
MPCDIFF: Testing and Repairing MPC-Hardened
Deep Learning Models

Qi Pang†
Carnegie Mellon University

qpang@andrew.cmu.edu

Yuanyuan Yuan
HKUST

yyuanaq@cse.ust.hk

Shuai Wang‡
HKUST

shuaiw@cse.ust.hk

Abstract—Secure multi-party computation (MPC) has recently
become prominent as a concept to enable multiple parties to
perform privacy-preserving machine learning without leaking
sensitive data or details of pre-trained models to the other parties.
Industry and the community have been actively developing
and promoting high-quality MPC frameworks (e.g., based on
TensorFlow and PyTorch) to enable the usage of MPC-hardened
models, greatly easing the development cycle of integrating deep
learning models with MPC primitives.

Despite the prosperous development and adoption of MPC
frameworks, a principled and systematic understanding toward
the correctness of those MPC frameworks does not yet exist. To
fill this critical gap, this paper introduces MPCDIFF, a differ-
ential testing framework to effectively uncover inputs that cause
deviant outputs of MPC-hardened models and their plaintext
versions. We further develop techniques to localize error-causing
computation units in MPC-hardened models and automatically
repair those defects.

We evaluate MPCDIFF using real-world popular MPC frame-
works for deep learning developed by Meta (Facebook), Alibaba
Group, Cape Privacy, and OpenMined. MPCDIFF successfully
detected over one thousand inputs that result in largely deviant
outputs. These deviation-triggering inputs are (visually) meaning-
ful in comparison to regular inputs, indicating that our findings
may cause great confusion in the daily usage of MPC frameworks.
After localizing and repairing error-causing computation units,
the robustness of MPC-hardened models can be notably enhanced
without sacrificing accuracy and with negligible overhead.

I. INTRODUCTION

A traditional MLaaS workflow involves a data pipeline,
which uses a central server that hosts the pre-trained DL model
to make predictions. Thus, all data collected by users are
sent to the central server in plaintext for use. However, when
confidential data is processed by an outsourced DL service,
user privacy may be jeopardized [68], [8].

Secure multi-party computation (MPC) allows parties to
collaboratively perform computations on data while keeping
the data private. Recently, we have seen a prosperous adoption
of MPC in securing DL applications: it facilitates making

†Majority of the work is done when Qi Pang was at HKUST.
‡Corresponding author.

predictions over private data of one party (data provider)
using a pre-trained model maintained by another party (model
provider) without leaking data or models to the other par-
ties [59], [48]. Industrial giants, including Meta (Facebook),
Microsoft, and Alibaba, are actively developing and promoting
their MPC frameworks for DL, greatly spurring real-world DL
applications with privacy considerations [19], [57], [48].

Despite the significant development of MPC-hardened DL
models and MPC frameworks available on the market, it is
unclear about their quality and potential attack surfaces. The
design of MPC protocols are often very subtle and error-
prone. Also, modern MPC frameworks for DL often aim to
natively support complex DNN operators, tensor computa-
tions, and imperative programming [57], [59]. Various opti-
mization and approximation schemes (e.g., fixed-point value
representation [81] and Newton-Raphson approximation [33])
are involved to convert standard computations into MPC-
hardened forms. While these efforts substantially reduce the
difficulty to integrate DL applications with MPC primitives,
they may also increase the difficulty of implementing bug-free
MPC frameworks. In fact, our preliminary studies have shown
that MPC-hardened DL models may yield deviant outputs
comparing to their plaintext versions given identical inputs.

This work designs MPCDIFF, the first testing & repair-
ing tool to detect and fix mis-predictions made by MPC-
hardened DL models during the inference stage. MPCDIFF
uses feedback-driven differential testing to detect inputs that
result in largely deviant outputs between MPC-hardened DL
models and their plaintext versions. We show that these inputs
are of high (visual) quality comparing with normal inputs,
thereby uncovering defects that may cause users of these MPC
frameworks substantial confusion in their daily usage. These
deviation-triggering inputs may represent practical yet over-
looked attack vectors to deceive MPC-hardened models and
likely manipulate their predictions. Moreover, MPCDIFF can
automatically localize MPC-transformed computation units in
DL models that primarily result in the output deviations (due to
either truncation errors or non-linear function approximations).
We further design techniques to repair the localized defect-
causing units, thereby enhancing the robustness and mitigating
mis-predictions without incurring much overhead.

Our evaluation encompasses three cutting-edge MPC-
hardened DL frameworks, CrypTen [4], TF-Encrypted [3] and
PySyft [1], which are all developed by industry companies
and actively maintained in the community. We use prominent
DL models as the targets, including convolutional neural
network (CNN) and multilayer perceptron (MLP) with diverse

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.23380
www.ndss-symposium.org

activation functions. MPCDIFF generates 135, 000 mutated
inputs in total to test those MPC-hardened models. During
approximately 10 days of testing, we detected 1, 055 inputs
that resulted in greatly deviant outputs, where the prediction
labels are inconsistent between MPC-hardened models and
their plaintext versions. With these 1, 055 inputs, we are able
to examine the root causes and localize the error-causing
computation units. We repair those localized root causes,
largely increasing the robustness of MPC-hardened models.
About half of the error-triggering inputs are mitigated with
a negligible extra overhead (0.02%), and MPCDIFF finds
much fewer error-triggering inputs in the repaired models.
Developers can use MPCDIFF to test and repair their MPC-
hardened models before releasing to end users. In sum, we
make the following contributions.

• We for the first time focus on flaws particularly in MPC-
hardened DL models. We reveal model inputs that result
in deviant prediction outputs, which can cause great
confusions or adversarial manipulations in daily usage of
MPC-hardened models.

• MPCDIFF uses feedback-driven differential testing to
gradually explore inputs that maximize output deviations.
MPCDIFF localizes and repairs error-causing computa-
tion units in DL models. MPCDIFF incorporates a set
of design principles and optimizations to expedite testing
and repairing at a low cost.

• Our large-scale evaluation of three popular MPC-
hardened DL frameworks exposes a substantial number
of error-triggering inputs. We further repair the exposed
defects, making them considerably more robust.

We maintain MPCDIFF to benefit future research at [2].

II. PRELIMINARIES

This section introduces how MPC enables secure computa-
tion (Sec. II-A), and then explains typical MPC-protected DL
scenarios in Sec. II-B. We then present preliminary exploration
on attack vectors of MPC-hardened DNN models in Sec. II-C.

A. Secure Multi-Party Computation

Secret sharing is a fundamental MPC primitive that refers
to a set of well-designed algorithms that distribute a secret
among a group of parties, with each party receiving a share
of the secret. The secret can only be reconstructed by com-
bining a certain number of shares; individual shares leak no
information on their own. This way, sensitive information can
be stored without exposure. This work focuses on studying the
widely-used and efficient secret sharing-based MPC protocols.
There are also other MPC primitives such as Yao’s Garbled
Circuit [97], [13], homomorphic encryption [45], [58], and
oblivious transfer [51], [55], which are not the focus of our
work. We omit their introduction and refer interested readers to
this review [43]. We now introduce how arithmetic and binary
additive secret sharing form secure DNNs.

Arithmetic and Binary Additive Secret Sharing. Arithmetic
additive secret sharing [25] aims to share a scalar l-bit value
x ∈ Z2l across parties p ∈ P , where Z2l denotes a ring with
2l elements. Let the sharing of x be JxK = {JxKp}p∈P , where
JxKp ∈ Z2l represents party p’s share of x. Usually, shares
are built such that their sum reconstructs the original value

x. That is, x ≡
∑

p∈P JxKp mod 2l. To share a value x, the
parties often generate a pseudorandom zero-share [21] with |P|
random numbers whose sum is 0. The party that possesses the
value x adds x to its share and then discards x.

Binary secret sharing [35] operates within the binary field
Z2. A binary secret share, 〈x〉, of a value x is formed by
arithmetic secret shares of the bits of x, setting 2l = 2. Each
party p ∈ P holds a share, 〈x〉p, such that

⊕
p∈P〈x〉p yields

x. Binary sharing can be obtained from arithmetic sharing,
by creating binary secret share, 〈JxKp〉, of all the bits in
JxKp. Similarly, arithmetic sharing can be obtained from binary
sharing, by computing JxK =

∑l
b=1 2bJ〈x〉(b)K, where 〈x〉(b)

denotes the b-th bit of the binary share 〈x〉 and l is the total
number of bits in the shared secret, 〈x〉.

1) Secure Computation: Note that well-established arith-
metic and binary secret shares have homomorphic prop-
erty [15]: that is, mathematical operations can be directly
performed on the encrypted data, whose output can be fur-
ther converted back to plaintext. Overall, in the context of
DL, binary secret sharing often facilitates common operators
like rectified linear units and argmaxes. Other operations,
including standard matrix multiplications and convolutions,
can be implemented using other arithmetic secret sharing
forms. Following, we introduce how private computations can
be done under the usage of MPC.

Private Addition. Private addition of two arithmetically secret
shared values, JzK = JxK+JyK, can be implemented by having
each party p locally sum his shares of JxK and JyK. That is,
each party p ∈ P computes JzKp = JxKp + JyKp.

Private Multiplication. This operation is trivial (with private
addition) if we multiply a secret shared values with public
values. Nevertheless, for private multiplication of two secret
shared values JxK and JyK, the common practice is to use
random Beaver triples [12], which involves extra secret shared
values to recast multiplying two private values into decryption
then multiplying private values with public values. Beaver
triples shift most of the communication and computation cost
into a preprocessing phase, which does not require the knowl-
edge of inputs and can be done offline. Here, we illustrate the
private multiplication in a two-party scenario. In the offline
phase, the parties hold the secret share values JaK, JbK, JcK,
such that c = ab. Then, in the online phase, the parties
compute locally JαK = JxK − JaK and JβK = JyK − JbK. The
parties then reconstruct α, β by exchanging the shares. The
secret shared product can be calculated with the Beaver triples:
JxyK = JcK + αJbK + βJaK + αβ.

Linear Functions. Combining the aforementioned private
addition and multiplication can easily form linear functions
used in conventional DL models, such as the dot products,
matrix multiplications, and convolutions.

Non-linear Functions. Non-linear functions in commonly-
used DNNs, such as Sigmoid, Tanh, GELU [44], softmax
logistic-loss function, and batch normalization, can be approx-
imated using private addition and multiplication. For instance,
Newton-Rhapson and Householder [33], [47] iterations and
Chebyshev polynomials approximation [83] have been adopted
in MPC frameworks [4], [3], [1] to approximate private non-
linear computations with a reasonable degree of accuracy.

2

We list approximation strategies for every non-linear function
encountered in this study in Appx. A.

In general, approximation strategies of non-linear functions
are configured by a hyper-parameter, such as the “iteration
number” in the Newton-Raphson method and the term n in
the limit approximation for exponential function, exp(x) =
limn→∞(1 +x/n)n. When the iteration number or the term n
is large, the approximations should coverage to more accurate
approximation results. However, in MPC, the computation cost
will increase and become unacceptably high, if the iteration
number (or term) is too large. We clarify that this is partic-
ularly undesirable in DL scenarios where there are numerous
approximation operations in typical DNN models. To simplify
the presentation, we refer to such hyper-parameters as “term”
throughout the rest of the study, even if they have different
names in various approximation methods.

Security Guarantee. To our best knowledge, today’s MPC-
DL frameworks primarily consider semi-honest parties, such
that parties will not deviate from the standard MPC protocols
when making joint computation. Nevertheless, each party may
be curious to explore revealing the plaintext of other parties.
Following the standard notions of secret sharing [16], [17],
[24], [27], we present the security guarantee widely offered
by de facto MPC frameworks as follows:

MPC protocols are secure against information leaking
against any passive static adversary corrupting up to |P|−1
of the |P| parties participating in the computation.

B. Private-Preserving Model Inference

Scenario. Following, we introduce how MPC enables privacy-
preserving model inference across multiple parties. While we
use two parties (Alice and Bob), the scenarios are extensible
into multiple parties. Typically, Alice, the model provider, pos-
sesses a pre-trained plaintext model that cannot be revealed,
while Bob, the data provider, would like to use Alice’s model
to evaluate on his private data samples. Privacy is important in
this scenario, given that parameters of the pre-trained plaintext
model is proprietary to the model provider, and data providers
may have sensitive data.

To use MPC, the model provider first locally trains his
plaintext model using a plaintext training dataset. The model
provider then sends the secret sharing of the plaintext model
parameters to the data providers. Accordingly, one or several
data providers (i.e., users) send the secret sharing of their test
inputs to the model provider. The model provider and data
provider will jointly perform computation according to the
MPC protocol to get the inference outputs. In this scenario, the
data/model providers may also send the secret sharing of their
data to multiple servers, who would perform the computations
on their behalf, so that data providers do not need to perform
the computation themselves, which might be too costly for
normal users. For audiences with little background in this field,
Appx. B visualizes the steps of conducting MPC-hardened
privacy-preserving DL inference in a diagram.

Significance. MPC denotes a promising solution that provides
privacy guarantee to boost the adoption of DL in highly
regulated, privacy-sensitive sectors such as credit scoring,
insurance, government sectors, and healthcare [91], [89], [75],

[22]. We have seen that providers of cloud service and machine
learning as a service (MLaaS) are incorporating MPC into their
applications [80], [54], [88]. For instance, Meta (Facebook)
provides MPC-enabled DL frameworks whose APIs resemble
that of PyTorch, thus easing the usage and migration for
PyTorch users [57]. Overall, we see that MPC frameworks are
increasingly vital to offer privacy-preserving DL solutions in
the era of cloud computing and MLaaS, and it is important to
assess and enhance the security of MPC-based DL scenarios.

Training vs. Predictions. This work considers the scenario
where the predictions of MPC-hardened, well-trained DL
models may be manipulated with untrusted user inputs. While
recent efforts have also been made to use MPC in model
training, studying attack vectors in privacy-preserving model
training is orthogonal to this paper. It is worth noting that
although a few MPC frameworks support privacy-preserving
model training, it is often computation- and communication-
heavy, potentially undermining its adoption in practice. In
contrast, MPC-hardened, pre-trained DL models are generally
efficient to make predictions (see Table I).

C. Preliminary Vulnerability Exploration

MPC protects the parties from inferring each other’s data
(test inputs or model weights). However, it cannot improve
the robustness of MPC-hardened DL models against adver-
sarial examples (AEs) [36]. AEs, as special test inputs, are
typically generated by adding small perturbations to normal
inputs. While such small perturbations preserve the inputs’
visual appearance (to a human being), the attacked DL model
makes a wrong prediction on the AE input. To motivate this
work, we analyze the shifted decision boundaries of MPC-
hardened models and characterize AE generated over MPC-
hardened models. To clarify, existing blackbox AE generation
techniques can be smoothly generalized in our setting, as the
inference outputs of MPC-hardened DL models are known to
the (adversarial) test data providers.

3 2 1 0 1 2 3 4

4

5

6

7

8

9

10

0
1
2
3
4
5
6
7
8
9

(a) Decision boundaries of the
original model.

3 2 1 0 1 2 3 4

4

5

6

7

8

9

10

0
1
2
3
4
5
6
7
8
9

(b) Decision boundaries of the
MPC-hardened model.

Fig. 1: Depicting decision boundaries of LeNet and its MPC-
hardened version for classifying MNIST images. A darker hue
denotes a higher confidence of model prediction.

Decision Boundary Disctinction. Our preliminary study
shows that plaintext DNN models and the corresponding
MPC-hardened versions have distinct decision boundaries. In
Fig. 1(a), we visualize the decision boundaries of a classifica-
tion model, LeNet [60], trained on MNIST [61] dataset using
one of the state-of-the-art NN visualization tools [86]; we then

3

harden the trained model using MPC (we use the CrypTen [4]
framework; see details in Sec. V) and also visualize the MPC
model’s decision boundary in Fig. 1(b). We note that the
prediction accuracy of both models are sufficiently high, which
is 98.65% for the plaintext model and 97.25% for the MPC-
hardened model. We use Shannon’s Entropy of the output
probabilities to quantify the confidence of model predictions,
and the darker the color, the higher the confidence. In short, a
substantial difference between the boundaries can be observed
in Fig. 1. Moreover, we find that for the MPC-hardened model,
predictions typically become less confident. Soon Sec. III
clarifies that these decision boundary differences root from
MPC-specific optimizations and conversions.

Adversarial Examples (AEs). Given the decision boundary
difference between the plaintext model and the MPC-hardened
model in Fig. 1, we foresee that malicious data providers can
exploit the boundary difference to generate AEs; note that
this is distinct from the conventional AEs generated from
plaintext DNN models, whose root causes are believed to
be the model’s inadequate training and unsmooth classifica-
tion boundaries [62]. To study this, we launch the standard
procedure [70], [37] to generate AEs using the above MPC-
hardened model. Note that we need to launch black-box
AE generation, as the MPC-hardened model is not available
to provide gradients. With 275,700 queries, we successfully
generate 100 AEs, among which 57 AEs are not misclassified
by the corresponding plaintext model. That is, there are about
57% of AEs that particularly exploit the MPC-hardened model;
Sec. III will explain that these AEs are the result of MPC-
specific optimizations and conversions. Overall, these AEs are
subtle issues that are specifically toward modern MPC-DL
frameworks, creating attack vectors for malicious MPC clients
that are under-explored by today’s AE study.

MPCDIFF Design Goal. Our focus is to expose hidden
defects in MPC-protected pre-trained models. Developers can
test the MPC-protected models before releasing to users for
use. This way, MPCDIFF effectively exposes certain subtle
inputs that lead to ill-predictions of MPC-hardened models. We
argue that such error-triggering inputs are undesirable, given
it could mislead normal users during daily usage of privacy-
preserving DL service. Moreover, malicious users may lever-
age these error-triggering inputs to intentionally manipulate the
model predictions. We demonstrate that these inputs are (vi-
sually) meaningful compared with regular inputs, illustrating
attack vectors that are presumably realistic yet neglected by
existing research (Sec. VI-A). In short, we deem that MPC-
protected models are likely exploited by such inputs, in a way
that is similar to how black-box AEs are leveraged [18].

MPCDIFF also features localizing MPC-transformed DNN
operators which are the root causes to induce the mis-
predictions. MPCDIFF can automatically tune those operators
to alleviate the mis-predictions. This way, MPCDIFF can help
developers test, debug, and repair their MPC-protected models,
achieving high robustness without undermining the MPC-
offered privacy guarantee; see empirical results in Sec. VI.

III. ANALYSIS OF MPC-HARDENED MODELS

We have introduced how MPC frameworks perform private
addition and multiplication on integers, as well as how it
approximates non-linear functions in Sec. II-A. Following our

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

·10−3Original Input Value

R
el

at
iv

e
E

rr
or

(%
)

(a) RC1: fixed-point value error.

−10 −5 0 5 10

0

1

2

3

4

·10−3

Original Input Value

E
rr

or

(b) RC2: Sigmoid approx. error.

Fig. 2: Sample relative errors incurred from RC1 and RC2.

preliminary exploration on attack vectors of MPC-hardened
DNN models (Sec. II-C), we elaborate on how MPC encodes
floating-point numbers, and then clarifies two root causes, RC1

and RC2, that result in the prediction boundary deviation
(Fig. 1) in MPC-hardened models.

RC1: Fixed-Point Values. As stated in Sec. II-A, different
parties will share integers in secret to perform private computa-
tions. To represent a floating point number x̃ ∈ R, parties often
use the fixed-point arithmetic, encoding x̃ by multiplying it
with a large integer 2m: x = bx̃2mc ∈ Z, where m is the preci-
sion bit number. The multiplication result is then truncated into
an integer to use integer sharing JxK. During decoding, JxK is
transformed back to the plaintext integer before being divided
by 2m to recover the floating number x̃′. Thus, the encoding
& decoding error is |x̃′ − x̃|. Deciding a proper m may be
subtle: ideally, a larger m suggests more precise encoding.
Nevertheless, an overly large m potentially causes overflow,
so compromising the accuracy, especially when subsequent
computations amplify the inaccurately-encoded values. The
overflow problem is also studied by recent research [81]. On
the other hand, a negligible m may also undermine accuracy, as
multiplying a small 2m means most digits in the output value
remain in the fractional part and are truncated. Consequently,
the encoding & decoding schemes have representation errors
when using improper m. An enhancement to avoid overflow
is to accompany a large m with a large bit length l in
arithmetic secret sharing (see Sec. II-A). However, this adds
MPC protocol overhead. In practice, MPC frameworks use a
fixed l to encode floating point numbers, such as l = 64 in
CrypTen and TF-Encrypted. Accordingly, this study analyzes
how different m may introduce new attack surfaces of MPC-
hardened DL models under fixed values of l. Note that tuning
m will not incur extra communication and computation cost
of the MPC protocols under fixed l.

Fig. 2a illustrates the relative error |x̃
′−x̃|
x̃ × 100% when

m = 12 in CrypTen. If x̃ ∈ [0, 1/212], the relative error would
always be 100%, because all of digits in bx̃2mc remain in
the fractional part and are truncated. When x̃ ∈ [1/212, 2/212],
the relative errors are smaller as x̃ grows than when x̃ ∈
[0, 1/212]. Nevertheless, the errors increase when x̃ is closer
to 2/212 due to truncating the fractional part of the results
after multiplying by 212. Similar phenomena can be observed
for x̃ ∈ [2/212, 3/212], albeit with smaller relative errors as x̃
increases.

Multiplication Truncation. We have discussed using fixed-
point integers to encode floating-point numbers. The outcome

4

of multiplying two fixed-point values is a fixed-point value
with 2m-bit precision. Therefore, truncation is again required
to scale down to m-bit precision, and following computations
can proceed. As expected, this truncation will likewise add
inaccuracies, as also noted by prior research [48]. The root
cause is aligned to encoding & decoding, as truncation will
inevitably undermine fractional precision (by trimming digits
in the fractional part off). Increasing m reduces the truncation
error but increases the likelihood of overflow.

RC2: Non-linear Function Approximation. Sec. II-A1 ex-
plains that non-linear functions, such as those commonly-
used activation functions, Sigmoid, Tanh, and GELU, are
approximated. The approximation will inevitably lead to errors.
Sec. II-A1 also clarified that approximation methods for these
non-linear functions are uniformly configured by a hyper-
parameter, dubbed as “term” in this paper. Fig. 2b depicts
the output deviation between the MPC-approximated Sigmoid
and the ground truth Sigmoid. We use the default Sigmoid
implementation provided by CrypTen, which approximates
Sigmoid(x) as the reciprocal of 1 + e−x. As a common
approach, the Newton-Raphson method is used to approximate
the reciprocal, whereas the exponential function is approxi-
mated using a limit approximation, exp(x) = limn→∞(1 +
x/n)n. We also present the approximation strategies for other
non-linear functions in Appx. A. Generally, a larger term n will
achieve more accurate results. However, this will induce large
computation overhead if we increase the terms for all the non-
linear functions, which is unacceptable for DL models with
multiple layers, as mentioned in Sec. II-A1. We use the default
configuration in CrypTen and it is observed that when the input
is in the range [−5, 5], the error is significant, i.e., greater than
1e − 3. For DL models with multiple layers, we expect that
the errors propagate and may cause a wrong prediction result;
see the following paragraph for error propagation.

Bounds for Error Propagation. We have the following
theorem to bound the error propagation:

Theorem 1 (Bounds for Error Propagation). Considering a
DNN with multiple layers, the error induced in layer Li is εi,
and the error in layer Li+1 is εi+1.

If layer Li+1 is a linear layer (including fully connected
layers and convolutional layers), and we can treat this layer
as multiplications with weights wi+1. Then, εi+1 = wi+1εi is
bounded:

σ‖εi‖2 ≤ ‖εi+1‖2 ≤ ‖wi+1‖2 · ‖εi‖2,
where σ is the minimum singular value of wi+1. The bounds
generalize to all layers that need matrix multiplications.

If layer Li+1 is non-linear activation layer, the error is
bounded by:

‖εi+1‖2 ≤ Lc‖εi‖2,
where Lc is the Lipschitz constant of layer Li+1.

Proof for Theorem 1: We first prove the bounds for
linear layer Li+1. The upper bound ‖εi+1‖2 ≤ ‖wi+1‖2 ·‖εi‖2
is a direct application of Cauchy-Schwarz inequality in the
Euclidean space Rn:(

n∑
i=1

uivi

)2

≤

(
n∑

i=1

u2
i

)
·

(
n∑

i=1

v2i

)

To get the lower bound, we first perform the singular value
decomposition on matrix wi+1. wi+1 = UΣV T , where U
and V are orthogonal and the diagonal elements of Σ are the
singular values of wi+1. Thus,

‖εi+1‖22 = ‖wi+1εi‖22 = ‖UΣV T εi‖22 = ‖Σ
(
V T εi

)
‖22

=
∑
k

σ2
k(V T εi)

2
k ≥ σ2‖V T εi‖22 = σ2‖εi‖22,

where σ is the minimum singular value of wi+1: σk ≥ σ, ∀k.
And we have the lower bound ‖εi+1‖2 ≥ σ‖εi‖2.

For non-linear layer Li+1 whose Lipschitz constant is Lc:

sup
xi 6=xj

‖Li+1(xi)− Li+1(xj)‖2
‖xi − xj‖2

≤ Lc

Thus, we have ‖εi+1‖2 = ‖Li+1(x + εi) − Li+1(x)‖2 ≤
Lc‖εi‖2.

Implication. With Theorem 1, we conclude that errors, due
to either RC1 or RC2, will not vanish given the presence
of a non-trivial number of matrix multiplications in a DNN.
Rather, errors will propagate via model layers and influence
the model outputs, potentially causing certain inputs to be mis-
predicted. This is because of the lower bound. When the error
εi is negligible, however, this error propagation will have a
limited effect on the model precision. This is reflected by the
upper bounds ‖wi+1‖2 · ‖εi‖2 and L‖εi‖2. This implication is
further examined below.

Pervasiveness and Importance. We have illustrated two key
root causes, RC1 and RC2, that induce inaccuracy in MPC-
protected models. According to our observation and analysis
under Thm. 1, when computation resources are sufficient,
modern MPC-protected models will only manifest negligible
accuracy drop comparing to the plaintext models. In other
words, the defects MPCDIFF aims to capture are subtle
and rarely occurs in daily usage. However, this should not
impede the importance of this research: in reliability-sensitive
scenarios such as credit prediction, a single ill-prediction made
by the MPC-protected models is not desirable, undermining the
brand reputation and inducing financial losses. Furthermore,
when the user has limited computing resource, such as when
using a mobile device, the precision bit number m and terms
are usually reduced, resulting in larger εi, increased mis-
predictions, and lower accuracy. In Sec. VI, we show that
MPCDIFF can effectively uncover many of such errors by
mutating model inputs to gradually maximize output deviations
of MPC-hardened and plaintext models.

differential
testing 1

repair
3

root cause
localization

2

error-triggering

MPC-protected
model

plaintext
model

inputs

localized

operators

Fig. 3: The workflow of MPCDIFF.

IV. DESIGN OF MPCDIFF

Overview. This work designs MPCDIFF, the first testing
framework to detect mis-predictions of MPC-protected models.

5

Fig. 3 depicts the pipeline of MPCDIFF. Given a target MPC-
protected model, developers are anticipated to also prepare the
corresponding plaintext model. As introduced in Sec. II-B, to
harden a pre-trained plaintext model with MPC, parameters
need to be encrypted. Therefore, developers can keep the
plaintext models at this phase, together with its MPC-hardened
version, as the inputs of MPCDIFF.

¬ Differential Testing. MPCDIFF employs feedback-driven
differential testing to explore inputs that result in deviant
outputs of MPC-protected models and their plaintext models
(Sec. IV-B). That is, MPCDIFF aims to find an input i which
can result in a considerably large output deviation δ of the
MPC-protected model Mm and its plaintext version Mp.

maximize:
i

δ = |Mp(i)−Mm(i)| (1)

We define a threshold T such that when δ, denoting the
deviation of model outputs, is greater than T , we collect
the inputs as error-triggering inputs. Sec. IV-B presents the
technical details. Further in Sec. VI-A, we show that most
error-triggering inputs are stealthy, hardly distinguishable com-
paring with normal inputs. This illustrates the attack vectors
toward MPC-hardened models that are practical in real-world
scenarios.

 Root Cause Localization. In Sec. III, we have introduced
two key root causes, RC1 and RC2, that result in accuracy
loss of MPC-protected models. We clarify that RC1, encoding
& decoding errors, can be fixed globally (see ®). Nevertheless,
given typical production DNN models can have thousands of
non-linear functions, we aim to localize and tune the terms
associated with a few critical neurons (non-linear functions
like Sigmoid) that primarily contribute to the output deviations.
This way, we fix RC2 with a moderate cost. Tuning every
non-linear function would be too costly and unrealistic. Given
error-triggering inputs i ∈ I found in ¬, Sec. IV-C discusses
how MPCDIFF localizes a set of MPC-transformed non-linear
functions that are critical to output deviations.

® Repairing. We present two repairing approaches. For RC1,
we tune the precision bit number m. To repair RC2, we tune
the terms associated with error-causing neurons localized in
. The end result would be another MPC-hardened model
M+

m with better robustness while retaining stable accuracy
and moderate extra overhead compared to Mm. Developers, as
the model provider, can release M+

m for users to use. Before
discussing the technical details, we first clarify the application
scope of MPCDIFF in Sec. IV-A.

A. Application Scope and Clarification

Study Focus: Accuracy vs. Robustness. Following Sec. II-C,
we clarify that MPCDIFF is designed to enhance the ro-
bustness of MPC-hardened models, not the accuracy. Over-
all, DL model robustness conceptually differs from accuracy.
Accuracy measures how well a model performs on standard
test data, while robustness measures model’s resistance to
adversarial example (AE) attacks. High accuracy does not
mean high robustness. As in Sec. II-C, MPC-hardened models
maintain high accuracy but their decision boundaries change
significantly, making them vulnerable (less robustness) to AE
attacks. MPCDIFF is designed to fill the gap between the
model’s decision boundary with and without MPC to improve

its robustness, not its accuracy. See Sec. VI on the encouraging
empirical results of robustness improvement.

Main Audiences. The main audiences of this work are model
owners who want to use MPC frameworks to hide their models
from data providers in daily usage. Our work helps model
owners to assess and augment the robustness of their models
before release. This would eliminate potential attack vectors
of MPC-protected models. MPCDIFF is the first automated
framework in this field.

Malicious Model Owners. MPCDIFF is designed for nor-
mal developers (model owners) to benchmark the quality
of their MPC-hardened models in an in-house setting. That
is, MPCDIFF is not intended to be used against an active
adversary. For instance, a malicious developer may want to add
a backdoor in his MPC-enabled models to control the model
predictions regarding inputs with backdoor triggers. Detecting
such injected backdoors in MPC-hardened models is an area
for future work.

Distinguishing from AEs. Following our empirical explo-
ration in Sec. II-C, we further clarify how MPCDIFF’s findings
distinguish from AEs. Overall, similar with AEs, MPCDIFF’s
findings, error-triggering inputs, can manipulate the prediction
outputs of MPC-hardened models. Real-world black-box AE
attacks often denote an online setting [50], [39], [87], where
they require attackers to iteratively query a remote model (e.g.,
a cloud service) with mutated inputs to control the model
predictions at their will. Nevertheless, we clarify that findings
of MPCDIFF are distinct with AEs found by prior techniques.
MPCDIFF uses differential testing to find inputs that maximize
the output deviations of MPC-protected models and plaintext
models. Note that the deviation-triggering inputs will retain
the same prediction labels in the plaintext models, whereas
they largely alter the predictions on the MPC-hardened models.
In contrast, conventional AEs change the predictions of the
plaintext models. Sec. III also shows that a large portion (57%)
of AEs generated from MPC-hardened models won’t alter the
predictions of corresponding plaintext models. In short, root
causes of MPCDIFF’s findings are domain specific to MPC
(noted in Sec. III), whereas conventional AEs are pervasive in
DNNs and are believed to root from inadequate training and
unsmooth classification boundaries [62].

White-Box vs. Black-Box. We consider a black-box testing
scenario where we only rely on the outputs of MPC-hardened
models to guide our testing and input mutation. We refrain
from using gradients to form the testing guidance. The reason
is that for MPC-protected models, it is very slow, if at all
possible, to obtain gradients. Also, offering the black-box
solution facilitates testing third-party MPC-hardened models
in remote APIs, suppose the corresponding plaintext model
(or a similar alternative model) is available.

Testing vs. Verification. To our best knowledge, MPCDIFF is
the first testing approach toward MPC-protected DL models.
MPCDIFF shares a similar focus with most security testing
tools (e.g., fuzzers [99], side-channel analyzers [76], differen-
tial privacy analyzers [30]) to detect errors instead of proving
their absence. Obviously, MPCDIFF cannot offer static verifi-
cation: when MPCDIFF reports no errors, we cannot conclude
that the MPC-protected model is free from output deviations.
Nevertheless, the testing approach delivered by MPCDIFF is

6

Algorithm 1 Feedback-driven differential testing.
1: function OutputDeviation(Mp,Mm, i′, T)
2: PREDplaintext ← PREDICTVECTOR(Mp(i′))
3: PREDmpc ← PREDICTVECTOR(Mm(i′))
4: δ ← ‖PREDplaintext − PREDmpc‖2
5: if δ > T then . Output deviation larger than the threshold.
6: return true
7: return false
8: function DT(Corpus of Seed Inputs S, Mp,Mm)
9: Q ← S, O ← ∅

10: while #total mutations< 15, 000 do
11: i← CHOOSENEXT(Q)
12: PREDplaintext ← PREDICTVECTOR(Mp(i))
13: PREDmpc ← PREDICTVECTOR(Mm(i))
14: T ← ‖PREDplaintext − PREDmpc‖2
15: p← ASSIGNENERGY(i)
16: for 1 ... p do
17: i′ ← MUTATE(i)
18: if Mp(i′) 6=Mm(i′) then . Model prediction changes.
19: add i′ in O
20: else if OutputDeviation(Mp,Mm, i′, T) = true then
21: add i′ in Q
22: return O

precise and it generates no false positives. More importantly,
as a testing tool, MPCDIFF provides defect-triggering inputs,
which enable “debugging” MPC-enabled models, localizing
root causes, and further repairing the models. We show
that the repaired models manifest much higher robustness
(Sec. VI-C). We leave conducting formal verification to check
the absence of deviation outputs in MPC-enabled models as
future work; we envision extending recent advances in DNN
verification [32].

B. MPCDIFF — Differential Testing

Alg. 1 depicts the workflow of our testing. Function DT
is the main entry point, and OutputDeviation checks whether
the output deviation of the plaintext model Mp and its MPC-
encrypted version Mm is larger than a threshold T . DT accepts
a collection of seed inputs S, and a pair of models Mp and
Mm. We use O to store all deviation-triggering inputs, and
Q as a queue to maintain test seeds. The entire campaign is
subject for a sufficiently large number of seed mutations (in
our current implementation it is 15,000). For each iteration, we
pick one input i by popping Q (line 11). We first compute the
baseline output deviation (lines 12–14) as T .1 T is calculated
from the L2 distance of prediction vectors of two models.
We determine #mutations by calling ASSIGNENERGY(i); each
seed currently has a fixed “energy” p of 10.

We generate a new variant i′ by mutating i (line 17).
Mutating inputs in a totally arbitrary manner may not be
expedient, because DNN inputs are generally well formed. In
the current implementation, we consider both tabular data and
images as the inputs. Therefore, in addition to apply random
noise over i, we take input constraints into consideration to
form a bounded mutation: for the current implementation,
we limit the mutation over i within the variance in the
standard input dataset that was used to train Mp. This way,
we observe that the mutated output i′ is (visually) meaningful
in comparison to regular inputs, indicating that i′ denotes a

1At this step, we check if the seed i can already lead to a deviant prediction
between Mm and Mp. If so, we skip mutating this seed and put it in O. We
omit this in Alg. 1 to simplify the presentation. Our empirical evaluation shows
that this case rarely occurs (less than 2%); see Sec. VI.

practical, yet overlooked issue to mislead Mm; see evaluation
on quality of i′ in Sec. VI-A.

We check if prediction outputs are inconsistent (line 18).
If so, we add i′, as a deviation-triggering input, to O (line 19).
Moreover, i′ is deemed as “interesting,” in case it increases the
output deviation over T (line 20). For this case, we will keep i′
in Q (line 21) for further mutations. Overall, OutputDeviation
serves as a feedback; it guides MPCDIFF to gradually find
inputs with the goal of increasing the output deviation until
the deviation is large enough to change model predictions.

Alg. 1 returns a set of deviation-triggering inputs O. Users
(model owners) can use O to debug and repair their Mm;
see details in Sec. IV-C and Sec. IV-D. Given that said, if
MPCDIFF has limited findings, it could mean that Mm is
already robust, or that MPCDIFF was not used long enough.
We would recommend developers to run MPCDIFF sufficiently
long. Nevertheless, as clarified in Sec. IV-A, MPCDIFF is by
no means a verifier, and finding no flaws does not necessarily
indicate that Mm is defect-free.

Avalability of Seed S. MPCDIFF testing requires a collection
of seeds S. We underline that we have no specific requirements
for the seeds. In our evaluation, we randomly select 1K or 2K
inputs from each model’s test dataset.

C. MPCDIFF — Defect Localization

To repair defects due to RC2, non-linear function approx-
imation, this section introduces a defect localization strategy.
At this step, we assign each neuron ni an importance weight
ωi, which is initialized as zero. ωi quantifies the overall
contribution of neuron ni toward ill-predictions of Mm.

We update the importance weights in accordance with
deviation-triggering inputs O found in Sec. IV-B. Particularly,
we feed each input o ∈ O to Mp and Mm, and quantify the
output difference of a neuron in Mp and its counterpart in Mm.
Let δi(o) be the output difference of neuron ni in two models
under input o, the importance weight ωi of ni is incremented
by 1, in case δi(o) is greater than a threshold τ+. Similarly,
if δi(o) is smaller than a threshold τ−, ωi is decremented by
1. As a result, a collection of neurons with higher influence to
the deviation outputs are gradually localized, whose associated
importance weights are relatively higher than the rest.

We adaptively configure the thresholds τ+ and τ− to scope
one-third of neurons with importance weights exceeding τ+
and another one-third with importance weights below τ−.
The former neurons are the primary contributors of Mm’s ill-
predictions. Considering Fig. 4a, τ+ and τ− are configured to
separate the first and last four rows of the heatmap of neurons’
output difference δi(o).

After iterating over all the inputs in O, the neuron im-
portance weights ωi draw a statistical picture of the neurons’
likelihood of causing errors. Thus, we treat the neurons with
large importance weights as important, and mark the neurons
with small importance weights as trivial, as shown in Fig. 4b.
The output of this step would be a list of neurons ranked
according to their importance weights.

7

(a) Heatmap of the neurons’ differ-
ence δi(o), the neurons are ranked
w.r.t. their δi(o). The first four rows
of the neurons will increase their
importance weights ωi, and the last
four rows will decrease their ωi.

(b) Heatmap of the neurons’ impor-
tance weights ωi, the neurons are
ranked w.r.t. ωi. The neurons with
large weights are marked as im-
portant, and the neurons with small
weights are marked as trivial.

Fig. 4: Heatmap of neuron difference δi(o) and neuron impor-
tance weights ωi.

D. MPCDIFF — Error Fixing

With the localized error-causing neurons, we are able to
repair Mm. Recall Sec. III presents two root causes, RC1

and RC2, that induce inaccuracy in Mm. Below, we discuss
methods to fix these defects.

Fixing RC1. As introduced in Sec. III, the precision bit m
affects the encoding & decoding precision of floating-point
numbers and multiplication, thereby influencing the accuracy
of Mm. A too large or too small precision bit m can both
downgrade the accuracy and incur ill-predictions. We clarify
that deciding a proper m is critical yet hardly possible for a
universal solution. The “sweet spot” of m may depend on both
model structure and MPC framework implementation details.
Though deciding a proper m mainly requires manual tuning,
we argue that MPCDIFF is particularly beneficial: in addition
to use the standard test inputs to access m that achieves the
best accuracy and low cost, MPCDIFF enables users to tune m
from the robustness perspective: users can tune m to minimize
the error-triggering inputs O found by MPCDIFF.

Fixing RC2. MPC approximates non-linear function computa-
tions using various approximation methods (see full details in
Appx. A). As noted in Sec. II, approximations are configured
using terms. In general, larger terms can converge to more
accurate results. However, in MPC, especially for DNNs, using
too large terms for all the computation units may result in
prohibitively high cost, which is undesirable in practice.

Recall some key neurons that primarily contribute to Mm’s
ill-predictions have been recognized in Sec. IV-C. Thus, we
advocate the following scheme to repair ill-predictions and
simultaneously retain minimal extra overhead: given a list
of neurons ranked by their importance weights (output of
Sec. IV-C), MPCDIFF will selectively raise terms following
a meta strategy (see below) of α neurons beginning with the
most important one, where α is decided by users according
to their computation cost budget. In the current evaluation,
we explore α in the range of 0 to 250. For users with higher
cost budget (e.g., using powerful cloud services), α can be
increased to fix more neurons accordingly.

This phase requires manually increasing the accuracy levels
of certain important neurons. Nevertheless, with MPCDIFF’s
findings on hand, users can take robustness (not just accuracy)
into consideration during tuning. We show that after tuning,

models become notably more robust in Sec. VI-C. Also,
we clarify that the aforementioned meta strategy subsumes
detailed approaches to tuning terms for various approximation
methods. Overall, different approximation methods often have
distinct and subtle tactics to tweak terms. These tactics are
domain specific and challenging for MPCDIFF users (who
are often DL model creators and providers) to handle. We
thus hardcode these tactics in MPCDIFF, and only expose a
unified interface for users to configure the number of neurons
to be tuned via α. This eases MPCDIFF usage from the user’s
perspective. We list our meta strategy in Appx. C.

V. IMPLEMENTATION & EVALUATION SETUP

MPCDIFF is written primarily in Python with approxi-
mately 3K LOC. All experiments are launched on a machine
with one AMD Ryzen CPU, 256GB RAM, and one Nvidia
GeForce RTX 3090 GPU.

MPC-Hardened DL Frameworks. MPCDIFF can be inte-
grated to test different MPC frameworks. As listed in Table I,
our current evaluation subsumes three popular MPC-hardened
DL frameworks: CrypTen [57], [4], TF-Encrypted [6], and
PySyft [1]. CrypTen, developed and maintained by Meta
(Facebook), is a MPC framework for machine learning built
on PyTorch. It enables privacy preserving deep learning in
a way that is closely similar to how common PyTorch pro-
grams are written. CrypTen, as an industry-quality tool, is
carefully optimized to adopt PyTorch’s highly optimized tensor
computations and use high-speed communication libraries.
It can also off-load intensive computations to GPUs. TF-
Encrypted is another MPC framework that is tightly integrated
with TensorFlow, which allows non-crypto experts to quickly
leverage MPC in protecting their private data and models. The
primary contribution of TF-Encrypted is also from industry
(i.e., Cape Privacy, Alibaba Group, and OpenMined). PySyft is
a full-fledged privacy-preserving machine learning framework,
which implements various secure computation techniques like
federated learning [96], differential privacy [31], MPC, and
homomorphic encryption. This library is maintained primarily
by OpenMined. Overall, these three frameworks are highly
visible in the community, and our observation shows that they
all manifest a high engineering quality. We thus believe our
evaluation can reflect common defects and improvements over
MPC-hardened DL frameworks.

MPC Protocols. CrypTen is primarily built on top of arith-
metic and binary secret sharing [25], [23], [35]. It supports
two-party secure computation, with the presence of a trusted
third party to generate the Beaver triple. For CrypTen, we set
up a two-party computation environment to test the framework
in which one party provides the private data and the other party
provides the well-trained private model. CrypTen enables these
two parties to perform private inference without exposing their
plaintext model or data.

TF-Encrypted supports several common MPC protocols
like ABY3 [73], SecureNN [92], and SPDZ [25]. It allows
three-party private model inference. As the default setup of TF-
Encrypted, we use its modified SPDZ protocol, known as Pond,
for the three-party private inference. Two parties, the model
provider and the data provider, perform computations using
Pond, while one party delivers the Beaver triple. Similar to

8

TABLE I: Evaluation setup and statistics.

Framework Model Datasets Plaintext Encrypted #Non-linear #Multiplication Excluding #Initial #Initial Error- Avg. Inference
Accuracy Accuracy Operations Non-linear Operations Seeds Triggering Seeds Time Per Input

CrypTen
LeNet MNIST 98.65% 97.25% 6, 734 20, 844, 064 2, 000 32 1.57s

MLP-Sigmoid Credit 82.93% 80.70% 120 92, 280 1, 000 2 0.50s
MLP-GELU Bank 90.00% 89.90% 250 225, 000 1, 000 1 0.56s

TF-Encrypted
LeNet MNIST 98.20% 96.90% 6, 734 20, 844, 064 2, 000 41 0.27s

MLP-Sigmoid Credit 82.93% 80.10% 120 92, 280 1, 000 12 0.04s
MLP-GELU Bank 90.10% 90.10% 250 225, 000 1, 000 2 0.05s

PySyft
LeNet MNIST 97.95% 97.35% 6, 530 20, 844, 064 2, 000 18 2.12s

MLP-Sigmoid Credit 82.93% 80.70% 120 92, 280 1, 000 2 0.27s
MLP-GELU Bank 90.10% 89.40% 250 225, 000 1, 000 1 0.35s

CrypTen, the inference is performed securely without leaking
plaintext data or model parameters.

PySyft, like TF-Encrypted, is built on top of SecureNN and
SPDZ. To demonstrate the generalization of MPCDIFF with
regard to the number of involved parties, we use the three-
party setting and SecureNN protocol in PySyft, in which three
parties are responsible for the computation. In SecureNN, the
Beaver triples are generated using pseudorandom function fam-
ily (PRF) [92]. In this setting, the data and model parameters
are first shared in secret with these three servers, and then the
servers will together perform the inference on the encrypted
data and the model.

Inference Speed. It is worth noting that these MPC frame-
works can introduce a noticeable amount of overhead to the
use of large DNN models. For instance, it is disclosed [57]
that when using CrypTen-hardened large DNNs for image
analysis tasks, it is about 10 to 100 times slower than using
the native PyTorch. Nevertheless, we clarify that this overhead
does not primarily undermine the efficiency of MPCDIFF. The
key reason is that MPCDIFF is used in an in-house, localhost
setup. For our setup, the communication speed is negligible, as
we configure all frameworks using the localhost network. The
computation speed is also acceptable on our AMD CPU. As a
reasonable assumption, MPCDIFF users (DL model providers)
can follow our setup to use MPCDIFF for testing purpose
using their machines and localhost networks. Table I (last
column) reports the average inference time in our experiments,
which is generally speedy (much faster than the normal usage).
This justifies the usability of MPCDIFF. We present further
discussion about how the computation/communication cost
would change after model repairing in Sec. VI-C.

Datasets. We evaluate MPCDIFF using several data formats,
including image and tabular data. We choose popular DL tasks
like image classification, credit score prediction, and deposit
subscription prediction. Specifically, we select representative
datasets MNIST [61], Credit [98], and Bank [74]. MNIST is a
prominent dataset for classifying handwritten digits, and it is
commonly used to benchmark DL models. Credit is a dataset
frequently used for secure computation tasks. It contains 23
features such as clients’ age, the amount of bill statement,
and their repayment status in various months. The task of
Credit is to predict whether the client will miss a payment
next month, which reflects the client’s credit level. Bank is
related to the direct marketing campaigns (phone calls) of
a Portuguese banking institution; this dataset is often used
for benchmarking private computing scenarios. It contains 20
features for each sample, such as consumer price index and

consumer confidence index. Its task is to predict if the client
has subscribed a term deposit or not.

We clarify that benchmarking tabular datasets (Credit and
Bank) and a relatively simple image dataset (MNIST) should
not undermine MPCDIFF’s applicability. MPCDIFF’s techni-
cal pipeline is orthogonal to particular data types. Moreover,
we underline that in typical MPC scenarios (i.e., computation
over private data), tabular data such as financial record are
the mainstream. To show the generality, we also use im-
ages (MNIST) to evaluate MPCDIFF. Nevertheless, from the
MPC ecosystems, we have yet to observe real-world activities
or needs for securely processing complex media data like
ImageNet-quality photos [28], audios, or videos.

Models. In accordance with the datasets, we use three popular
DNN models as our test models. For MNIST, we train a five-
layer LeNet [60] with two convolutional layers and three fully-
connected layers. We use Sigmoid as the activation function,
and we perform batch normalization and average pooling
before and after each activation layer. For Credit, we train
a two-layer MLP to predict the credit level of the clients, with
Sigmoid as the activation functions. For the Bank dataset, we
train a two-layer MLP with GELU as the activation functions.
GELU is effective and commonly-used in many models like
BERT [29]. We clarify that all of these models are smoothly
supported by the evaluated MPC frameworks, and we set the
precision bit number of each model as m = 12. Moreover, they
are all well-trained, whose accuracies are reported in Table I.
See Appx. D for each model’s full architecture.

VI. EVALUATION

In this section, we evaluate the performance of MPCDIFF
following the setup introduced in Sec. V. In accordance
with three major components of MPCDIFF, we first evaluate
finding deviation-triggering inputs in Sec. VI-A. We then
evaluate localizing error-causing neurons and model repairing
in Sec. VI-B and Sec. VI-C, respectively.

A. Finding Deviation-Triggering Inputs

Table I reports the evaluated MPC frameworks, datasets,
and models. All the MPC-hardened models have good perfor-
mance, with an accuracy of about 97% for MNIST, 80% for
Credit, and 90% for Bank. Their accuracies are comparable
to those of the plaintext models. In other words, deviation-
triggering inputs found by MPCDIFF are not the results of
poorly trained models. Instead, they are derived from the two
root causes RC1 and RC2 noted in Sec. III.

We randomly select 2K or 1K inputs from the test split of
each dataset to form the seeds of MPCDIFF. As seen in Table I,

9

only a small number of seeds can cause deviated outputs. We
interpret this as consistent with our discussion in Theorem 1,
in the sense that the error is upper bounded. Since PySyft
does not support the 1D-Batchnorm, we remove the batchnorm
layer between fully-connected layers in LeNet. Thus, PySyft
has a fewer amount of non-linear operations than the other two
frameworks for LeNet. Consequently, fewer seeds can trigger
output deviations for LeNet/PySyft.

We launch MPCDIFF to test each MPC-hardened model
with maximal 15, 000 mutation iterations over the seeds. As
fuzzing tools are often configured, we use reasonably large
mutation iterations for evaluation, and we anticipate to find
more Deviation-triggering inputs by increasing this setup. We
report the findings in Fig. 5. Overall, MPCDIFF detects a
great number of deviation-triggering inputs. We report several
deviation-triggering input samples in Fig. 6, for which plaintext
models can yield correct predictions. However, when using
the MPC-hardened models, the predictions are incorrect. Note
that the dimensions of the Credit and Bank datasets are much
smaller than those of MNIST, and the MLP-Sigmoid and
MLP-GELU models are relatively simpler with fewer non-
linear operations. Therefore, MPCDIFF finds less amount of
deviation-triggering inputs for these two datasets compared to
the results on MNIST. We deem that MPCDIFF is still effective
for simple datasets, as it can find 2 to 17 times more deviation-
triggering inputs than the number of deviation-triggering seeds.

Deviation-Triggering Input Quality. As discussed in
Sec. IV-B, MPCDIFF bounds the total number of mutations
toward each input to ensure that the inputs are meaningful.
Moreover, we apply projection after each mutation to guarantee
that the inputs are within a pre-defined value range, e.g., the
image pixels will be projected to [0, 1], and the mutation on
tabular data is within its pre-defined variance. As a common
setup, we calculate the L2 distance between the mutated
deviation-triggering inputs and the original inputs to quantify
the distance between these inputs.

Fig. 6 shows that the deviation-triggering inputs retain
meaningful contents. Moreover, we find that the plaintext
model Mp yields correct predictions on all these “deviation-
triggering” inputs, which in turn demonstrates that they are
perceptually meaningful from the well-trained DNNs’ perspec-
tive. The average L2 distance over the input features reflects
that our mutation is small: about 0.002 divergence per pixel
on average for MNIST. We summarize the key findings below:

MPCDIFF can effectively detect a great number of
deviation-triggering inputs on various datasets and models.
These inputs have high quality, with close distance to
normal data and hard to distinguish.

B. Error-Causing Neuron Localization

As a pre-requist for fixing RC2, this section evaluates
the defect localization undertaken by MPCDIFF. We first
underline that it is generally difficult to acquire the “ground
truth” in this defect localization evaluation. It is inherently
obscure to decide which neurons in the MPC-hardened models
primarily cause output deviations. Nevertheless, we notice that
the AI community have explored eXplainable AI (XAI) tech-
niques [11], [85] to explain the decisions of neural networks.

0 0.5 1 1.5

·104

100

101

102

103

#Mutation

#D
ev

ia
tio

n-
tr

ig
ge

ri
ng

in
pu

ts

CrypTen, LeNet
TF-Encrypted, LeNet
PySyft, LeNet
CrypTen, MLP-Sigmoid
TF-Encrypted, MLP-Sigmoid
PySyft, MLP-Sigmoid
Crypten, MLP-GELU
TF-Encrypted, MLP-GELU
PySyft, MLP-GELU

Fig. 5: #Deviation-triggering inputs found by MPCDIFF.
Deviation-triggering inputs retain correct predictions in plain-
text models but trigger wrong predictions in MPC-hardened
models.

MPC
Framework Error-Inducing Inputs

Avg.
L2-DistanceDatasets

CrypTen

MNIST

Credit

Bank

[0.000, 1.000,… , 0.014, 0.039]

[0.494, 0.454,… , 0.957, 0.860]

MNIST

Credit

Bank

MNIST

Credit

Bank

TF-Encrypted

PySyft

[0.010, 0.000,… , 0.276, 0.009]

[0.197, 0.636,… , 0.000, 0.170]

[0.802, 0.000,… , 0.846, 0.297]

[0.049, 0.727,… , 0.060, 0.106]

...

...

...

...

...

...

...

...

...

0.0018

0.019

0.018

0.0029

0.0022

0.032

0.0034

0.023

0.015

Fig. 6: Examples of deviation-triggering inputs found by
MPCDIFF.

Particularly, they are able to identify the neurons that make
significant contributions to the model’s prediction.

Though XAI and MPCDIFF’s defect localization proce-
dures are conceptually distinct, we seek to use XAI, as a
reflection, to assess the findings of MPCDIFF. To do so, we
use the idea in [10] to calculate the second order derivative
of the neurons with respect to the inputs in test datasets. A
larger second order derivative value indicates that the neuron’s
first order derivative changes quickly and it is more sensitive
during the model training.

As shown in Table II, the neurons marked as important by
MPCDIFF and the second order derivation have an overlap
of at least 30.1%. We observe that the overlap is generally
higher for complex models like LeNet. A probable explanation
is because LeNet contains a batch normalization layer before
the activation function, which maps the value to a range with 0
mean and 1 variance, allowing the activation functions to work
properly and reducing the likelihood of gradients vanishing.
Thus, compared with MLP models, neurons with medium
values in LeNet are more likely to contribute to the inference
results. Recall that in Fig. 2b, medium inputs can result in
larger errors in Sigmoid. This presumably explains why that
LeNet has a greater degree of overlap.

We clarify that the objectives of XAI and MPCDIFF’s
defect localization are distinct, resulting neuron localization
differences as shown in Table II. This implies that certain
neurons, though yield substantial output differences between
plaintext models and MPC-hardened models, may be simply
ignored by XAI. In contrast, certain neurons that are treated as
important by XAI might be accurate in MPC-hardened models.

10

TABLE II: Overlap between XAI-marked neurons and findings
of MPCDIFF’s defect localization.

MPC Framework Datasets, Models Neuron
Overlap Ratio

CrypTen
MNIST, LeNet 69.93%

Credit, MLP-Sigmoid 35.29%
Bank, MLP-GELU 30.12%

TF-Encrypted
MNIST, LeNet 61.49%

Credit, MLP-Sigmoid 35.46%
Bank, MLP-GELU 50.60%

PySyft
MNIST, LeNet 61.87%

Credit, MLP-Sigmoid 63.82%
Bank, MLP-GELU 44.58%

TABLE III: Models after applying initial repairing.
MPC Models Acc. on Test Data Acc. on Deviation-Triggering

Framework Bef. / Aft. Repair Inputs Bef. / Aft. Repair

CrypTen
LeNet 97.25% / 97.10% 0% / 49.45%

MLP-Sigmoid 80.70% / 80.70% 0% / 86.95%
MLP-GELU 89.90% / 90.00% 0% / 71.87%

TF-Encrypted
LeNet 96.90% / 96.60% 0% / 15.41%

MLP-Sigmoid 80.10% / 80.20% 0% / 57.14%
MLP-GELU 90.10% / 90.20% 0% / 88.88%

PySyft
LeNet 97.80% / 98.00% 0% / 22.05%

MLP-Sigmoid 80.70% / 80.90% 0% / 68.00%
MLP-GELU 89.40% / 89.90% 0% / 96.77%

Despite this inherent difference, we nevertheless see that a
large fraction of agreement between MPCDIFF’s findings and
XAI. This indicates a large number of neurons that primarily
result in output deviations in MPC are also marked as impor-
tant in the plaintext models. Our key findings are as follows:

Our findings adequately justify the effectiveness of defect
localization in MPCDIFF. Sec. VI-C will show, form an
alternative and practical aspect, that repairing the neurons
identified by MPCDIFF at this stage will notably mitigates
deviation-triggering inputs. That provides additional sup-
port for validity of MPCDIFF-localized neurons.

C. Repairing MPC-Hardened Models

With the detected deviation-triggering inputs and the local-
ized neurons evaluated in Sec. VI-A and Sec. VI-B, we are able
to repair MPC-hardened models. As introduced in Sec. IV-D,
fixing RC1 (encoding & decoding errors) requires to tune the
precision bit number m, whereas fixing RC2 will tune terms
of α neurons localized by MPCDIFF, beginning with the most
important one.

Initial Repairing. To mimic how developers may tentatively
repair their models, we first apply an “initial repairing”
scheme. Note that for this scheme, we continue to use the
original precision bit number m = 12 for all models, and
we set α = 40, meaning that we tune terms of 40 neurons
(e.g., Sigmoid, GELU) with the greatest influence on the
output deviations. We report the repaired model performance
in Table III. Overall, we find that following the initially
applied augmentation, all models retain high accuracy on the
test dataset and become more robust against the deviation-
triggering inputs found by MPCDIFF. Moreover, we report that
the average extra cost incurred by the initial repairing scheme
is negligible, at approximately 0.003%. We clarify how this is
measured when discussing Fig. 7d below.

Fixing RC1 by Tuning m. We now evaluate how precision bit
numbers m affect the “initially repaired” models. As noted in

Sec. III, too large m can result in overflow errors, while a m
that is too small will cause greater encoding & decoding errors.
Fig. 7a depicts the performance of several MPC-hardened
models with varying m on the deviation-triggering inputs
found by MPCDIFF. Note that TF-Encrypted will check for
overflow and abort. Thus, it cannot give prediction outputs if
m exceeds 18. For CrypTen and PySyft, model accuracy on the
deviation-triggering inputs is the highest when m ∈ [15, 17],
and this observation is consistent across different datasets. For
TF-Encrypted, the accuracy increases rapidly at the beginning,
and when m ∈ [14, 17], the accuracy is mostly stable. A
possible reason is that the base of TF-Encrypted’s encoding
configuration is 3, rather than of 2. Thus, the scale 3m is
much larger than the other two frameworks’ configuration, 2m.
When m ∈ [14, 17], the scale is sufficiently large to reduce the
encoding & decoding errors and will not cause large overflow
errors for TF-Encrypted.

We also evaluate the model performance on the test datasets
under different m on the “initially repaired” models (α = 40).
As shown in Fig. 7b, for CrypTen and PySyft, the accuracy on
test datasets decreases greatly when m > 18. Overall, overflow
renders the models non-functional when m is too large. When
m is smaller, i.e., from 12 to 14, the accuracy on complex
datasets/models like MNIST/LeNet increases slightly.

Besides the well-known issue that an improper m may
undermine the accuracy, Fig. 7a and Fig. 7b further suggest that
a m primarily affects the robustness of MPC-hardened models.
A properly decided m, usually around 15 to 17 (depending on
the base of the scale), can result in models with high accuracy
and better robustness on the deviation-triggering inputs. This
observation is consistent among the three MPC frameworks
and their protected models. As already noted in Sec. III, we
again clarify that the effect of m is analyzed under fixed bit
length l = 64. Therefore, tuning m will not undermine the
communication and computation cost of the MPC protocols.

Fixing RC2 by Tuning α. We now evaluate the robust-
ness of MPC-hardened models when users can afford extra
computation and communication costs, i.e., using a larger α.
According to the above analysis, we use the precision bit
number m = 16. To mitigate the effect of varying m on
neuron importance ranking and ensure the accuracy of the
neuron importance scores, we re-launch testing with m = 16
with the same number of mutations as shown in Fig. 5.
Then, we re-run neuron localization as in Sec. VI-B using the
obtained deviation-triggering inputs for models with m = 16.
Fig. 7c shows that users can improve the robustness of all
models with even small increase of α; in other words, users
are expected to trade small extra computation/communication
overhead for robustness increase. We present the relation
between the theoretical relative cost increased and the number
of repaired neurons α in Fig. 7d.

As stated in Sec. IV-D, we increase the terms in non-linear
functions approximation to repair a localized neuron. Overall,
the increased terms lead to more communication and computa-
tion rounds. In contrast, we clarify that changing the precision
bit number m would not influence the cost. Thus, we are able
to measure the relative cost from a theoretical standpoint by
calculating the ratio of the total iteration rounds before and
after repairing. However, we refrain from running the MPC-

11

CRYPTEN, LENET TF-ENCRYPTED, LENET PYSYFT, LENET
CRYPTEN, MLP-SIGMOID TF-ENCRYPTED, MLP-SIGMOID PYSYFT, MLP-SIGMOID

CRYPTEN, MLP-GELU TF-ENCRYPTED, MLP-GELU PYSYFT, MLP-GELU

12 14 16 18 20 22 24 26 28 30 32

0

0.2

0.4

0.6

0.8

1

Precision bit number

A
cc

.o
n

de
vi

at
io

n-
tr

ig
ge

ri
ng

in
pu

ts

(a) Relationship between m and accu-
racy on deviation-triggering inputs.

12 14 16 18 20 22 24 26 28 30 32

0

0.2

0.4

0.6

0.8

1

Precision bit number
A

cc
.o

n
te

st
da

ta
se

ts
(b) Relationship between m and accu-
racy on test datasets.

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Repaired neuron number α

A
cc

.o
n

de
vi

at
io

n-
tr

ig
ge

ri
ng

in
pu

ts

(c) Relationship between α and accu-
racy on deviation-triggering inputs.

0 100 200 300 400 500

10−5

10−4

10−3

10−2

10−1

100

101

Repaired neuron number α

In
cr

ea
se

d
co

st
(%

)

(d) Relationship between α and in-
creased cost.

Fig. 7: Results of repairing MPC-hardened models.

hardened models on the physical machines to benchmark cost,
as our testing is conducted on an in-house, localhost setup.

The cost increases linearly, but we use the log axis to ease
the presentation. For instance, when increasing α from 0 to
150, the relative cost increases for 0.01% in LeNet/CrypTen,
whereas the robustness illustrated in Fig. 7c increases for
80%. We observe that all of the evaluated models can achieve
better performance with a larger α. And for MNIST/LeNet,
when α is small, there are fluctuations on the accuracy of
the deviation-triggering inputs. The reason is that the LeNet
network and MNIST datasets are relatively more complex
compared with other networks and datasets we evaluate. How-
ever, after increasing α, we can still get much better robustness,
which reflects the effectiveness of MPCDIFF. Also, we omit
the accuracy of the models on test datasets because it is
stable when we increase α, i.e., the accuracy on test datasets
fluctuates within 1%, which reflects that repairing will not
sacrifice the model’s accuracy on normal test inputs.

AEs and Decision Boundaries of Repaired Models. Recall
that in Sec. II-C, we have generated AEs on the CrypTen-
hardened models trained on MNIST before repairing utilizing
blackbox AE generation techniques. The results show that
we can generate 100 AEs using 275,700 queries. We re-
launch the AE generation on the CrypTen-hardened LeNet
after repairing using α = 250 and m = 16, and we can
only generate 19 AEs using the same number of queries.
And among the generated AEs, there are only 3 that are
not misclassified by the plaintext model. That is, we only
generate 3 deviation-triggering inputs using the same large
number of queries. Compared to the results in Sec. II-C, it
is much harder to generate derivation-triggering inputs using
blackbox AE generation on the repaired model. The results
further reflect that the repaired model is becoming more robust.
Additionally, we also visualize the decision boundaries of the
CrypTen-hardened LeNet after repairing. As shown in Fig. 8,
the boundaries of the CrypTen-hardened LeNet after repairing
are much closer to that of the original model compared to
the results in Fig. 1b. We deem that this result illustrates the
effectiveness of repairing in MPCDIFF.

To further demonstrate the effectiveness of the repairing,
we launch MPCDIFF to test the repaired models. We use the
same configuration and seeds as we launch testing, and we run
MPCDIFF to again perform 15, 000 mutations over the seeds.
We use α = 250 for LeNet, α = 40 for MLP-Sigmoid, and

3 2 1 0 1 2 3 4

4

5

6

7

8

9

10

0
1
2
3
4
5
6
7
8
9

(a) Decision boundaries of the orig-
inal model.

3 2 1 0 1 2 3 4

4

5

6

7

8

9

10

0
1
2
3
4
5
6
7
8
9

(b) Decision boundaries of the re-
paired MPC-hardened model.

Fig. 8: Depicting decision boundaries of LeNet and its repaired
MPC-hardened version for classifying MNIST. A darker hue
denotes a higher confidence of model prediction.

α = 80 for MLP-GELU. The results are shown in Fig. 9. We
observe that we can still find some deviation-triggering inputs
on the repaired models, which indicates the effectiveness of
our testing and the pervasiveness of deviation-triggering inputs
in MPC-hardened models. Compared to Fig. 5, however, the
number of deviation-triggering inputs found by MPCDIFF is
much smaller, indicating that models after repairing are more
robust. For CrypTen/MLP-GELU, we can still find comparable
deviation-triggering inputs as Fig. 5. We deem the reason is
that the model is not comprehensively repaired and MPCDIFF
can still exploit the neurons with lower precisions to misclas-
sify the models. Thus, we launch testing on CrypTen/MLP-
GELU again using higher α = 250. As expected, the number
of generated deviation-triggering inputs reduces by 64.7%. In
Fig. 5, MPCDIFF finds 17 deviation-triggering inputs, and to
compare, we find 6 deviation-triggering inputs after increasing
α = 250 at this step. For PySyft/LeNet, we also find a
relatively large amount of deviation-triggering inputs. Similar
to CrypTen/MLP-GELU, defect localization for this case may
not comprehensively reflect root cause neurons, hence reducing
the efficacy of our augmentation. Nevertheless, the number
of deviation-triggering inputs found by MPCDIFF is still
significantly smaller than the original results in Fig. 5. We
summarize the key findings at this step below:

The repaired models have comparable, if not better, accu-
racy than the original models on test data. Moreover, we
have encouraging observations that the repaired models are
significantly more robust than the original models.

12

0 0.5 1 1.5

·104

100

101

102

103

#Mutation

#D
ev

ia
tio

n-
tr

ig
ge

ri
ng

in
pu

ts
CrypTen, LeNet
TF-Encrypted, LeNet
PySyft, LeNet
CrypTen, MLP-Sigmoid
TF-Encrypted, MLP-Sigmoid
PySyft, MLP-Sigmoid
Crypten, MLP-GELU
TF-Encrypted, MLP-GELU
PySyft, MLP-GELU

Fig. 9: #Deviation-triggering inputs found by MPCDIFF on
repaired models.

VII. DISCUSSION

Fine-Grained Tuning of m. We have evaluated tuning m as
a global setting of each MPC-hardened model in Sec. VI-C.
Nevertheless, an optimal m depends on the value range of its
encoded floating-point number, and apparently different layers
in a DL model may provide outputs with distinct ranges. We
deem it an interesting future work to tune different precision
bit number m for different layers or even different elements
in an MPC-hardened model. We envision the major hurdle is
on extra overhead, as the parties have to frequently encode &
decode floating numbers if they use inconsistent m. Encoding
a value from a higher precision bit to a lower one may also
introduce extra errors. Moreover, we see that the intermediate
outputs of a DNN are typically of the same order of magnitude,
implying that determining a proper global precision bit number
should be sufficient for most cases. Therefore, tuning different
m may have a negligible effect on robustness, but notably
undermine speed.

Information Disclosure on Repaired MPC-Hardened Mod-
els. The model provider will release the computation paradigm
according to MPC protocols, facilitating secure DL inference
on data providers’ ends. The computation paradigm includes
information of the model architecture and how to calculate
each (non-linear) neuron, whereas model weights are shared
in secret. As expected, if the model provider has repaired the
MPC-hardened model using MPCDIFF, then the computation
paradigm will presumably disclose inconsistent terms for non-
linear functions in the model; a higher term implies that its
associated neuron is presumably critical for deciding model
outputs. This reveals a certain amount of information to the
data owners, comparing to the MPC-hardened models before
repairing. Nevertheless, we deem the leakage is negligibly
concerned, given that the private data (i.e., the model weights
and input data) are securely hidden.

Deviation-Triggering Inputs for Specific Labels. The current
objective of MPCDIFF is to find deviations between outputs
of plaintext models and MPC-hardened models for debug-
ging purpose. Therefore, MPCDIFF currently uses distances
between these models’ outputs to guide testing, and we do
not set a specific target label but detecting as many deviation-
triggering inputs as possible. We clarify that MPCDIFF can
be extended to mutate inputs for specific labels, e.g., mutating
MNIST images to mislead the MPC-hardened model to predict
“8” rather than “6”. With this regard, previous works that
generate adversarial examples in the black-box settings [78]
can be considered. We deem it is an interesting future work

to explore the attack surface of models deployed in MPC
scenarios, particularly in the remote, black-box setting.

Alternative Testing Feedback. As noted in Alg. 1, when
performing DT, MPCDIFF leverages the distance between
outputs of plaintext models and MPC-hardened models to
search test inputs; MPCDIFF gradually finds inputs with the
goal of increasing the output deviation until the deviation
is large enough to flip model predictions. This design of
testing feedback abstracts the MPC-DL model internals (e.g.,
orthogonal to the types of approximations employed for the
non-linear functions), making the testing pipeline of MPCDIFF
more general and applicable to various MPC-DL settings. We
also notice prior DL testing and attacking works that leverage
the model internals (layer-wise or neuron-wise outputs) to
guide input mutation [79]. While this may offer finer-grained
feedback (e.g., by focusing on the most critical neurons), we
believe the primary concern is speed. Hooking into the model
internals (e.g., every neuron) incur extra overhead, particularly
in the MPC-DL setting, where substantial, extra efforts are
needed in converting sharings to plaintext. We believe the
currently-formed feedback over model outputs is sufficient, and
we deem it an interesting future work to explore finer-grained
testing feedback.

MPC-Aware Training. We note that users can also bridge
the gap between the MPC-hardened models and the plaintext
models by applying MPC-aware training. Instead of using
the accurate non-linear functions and floating-point represen-
tations, users can simulate the MPC behavior and take the de-
viations into consideration during training. However, in MPC,
the approximations may not always be differentiable. Using
these approximated nonlinear functions during training can
greatly affect the model’s convergence. Additionally, modern
DL frameworks optimize common nonlinear functions like
Sigmoid and GELU. Replacing them with approximations
considerably increases training costs. Furthermore, most MPC
protocols for DL use approximations and fixed-point compu-
tations [82], [84], [41]. We deem MPCDIFF targets popular
use cases like those.

VIII. RELATED WORK

Secure Machine Learning. In addition to using MPC, recent
research have extensively studied federated learning (FL)-
based secure machine learning techniques [71], [42], [77],
[96]. Note that MPC can also be used in FL frameworks
to encrypt parameters. Furthermore, some trusted hardware
features like ARM TrustZone and Intel SGX are used to
shield machine learning models in cloud computing and edge
computing devices [72], [40], [49], [38], [90]. In addition
to protect the privacy of the model, another main branch of
research focus is to use differential privacy, MPC, or FL to
protect private training data [7], [71], [57]. We envision the
potential feasibility of extending the current implementation of
MPCDIFF to test FL infrastructures, which may share similar
root causes. As for secure machine learning based on trusted
hardware environments, we believe it should be orthogonal
with MPCDIFF.

Testing & Verification of Privacy-Enhancing Protocols. We
have noticed an exciting trend in the community to explore
the combination of programming language and cryptogra-
phy [5]. In particular, recent works have been applying soft-

13

ware testing, program analysis, and verification techniques
toward crypto/privacy-enhancing protocols. Ding et al. [30]
apply differential testing to detect violations of differential
privacy (DP). DP protocols are tested in a white-box setting:
accordingly, they leverage symbolic execution and constraint
solving to boost the testing, by prioritizing test inputs that
can cover divergent code paths. Recent works in this field
apply testing, verification, security auditing, or empirically in-
vestigation the implementation of DP protocols from a variety
of perspectives [52], [53], [94], [67], [56], [93], [100], [14].
DP-Sniper trains a neuron distinguisher to detect violations
of DP guarantees. With this regard, we also notice recent
advances in the crypto community that leverage neural models
to boost linear or differential cryptanalysis [34], [20], [46],
[9], [95]. Some research focuses on analyzing oblivious RAM
(ORAM) protocols. Existing works have proposed language-
based solutions to verify or testing ORAM protocols [64], [63],
[26], [66], [65], [69].

IX. CONCLUSION

We present MPCDIFF, a feedback-driven differential test-
ing tool to detect ill-predictions of MPC-hardened models.
Deviation-triggering inputs appear meaningful compared to
regular model inputs, illustrating that defects found by MPCD-
IFF are practical, yet overlooked by existing works. We further
discuss techniques to localize error-causing computation units,
and present techniques to repair defects in MPC-hardened
models. We show that the repaired models have high robust-
ness without incurring much extra overhead.

ACKNOWLEDGMENT

This work was supported in part by the research fund
provided by HSBC and a RGC GRF grant under the contract
16214723. We are grateful to the anonymous reviewers for
their valuable comments.

REFERENCES

[1] “PySyft,” https://github.com/OpenMined/PySyft.
[2] “Research artifact,” https://github.com/Qi-Pang/MPCDiff.
[3] “TF-encrypted,” https://github.com/tf-encrypted/tf-encrypted.
[4] “CrypTen,” https://github.com/facebookresearch/CrypTen, 2022.
[5] “Pl/crypto workshop,” https://andrewcmyers.github.io/plcrypt, 2022.
[6] “TF Encrypted,” https://github.com/tf-encrypted/tf-encrypted, 2022.
[7] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,

K. Talwar, and L. Zhang, “Deep learning with differential privacy,”
in Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, 2016, pp. 308–318.

[8] Y. Bai, Y. Li, M. Xie, M. Fan, and J. Ming, “A defense
framework for privacy risks in remote machine learning service,”
Sec. and Commun. Netw., vol. 2021, jan 2021. [Online]. Available:
https://doi.org/10.1155/2021/9924684

[9] A. Baksi, J. Breier, Y. Chen, and X. Dong, “Machine learning assisted
differential distinguishers for lightweight ciphers,” in DATE, 2021.

[10] R. Battiti, “First-and second-order methods for learning: between
steepest descent and newton’s method,” Neural computation, vol. 4,
no. 2, pp. 141–166, 1992.

[11] D. Bau, J.-Y. Zhu, H. Strobelt, A. Lapedriza, B. Zhou, and A. Torralba,
“Understanding the role of individual units in a deep neural network,”
Proceedings of the National Academy of Sciences, vol. 117, no. 48,
pp. 30 071–30 078, 2020.

[12] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Annual International Cryptology Conference. Springer, 1991, pp.
420–432.

[13] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of
secure protocols,” in Proceedings of the twenty-second annual ACM
symposium on Theory of computing, 1990, pp. 503–513.

[14] B. Bichsel, S. Steffen, I. Bogunovic, and M. Vechev, “Dp-sniper:
black-box discovery of differential privacy violations using classifiers,”
in 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021,
pp. 391–409.

[15] D. Bogdanov, “Foundations and properties of shamir’s secret sharing
scheme research seminar in cryptography,” University of Tartu, Insti-
tute of Computer Science, vol. 1, 2007.

[16] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework
for fast privacy-preserving computations,” in European Symposium on
Research in Computer Security. Springer, 2008, pp. 192–206.

[17] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. IEEE, 2001, pp. 136–145.

[18] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in 2017 ieee symposium on security and privacy
(sp). IEEE, 2017, pp. 39–57.

[19] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi, “Ezpc:
Programmable and efficient secure two-party computation for machine
learning,” in 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2019, pp. 496–511.

[20] Y. Chen and H. Yu, “Neural aided statistical attack for cryptanalysis.”
IACR Cryptol. ePrint Arch., vol. 2020, p. 1620, 2020.

[21] R. Cramer, I. Damgård, and Y. Ishai, “Share conversion, pseudorandom
secret-sharing and applications to secure computation,” in Theory of
Cryptography Conference. Springer, 2005, pp. 342–362.

[22] CWI, “Secure multiparty computation starts to deliver applica-
tions,” https://www.cwi.nl/news/2021/secure-multiparty-computation-
starts-to-deliver-applications, 2021.

[23] I. Damgård, D. Escudero, T. Frederiksen, M. Keller, P. Scholl, and
N. Volgushev, “New primitives for actively-secure mpc over rings with
applications to private machine learning,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 1102–1120.

[24] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft, “Uncondi-
tionally secure constant-rounds multi-party computation for equality,
comparison, bits and exponentiation,” in Theory of Cryptography
Conference. Springer, 2006, pp. 285–304.

[25] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” in Annual
Cryptology Conference. Springer, 2012, pp. 643–662.

[26] D. Darais, I. Sweet, C. Liu, and M. Hicks, “A language for prob-
abilistically oblivious computation,” Proceedings of the ACM on
Programming Languages, vol. 4, no. POPL, pp. 1–31, 2019.

[27] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for
efficient mixed-protocol secure two-party computation.” in NDSS,
2015.

[28] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A Large-Scale Hierarchical Image Database,” in CVPR09,
2009.

[29] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018.

[30] Z. Ding, Y. Wang, G. Wang, D. Zhang, and D. Kifer, “Detecting
violations of differential privacy,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security,
2018, pp. 475–489.

[31] C. Dwork, “Differential privacy: A survey of results,” in International
conference on theory and applications of models of computation.
Springer, 2008, pp. 1–19.

[32] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri,
and M. Vechev, “Ai2: Safety and robustness certification of neural
networks with abstract interpretation,” in 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 2018, pp. 3–18.

[33] A. Gil, J. Segura, and N. M. Temme, Numerical methods for special
functions. SIAM, 2007.

[34] A. Gohr, “Improving attacks on round-reduced speck32/64 using deep
learning,” in Annual International Cryptology Conference. Springer,
2019, pp. 150–179.

14

https://github.com/OpenMined/PySyft
https://github.com/Qi-Pang/MPCDiff
https://github.com/tf-encrypted/tf-encrypted
https://github.com/facebookresearch/CrypTen
https://github.com/tf-encrypted/tf-encrypted
https://doi.org/10.1155/2021/9924684

[35] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game, or a completeness theorem for protocols with honest majority,”
in Providing Sound Foundations for Cryptography: On the Work of
Shafi Goldwasser and Silvio Micali, 2019, pp. 307–328.

[36] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in International Conference on Learning
Representations, 2015. [Online]. Available: http://arxiv.org/abs/1412.
6572

[37] C. Grossmann, H.-G. Roos, and M. Stynes, Numerical treatment of
partial differential equations. Springer, 2007, vol. 154.

[38] K. Grover, S. Tople, S. Shinde, R. Bhagwan, and R. Ramjee, “Privado:
Practical and secure dnn inference with enclaves,” arXiv preprint
arXiv:1810.00602, 2018.

[39] C. Guo, J. Gardner, Y. You, A. G. Wilson, and K. Weinberger, “Simple
black-box adversarial attacks,” ser. ICML, 2019.

[40] L. Hanzlik, Y. Zhang, K. Grosse, A. Salem, M. Augustin, M. Backes,
and M. Fritz, “Mlcapsule: Guarded offline deployment of machine
learning as a service,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 3300–3309.

[41] M. Hao, H. Li, H. Chen, P. Xing, G. Xu, and T. Zhang, “Iron:
Private inference on transformers,” Advances in Neural Information
Processing Systems, vol. 35, pp. 15 718–15 731, 2022.

[42] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith,
and B. Thorne, “Private federated learning on vertically partitioned
data via entity resolution and additively homomorphic encryption,”
arXiv preprint arXiv:1711.10677, 2017.

[43] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “Sok:
General purpose compilers for secure multi-party computation,” in
2019 IEEE symposium on security and privacy (SP). IEEE, 2019,
pp. 1220–1237.

[44] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),”
arXiv preprint arXiv:1606.08415, 2016.

[45] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehren-
berg, “Tasty: tool for automating secure two-party computations,” in
Proceedings of the 17th ACM conference on Computer and communi-
cations security, 2010, pp. 451–462.

[46] B. Hou, Y. Li, H. Zhao, and B. Wu, “Linear attack on round-reduced
DES using deep learning,” in European Symposium on Research in
Computer Security. Springer, 2020, pp. 131–145.

[47] A. S. Householder, The numerical treatment of a single nonlinear
equation. McGraw-Hill, 1970.

[48] Z. Huang, W.-j. Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast
secure two-party deep neural network inference,” in Usenix Security,
2022.

[49] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel, “Chiron:
Privacy-preserving machine learning as a service,” arXiv preprint
arXiv:1803.05961, 2018.

[50] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial
attacks with limited queries and information,” in International Con-
ference on Machine Learning. PMLR, 2018, pp. 2137–2146.

[51] R. Impagliazzo and S. Rudich, “Limits on the provable consequences
of one-way permutations,” in Proceedings of the twenty-first annual
ACM symposium on Theory of computing, 1989, pp. 44–61.

[52] M. Jagielski, J. Ullman, and A. Oprea, “Auditing differentially private
machine learning: How private is private sgd?” Advances in Neural
Information Processing Systems, vol. 33, pp. 22 205–22 216, 2020.

[53] B. Jayaraman and D. Evans, “Evaluating differentially private machine
learning in practice,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 1895–1912.

[54] M. Kan, “Facebook’s ad business to minimize data
collection after apple, google privacy changes,”
https://www.pcmag.com/news/facebooks-ad-business-to-minimize-
data-collection-after-apple-google-privacy, 2021.

[55] M. Keller, E. Orsini, and P. Scholl, “Mascot: faster malicious arith-
metic secure computation with oblivious transfer,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 830–842.

[56] D. Kifer, S. Messing, A. Roth, A. Thakurta, and D. Zhang, “Guidelines
for implementing and auditing differentially private systems,” arXiv
preprint arXiv:2002.04049, 2020.

[57] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and
L. van der Maaten, “CrypTen: Secure multi-party computation meets
machine learning,” in arXiv 2109.00984, 2021.

[58] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, “A systematic ap-
proach to practically efficient general two-party secure function eval-
uation protocols and their modular design,” Journal of Computer
Security, vol. 21, no. 2, pp. 283–315, 2013.

[59] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, “Cryptflow: Secure tensorflow inference,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp. 336–353.

[60] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to hand-
written zip code recognition,” Neural computation, vol. 1, no. 4, pp.
541–551, 1989.

[61] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[62] K. Leino, Z. Wang, and M. Fredrikson, “Globally-robust neural
networks,” in International Conference on Machine Learning. PMLR,
2021, pp. 6212–6222.

[63] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi,
“Ghostrider: A hardware-software system for memory trace oblivious
computation,” ACM SIGPLAN Notices, vol. 50, no. 4, pp. 87–101,
2015.

[64] C. Liu, M. Hicks, and E. Shi, “Memory trace oblivious program
execution,” ser. CSF, 2013.

[65] C. Liu, Y. Huang, E. Shi, J. Katz, and M. W. Hicks, “Automating
efficient ram-model secure computation,” in 2014 IEEE Symposium
on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21,
2014, 2014, pp. 623–638.

[66] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm: A
programming framework for secure computation,” ser. IEEE Security
and Privacy, 2015.

[67] C. Liu, X. He, T. Chanyaswad, S. Wang, and P. Mittal, “Investigating
statistical privacy frameworks from the perspective of hypothesis
testing.” Proc. Priv. Enhancing Technol., vol. 2019, no. 3, pp. 233–254,
2019.

[68] L. Lyu, H. Yu, and Q. Yang, “Threats to federated learning: A survey,”
arXiv preprint arXiv:2003.02133, 2020.

[69] P. Ma, Z. Liu, Y. Yuan, and S. Wang, “Neurald: Detecting indistin-
guishability violations of oblivious ram with neural distinguishers,”
IEEE Transactions on Information Forensics and Security, vol. 17,
pp. 982–997, 2022.

[70] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,” arXiv
preprint arXiv:1706.06083, 2017.

[71] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp.
1273–1282.

[72] F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis,
A. Cavallaro, and H. Haddadi, “Darknetz: towards model privacy at
the edge using trusted execution environments,” in Proceedings of the
18th International Conference on Mobile Systems, Applications, and
Services, 2020, pp. 161–174.

[73] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework
for machine learning,” in Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security, 2018, pp. 35–
52.

[74] S. Moro, P. Cortez, and P. Rita, “A data-driven approach to predict the
success of bank telemarketing,” Decision Support Systems, vol. 62, pp.
22–31, 2014.

[75] I. News, “Enveil raises 25 million to expand its footprint
in both the commercial and government markets,”
https://www.helpnetsecurity.com/2022/04/29/enveil-funding/, 2022.

[76] S. Nilizadeh, Y. Noller, and C. S. Pasareanu, “DifFuzz: differential
fuzzing for side-channel analysis,” in 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2019, pp.
176–187.

15

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572

[77] R. Nock, S. Hardy, W. Henecka, H. Ivey-Law, G. Patrini, G. Smith, and
B. Thorne, “Entity resolution and federated learning get a federated
resolution,” arXiv preprint arXiv:1803.04035, 2018.

[78] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” ser.
AsiaCCS, 2017.

[79] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated
whitebox testing of deep learning systems,” in Proceedings of the
26th Symposium on Operating Systems Principles, ser. SOSP ’17.
New York, NY, USA: ACM, 2017, pp. 1–18. [Online]. Available:
http://doi.acm.org/10.1145/3132747.3132785

[80] C. Privacy, “Cape privacy launches self-service enterprise solution to
enable secure predictions,” shorturl.at/bvEMR, 2022.

[81] D. Rathee, A. Bhattacharya, R. Sharma, D. Gupta, N. Chandran, and
A. Rastogi, “SecFloat: Accurate floating-point meets secure 2-party
computation,” ser. IEEE S&P, 2022.

[82] D. Rathee, M. Rathee, R. K. K. Goli, D. Gupta, R. Sharma, N. Chan-
dran, and A. Rastogi, “Sirnn: A math library for secure rnn inference,”
in 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021,
pp. 1003–1020.

[83] T. J. Rivlin, Chebyshev polynomials. Courier Dover Publications,
2020.

[84] W. Ruan, M. Xu, W. Fang, L. Wang, L. Wang, and W. Han, “Private,
efficient, and accurate: Protecting models trained by multi-party learn-
ing with differential privacy,” in 2023 IEEE Symposium on Security
and Privacy (SP). IEEE, 2023, pp. 1926–1943.

[85] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable artificial
intelligence: Understanding, visualizing and interpreting deep learning
models,” arXiv preprint arXiv:1708.08296, 2017.

[86] A. Schulz, F. Hinder, and B. Hammer, “Deepview: Visualizing
classification boundaries of deep neural networks as scatter plots
using discriminative dimensionality reduction,” in Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI-20, C. Bessiere, Ed. International Joint Conferences on
Artificial Intelligence Organization, 7 2020, pp. 2305–2311, main
track. [Online]. Available: https://doi.org/10.24963/ijcai.2020/319

[87] F. Suya, J. Chi, D. Evans, and Y. Tian, “Hybrid batch attacks: Finding
black-box adversarial examples with limited queries,” ser. {USENIX}
Security, 2020.

[88] SYNCED, “Shared machine learning: Ant financial’s solution for
data privacy,” https://syncedreview.com/2019/08/22/shared-machine-
learning-ant-financials-solution-for-data-privacy/, 2019.

[89] D. Taylor, “Making intractable data interactable, bitfount raises 5
million,” shorturl.at/gkCQ1, 2022.

[90] F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private ex-
ecution of neural networks in trusted hardware,” arXiv preprint
arXiv:1806.03287, 2018.

[91] Trofi, “Trofi set to launch its platform for users to access crypto
products and services,” shorturl.at/lsxQ7, 2022.

[92] S. Wagh, D. Gupta, and N. Chandran, “Securenn: Efficient and private
neural network training,” Cryptology ePrint Archive, 2018.

[93] Y. Wang, Z. Ding, D. Kifer, and D. Zhang, “Checkdp: An automated
and integrated approach for proving differential privacy or finding
precise counterexamples,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp.
919–938.

[94] Y. Wang, Z. Ding, G. Wang, D. Kifer, and D. Zhang, “Proving
differential privacy with shadow execution,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2019, pp. 655–669.

[95] T. Yadav and M. Kumar, “Differential-ml distinguisher: Machine
learning based generic extension for differential cryptanalysis,” in
Progress in Cryptology – LATINCRYPT 2021, P. Longa and C. Ràfols,
Eds., 2021, pp. 191–212.

[96] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems
and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[97] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986). IEEE,
1986, pp. 162–167.

[98] I.-C. Yeh and C.-h. Lien, “The comparisons of data mining techniques
for the predictive accuracy of probability of default of credit card
clients,” Expert systems with applications, vol. 36, no. 2, pp. 2473–
2480, 2009.

[99] M. Zalewski, “American Fuzzy Lop,” https://lcamtuf.coredump.cx/afl/,
2021.

[100] H. Zhang, E. Roth, A. Haeberlen, B. C. Pierce, and A. Roth,
“Testing differential privacy with dual interpreters,” arXiv preprint
arXiv:2010.04126, 2020.

APPENDIX A
NON-LINEAR FUNCTION APPROXIMATION STRATEGIES

In this section, we present the commonly used approxima-
tion strategies for non-linear functions in DL models.

Exponential Function exp(x). Exponential function is ap-
proximated by a limit approximation:

exp(x) = lim
n→∞

(1 + x/n)n

This approximation strategy is the same for CrypTen, TF-
Encrypted and PySyft.

Reciprocal Function 1/x. One strategy to approximate the
reciprocal function is Newton-Raphson approximation:

yi+1 = 2yi − y2i x,

where y0 is usually set to y0 = 3exp(0.5 − x) + 0.003 to
speed up the convergence. Following the recursion formula
above, we can get an accurate result of yn = 1/x if n is
large enough. This strategy is adopted in CrypTen and TF-
Encrypted to calculate the batch normalization and other non-
linear functions’ approximations.

PySyft adopts the following iteration-based method to
calculate the batch normalization:

yi+1 = yi(C + 1− xy2i)/C,

where y0 = (C + 1− x)/C and C is the maximal value that
the input value |x| can be. With large enough iteration number
n, we can get an accurate result of yn = 1/x.

Sigmoid Function Sigmoid(x) = 1
1+e−x . One strategy to

approximate the Sigmoid function is to use the aforementioned
methods to approximate the exponential function and recipro-
cal function, and then Sigmoid can be naturally calculated.
This strategy is adopted by all the three frameworks.

Another strategy is to approximate function Tanh(x) first
by Chebyshev polynomials and then convert the results to
Sigmoid as the following holds:

Sigmoid(x) = 0.5Tanh(
x

2
) + 0.5

Tanh Function Tanh(x) = ex−e−x
ex+e−x . As we mentioned above,

Tanh(x) can be approximated by Chebyshev polynomials. We
illustrate the procedure as following:

Tanh(x) =

n∑
j=1

c2j−1P2j−1(x),

where ci is the ith Chebyshev series coefficient and Pi is ith
polynomial. The result is further truncated to [−1, 1]. This
strategy is also adopted by all these three frameworks.

16

http://doi.acm.org/10.1145/3132747.3132785
https://doi.org/10.24963/ijcai.2020/319
https://lcamtuf.coredump.cx/afl/

Model Provider

Model Parameters

MPC Computation Paradigm

Model provider shares the model parameters in secret.
Model provider sends the MPC computation paradigm.

Data Provider
MPC Computation Paradigm

Secret Share Model Parameters

Secret Share Private Data

…
Intermediate Results Exchange

Reconstruct Inference Results

<latexit sha1_base64="iitHglhAZVfDz5/CmGMRITJy9Aw=">AAAEu3icjVNNb9NAEJ0UA8V8tXDkYhEhUamK7AoBEoqo4MKxSKStlFTIXm8bN/7S2m4pUX4GVzjwYzhxRvwD+Be8mWyiQCHUlu3ZmXlv5s2uozJNqtr3v7dWLjmXr1xdveZev3Hz1u219Tu7VdEYpXuqSAuzH4WVTpNc9+qkTvV+aXSYRanei0YvOb53ok2VFPmb+qzUB1l4lCeHiQpruPoDlRiV6ngcTN6utf2OL5d33gis0X7+xe2Wn7+5O8V66ysNKKaCFDWUkaacatgphVTh7lNAPpXwHdAYPgMrkbimCbnANsjSyAjhHeF9hFXfenOsmbMStEKVFI8B0qMHwBTIM7C5mifxRpjZ+y/usXByb2f4RpYrg7emIbz/w80yL4pjLTUd0lPRkEBTKR5WpyxLI1Phzr0FVTUYSvjYjhE3sJUgZ3P2BFOJdp5tKPEfksleXiub29DPC6hjLdnSncnRHzPGtInqrIdr5bL7kXSrJWbsXrB9Ms+M7TlIwcY7mdiKW0vPwxhvI9MYyul5B04la55bAeZlWM4Z0Xubw12cylnJZPdYyQBrnq+yHfOp5T4Hc2wf2kJhnynp0kPkD2XunXl0Q3AuZv/3eyDzi2WSlaBL4Vqsv4k4qz2FxbVyewam2rqY1fR/8hY62MBqTG30PaFneFiri785+PPfPW/sbnWCx51Hr/329guaXqt0j+6DPaAntE2vaId6MrEP9JE+OV1HOcdOOk1daVnMXfrtcppf23vxRw==</latexit>

1

<latexit sha1_base64="YftxZNv8yEAEb317L6GCBrJ/6UE=">AAAEu3icjVNNb9NAEJ0UQ4v5auHIxSJColIVORGCSiiiggvHIpG2UlIhe71t3PhLa7ulRPkZXOHAj+HEGfEP4F/wZrKJAoVQW7ZnZ+a9mTe7DoskLivf/95YueJcvba6dt29cfPW7TvrG3f3yrw2SvdUnuTmIAxKncSZ7lVxleiDwuggDRO9H45ecnz/VJsyzrM31XmhD9PgOIuPYhVUcPUHKjYq0dG4M3m73vRbvlzeRaNtjebzL263+PzN3c03Gl9pQBHlpKimlDRlVMFOKKASd5/a5FMB3yGN4TOwYolrmpALbI0sjYwA3hHex1j1rTfDmjlLQStUSfAYID16CEyOPAObq3kSr4WZvf/iHgsn93aOb2i5UngrGsL7P9ws87I41lLREW2LhhiaCvGwOmVZapkKd+4tqKrAUMDHdoS4ga0EOZuzJ5hStPNsA4n/kEz28lrZ3Jp+XkIda0mX7kyG/pgxoi1UZz1cK5PdD6VbLTFj94Lt03lmZM9BAjbeydhW7Cw9D2O8jUxjKKfnHTiVrHluOZiXYTlnRO9tDndxJmclld1jJQOseb7KdsynlvsczLF9aAuEfaakS4+QP5S5t+bRTcG5mP3f74HML5JJloIuhGux/hbirPYMFtfK7BmYautiVtP/yVvoYBOrMTXR94Se4WGtLv7m9p//7kVjr9NqP2k9fu03d17Q9Fqj+/QA7G16Sjv0inapJxP7QB/pk9N1lHPiJNPUlYbF3KPfLqf+Bd/J8Ug=</latexit>

2

<latexit sha1_base64="fStBCVfKzZ0y/2m6pZQ1dr+DCwM=">AAAEvHicjVPLbtNQEJ0UA8W8WliysYiQKKoiO0KAhAIVbFgWibSV4grZ17eNFb/kR0qJ8htsQeJjWLFG/AH8BWcmN1GgEGrL9tyZOWfmzL0OiySuatf93lq7YF28dHn9in312vUbNzc2b+1VeVMq3Vd5kpcHYVDpJM50v47rRB8UpQ7SMNH74eglx/fHuqziPHtTnxb6MA2Os/goVkENl++ruFSJjibdB9O3G22348rlnDU8Y7Sff7F7xedv9m6+2fpKPkWUk6KGUtKUUQ07oYAq3APyyKUCvkOawFfCiiWuaUo2sA2yNDICeEd4H2M1MN4Ma+asBK1QJcFTAunQPWBy5JWwuZoj8UaY2fsv7olwcm+n+IaGK4W3piG8/8PNM8+LYy01HdET0RBDUyEeVqcMSyNT4c6dJVU1GAr42I4QL2ErQc7n7AimEu0820DiPySTvbxWJrehn+dQx1rSlTuToT9mjGgb1VkP18pk90PpVkusNHvB9niRGZlzkICNdzI2Fbsrz8ME71KmMZTT8w6cStY8txzMq7CcM6L3Joe7OJGzksrusRIfa56vMh3zqeU+/QV2AG2BsM+V9Og+8ocy984iuiU4G7P/++3L/CKZZCXoQriW628jzmpPYHGtzJyBmbYeZjX7n5ylDrawmlAbfU/pKR7WauNv9v78d88ae92O96jz8LXb3nlBs2ud7tBdsHv0mHboFe1SH5UK+kAf6ZP1zIqskZXOUtdaBnObfrus8S/ARPF8</latexit>

2*

<latexit sha1_base64="+p+V3NTTTm955HBuTOBAHVUILXo=">AAAEu3icjVNNb9NAEJ0UA8V8tXDkYhEhUamKnIIACUVUcOFYJNJWiitkr7eNib+0tltKlJ/BFQ78GE6cEf8A/gVvJpsoUAi1ZXt2Zt6bebPrqEyTqvb9762VC87FS5dXr7hXr12/cXNt/dZuVTRG6b4q0sLsR2Gl0yTX/TqpU71fGh1mUar3otELju8da1MlRf66Pi31QRYe5clhosIarkGgEqNSHY8fTN6stf2OL5d31uhao/3si9srP39zd4r11lcKKKaCFDWUkaacatgphVThHlCXfCrhO6AxfAZWInFNE3KBbZClkRHCO8L7CKuB9eZYM2claIUqKR4DpEf3gCmQZ2BzNU/ijTCz91/cY+Hk3k7xjSxXBm9NQ3j/h5tlnhfHWmo6pCeiIYGmUjysTlmWRqbCnXsLqmowlPCxHSNuYCtBzubsCaYS7TzbUOI/JJO9vFY2t6Gf51DHWrKlO5OjP2aMaRPVWQ/XymX3I+lWS8zYvWD7eJ4Z23OQgo13MrEVt5aehzHeRqYxlNPzDpxK1jy3AszLsJwzovc2h7s4kbOSye6xkgBrnq+yHfOp5T6DOXYAbaGwz5T06D7yhzL3zjy6ITgXs//7Hcj8YplkJehSuBbrbyLOak9gca3cnoGpth5mNf2fvIUONrAaUxt9T+gpHtbq4m/u/vnvnjV2tzrdR52Hr/z29nOaXqt0h+6CvUuPaZte0g71ZWIf6CN9cnqOct466TR1pWUxt+m3y2l+AeQX8Uk=</latexit>

3

<latexit sha1_base64="v/4pursuRNKxTXql9Zi44IKeiBo=">AAAEu3icjVNNb9NAEJ0UA8V8tXDkYhEhUamKnKoCJBRRwYVjkUhbKamQvd42Jv7S2m4pVn4GVzjwYzhxRvwD+Be8mWyiQCHUlu3ZmXlv5s2uwyKJy8r3v7dWLjmXr1xdveZev3Hz1u219Tt7ZV4bpfsqT3JzEAalTuJM96u4SvRBYXSQhoneD8cvOL5/ok0Z59nr6qzQh2lwnMVHsQoquAZDFRuV6KjZnrxZa/sdXy7vvNG1RvvZF7dXfP7m7ubrra80pIhyUlRTSpoyqmAnFFCJe0Bd8qmA75Aa+AysWOKaJuQCWyNLIyOAd4z3MVYD682wZs5S0ApVEjwGSI8eAJMjz8Dmap7Ea2Fm77+4G+Hk3s7wDS1XCm9FI3j/h5tlXhTHWio6oieiIYamQjysTlmWWqbCnXsLqiowFPCxHSFuYCtBzubsCaYU7TzbQOI/JJO9vFY2t6afF1DHWtKlO5OhP2aMaBPVWQ/XymT3Q+lWS8zYvWD7ZJ4Z2XOQgI13MrYVt5aehwZvI9MYyel5B04la55bDuZlWM4Z03ubw12cyllJZfdYyRBrnq+yHfOp5T6Hc+wA2gJhnynp0UPkj2TunXl0Q3AuZv/3eyjzi2SSpaAL4Vqsv4k4qz2FxbUyewam2nqY1fR/8hY62MCqoTb6ntBTPKzVxd/c/fPfPW/sbXW6jzrbr/z2znOaXqt0j+6DvUuPaYde0i71ZWIf6CN9cnqOct46yTR1pWUxd+m3y6l/Aehl8Uo=</latexit>

4

<latexit sha1_base64="wc9SJ3WTlMdcoz1MKziXLcwCTsc=">AAAEu3icjVPLbtNQEJ0UA8W8WliysYiQqFRFTsVLQhEVbFgWibSV4grZ17eNiV+6tltKlM9gCws+hhVrxB/AX3BmchMFCqG2bM+dmXNmztzrqEyTqvb9762VC87FS5dXr7hXr12/cXNt/dZuVTRG6b4q0sLsR2Gl0yTX/TqpU71fGh1mUar3otELju8da1MlRf66Pi31QRYe5clhosIarkGgEqNSHY8fTt6stf2OL5d31uhao/3si9srP39zd4r11lcKKKaCFDWUkaacatgphVThHlCXfCrhO6AxfAZWInFNE3KBbZClkRHCO8L7CKuB9eZYM2claIUqKR4DpEf3gCmQZ2BzNU/ijTCz91/cY+Hk3k7xjSxXBm9NQ3j/h5tlnhfHWmo6pCeiIYGmUjysTlmWRqbCnXsLqmowlPCxHSNuYCtBzubsCaYS7TzbUOI/JJO9vFY2t6Gf51DHWrKlO5OjP2aMaRPVWQ/XymX3I+lWS8zYvWD7eJ4Z23OQgo13MrEVt5aehzHeRqYxlNPzDpxK1jy3AszLsJwzovc2h7s4kbOSye6xkgBrnq+yHfOp5T6DOXYAbaGwz5T06D7yhzL3zjy6ITgXs//7Hcj8YplkJehSuBbrbyLOak9gca3cnoGpth5mNf2fvIUONrAaUxt9T+gpHtbq4m/u/vnvnjV2tzrdR50Hr/z29nOaXqt0h+6CvUuPaZte0g71ZWIf6CN9cnqOct466TR1pWUxt+m3y2l+Aeyz8Us=</latexit>

5

<latexit sha1_base64="+zLATsyfLx+8Y4g6Ao8FQ88bDik=">AAAEu3icjVNNb9NAEJ0UA8V8tXDkYhEhUamKnAoVJBRRwYVjkUhbKamQvd42Jv7S2m4pVn4GVzjwYzhxRvwD+Be8mWyiQCHUlu3ZmXlv5s2uwyKJy8r3v7dWLjmXr1xdveZev3Hz1u219Tt7ZV4bpfsqT3JzEAalTuJM96u4SvRBYXSQhoneD8cvOL5/ok0Z59nr6qzQh2lwnMVHsQoquAZDFRuV6KjZnrxZa/sdXy7vvNG1RvvZF7dXfP7m7ubrra80pIhyUlRTSpoyqmAnFFCJe0Bd8qmA75Aa+AysWOKaJuQCWyNLIyOAd4z3MVYD682wZs5S0ApVEjwGSI8eAJMjz8Dmap7Ea2Fm77+4G+Hk3s7wDS1XCm9FI3j/h5tlXhTHWio6oieiIYamQjysTlmWWqbCnXsLqiowFPCxHSFuYCtBzubsCaYU7TzbQOI/JJO9vFY2t6afF1DHWtKlO5OhP2aMaBPVWQ/XymT3Q+lWS8zYvWD7ZJ4Z2XOQgI13MrYVt5aehwZvI9MYyel5B04la55bDuZlWM4Z03ubw12cyllJZfdYyRBrnq+yHfOp5T6Hc+wA2gJhnynp0UPkj2TunXl0Q3AuZv/3eyjzi2SSpaAL4Vqsv4k4qz2FxbUyewam2nqY1fR/8hY62MCqoTb6ntBTPKzVxd/c/fPfPW/sbXW6251Hr/z2znOaXqt0j+6DvUuPaYde0i71ZWIf6CN9cnqOct46yTR1pWUxd+m3y6l/AfEB8Uw=</latexit>

6

<latexit sha1_base64="GFRDPA6Xm2xcHdIxogR8Om7M8wA=">AAAEu3icjVNNb9NAEJ0UA8V8tXDkYhEhUamKnApRJBRRwYVjkUhbKamQvd42Jv7S2m4pVn4GVzjwYzhxRvwD+Be8mWyiQCHUlu3ZmXlv5s2uwyKJy8r3v7dWLjmXr1xdveZev3Hz1u219Tt7ZV4bpfsqT3JzEAalTuJM96u4SvRBYXSQhoneD8cvOL5/ok0Z59nr6qzQh2lwnMVHsQoquAZDFRuV6KjZnrxZa/sdXy7vvNG1RvvZF7dXfP7m7ubrra80pIhyUlRTSpoyqmAnFFCJe0Bd8qmA75Aa+AysWOKaJuQCWyNLIyOAd4z3MVYD682wZs5S0ApVEjwGSI8eAJMjz8Dmap7Ea2Fm77+4G+Hk3s7wDS1XCm9FI3j/h5tlXhTHWio6oieiIYamQjysTlmWWqbCnXsLqiowFPCxHSFuYCtBzubsCaYU7TzbQOI/JJO9vFY2t6afF1DHWtKlO5OhP2aMaBPVWQ/XymT3Q+lWS8zYvWD7ZJ4Z2XOQgI13MrYVt5aehwZvI9MYyel5B04la55bDuZlWM4Z03ubw12cyllJZfdYyRBrnq+yHfOp5T6Hc+wA2gJhnynp0UPkj2TunXl0Q3AuZv/3eyjzi2SSpaAL4Vqsv4k4qz2FxbUyewam2nqY1fR/8hY62MCqoTb6ntBTPKzVxd/c/fPfPW/sbXW6jzuPXvntnec0vVbpHt0He5e2aYde0i71ZWIf6CN9cnqOct46yTR1pWUxd+m3y6l/AfVP8U0=</latexit>

7

<latexit sha1_base64="iitHglhAZVfDz5/CmGMRITJy9Aw=">AAAEu3icjVNNb9NAEJ0UA8V8tXDkYhEhUamK7AoBEoqo4MKxSKStlFTIXm8bN/7S2m4pUX4GVzjwYzhxRvwD+Be8mWyiQCHUlu3ZmXlv5s2uozJNqtr3v7dWLjmXr1xdveZev3Hz1u219Tu7VdEYpXuqSAuzH4WVTpNc9+qkTvV+aXSYRanei0YvOb53ok2VFPmb+qzUB1l4lCeHiQpruPoDlRiV6ngcTN6utf2OL5d33gis0X7+xe2Wn7+5O8V66ysNKKaCFDWUkaacatgphVTh7lNAPpXwHdAYPgMrkbimCbnANsjSyAjhHeF9hFXfenOsmbMStEKVFI8B0qMHwBTIM7C5mifxRpjZ+y/usXByb2f4RpYrg7emIbz/w80yL4pjLTUd0lPRkEBTKR5WpyxLI1Phzr0FVTUYSvjYjhE3sJUgZ3P2BFOJdp5tKPEfksleXiub29DPC6hjLdnSncnRHzPGtInqrIdr5bL7kXSrJWbsXrB9Ms+M7TlIwcY7mdiKW0vPwxhvI9MYyul5B04la55bAeZlWM4Z0Xubw12cylnJZPdYyQBrnq+yHfOp5T4Hc2wf2kJhnynp0kPkD2XunXl0Q3AuZv/3eyDzi2WSlaBL4Vqsv4k4qz2FxbVyewam2rqY1fR/8hY62MBqTG30PaFneFiri785+PPfPW/sbnWCx51Hr/329guaXqt0j+6DPaAntE2vaId6MrEP9JE+OV1HOcdOOk1daVnMXfrtcppf23vxRw==</latexit>

1 Model provider trains DNN model in plaintext.
<latexit sha1_base64="YftxZNv8yEAEb317L6GCBrJ/6UE=">AAAEu3icjVNNb9NAEJ0UQ4v5auHIxSJColIVORGCSiiiggvHIpG2UlIhe71t3PhLa7ulRPkZXOHAj+HEGfEP4F/wZrKJAoVQW7ZnZ+a9mTe7DoskLivf/95YueJcvba6dt29cfPW7TvrG3f3yrw2SvdUnuTmIAxKncSZ7lVxleiDwuggDRO9H45ecnz/VJsyzrM31XmhD9PgOIuPYhVUcPUHKjYq0dG4M3m73vRbvlzeRaNtjebzL263+PzN3c03Gl9pQBHlpKimlDRlVMFOKKASd5/a5FMB3yGN4TOwYolrmpALbI0sjYwA3hHex1j1rTfDmjlLQStUSfAYID16CEyOPAObq3kSr4WZvf/iHgsn93aOb2i5UngrGsL7P9ws87I41lLREW2LhhiaCvGwOmVZapkKd+4tqKrAUMDHdoS4ga0EOZuzJ5hStPNsA4n/kEz28lrZ3Jp+XkIda0mX7kyG/pgxoi1UZz1cK5PdD6VbLTFj94Lt03lmZM9BAjbeydhW7Cw9D2O8jUxjKKfnHTiVrHluOZiXYTlnRO9tDndxJmclld1jJQOseb7KdsynlvsczLF9aAuEfaakS4+QP5S5t+bRTcG5mP3f74HML5JJloIuhGux/hbirPYMFtfK7BmYautiVtP/yVvoYBOrMTXR94Se4WGtLv7m9p//7kVjr9NqP2k9fu03d17Q9Fqj+/QA7G16Sjv0inapJxP7QB/pk9N1lHPiJNPUlYbF3KPfLqf+Bd/J8Ug=</latexit>

2 Model provider designs the MPC computation
paradigm according to the MPC framework.

<latexit sha1_base64="fStBCVfKzZ0y/2m6pZQ1dr+DCwM=">AAAEvHicjVPLbtNQEJ0UA8W8WliysYiQKKoiO0KAhAIVbFgWibSV4grZ17eNFb/kR0qJ8htsQeJjWLFG/AH8BWcmN1GgEGrL9tyZOWfmzL0OiySuatf93lq7YF28dHn9in312vUbNzc2b+1VeVMq3Vd5kpcHYVDpJM50v47rRB8UpQ7SMNH74eglx/fHuqziPHtTnxb6MA2Os/goVkENl++ruFSJjibdB9O3G22348rlnDU8Y7Sff7F7xedv9m6+2fpKPkWUk6KGUtKUUQ07oYAq3APyyKUCvkOawFfCiiWuaUo2sA2yNDICeEd4H2M1MN4Ma+asBK1QJcFTAunQPWBy5JWwuZoj8UaY2fsv7olwcm+n+IaGK4W3piG8/8PNM8+LYy01HdET0RBDUyEeVqcMSyNT4c6dJVU1GAr42I4QL2ErQc7n7AimEu0820DiPySTvbxWJrehn+dQx1rSlTuToT9mjGgb1VkP18pk90PpVkusNHvB9niRGZlzkICNdzI2Fbsrz8ME71KmMZTT8w6cStY8txzMq7CcM6L3Joe7OJGzksrusRIfa56vMh3zqeU+/QV2AG2BsM+V9Og+8ocy984iuiU4G7P/++3L/CKZZCXoQriW628jzmpPYHGtzJyBmbYeZjX7n5ylDrawmlAbfU/pKR7WauNv9v78d88ae92O96jz8LXb3nlBs2ud7tBdsHv0mHboFe1SH5UK+kAf6ZP1zIqskZXOUtdaBnObfrus8S/ARPF8</latexit>

2* Model provider augments the MPC framework
and generates new computation paradigm.

<latexit sha1_base64="+p+V3NTTTm955HBuTOBAHVUILXo=">AAAEu3icjVNNb9NAEJ0UA8V8tXDkYhEhUamKnIIACUVUcOFYJNJWiitkr7eNib+0tltKlJ/BFQ78GE6cEf8A/gVvJpsoUAi1ZXt2Zt6bebPrqEyTqvb9762VC87FS5dXr7hXr12/cXNt/dZuVTRG6b4q0sLsR2Gl0yTX/TqpU71fGh1mUar3otELju8da1MlRf66Pi31QRYe5clhosIarkGgEqNSHY8fTN6stf2OL5d31uhao/3si9srP39zd4r11lcKKKaCFDWUkaacatgphVThHlCXfCrhO6AxfAZWInFNE3KBbZClkRHCO8L7CKuB9eZYM2claIUqKR4DpEf3gCmQZ2BzNU/ijTCz91/cY+Hk3k7xjSxXBm9NQ3j/h5tlnhfHWmo6pCeiIYGmUjysTlmWRqbCnXsLqmowlPCxHSNuYCtBzubsCaYS7TzbUOI/JJO9vFY2t6Gf51DHWrKlO5OjP2aMaRPVWQ/XymX3I+lWS8zYvWD7eJ4Z23OQgo13MrEVt5aehzHeRqYxlNPzDpxK1jy3AszLsJwzovc2h7s4kbOSye6xkgBrnq+yHfOp5T6DOXYAbaGwz5T06D7yhzL3zjy6ITgXs//7Hcj8YplkJehSuBbrbyLOak9gca3cnoGpth5mNf2fvIUONrAaUxt9T+gpHtbq4m/u/vnvnjV2tzrdR52Hr/z29nOaXqt0h+6CvUuPaZte0g71ZWIf6CN9cnqOct466TR1pWUxt+m3y2l+AeQX8Uk=</latexit>

3
<latexit sha1_base64="v/4pursuRNKxTXql9Zi44IKeiBo=">AAAEu3icjVNNb9NAEJ0UA8V8tXDkYhEhUamKnKoCJBRRwYVjkUhbKamQvd42Jv7S2m4pVn4GVzjwYzhxRvwD+Be8mWyiQCHUlu3ZmXlv5s2uwyKJy8r3v7dWLjmXr1xdveZev3Hz1u219Tt7ZV4bpfsqT3JzEAalTuJM96u4SvRBYXSQhoneD8cvOL5/ok0Z59nr6qzQh2lwnMVHsQoquAZDFRuV6KjZnrxZa/sdXy7vvNG1RvvZF7dXfP7m7ubrra80pIhyUlRTSpoyqmAnFFCJe0Bd8qmA75Aa+AysWOKaJuQCWyNLIyOAd4z3MVYD682wZs5S0ApVEjwGSI8eAJMjz8Dmap7Ea2Fm77+4G+Hk3s7wDS1XCm9FI3j/h5tlXhTHWio6oieiIYamQjysTlmWWqbCnXsLqiowFPCxHSFuYCtBzubsCaYU7TzbQOI/JJO9vFY2t6afF1DHWtKlO5OhP2aMaBPVWQ/XymT3Q+lWS8zYvWD7ZJ4Z2XOQgI13MrYVt5aehwZvI9MYyel5B04la55bDuZlWM4Z03ubw12cyllJZfdYyRBrnq+yHfOp5T6Hc+wA2gJhnynp0UPkj2TunXl0Q3AuZv/3eyjzi2SSpaAL4Vqsv4k4qz2FxbUyewam2nqY1fR/8hY62MCqoTb6ntBTPKzVxd/c/fPfPW/sbXW6jzrbr/z2znOaXqt0j+6DvUuPaYde0i71ZWIf6CN9cnqOct46yTR1pWUxd+m3y6l/Aehl8Uo=</latexit>

4
<latexit sha1_base64="wc9SJ3WTlMdcoz1MKziXLcwCTsc=">AAAEu3icjVPLbtNQEJ0UA8W8WliysYiQqFRFTsVLQhEVbFgWibSV4grZ17eNiV+6tltKlM9gCws+hhVrxB/AX3BmchMFCqG2bM+dmXNmztzrqEyTqvb9762VC87FS5dXr7hXr12/cXNt/dZuVTRG6b4q0sLsR2Gl0yTX/TqpU71fGh1mUar3otELju8da1MlRf66Pi31QRYe5clhosIarkGgEqNSHY8fTt6stf2OL5d31uhao/3si9srP39zd4r11lcKKKaCFDWUkaacatgphVThHlCXfCrhO6AxfAZWInFNE3KBbZClkRHCO8L7CKuB9eZYM2claIUqKR4DpEf3gCmQZ2BzNU/ijTCz91/cY+Hk3k7xjSxXBm9NQ3j/h5tlnhfHWmo6pCeiIYGmUjysTlmWRqbCnXsLqmowlPCxHSNuYCtBzubsCaYS7TzbUOI/JJO9vFY2t6Gf51DHWrKlO5OjP2aMaRPVWQ/XymX3I+lWS8zYvWD7eJ4Z23OQgo13MrEVt5aehzHeRqYxlNPzDpxK1jy3AszLsJwzovc2h7s4kbOSye6xkgBrnq+yHfOp5T6DOXYAbaGwz5T06D7yhzL3zjy6ITgXs//7Hcj8YplkJehSuBbrbyLOak9gca3cnoGpth5mNf2fvIUONrAaUxt9T+gpHtbq4m/u/vnvnjV2tzrdR50Hr/z29nOaXqt0h+6CvUuPaZte0g71ZWIf6CN9cnqOct466TR1pWUxt+m3y2l+Aeyz8Us=</latexit>

5 Data provider shares private data in secret.
<latexit sha1_base64="+zLATsyfLx+8Y4g6Ao8FQ88bDik=">AAAEu3icjVNNb9NAEJ0UA8V8tXDkYhEhUamKnAoVJBRRwYVjkUhbKamQvd42Jv7S2m4pVn4GVzjwYzhxRvwD+Be8mWyiQCHUlu3ZmXlv5s2uwyKJy8r3v7dWLjmXr1xdveZev3Hz1u219Tt7ZV4bpfsqT3JzEAalTuJM96u4SvRBYXSQhoneD8cvOL5/ok0Z59nr6qzQh2lwnMVHsQoquAZDFRuV6KjZnrxZa/sdXy7vvNG1RvvZF7dXfP7m7ubrra80pIhyUlRTSpoyqmAnFFCJe0Bd8qmA75Aa+AysWOKaJuQCWyNLIyOAd4z3MVYD682wZs5S0ApVEjwGSI8eAJMjz8Dmap7Ea2Fm77+4G+Hk3s7wDS1XCm9FI3j/h5tlXhTHWio6oieiIYamQjysTlmWWqbCnXsLqiowFPCxHSFuYCtBzubsCaYU7TzbQOI/JJO9vFY2t6afF1DHWtKlO5OhP2aMaBPVWQ/XymT3Q+lWS8zYvWD7ZJ4Z2XOQgI13MrYVt5aehwZvI9MYyel5B04la55bDuZlWM4Z03ubw12cyllJZfdYyRBrnq+yHfOp5T6Hc+wA2gJhnynp0UPkj2TunXl0Q3AuZv/3eyjzi2SSpaAL4Vqsv4k4qz2FxbUyewam2nqY1fR/8hY62MCqoTb6ntBTPKzVxd/c/fPfPW/sbXW6251Hr/z2znOaXqt0j+6DvUuPaYde0i71ZWIf6CN9cnqOct46yTR1pWUxd+m3y6l/AfEB8Uw=</latexit>

6 Parties exchange encrypted intermediate computation results.
<latexit sha1_base64="GFRDPA6Xm2xcHdIxogR8Om7M8wA=">AAAEu3icjVNNb9NAEJ0UA8V8tXDkYhEhUamKnApRJBRRwYVjkUhbKamQvd42Jv7S2m4pVn4GVzjwYzhxRvwD+Be8mWyiQCHUlu3ZmXlv5s2uwyKJy8r3v7dWLjmXr1xdveZev3Hz1u219Tt7ZV4bpfsqT3JzEAalTuJM96u4SvRBYXSQhoneD8cvOL5/ok0Z59nr6qzQh2lwnMVHsQoquAZDFRuV6KjZnrxZa/sdXy7vvNG1RvvZF7dXfP7m7ubrra80pIhyUlRTSpoyqmAnFFCJe0Bd8qmA75Aa+AysWOKaJuQCWyNLIyOAd4z3MVYD682wZs5S0ApVEjwGSI8eAJMjz8Dmap7Ea2Fm77+4G+Hk3s7wDS1XCm9FI3j/h5tlXhTHWio6oieiIYamQjysTlmWWqbCnXsLqiowFPCxHSFuYCtBzubsCaYU7TzbQOI/JJO9vFY2t6afF1DHWtKlO5OhP2aMaBPVWQ/XymT3Q+lWS8zYvWD7ZJ4Z2XOQgI13MrYVt5aehwZvI9MYyel5B04la55bDuZlWM4Z03ubw12cyllJZfdYyRBrnq+yHfOp5T6Hc+wA2gJhnynp0UPkj2TunXl0Q3AuZv/3eyjzi2SSpaAL4Vqsv4k4qz2FxbUyewam2nqY1fR/8hY62MCqoTb6ntBTPKzVxd/c/fPfPW/sbXW6jzuPXvntnec0vVbpHt0He5e2aYde0i71ZWIf6CN9cnqOct46yTR1pWUxd+m3y6l/AfVP8U0=</latexit>

7 Parties reconstruct inference results by exchanging shares.

Offline Preparation Phase

Online Private-Preserving Inference Phase

<latexit sha1_base64="Mmr6elwxm39cH6rkGv8DfoczXRA=">AAAExHicjVPLbtNQEJ0UA8W80rJkY5EiUamKnArRSiiiogixQQoSaSslVWXf3DRW/JIffRCFT2HDAv6EFWvEH8BfcGZyEwUKobZsz52Zc2bO3Gs/DYO8cN3vlaUr1tVr15dv2Ddv3b5zt7qyupcnZaZ0WyVhkh34Xq7DINbtIihCfZBm2ov8UO/7w12O75/oLA+S+G1xnurDyDuOg36gvAKuo+rqWrfQZ0WuRq9buy+Cfn+8dlStuXVXLuei0TBG7dkXu5l+/Ga3kpXKV+pSjxJSVFJEmmIqYIfkUY67Qw1yKYXvkEbwZbACiWsakw1siSyNDA/eId7HWHWMN8aaOXNBK1QJ8WRAOvQQmAR5GWyu5ki8FGb2/ot7JJzc2zm+vuGK4C1oAO//cNPMy+JYS0F92hYNATSl4mF1yrCUMhXu3JlTVYAhhY/tHuIZbCXI6ZwdweSinWfrSfyHZLKX18rklvTzEupYS7RwZ2L0x4w92kB11sO1Ytl9X7rVEsvMXrB9MsvsmXMQgo13MjAVNxeehxHemUxjIKfnDJxK1jy3BMyLsJwzpHcmh7s4lbMSye6xki7WPF9lOuZTy312Z9gOtHnCPlXSpEfIH8jc67PouuBszP7vd1fm15NJ5oJOhWu+/gbirPYUFteKzRmYaGtiVpP/yZnrYB2rEdXQ95ie4mGtNv7mxp//7kVjb7PeeFJ//Mat7TynybVM9+kB2Bu0RTv0ilrUlql/oE/02XpphVZulZPUpYrB3KPfLuv9L2Hp8/M=</latexit>

MPCDiff

Fig. 10: Pipeline of MPC-protected DL inference over pre-trained models.

Similar to Sigmoid(x), Tanh(x) can also be approxi-
mated by Sigmoid(x) as the following always holds:

Tanh(x) = 2Sigmoid(2x)− 1

GELU Function Gelu(x) = xΦ(x). GELU function is
the result of multiplication of the input and the cumulative
distribution function of standard Gaussian Φ(x). This function
is approximated by the following strategy:

Gelu(x) = 0.5x(1 + Tanh(

√
2

π
(x+ 0.044715x3))),

where we use Sigmoid to approximate the Tanh function
when calculating Gelu(x).

APPENDIX B
PIPELINE OF PRIVACY-PRESERVING DL INFERENCE

This appendix section depicts the pipeline of launching
privacy-preserving DL inference with a pre-trained DL model.
As shown in Fig. 10, in the offline stage, the model provider
will train a DL model using its training dataset in plaintext
(Step 1). Then, the model provider designs the MPC com-
putation paradigm according to the model architecture and the
MPC framework (Step 2). MPCDIFF can be leveraged after
Step 2 , delivering testing and repairing towards the MPC-
hardened models. We mark this step as 2* in Fig. 10.

After the offline phase, the model provider will send the
(repaired) MPC computation paradigm to the data provider

(Step 3). And the model provider will share his model
parameters with the data provider in secret (Step 4). Also,
the data provider will share his private data with the model
provider in secret (Step 5). Then, in Step 6 , the two parties
will exchange intermediate sharings and perform computation
according to the MPC computation paradigm specificed by the
model provider in Step 3 . Finally, the parties will reconstruct
the inference results by exchanging the sharings in Step 7 .

APPENDIX C
META STRATEGY FOR NON-LINEAR FUNCTION

APPROXIMATION

As mentioned in our main paper, we adopt a meta strategy
in MPCDIFF, which subsumes detailed approaches to tuning
terms for various approximation methods. Table IV lists the
approximation terms’ tuning configurations in MPCDIFF. De-
velopers are suggested to reuse our configuration for similar
tasks. Nevertheless, it is also feasible to configure MPCDIFF
by updating the meta strategy with new configurations and
tuning tactics according to specific computing scenarios, com-
putation/communication cost budgets, and model performance
requirements.

APPENDIX D
DETAILED ARCHITECTURE OF THE MODELS

In Table V, we present the detailed architectures of all the
models we test in Sec. VI.

17

TABLE IV: Meta strategy of tuning terms for different non-linear functions.

MPC Frameworks Non-Linear Functions Approximation Strategy Term Before / After Repair

CrypTen

exp(x) limit approximation 6/9
1/x Newton-Raphson approximation 6/9

Sigmoid(x) combine exponential and reciprocal approximation 6, 6/9, 9
Tanh(x) 2Sigmoid(2x)− 1 same as Sigmoid(x)

Gelu(x) 0.5x(1 + Tanh(
√

2
π (x + 0.044715x3))) same as Tanh(x)

TF-Encrypted

exp(x) limit approximation 3/5
1/x Newton-Raphson approximation 3/4

Sigmoid(x) combine exponential and reciprocal approximation 3, 3/5, 4
Tanh(x) 2Sigmoid(2x)− 1 same as Sigmoid(x)

Gelu(x) 0.5x(1 + Tanh(
√

2
π (x + 0.044715x3))) same as Tanh(x)

PySyft

exp(x) limit approximation 6/9
1/x iteration-based method (for batch normalization) 40, C = 20/80, C = 20
1/x Newton-Raphson approximation (for activation functions) 6/9

Sigmoid(x) combine exponential and Newton-Raphson-based reciprocal approximation 6, 6/9, 9
Tanh(x) 2Sigmoid(2x)− 1 same as Sigmoid(x)

Gelu(x) 0.5x(1 + Tanh(
√

2
π (x + 0.044715x3))) same as Tanh(x)

TABLE V: Detailed architectures of the models.
Models Layers

LeNet (CrypTen, TF-Encrypted)

Conv(input channel=1, output channel=6, kernel size=5, stride=1, padding=2)
Batch Normalization
Sigmoid Activation
AvgPool(kernel size=2, stride=2)
Conv(input channel=6, output channel=16, kernel size=5, stride=1, padding=0)
Batch Normalization
Sigmoid Activation
AvgPool(kernel size=2, stride=2)
Linear(input shape=400, output shape=120)
Batch Normalization
Sigmoid Activation
Linear(input shape=120, output shape=84)
Batch Normalization
Sigmoid Activation
Linear(input shape=84, output shape=10)

LeNet (PySyft)

Conv(input channel=1, output channel=6, kernel size=5, stride=1, padding=2)
Batch Normalization
Sigmoid Activation
AvgPool(kernel size=2, stride=2)
Conv(input channel=6, output channel=16, kernel size=5, stride=1, padding=0)
Batch Normalization
Sigmoid Activation
AvgPool(kernel size=2, stride=2)
Linear(input shape=400, output shape=120)
Sigmoid Activation
Linear(input shape=120, output shape=84)
Sigmoid Activation
Linear(input shape=84, output shape=10)

MLP-Sigmoid
Linear(input shape=23, output shape=120)
Sigmoid Activation
Linear(input shape=120, output shape=2)

MLP-GELU
Linear(input shape=20, output shape=250)
GELU Activation
Linear(input shape=250, output shape=2)

18

	Introduction
	Preliminaries
	Secure Multi-Party Computation
	Secure Computation

	Private-Preserving Model Inference
	Preliminary Vulnerability Exploration

	Analysis of MPC-Hardened Models
	Design of MPCDiff
	Application Scope and Clarification
	MPCDiff — Differential Testing
	MPCDiff — Defect Localization
	MPCDiff — Error Fixing

	Implementation & Evaluation Setup
	Evaluation
	Finding Deviation-Triggering Inputs
	Error-Causing Neuron Localization
	Repairing MPC-Hardened Models

	Discussion
	Related Work
	Conclusion
	References
	Appendix A: Non-Linear Function Approximation Strategies
	Appendix B: Pipeline of Privacy-Preserving DL Inference
	Appendix C: Meta Strategy for Non-Linear Function Approximation
	Appendix D: Detailed Architecture of the Models

