execute the target program at each stage and records executed file 
operation traces



Event Trace Generator

• Event Trace Generator: Execute the target program at each stage and records executed file 
operation traces
• Monitor Process Info: process id、command line option (GUI events)、executed program



Event Trace Generator

• Event Trace Generator: Execute the target program at each stage and records executed file 
operation traces
• Monitor Process Info: process id、command line option (or Gui events)、executed program
• Monitor Path Info: path、existence、permissions (whether can be manipulated by the path 

hijacker or not) 、type (file or directory)



Event Trace Generator

• Event Trace Generator: Execute the target program at each stage and records executed file 
operation traces
• Monitor Process Info: process id、command line option (or GUI events)、executed program
• Monitor Path Info: path、 existence、permissions (whether can be manipulated by the path 

hijacker or not) 、type (file or directory)
• Monitor Operation: moving、deleting、creating、reading…



FHVuln Detector

• FHVuln Detector: Examine each execution traces and a FHVuln will be reported if the trace 
performs dangerous operations on hijacked files.
• hijacked file：C:\.git\config
• dangerous operation：reading



Path Pool Maintainer

• Path Pool Maintainer: Collect files encountered in the event trace and puts them into the path 
pool. In this step, JERRY also checks if the file refers to a normal file or a directory.



Path Pool Maintainer

• Path Pool Maintainer: Collect files encountered in the event trace and puts them into the path 
pool. In this step, JERRY also checks if the file refers to a normal file or a directory.

• Heuristic: When accessing a normal file, programs commonly check the existence of its parent 
directory while such a check is unnecessary when accessing a directory.



Path Pool Maintainer

• Path Pool Maintainer: Collect files encountered in the event trace and puts them into the path 
pool. In this step, JERRY also checks if the file refers to a normal file or a directory.

• Heuristic: When accessing a normal file, programs commonly check the existence of its parent 
directory while such a check is unnecessary when accessing a directory.

• Trial-and-error mechanism: An encountered path with unknown type is by default considered as a 
file. If the file is used by file-specific operations later on, then the guess is correct. Otherwise, if the 
path is accessed by directory-specific operations, the guess is wrong and the path hijacker will 
create a directory instead.



Path Pool Maintainer

• Iteration 1:
• Guess: C:\.git\ is a directory



Path Pool Maintainer

• Iteration 1:
• Guess: C:\.git\ is a directory

• Iteration 2:
• Check: directory-specific operation on C:\.git\, so C:\.git is a directory
• Guess: C:\.git\config is a file



Path Pool Maintainer

• Iteration 1:
• Guess: C:\.git\ is a directory

• Iteration 2:
• Check: directory-specific operation on C:\.git\, so C:\.git is a directory
• Guess: C:\.git\config is a file

• Iteration 3:
• Check: file-specific operation on C:\.git\config, so C:\.git\config is a directory



Path Hijacker

• Path Hijacker: Hijack file or file path as an attacker



Path Hijacker

• Path Hijacker: Hijack file or file path as an attacker
• For exe and dll: replace with manually crafted files



Path Hijacker

• Path Hijacker: Hijack file or file path as an attacker
• For exe and dll: replace with manually crafted files
• For other files: a specially created blank file consisting of newline and space characters



Path Hijacker

• Path Hijacker: Hijack file or file path as an attacker
• For exe and dll: replace with manually crafted files.
• For other files: a specially created blank file consisting of newline and space characters
• For creating、moving、deleting operations: Create a symbolic link pointing to a special 

location for monitoring



Experiment Setup
• Two Benchmark

Known Benchmark
51 FHVulns
 from Study

Unkown Benchmark
438 Real-world 

Software



Experiment Setup
• Two Benchmark

• Baseline:
• PrivescCheck: A static tool analyses access control list of file (directory)
• JERRY-Crassus: Crassus is a FHVuln detection tool by analysing event traces captured by 

ProcMon. We extended Crassus by incorporating the event trace generator module and 
replaced our monitor with ProcMon

• JERRY

Known Benchmark
51 FHVulns
 from Study

Unkown Benchmark
438 Real-world 

Software



Experiment Setup
• Two Benchmark

• Baseline:
• PrivescCheck: A static tool analyses access control list of file (directory)
• JERRY-Crassus: Crassus is a FHVuln detection tool by analysing event traces captured by 

ProcMon. We extended Crassus by incorporating the event trace generator module and 
replaced our monitor with ProcMon

• JERRY

• Three Experiments:
• Effectiveness on Known Vulnerabilities
• Effectiveness on Unknown Vulnerabilities
• Efficiency

Known Benchmark
51 FHVulns
 from Study

Unkown Benchmark
438 Real-world 

Software



Effectiveness on Known Vulnerabilities
Tool # reported TP FP FN Precision Recall

PrivescCheck 34 20 14 31 58.8% 39.2%
JERRY-
Crassus 44 37 7 14 84.1% 72.5%

JERRY 50 50 0 1 100% 98.0%

FN of JERRY：Complex use situation



Effectiveness on Known Vulnerabilities
Tool # reported TP FP FN Precision Recall

PrivescCheck 34 20 14 31 58.8% 39.2%
JERRY-
Crassus 44 37 7 14 84.1% 72.5%

JERRY 50 50 0 1 100% 98.0%

FP of PrivescCheck：Scanning the parent directory permissions when 
encountering an executable. (e.g. dll hijacking)
FP of JERRY-Crassus：hijacking does not means the file will be used by 
program

FN of JERRY：Complex use situation



Effectiveness on Known Vulnerabilities
Tool # reported TP FP FN Precision Recall

PrivescCheck 34 20 14 31 58.8% 39.2%
JERRY-
Crassus 44 37 7 14 84.1% 72.5%

JERRY 50 50 0 1 100% 98.0%

FP of PrivescCheck：Scanning the parent directory permissions when 
encountering an executable. (e.g. dll hijacking)
FP of JERRY-Crassus：hijacking does not means the file will be used by 
program

FN of PrivescCheck：1. uncomplete sensitive operations (reading (10), 
creating (5), deleting (4), and moving (1) ); 2. only consider after 
installation (9); 3. others (2)
FN of JERRY-Crassus：1. uncomplete sensitive operations (creating (5), 
deleting (4), and moving (1)); 2. only consider reading related to 
openssl.cnf (3)

FN of JERRY：Complex use situation



Effectiveness on Unknown Vulnerabilities

JERRY Find 339 zero-day FHVulns in 438 Real-world software
with 21 false positive.



Effectiveness on Unknown Vulnerabilities

JERRY Find 339 zero-day FHVulns in 438 Real-world software
with 21 false positive.

PrivesCheck only found 39 FHVulns (11.5% of JERRY)



Effectiveness on Unknown Vulnerabilities

JERRY Find 339 zero-day FHVulns in 438 Real-world software
with 21 false positive.

PrivesCheck only found 39 FHVulns (11.5% of JERRY)

JERRY-Crassus detect 143 FHVulns (42.2% of JERRY)



Effectiveness on Unknown Vulnerabilities

JERRY Find 339 zero-day FHVulns in 438 Real-world software
with 21 false positive.

PrivesCheck only found 39 FHVulns (11.5% of JERRY)

JERRY-Crassus detect 143 FHVulns (42.2% of JERRY)

FP Analysis：All FP issues are related to read operation.

Type 1: Read but not actually used by program

Type 2: Read but can not exploit in Windows system



Efficiency
Tool Install Unistall Update Repair StartUp Usage

JERRY-
NoInfer 8039.4 1417.6 3871.9 1206.9 556.2 33.8

JERRY 1128.1 414.2 893.5 254.7 115.5 15.8

JERRY-NoInfer：does not use our proposed path type inference and tested these paths 
which cannot decide whether file or directory by our heuristics directly one by one.



Efficiency
Tool Install Unistall Update Repair StartUp Usage

JERRY-
NoInfer 8039.4 1417.6 3871.9 1206.9 556.2 33.8

JERRY 1128.1 414.2 893.5 254.7 115.5 15.8

JERRY-NoInfer：does not use our proposed path type inference and tested these paths 
which cannot decide whether file or directory by our heuristics directly one by one.

JERRY achieved at least 2.14 faster in the usage stage and 7.13 faster in the 
installation stage



Efficiency
Tool Install Unistall Update Repair StartUp Usage

JERRY-
NoInfer 8039.4 1417.6 3871.9 1206.9 556.2 33.8

JERRY 1128.1 414.2 893.5 254.7 115.5 15.8

JERRY-NoInfer：does not use our proposed path type inference and tested these paths 
which cannot decide whether file or directory by our heuristics directly one by one.

JERRY achieved at least 2.14 faster in the usage stage and 7.13 faster in the 
installation stage

Only a few paths that can be hijacked in the usage stage
In the installation stage, there are much more paths that can be hijacked 
than other stages.



Analysis of New FHVulns

Distribution of new FHVulns on different origins, file operations, and stages.



Analysis of New FHVulns

Distribution of new FHVulns on different origins, file operations, and stages.

Finding 1：The bottom-up search strategy, a software-tailored search strategy that 
led to eight new FHVulns in fundamental software like Git and Dotnet SDK that had 
gone unnoticed for 18 years, has not received extensive research attention.



Analysis of New FHVulns

Distribution of new FHVulns on different origins, file operations, and stages.

Finding 1：The bottom-up search strategy, a software-tailored search strategy that 
led to eight new FHVulns in fundamental software like Git and Dotnet SDK that had 
gone unnoticed for 18 years, has not received extensive research attention.

Finding 2：Reading operations result in more FHVulns than we studied (30.4% vs 
7.1%)，and they are more dangerous than we think.



Conclusions
• We, for the first time, provided a clear definition of FHVuln’s threat model. Using 

this threat model, we conducted the first empirical study on FHVulns, revealing the 

origins and triggering mechanisms of FHVulns.



Conclusions
• We, for the first time, provided a clear definition of FHVuln‘s threat model. Using 

this threat model, we conducted the first empirical study on FHVulns, revealing the 

origins and triggering mechanisms of FHVulns.

• We developed a dynamic analysis tool, JERRY, to detect FHVulns and applied it to 

438 popular programs and uncovered 339 zero-day FHVulns. All vulnerabilities 

identified by JERRY were reported to the vendors, resulting in 84 of them being 

confirmed or fixed, with 51 CVE IDs granted and $83,400 in bug bounties earned.



Conclusions
• We, for the first time, provided a clear definition of FHVuln’s threat model. Using 

this threat model, we conducted the first empirical study on FHVulns, revealing the 

origins and triggering mechanisms of FHVulns.

• We developed a dynamic analysis tool, JERRY, to detect FHVulns and applied it to 

438 popular programs and uncovered 339 zero-day FHVulns. All vulnerabilities 

identified by JERRY were reported to the vendors, resulting in 84 of them being 

confirmed or fixed, with 51 CVE IDs granted and $83,400 in bug bounties earned.

• We conducted an in-depth analysis of the newly discovered FHVulns and made 

new findings that were not observable from existing FHVulns. 



Thanks for listening!
Q & A

Contact: yuchendong@iie.ac.cn


