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ChatGPT was temporarily banned in Italy
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Secure multi-party computation (MPC)[YAO86, GMW87, BGW88]
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Secure two-party deep learning inference
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𝑃! and 𝑃" are honest but curious.
𝑃! has the private input data 𝑥.
𝑃" has the confidential model 𝑀.



Examples of secure inference for DL models
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SecureML: A System for Scalable Privacy-
Preserving Machine Learning[MZ17]

Delphi: A Cryptographic Inference 
Service for Neural Networks[MLS+20]

GAZELLE: A Low Latency Framework 
for Secure Neural Network Inference[JVC18]

BOLT: Privacy-Preserving, Accurate and 
Efficient Inference for Transformers[PZM+23]

Iron: Private Inference on Transformers[HLC+22]

Cheetah: Lean and Fast Secure Two-Party 
Deep Neural Network Inference[HLH+22]

BumbleBee: Secure Two-party Inference 
Framework for Large Transformers[LHG+23]



MPC-Hardened DL models
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• Addition 𝑥 = 𝑥 ! + 𝑥 "	mod	𝑝
𝑦 = 𝑦 ! + 𝑦 "	mod	𝑝
𝑧 = 𝑥 + 𝑦	mod	𝑝

𝑧 ! = 𝑥 ! + 𝑦 !	mod	𝑝 𝑧 " = 𝑥 " + 𝑦 "	mod	𝑝

𝑧 = 𝑧 ! + 𝑧 "	mod	𝑝 = 𝑥 + 𝑦	mod	𝑝

𝑥 !, 𝑦 ! 𝑥 ", 𝑦 "



MPC-Hardened DL models
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• Multiplication

𝑥 !, 𝑦 !
𝑎 !, 𝑏 !, 𝑐 !

𝑥 = 𝑥 ! + 𝑥 "	mod	𝑝
𝑦 = 𝑦 ! + 𝑦 "	mod	𝑝

𝑧 = 𝑥×𝑦	mod	𝑝

Beaver triples:
𝑐 = 𝑎×𝑏

𝛼 ! = 𝑥 ! − 𝑎 !
𝛽 ! = 𝑦 ! − 𝑏 !

𝑧 = 𝑧 ! + 𝑧 "	mod	𝑝 = 𝑥×𝑦	mod	𝑝

𝑥 ", 𝑦 "
𝑎 ", 𝑏 ", 𝑐 "

𝛼 " = 𝑥 " − 𝑎 "
𝛽 " = 𝑦 " − 𝑏 "

𝑧 " = 𝑐 " + 𝛼 𝑏 " + 𝛽 𝑎 " + 𝛼𝛽𝑧 ! = 𝑐 ! + 𝛼 𝑏 ! + 𝛽 𝑎 ! + 𝛼𝛽



MPC-Hardened DL models
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• Non-linear functions

𝑥 !

𝑥 = 𝑥 ! + 𝑥 "	mod	𝑝

𝑦 = exp 𝑥 = lim
#→%

1 +
𝑥
𝑛

#

𝑧 = 𝑧 ! + 𝑧 "	mod	𝑝 = exp(𝑥)

𝑥 "

𝑧 ! = 1 +
𝑥
𝑛

#

!

𝑧 " = 1 +
𝑥
𝑛

#

"

encrypted message exchange



Observation#1: Fixed-point representation
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• Use fixed-point arithmetic to represent a floating-point value !𝒙 ∈ R: 

• x = ⌊(x2?⌋, m is the precision bit.

Figure 1. Relative error of fixed-point representation.



Observation#1: Fixed-point representation
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• Use fixed-point arithmetic to represent a floating-point value !𝒙 ∈ R: 

• x = ⌊(x2?⌋, m is the precision bit.

• The multiplication results is truncated by m bits for subsequent computation.

• z = x×𝑦 = (x2? × (y2? , has 2m bits scale.

• Local truncation drops the last m bits of 𝑧 @ and 𝑧 A locally, resulting in a 1-bit 

random error in the last bit (w.h.p.).



Observation#2: Non-linear function approximation
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• There are many non-linear functions in DL models like Sigmoid, Tanh, and GELU.

• These functions are usually approximated in MPC.

Figure 2. Relative error of Sigmoid approximation.



Observation#3: Decision boundary shifting
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• The errors will result in a decision boundary shifting in MPC-hardened DL models.

(a). Decision boundaries 
of the original model.

(b). Decision boundaries of 
the MPC-hardened model.

Figure 3. Decision boundaries of LeNet and its MPC-
hardened version for classifying MNIST images. 



Observation#3: Decision boundary shifting

13

• The errors will result in a decision boundary shifting in MPC-hardened DL models.

Plaintext Model Prediction: 6

Encrypted Model 
(MPC-hardened) Prediction: 8



Observation#3: Decision boundary shifting
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• The errors will result in a decision boundary shifting in MPC-hardened DL models.

Plaintext Model Prediction: 6

Encrypted Model 
(MPC-hardened) Prediction: 8

Can we find such deviation-triggering inputs efficiently?
Can we mitigate this issue by repairing the MPC-hardened models?



Observation#3: Decision boundary shifting
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• The errors will result in a decision boundary shifting in MPC-hardened DL models.

Plaintext Model Prediction: 6

Encrypted Model 
(MPC-hardened) Prediction: 8

Can we find such deviation-triggering inputs efficiently?
Can we mitigate this issue by repairing the MPC-hardened models?

𝐌𝐏𝐂𝐃𝐢𝐟𝐟



Application scenario
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• MPCDiff is designed for model maintainers and developers to assess and improve 

the robustness of MPC-hardened DL models.

• MPCDiff aims to bridge the gap between the MPC-hardened and the plaintext 

models.

• The testing and repairing in MPCDiff are launched in the localhost network settings 

by the developer.



Our approach: MPCDiff
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• MPCDiff automatically generates/uncovers these deviation-triggering inputs by 

feedback-driven differential testing.
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MPCDiff : Differential testing
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MPCDiff employs feedback-driven differential testing to explore inputs that result in 
deviant outputs of MPC-protected models and their plaintext models.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒BC: 𝛿 = 𝑀D 𝑥′ − 𝑀E 𝑥′ , 𝑠. 𝑡. 𝑥C − 𝑥 ≤ 𝑣

original inputmutated inputplaintext model MPC-hardened model



Our approach: MPCDiff
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• MPCDiff automatically generates/uncovers these deviation-triggering inputs.

• With these inputs, MPCDiff localizes the root causes and repairs the model with the 

localized operators.
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MPCDiff : Root cause localization
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• MPCDiff employs a voting-based method to localize neurons that primarily

contribute to the deviation.

𝑥&'

𝛿( 𝑥&' = |𝑛(
) − 𝑛(*|

If 𝛿( 𝑥&' ≥ 𝜏+: 
𝑤( → 𝑤( + 1

If 𝛿( 𝑥&' ≤ 𝜏,: 
𝑤( → 𝑤( − 1

𝑛(
): The 𝑖-. neuron of the plaintext model.
𝑛(*: The 𝑖-. neuron of the MPC-hardened model.
𝜏+, 𝜏,: Thresholds.
𝑤(: importance weight of the 𝑖-. neuron.

plaintext model MPC-hardened model

deviation-triggering input



MPCDiff : Repairing
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• MPCDiff increases the approximation level of the non-linear functions that 

produce the neurons with high importance weights.

        The nonlinear functions on the neurons contribute more to the deviation are 

evaluated more accurately.

        Precision bit tuning achieves an optimal balance between preventing overflow and 

enhancing robustness.



Evaluation setup
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Datasets, models, and MPC protocols.

Both plaintext and encrypted models achieve good accuracy.



Findings: Testing
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Figure 4. #Deviation-triggering inputs found by MPCDiff. 

MPCDiff can effectively 
detect a great number of 
deviation-triggering inputs on 
various datasets and models.



Findings: Testing
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Figure 5. Examples of deviation-triggering inputs found by MPCDiff. 

The deviation-triggering 
inputs have high quality, with 
close distance to normal data 
and hard to distinguish.



Findings: Repairing
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Figure 6. Repaired neuron number vs accuracy and increased cost.



Findings: Repairing
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(a). Decision boundaries of the 
original model.

(b). Decision boundaries of the 
repaired MPC-hardened model.

Figure 7. Decision boundaries of LeNet and its repaired 
MPC-hardened version for classifying MNIST images. 

The repaired MPC-hardened 
models have better accuracy 
than the original MPC-
hardened models on test data. 
The repaired MPC-hardened 
models are significantly more 
robust than the original MPC-
hardened models.



Take away

• Conceptually

• Reveal deviation-triggering inputs particularly exist in MPC-hardened DL models.

• Technically

• MPCDiff incorporates a set of simple but effective designs to uncover deviation-

triggering inputs and repair MPC-hardened models.

• Empirically

• MPCDiff finds a large number of deviation-triggering inputs across different popular 

MPC platforms, models, and datasets.

• Repairing significantly improves the MPC-hardened models’ robustness.
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