
MPCDiff: Testing and Repairing MPC-
Hardened Deep Learning Models

Qi Pang1, Yuanyuan Yuan2, Shuai Wang2
1Carnegie Mellon University

2The Hong Kong University of Science and Technology

1

ChatGPT was temporarily banned in Italy

2

Secure multi-party computation (MPC)[YAO86, GMW87, BGW88]

3

𝑥!

𝑥"

𝑥#

⋯

𝑓()

𝑓(𝑥!, 𝑥", ⋯ , 𝑥#)

Secure two-party deep learning inference

4

𝑥 𝑀⋯

encrypted message exchange

𝑀(𝑥)

𝑃! 𝑃"

𝑃! and 𝑃" are honest but curious.
𝑃! has the private input data 𝑥.
𝑃" has the confidential model 𝑀.

Examples of secure inference for DL models

5

SecureML: A System for Scalable Privacy-
Preserving Machine Learning[MZ17]

Delphi: A Cryptographic Inference
Service for Neural Networks[MLS+20]

GAZELLE: A Low Latency Framework
for Secure Neural Network Inference[JVC18]

BOLT: Privacy-Preserving, Accurate and
Efficient Inference for Transformers[PZM+23]

Iron: Private Inference on Transformers[HLC+22]

Cheetah: Lean and Fast Secure Two-Party
Deep Neural Network Inference[HLH+22]

BumbleBee: Secure Two-party Inference
Framework for Large Transformers[LHG+23]

MPC-Hardened DL models

6

• Addition 𝑥 = 𝑥 ! + 𝑥 "	mod	𝑝
𝑦 = 𝑦 ! + 𝑦 "	mod	𝑝
𝑧 = 𝑥 + 𝑦	mod	𝑝

𝑧 ! = 𝑥 ! + 𝑦 !	mod	𝑝 𝑧 " = 𝑥 " + 𝑦 "	mod	𝑝

𝑧 = 𝑧 ! + 𝑧 "	mod	𝑝 = 𝑥 + 𝑦	mod	𝑝

𝑥 !, 𝑦 ! 𝑥 ", 𝑦 "

MPC-Hardened DL models

7

• Multiplication

𝑥 !, 𝑦 !
𝑎 !, 𝑏 !, 𝑐 !

𝑥 = 𝑥 ! + 𝑥 "	mod	𝑝
𝑦 = 𝑦 ! + 𝑦 "	mod	𝑝

𝑧 = 𝑥×𝑦	mod	𝑝

Beaver triples:
𝑐 = 𝑎×𝑏

𝛼 ! = 𝑥 ! − 𝑎 !
𝛽 ! = 𝑦 ! − 𝑏 !

𝑧 = 𝑧 ! + 𝑧 "	mod	𝑝 = 𝑥×𝑦	mod	𝑝

𝑥 ", 𝑦 "
𝑎 ", 𝑏 ", 𝑐 "

𝛼 " = 𝑥 " − 𝑎 "
𝛽 " = 𝑦 " − 𝑏 "

𝑧 " = 𝑐 " + 𝛼 𝑏 " + 𝛽 𝑎 " + 𝛼𝛽𝑧 ! = 𝑐 ! + 𝛼 𝑏 ! + 𝛽 𝑎 ! + 𝛼𝛽

MPC-Hardened DL models

8

• Non-linear functions

𝑥 !

𝑥 = 𝑥 ! + 𝑥 "	mod	𝑝

𝑦 = exp 𝑥 = lim
#→%

1 +
𝑥
𝑛

#

𝑧 = 𝑧 ! + 𝑧 "	mod	𝑝 = exp(𝑥)

𝑥 "

𝑧 ! = 1 +
𝑥
𝑛

#

!

𝑧 " = 1 +
𝑥
𝑛

#

"

encrypted message exchange

Observation#1: Fixed-point representation

9

• Use fixed-point arithmetic to represent a floating-point value !𝒙 ∈ R:

• x = ⌊(x2?⌋, m is the precision bit.

Figure 1. Relative error of fixed-point representation.

Observation#1: Fixed-point representation

10

• Use fixed-point arithmetic to represent a floating-point value !𝒙 ∈ R:

• x = ⌊(x2?⌋, m is the precision bit.

• The multiplication results is truncated by m bits for subsequent computation.

• z = x×𝑦 = (x2? × (y2? , has 2m bits scale.

• Local truncation drops the last m bits of 𝑧 @ and 𝑧 A locally, resulting in a 1-bit

random error in the last bit (w.h.p.).

Observation#2: Non-linear function approximation

11

• There are many non-linear functions in DL models like Sigmoid, Tanh, and GELU.

• These functions are usually approximated in MPC.

Figure 2. Relative error of Sigmoid approximation.

Observation#3: Decision boundary shifting

12

• The errors will result in a decision boundary shifting in MPC-hardened DL models.

(a). Decision boundaries
of the original model.

(b). Decision boundaries of
the MPC-hardened model.

Figure 3. Decision boundaries of LeNet and its MPC-
hardened version for classifying MNIST images.

Observation#3: Decision boundary shifting

13

• The errors will result in a decision boundary shifting in MPC-hardened DL models.

Plaintext Model Prediction: 6

Encrypted Model
(MPC-hardened) Prediction: 8

Observation#3: Decision boundary shifting

14

• The errors will result in a decision boundary shifting in MPC-hardened DL models.

Plaintext Model Prediction: 6

Encrypted Model
(MPC-hardened) Prediction: 8

Can we find such deviation-triggering inputs efficiently?
Can we mitigate this issue by repairing the MPC-hardened models?

Observation#3: Decision boundary shifting

15

• The errors will result in a decision boundary shifting in MPC-hardened DL models.

Plaintext Model Prediction: 6

Encrypted Model
(MPC-hardened) Prediction: 8

Can we find such deviation-triggering inputs efficiently?
Can we mitigate this issue by repairing the MPC-hardened models?

𝐌𝐏𝐂𝐃𝐢𝐟𝐟

Application scenario

16

• MPCDiff is designed for model maintainers and developers to assess and improve

the robustness of MPC-hardened DL models.

• MPCDiff aims to bridge the gap between the MPC-hardened and the plaintext

models.

• The testing and repairing in MPCDiff are launched in the localhost network settings

by the developer.

Our approach: MPCDiff

17

• MPCDiff automatically generates/uncovers these deviation-triggering inputs by

feedback-driven differential testing.

differential
testing

1

repair

3

root cause
localization

2

error-triggering

MPC-protected
model

plaintext
model

inputs

localized

operators

MPCDiff : Differential testing

18

MPCDiff employs feedback-driven differential testing to explore inputs that result in
deviant outputs of MPC-protected models and their plaintext models.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒BC: 𝛿 = 𝑀D 𝑥′ − 𝑀E 𝑥′ , 𝑠. 𝑡. 𝑥C − 𝑥 ≤ 𝑣

original inputmutated inputplaintext model MPC-hardened model

Our approach: MPCDiff

19

• MPCDiff automatically generates/uncovers these deviation-triggering inputs.

• With these inputs, MPCDiff localizes the root causes and repairs the model with the

localized operators.

differential
testing

1

repair

3

root cause
localization

2

error-triggering

MPC-protected
model

plaintext
model

inputs

localized

operators

MPCDiff : Root cause localization

20

• MPCDiff employs a voting-based method to localize neurons that primarily

contribute to the deviation.

𝑥&'

𝛿(𝑥&' = |𝑛(
) − 𝑛(*|

If 𝛿(𝑥&' ≥ 𝜏+:
𝑤(→ 𝑤(+ 1

If 𝛿(𝑥&' ≤ 𝜏,:
𝑤(→ 𝑤(− 1

𝑛(
): The 𝑖-. neuron of the plaintext model.
𝑛(*: The 𝑖-. neuron of the MPC-hardened model.
𝜏+, 𝜏,: Thresholds.
𝑤(: importance weight of the 𝑖-. neuron.

plaintext model MPC-hardened model

deviation-triggering input

MPCDiff : Repairing

21

• MPCDiff increases the approximation level of the non-linear functions that

produce the neurons with high importance weights.

 The nonlinear functions on the neurons contribute more to the deviation are

evaluated more accurately.

 Precision bit tuning achieves an optimal balance between preventing overflow and

enhancing robustness.

Evaluation setup

22

Datasets, models, and MPC protocols.

Both plaintext and encrypted models achieve good accuracy.

Findings: Testing

23

Figure 4. #Deviation-triggering inputs found by MPCDiff.

MPCDiff can effectively
detect a great number of
deviation-triggering inputs on
various datasets and models.

Findings: Testing

24

Figure 5. Examples of deviation-triggering inputs found by MPCDiff.

The deviation-triggering
inputs have high quality, with
close distance to normal data
and hard to distinguish.

Findings: Repairing

25

Figure 6. Repaired neuron number vs accuracy and increased cost.

Findings: Repairing

26

(a). Decision boundaries of the
original model.

(b). Decision boundaries of the
repaired MPC-hardened model.

Figure 7. Decision boundaries of LeNet and its repaired
MPC-hardened version for classifying MNIST images.

The repaired MPC-hardened
models have better accuracy
than the original MPC-
hardened models on test data.
The repaired MPC-hardened
models are significantly more
robust than the original MPC-
hardened models.

Take away

• Conceptually

• Reveal deviation-triggering inputs particularly exist in MPC-hardened DL models.

• Technically

• MPCDiff incorporates a set of simple but effective designs to uncover deviation-

triggering inputs and repair MPC-hardened models.

• Empirically

• MPCDiff finds a large number of deviation-triggering inputs across different popular

MPC platforms, models, and datasets.

• Repairing significantly improves the MPC-hardened models’ robustness.
27

Email: qipang@cmu.edu Code:

mailto:qpang@andrew.cmu.edu

