MPCDiff: Testing and Repairing MPC-
Hardened Deep Learning Models

Qi Pang!, Yuanyuan Yuan?, Shuai Wang?
ICarnegie Mellon University
°The Hong Kong University of Science and Technology

ChatGPT was temporarily banned 1n Italy

BlsjcC

Home News Sport Business Innovation Culture Travel Earth Video Live

1]

(%lBC MARKETS BUSINESS INVESTING TECH POLITICS CNBCTV INVESTINGCLUB & PRO &

Italy became the first Western country
to ban ChatGPT. Here’s what other
countries are doing

ChatGPT banned in Italy over privacy
concerns

1 April 2023 «§ Share

B THE WALL STREET JOURNAL.

Italy blocks ChatGPT over privacy concerns World Business US. Politics Economy Tech Finance Opinion Arts&Culture Lifestyle
o iy oherty and snaon st o ChatGPT Banned in Italy Over Data-

@ 2 minute read - Updated 12:19 PM EDT, Fri March 31, 2023

AX=o Privacy Concerns

Privacy order comes as regulatory scrutiny over artificial-intelligence
tools grows

() RyanBrowne ~ SHARE f ¥ in ™
& @RYAN_BROWNE_

By Margherita Stancati | Follow | and Sam Schechner | Follow |
Updated March 31, 2023 5:06 pm ET

Secure multi-party computation (MPC)ryaoss, GMws7, BGwss]

I@/ \@ » [T o) B
/ E

Secure two-party deep learning inference

encrypted message exchange

P1 \ /
P, and P- are honest but curious.

1
(x) P; has the private input data x.

has the confidential model

Examples of secure inference for DL models

SecureML: A System for Scalable Privacy- Delphi: A Cryptographic Inference
Preserving Machine Learningyz7 Service for Neural Networkspyy 201
GAZELLE: A Low Latency Framework Cheetah: Lean and Fast Secure Two-Party
for Secure Neural Network Inferenceyyycs Deep Neural Network Inferencepyy yo;

Iron: Private Inference on Transformers;y; ;7 BOLT: Privacy-Preserving, Accurate and
Efficient Inference for Transtormerspzyyios;

BumbleBee: Secure Two-party Inference

= TFE ted
Framework for Large Transtformersy yg,3 Lol isis

L Syft
© CrypTlen Y

MPC-Hardened DL models
e Addition

e &

[x]1, [y]4 [x]2, [y]2

z=|[z]; +[z], modp = x+ ymodp

MPC-Hardened DL models

* Multiplication x = [x], + [x], mod p
% (@j y = |yli + [yl modp
Z=xXymodp
la], = [x]; — laly
E’ 1Bl: = [y]l1 — [P4 E’ Beaver triples:
xl, vy, @ ————————— -> [x]2, [y]2 c =axb
lali, [Pl [c]li < —[;];:—[xg _—[az— — lal,, [D]y, [c];
1812 = lyl, — [b];
|z]; = [c]; + alb]; + Blal;, + af [z]; = [c]; + alb]; + Blal, + ap

z = [z]; + [z], mod p = xXy mod p

MPC-Hardened DL models

 Non-linear functions

z = |z]; + [z], mod p = exp(x)

x = [x]; + [x], mod p

y = exp(x) = lim (

n—>00

X
1+£)

n

Observation#1: Fixed-point representation

* Use fixed-point arithmetic to represent a floating-point value X € R:

e x = |X2™], m is the precision bit.

100 [r——

80

60

20 /l/
0

0 02 04 06 08 1
Original Input Value .10-?

Relative Error (%)

Figure 1. Relative error of fixed-point representation.

Observation#1: Fixed-point representation

* The multiplication results 1s truncated by m bits for subsequent computation.
e 7 =xXy = |X2™M|X]|§2™], has 2m bits scale.
* Local truncation drops the last m bits of [z]; and [z], locally, resulting in a 1-bit

random error in the last bit (w.h.p.).

Observation#2: Non-linear function approximation

* There are many non-linear functions in DL models like Sigmoid, Tanh, and GELU.

* These functions are usually approximated in MPC.

1077

Error

0

~10 -5 0 5 10
Original Input Value

Figure 2. Relative error of Sigmoid approximation.

11

Observation#3: Decision boundary shifting

* The errors will result in a decision boundary shifting in MPC-hardened DL models.

O© 00 NO Ul WNBHE O
O 00O NO UL WNBKHE O

-3 -2 -1 0 1 2 3 4
(a). Decision boundaries (b). Decision boundaries of
of the original model. the MPC-hardened model.

Figure 3. Decision boundaries of LeNet and its MPC-
hardened version for classifying MNIST images. 12

Observation#3: Decision boundary shifting

* The errors will result in a decision boundary shifting in MPC-hardened DL models.

’/' > Plaintext Model > Prediction: 6
{ Encrypted Model W > Prediction: & }

(
(MPC-hardened) J L

Observation#3: Decision boundary shifting

* The errors will result in a decision boundary shifting in MPC-hardened DL models.

’/' > Plaintext Model > Prediction: 6
{ Encrypted Model W > Prediction: & }

(
(MPC-hardened) J L

Can we find such deviation-triggering inputs efficiently?
Can we mitigate this 1ssue by repairing the MPC-hardened models?

Observation#3: Decision boundary shifting

* The errors will result in a decision boundary shifting in MPC-hardened DL models.

'/‘ > Plaintext Model > Prediction: 6
{ Encrypted Model W > Prediction: 8]

[
(MPC-hardened) J L

Can we find such deviation-triggering inputs efficiently?
Can we mitigate this 1ssue by repairing the MPC-hardened models?

15

Application scenario

« MPCDiff is designed for model maintainers and developers to assess and improve

the robustness of MPC-hardened DL models.
« MPCDiff aims to bridge the gap between the MPC-hardened and the plaintext

models.

* The testing and repairing in MPCDIiff are launched in the localhost network settings

by the developer.

Our approach: MPCDiff

« MPCDiff automatically generates/uncovers these deviation-triggering inputs by

feedback-driven differential testing.

ﬁg{; Ei?)idnetlem E{; nl\ﬁ)i 1protected

——————————————————————————————————

differential | . root cause
testing : . localization

localized

17

MPCDiff : Differential testing

MPCDiff employs feedback-driven differential testing to explore inputs that result in
deviant outputs of MPC-protected models and their plaintext models.

!

maximize,,: § = |Mp(x') — Mm(x’)|, s.t. |x' —x| <vw

_— N\

plaintext model MPC-hardened model mutated mput original input

Our approach: MPCDiff

 MPCDiff automatically generates/uncovers these deviation-triggering inputs.
* With these inputs, MPCDiff localizes the root causes and repairs the model with the

localized operators.

E{% plaintext E(\ MPC-protected
model

i h_\-',/) E"? model i

differential . root cause
testing | . localization

i @ inputs : @ operators © . @

localized

19

MPCDiff : Root cause localization

« MPCDiff employs a voting-based method to localize neurons that primarily

contribute to the deviation.

deviation-triggering input

8i(xpr) = n] —n"
If6l'(xDT) = T4:

If 6i (xDT) < T_:

nf: The it" neuron of the plaintext model.

n!™: The i*" neuron of the MPC-hardened model.

T,,T_: Thresholds.
w;: importance weight of the i*" neuron.

20

MPCDift : Repairing

 MPCDiff increases the approximation level of the non-linear functions that

produce the neurons with high importance weights.

The nonlinear functions on the neurons contribute more to the deviation are

evaluated more accurately.

Precision bit tuning achieves an optimal balance between preventing overtflow and

enhancing robustness.

Evaluation setup

Datasets, models, and MPC protocols.

@ CrypTen
= TFEncrypted

O Syft

Framework Model Datasets s ainteRt TACTypten
Accuracy Accuracy
LeNet MNIST 98.65% 97.25%
CrypTen MLP-Sigmoid Credit 82.93% 80.70%
MLP-GELU Bank 90.00% 89.90%
LeNet MNIST 98.20% 96.90%
TF-Encrypted | MLP-Sigmoid Credit 82.93% 80.10%
MLP-GELU Bank 90.10% 90.10%
LeNet MNIST 97.95% 97.35%
PySyft MLP-Sigmoid Credit 82.93% 80.70%
MLP-GELU Bank 90.10% 89.40%

Both plaintext and encrypted models achieve good accuracy.

Findings: Testing

—_
)
w

CrypTen, LeNet

— TF-Encrypted, LeNet

— PySyft, LeNet

— CrypTen, MLP-Sigmoid MPCDiff can effectively

—— TF-Encrypted, MLP-Sigmoid
— PySyft, MLP-Sigmoid detect a great number of

Crypten, MLP-GELU ST . .
TF.Encrypted, MLP-GELU deviation-triggering inputs on

[
)// PySyft, MLP-GELU various datasets and models.

—_
S
\}

—_
)
—

—_
)
o

#Deviation-triggering inputs

0 0.5 1 1.5
#Mutation 104

Figure 4. #Deviation-triggering inputs found by MPCDiff.

23

Findings: Testing

MPC ! | I Avg.
Framework ' Datasets | Error-Inducing Inputs 'L2-Distance
| MNIST | IIIIII - o0os
CrypTen . Credit | [0.000,1.000,...,0.014,0.039] : 0.019 o . :
| : | The deviation-triggering
. Bank | [0.494,0.454,..,0.957,0.860] - | 0.018
| | . inputs have high quality, with
' MNIST . . . E b 00029 close distance to normal data
TF-Encrypted | Credit ! [0.010,0.000, ...,0.276,0.009] - I 0.0022 and hard to distinguish.
|
' Bank ! [0.197,0.636,..,0.000,0.170] - I 0.032
|
mW:lnllll:ww
o3 ! ¢ ! |
PySytt i Credit | [0.802,0.000,...,0.846,0.297] -+ ; 0.023
1 I |
 Bank | [0.049,0.727,...,0.060,0.106] == | 0.015

Figure 5. Examples of deviation-triggering inputs found by MPCDiff.

24

Findings: Repairing

1) 10!
2.
= - 1o — CrypTen, LeNet
_%D § — TF-Encrypted, LeNet
o 08 - 107 — PySyft, LeNet
20 S L0-2 CrypTen, MLP-Sigmoid
o 0-6 r s —— TF-Encrypted, MLP-Sigmoid
2 S 10-3 — PySyft, MLP-Sigmoid
= 04 / o)
= 5 Crypten, MLP-GELU
B s = 107 TF-Encrypted, MLP-GELU
S o PySyft, MLP-GELU
Q | |
< ! 0 50 100 150 200 250 300 350 400 450 500 0 100 200 300 400 500
Repaired neuron number o Repaired neuron number «

Figure 6. Repaired neuron number vs accuracy and increased cost.

25

Findings: Repairing

® O (]
o 1 {
e 2 o
® 3 ([]
® 4 ®
O 5 (
® 6 (
e 7 (
® 8 e
® 9 (

© 0O NO UL WNKHE O

-3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4

(a). Decision boundaries of the (b). Decision boundaries of the

original model. repaired MPC-hardened model.

Figure 7. Decision boundaries of LeNet and its repaired
MPC-hardened version for classifying MNIST images.

The repaired MPC-hardened
models have better accuracy
than the original MPC-

hardened models on test data.
The repaired MPC-hardened

models are significantly more
robust than the original MPC-
hardened models.

26

Take away Email: gipang@cmu.edu Code: Fiziimt:

* Conceptually
* Reveal deviation-triggering inputs particularly exist in MPC-hardened DL models.
* Technically
« MPCDiff incorporates a set of simple but effective designs to uncover deviation-
triggering inputs and repair MPC-hardened models.
* Empirically
« MPCDiff finds a large number of deviation-triggering inputs across different popular
MPC platforms, models, and datasets.

* Repairing significantly improves the MPC-hardened models’ robustness.

mailto:qpang@andrew.cmu.edu

