
Information-Based Heavy Hitters for Real-Time
DNS Data Exfiltration Detection

Yarin Ozery
Ben-Gurion University of the Negev

Akamai Technologies, inc.
yarinoz@post.bgu.ac.il

Asaf Nadler
Ben-Gurion University of the Negev

asafnadl@post.bgu.ac.il

Asaf Shabtai
Ben-Gurion University of the Negev

shabtaia@bgu.ac.il

Abstract—Data exfiltration over the DNS protocol and its
detection have been researched extensively in recent years. Prior
studies focused on offline detection methods, which although
capable of detecting attacks, allow a large amount of data to
be exfiltrated before the attack is detected and dealt with. In this
paper, we introduce Information-based Heavy Hitters (ibHH), a
real-time detection method which is based on live estimations of
the amount of information transmitted to registered domains.
ibHH uses constant-size memory and supports constant-time
queries, which makes it suitable for deployment on recursive
DNS servers to further reduce detection and response time. In our
evaluation, we compared the performance of the proposed method
to that of leading state-of-the-art DNS exfiltration detection
methods on real-world datasets comprising over 250 billion
DNS queries. The evaluation demonstrates ibHH’s ability to
successfully detect exfiltration rates as slow as 0.7B/s, with a
false positive alert rate of less than 0.004, with significantly lower
resource consumption compared to other methods.

I. INTRODUCTION

Data exfiltration is performed by malicious actors in order
to steal data from a network. Once the data is collected, adver-
saries often utilize various techniques, including compression
and encryption, to obfuscate the information and evade detec-
tion when removing it. The methods used to extract data from
a targeted network typically involve transmitting it through a
covert communication channel. Adversaries may also impose
limitations on the data transmission size to minimize the risk
of detection. The data exfiltration stage usually marks the final
phase in the malware lifecycle [1].

The Domain Name System (DNS) protocol [2] is a crucial
network protocol, which is primarily used to translate easy-
to-remember domain names into corresponding IP addresses.
While enterprises and government organizations employ vari-
ous defensive measures to safeguard their users and networks
against malicious actors, the DNS protocol is typically left
unblocked and inadequately monitored due to its critical role
in facilitating users’ Internet access [3]. Given the vulnerable
and exploitable characteristics of the DNS protocol, malicious
actors targeting enterprise and government organizations for
data theft often choose to exploit it as a means of data

exfiltration and covert communication. This practice is known
as DNS exfiltration [4].

Initiating DNS exfiltration is a straightforward and cost-
effective process, as the attacker simply needs to register
a domain (e.g., attacker.com) with a domain name registrar
and assign an authoritative name server under their control
to that domain. This allows the malware installed on the
compromised host to exfiltrate data by encoding it within
DNS packets directed towards the registered domain. In the
DNS query resolution process, the queries are forwarded from
the client to the authoritative name server associated with the
queried domain. As a result, queries aimed at attacker.com
are forwarded to the attacker-controlled authoritative name
server, enabling successful data exchange between the malware
and the attacker. In addition, the attacker can utilize DNS
responses to encode messages sent to the malware, enabling a
bidirectional covert communication channel through the DNS
exfiltration tunnel. This channel can be exploited for other
purposes, such as command and control (C&C) operations.

There are various ways to exfiltrate data over the DNS:
(1) encoding data within the DNS query name (i.e., the target
domain name to be resolved); (2) using the DNS query type
field, which indicates the type of DNS resource record the
client is trying to resolve, in order to encode a small amount
of information (up to 16 bits) in the DNS packet; and (3)
timing-based exfiltration, in which the query arrival time is
used as a means of conveying information [5]. Numerous
instances of malicious actors leveraging the DNS for data
exfiltration have been documented, including activities by
state-sponsored threat groups [6], [7], [8], [9], [10], as well
as by ransomware actors [11]. Therefore, it is no surprise
that significant research attention has been dedicated to DNS
exfiltration and its detection in recent years [12].

Many DNS exfiltration methods have been proposed to
date, ranging from rule-based techniques [13], [14], statistical-
based techniques [15], [16], supervised machine learning tech-
niques [17], unsupervised machine learning techniques [18],
[19], and even deep learning techniques [20], [21], [22].

Despite the extensive body of research on DNS exfiltration,
limited attention has been directed towards real-time detection
methods. The majority of existing solutions are ill-suited
for online deployment, and the proposed approaches have
predominantly operated in an offline manner. Offline detection
methods are a major concern as they allow for substantial data
exfiltration to occur before the attack is identified and thwarted.

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24388
www.ndss-symposium.org

In contrast, real-time DNS exfiltration detection enables a
rapid response from network operators, effectively reducing
the potential damage inflicted by breaches. In order to provide
real-time detection capabilities, a solution should not rely on an
external data collection process but rather be executed directly
on the DNS queries stream resolved by the resolver. By inte-
grating the detection functionality within the resolver itself, the
solution can effectively analyze and classify queries without
introducing delays or disruptions to the resolution process.

Given that a real-time detection solution should run directly
on the resolver, it is crucial to ensure that the DNS resolution
process remains unaffected by the detection mechanism. An
effective solution should therefore possess low memory and
computational demands while maintaining the ability to pro-
cess and classify a large volume of queries per second.

In this paper, we introduce Information-based Heavy Hit-
ters (ibHH), a novel and interpretable method for real-time
DNS exfiltration detection. Our approach utilizes a threshold-
based method to quantify the unique information transmitted
through subdomains within DNS queries and raise alert if the
suspected amount of data exfiltrated exceeds that threshold,
making it transparent and explainable. To achieve real-time
detection, we employ a fixed-size data structure that efficiently
processes a continuous stream of DNS queries, inspired by the
concept of identifying heavy hitters in data streams [23].

ibHH incorporates the HyperLogLog sketching algo-
rithm [24] from the field of big data [25] and leverages
weighted sampling techniques. This combination enables our
method to accurately estimate the volume of information trans-
mitted from clients to registered domains through subdomains.
By comparing this estimated quantity against a predefined
and configurable detection threshold, ibHH can raise an alert
when the transmitted information surpasses the threshold.
An overview of the method, along with a possible DNS
exfiltration scenario, is presented in Figure 1. In order to
enable reproducibility of our results and allow further research,
we provide an open-source 1 Python implementation of our
proposed solution.

Our experiments demonstrate ibHH’s high performance
and its ability to process over 600,000 queries per second. This
makes it well-suited for deployment in large-scale networks
where real-time processing and performance are crucial. Ad-
ditionally, ibHH maintains its efficacy in resource-constrained
environments with limited computational and memory re-
sources. Therefore, it can be effectively employed in small-
scale environments without straining available resources.

An additional advantage of ibHH is that its operation does
not rely on labeled training data. This characteristic makes
the need for data annotation redundant and facilitates easier
deployment and maintenance of the method. To handle false
positive cases, we propose two reputation-based allowlisting
approaches, which are described in Section IV-E.

We performed a thorough evaluation of ibHH to assess its
effectiveness in detecting DNS exfiltration and its ability to
handle false positive cases and compare it with three state-of-
the-art (SOTA) methods proposed in prior studies. To ensure

1Source code available at https://github.com/akamai/
Information-based-Heavy-Hitters-for-Real-Time-DNS-Exfiltration-Detection

the reliability of our results, we collected a real-world DNS
query dataset containing over 50 billion queries. This extensive
dataset serves as a robust foundation for our evaluation, allow-
ing us to make reliable assessments of ibHH’s performance. In
addition to the real-world dataset, we performed the evaluation
on a publicly available dataset. This enables reproduction of
our results and external validation of our findings.

To further enhance the validity and robustness of our
evaluation, we concluded the assessment by using a second
real-world dataset. This additional dataset consists of over
250 billion queries, collected over a period of three weeks.
Our evaluation on this dataset is discussed in Section V-L.
We also evaluated the resource utilization of the compared
methods, specifically focusing on memory consumption and
compute time (see Section V-M). To the best of our knowledge,
this evaluation is the most extensive and rigorous evaluation
conducted in the field.

To summarize, the contributions of our work are: (1)
ibHH - A lightweight and simple real-time DNS exfiltration
detection method, which is appropriate for large-scale high
throughput networks as well as small networks; (2) Evaluation
of our method against SOTA methods on large-scale real-
world datasets as well as a publicly available dataset; and (3)
Open-source Python implementation of our method, which will
enable reproduction of our results and support further research.

II. BACKGROUND

A. DNS stream model

We model DNS stream queries on the data stream model
presented in [26]:

Definition 1 (Data Stream): A Data Stream S is an or-
dered set of elements x1, x2, ...xn where each element is
observed exactly once.

Given definition 1, in the scope of this research, each element
xi is comprised of a pair of values (ki, vi), where the values
are taken from domains K and V , respectively. ki is called
the key of the pair, while vi is called the subkey of the pair.
More specifically, each element in the DNS stream is a DNS
query’s qname [2], extracted to (domain, subdomain) pair,
where domain is the second-level domain (which we denote
as primary domain, or just domain, for the rest of the paper)
and subdomain is the concatenation of the rest of the labels of
the qname. For example, given the qname a.b.example.com,
the domain is example.com., the subdomain is a.b, and the
DNS query stream element is (example.com., a.b).

B. Real-time DNS exfiltration detection

The DNS protocol has traditionally been low-
demanding [27]; therefore, DNS resolvers are usually
deployed on limited hardware [28]. Given that knowledge,
we define criteria which must be satisfied in order for a DNS
exfiltration detection algorithm to be considered appropriate
for real-time detection: (i) Given a DNS stream of length n,
the amount of space required should be sublinear with regard
to n, i.e., have space complexity of o(n). (ii) The classification
of a given DNS query should have time complexity of Θ(1).
These criteria are designed to ensure that a real-time DNS
exfiltration detection solution can run on the DNS resolver

2

https://github.com/akamai/Information-based-Heavy-Hitters-for-Real-Time-DNS-Exfiltration-Detection
https://github.com/akamai/Information-based-Heavy-Hitters-for-Real-Time-DNS-Exfiltration-Detection

Attacker Server

1

Compromised Host
Enterprise DNS

Gateway
The Domain Name

System (DNS)

4

3

……

Key Information Est.

mal.com += |1aB34|
……

… …

1aB34.mal.com

2

ibHH Cache of Information Estimates per Domain (Key)

Update Estimates
Enterprise
SOC Team

Alert if estimate
exceeds threshold

Block if estimate
exceeds thresholdProcessing DNS Queries

Enterprise Network The Internet

Fig. 1: Overview of ibHH. When a compromised host performs DNS queries (1) the enterprise DNS gateway intercepts the
query, estimates the amount of information it contains and updates its internal information estimate cache (2). After the update,
if the amount of information exceeds a predefined threshold, the query is blocked from reaching the attacker’s server and (3) an
alerted is raised for the enterprise’s SOC team (4).

server, without impacting the DNS resolution throughput of
the server or have a large memory footprint, which is needed
for the DNS protocol’s caching mechanism [2].

III. RELATED WORK

The topic of detecting data exfiltration over the DNS
protocol has been the subject of nearly 30 recent studies [12].

Offline detection methods by design. There is a wide
variety of methods whose design limits them from being
applied in real time. The most notable design limitation is time-
based aggregation feature extraction; for example, Nadler et
al. [18] proposed an anomaly-based isolation forest [29] model
to detect both high and low throughput DNS exfiltration, based
on features extracted over a sliding window of size λ hours;
classification is done based on the latest ns windows, meaning
up to ns ∗λ hours can pass by the time of detection. This also
means that at any given moment, the number of DNS queries
that need to be stored in memory is Ω(λ ·ns), and therefore it
inherently cannot run in real time. Ishikura et al. [14] proposed
a DNS exfiltration detection solution based on what they called
cache-property-aware features. For each client in an enterprise
network, they suggested maintaining a list of the last n Fully
Qualified Domain Names (FQDNs) the client accessed, in
order to calculate a property called Access Miss Count, which
indicates the number of FQDNs queried by the client in the
last t seconds. The authors proposed both a rule-based model
and a LSTM based model to identify DNS exfiltration activity.
The memory requirements of the solution grow linearly with
the amount of clients in the network (both for the access list
and the LSTM state of each client). Moreover, the solution
does not identify which FQDN is suspected as being used for
DNS exfiltration but rather only determines if exfiltration has
occurred in a given time window (which ranged between 100
and 1,200 seconds in their experiments); this makes it difficult
for security operations teams to identify the malicious domain.

Paxson et al. [13] presented an information-based method
that provides an upper bound on the amount of information
that can possibly be transmitted via DNS queries. The method
groups DNS queries per primary domain and DNS source IP
on a daily basis, which is followed by lossless compression

of the different possible information vectors (query name,
query timing, and query type); the minimal value of these is
output as the upper bound on the amount of information. The
upper bound is then compared with a predefined threshold, and
alerts are raised for any communication which exceeds this
value. This method is designed to run on window-aggregated
data of size w and has the benefit of being able to detect
DNS exfiltration regardless of the information vector. However,
both the time and space complexity of the method are Ω(w),
because all of the queries in w need to be kept for the
information estimation stage, and the time complexity is Ω(w)
due to the compression performed to estimate the information.

Compute-intensive detection methods. In recent years,
deep learning-based (DL) DNS exfiltration detection methods
have been proposed [30], [20], [21]. Chen et al. [21] proposed
a DL architecture based on the combination of a CNN and
LSTM models. Their model is then trained on labeled DNS
queries (benign and malicious). Wu et al. [22] proposed TDAE,
an autoencoder DL DNS exfiltration detection method based
on semi-supervised learning, which means it requires some
labeled data. While DL models generally provide high accu-
racy and automatic feature extraction, they come with the cost
of requiring larger training datasets than traditional machine
learning methods. More importantly, they are known to be
hardware-intensive [31], [32], which makes them unsuitable
for deployment on the network perimeter.

Supervised learning methods. Several methods that rely
on labeled data for training [17], [33], [34], [35] have been
proposed. This is reasonable for identifying a predetermined
set of known DNS exfiltration tools, but as shown in [18],
the absence of high-quality publicly-available datasets prevents
these methods from identifying unfamiliar DNS exfiltration
malware. Our proposed method does not require any labeled
data for training.

Real-time detection methods. To the best of our knowl-
edge, only two previous studies focused on real-time detec-
tion [15], [19]. Qi et al. [15] suggested a detection technique
based on bigram (subsequent pairs of characters) frequency
statistics. The authors described a score mechanism based on
the expected value of the bi-gram character frequency as the

3

score of the primary domain. The model is trained on labeled
benign and malicious data to determine the score threshold
that will make the classifier produce the least number of false
positive alerts, which is then used by the classifier in the online
phase. While it is reasonable to expect this kind of classifier to
be run in real time, it suffers from the same limitation of other
supervised learning methods – it has difficulty generalizing
to unfamiliar DNS exfiltration techniques. Ahmed et al. [19]
proposed an unsupervised isolation forest model, which is
based on classifying queries on a per packet basis. Many
features are extracted and used, such as the length of the
query name, length of the query subdomain, query name
entropy [36], count of numerical characters in the query name,
count of uppercase letters in the query name, number of DNS
query labels, maximum label length, and average label length.
While the isolation forest model [29] is relatively lightweight
in terms of classification time and memory requirements, it is
questionable how this method can scale to large-scale networks
which may reach millions of queries per second [37], given
the number of features that need to be extracted to perform
classification. A table summarizing related studies and their
methods’ compliance with the real-time criteria defined in
Section II-B is provided in Table I.

TABLE I: Comparison of previously proposed methods for
detecting DNS exfiltration (RB-rule-based, MB-model-based).

Study Year Technique
Requires
Labeled

Training Data

Requires
Data

Aggregation

Classification
in Constant Time

Suitable
For Real-Time

Detection
Paxson et al. [13] 2013 RB ✗ ✓ ✗ ✗
Kara et al. [38] 2014 RB ✗ ✓ ✗ ✗
Buckzak et al. [33] 2016 MB ✓ ✓ ✗ ✗
Almusawi et al. [17] 2018 MB ✓ ✗ ✗ ✗
Homem et al. [16] 2018 MB ✗ ✓ ✓ ✗
Nadler et al. [18] 2019 MB ✗ ✓ ✗ ✗
Ahmed et al. [19] 2019 MB ✗ ✗ ✓ ✓
Palau et al. [20] 2020 MB ✓ ✗ ✗ ✗
Wu et al. [22] 2020 MB ✓ ✗ ✗ ✗
Yang et al. [34] 2020 MB ✓ ✗ ✗ ✗
Ishikura et al. [14] 2021 MB/RB ✗ ✓ ✗ ✗
Ruiling et al. [35] 2022 MB ✓ ✗ ✗ ✗
ibHH 2022 RB ✗ ✗ ✓ ✓

IV. INFORMATION-BASED HEAVY HITTERS FOR DNS
EXFILTRATION DETECTION

A. Definitions

Definition 2 (Information Weight): Given a stream of ele-
ments S, the information weight of an element (ki, vi), Iki,vi
is the quantity of information conveyed by vi.

Definition 3 (Distinct Information Heavy Hitter): In a
stream of elements S, for a given ki ∈ K, the distinct
information weight Iki is the total information conveyed by
distinct elements with key ki, i.e., Iki =

∑
{v|(ki,v)∈S} Iki,v .

Key ki is a distinct information heavy hitter if its
information weight Iki is at least ϵ-fraction of the total distinct
information weight of the stream, where ϵ ∈ (0, 1), i.e.,
Iki ≥ ϵ ·

∑
y∈K Iy .

B. Information-based Heavy Hitters

Information-based Heavy Hitters (ibHH) is a novel method
for real-time detection of DNS exfiltration, which is based on
identifying domains associated with a large amount of distinct
information conveyed through subdomains in a DNS query
stream and inspired by the work of Afek et al. [39] in which
distinct heavy hitter detection algorithms were proposed for the
detection of DDoS attacks. Identifying heavy hitters in a data

stream refers to the problem of finding the most frequent items
in a stream, while identifying distinct heavy hitters focuses on
finding the keys with the largest number of distinct subkeys in
a stream. Despite the usefulness of solving these two problems
for various tasks, such as DDoS detection [39] and traffic load
balancing [40], they do not fully capture the complexity of
DNS exfiltration detection where there is a need to account for
the amount of data being exfiltrated via DNS queries. In order
to model this complexity, we introduce the new concepts of
information weight (see Definition 2) and distinct information-
based heavy hitters (see Definition 3), which describe elements
associated with large amounts of unique information in a
stream. The problem of finding distinct information-based
heavy hitters can be seen as a generalization of the distinct
heavy hitter problem proposed in [39], where each distinct
element in the stream has a weight. ibHH quantifies the amount
of information conveyed through DNS query subdomains to
domains, identifies domains associated with large amounts of
unique information, and raises alerts for these domains as
suspected of DNS exfiltration.

1) ibHH Components: The input for ibHH is a stream
of DNS queries, such that for each DNS query subdo-
main.example.com, the domain and subdomain are extracted
to obtain the element: (example.com, subdomain). ibHH
consists of a fixed-size cache (Counters) whose size (k)
is a parameter of the algorithm; a random hash function
Hash ∼ U [0, 1] that allows us to sample the distinct DNS
query stream; detection threshold, which is a parameter
of the algorithm (whenever the information estimation of a
cached domain exceeds it, an alert is raised); and a threshold
value τ (initialized to 1 but may be updated over time),
which represents the probability of a domain’s inclusion in the
cache. Each entry in Counters stores an information counter,
which is the total unique information weight (the information
quantity) of domain (Idomain) and seeddomain (whose value
is the minimum Hash(domain, subdomain) of all elements
with key domain in the stream).

2) Information Quantification: According to Definition 3,
we need to quantify the amount of unique information en-
coded in subkeys (subdomains) and calculate this amount
per key (domain). In order to do so, we need a function I:
V → IV , where I(subdomain) is the information weight of
subdomain. In this research, we define the information weight
as I(subdomain) = |subdomain|, i.e., the information weight
of a subkey is its length. We acknowledge that this choice does
not provide an exact quantification of the information encoded
in the subdomain, but it imposes an upper bound on the
quantity of information that can be conveyed through it, and,
as will be shown in the experiments described in Section V,
it provides an adequate approximation for practical purposes.
We also experimented with using entropy [36] to estimate the
information, but the results were inferior.

3) Optimized Counting with HLL++: To calculate the
amount of unique information, for each domain we need to
store a set of all the associated subdomains in a stream and sum
up their lengths, resulting in a linear space complexity. Since
our solution is intended to run on DNS resolvers with limited
memory capabilities, we cannot use exact information weight
counters. Instead, we employ count-distinct approximation
algorithms from the world of big data. The count-distinct

4

subdomain.example.com

𝐻𝑎𝑠ℎ~
[0,1]

Extract
domain, subdomain

(example.com, subdomain)
Domain Subdomain

h=0.76 Is domain cached? h<𝛕?

1 2 3 4

YES

NO

YES

……

Key (domain) HLL++ seed

example.com

… …

0.89 0.7629 38

example2.com 6 0.84

……
example.com

… …

0.76

example2.com 6 0.84

Cache size
exceeds

capacity (k)?

5

……

Key (domain) HLL++ seed

example.com

… …

0.76…

example2.com 6 0.84

Add subdomain to the
HLL++ instance of the

domain, update the seed if
the hash is lower than the

current seed value

Allocate entry in
the cache for the
domain, initialize

HLL++, and add the
subdomain to it

Evict record with largest
seed (least likely to be an
information heavy hitter).
Update 𝛕=0.84

YES

Raise alert for domain
(example.com) as
suspected of DNS

exfiltration. Do not
resolve.

Information est.
exceeds detection

threshold?

Enterprise Host Enterprise DNS Resolver

Counters cache

HLL++ InformationEst
increases by approximately
the length of the subdomain

(when first added)

Key (domain) HLL++ seed

0 9

Counters cache Counters cache

YES

Resolve DNS query as
usual.

NO

6

HLL++ InformationEst
increases by approximately
the length of the subdomain

Fig. 2: ibHH processing a query. When an enterprise host sends a DNS query (1) the DNS gateway intercepts the query and
extracts the domain and subdomain. (2) Then, the hash function is calculated for the pair (h). (3) If the domain is cached in
Counters, the subdomain is inserted into the HLL++ instance of that domain, and the seed is calculated and updated. Otherwise
(4), if h is below the threshold τ , the domain is added to Counters. If Counters exceeds its capacity k (5), the domain with
largest seed value is evicted, and τ is updated to be that domain’s seed value, ensuring that only the most likely information
heavy hitters are in the cache. If the information estimation for the domain exceeds the detection threshold (6), an alert is raised.

problem is a well-studied problem [41], and many extremely
accurate and high-performing approximation algorithms have
been proposed to solve it. One of the state-of-the-art solutions
for this problem is HyperLogLog [24].

Essentially, HyperLogLog (HLL) takes advantage of a
clever property of multisets that the cardinality of a multiset
(the number of distinct elements) of uniformly distributed
random numbers can be estimated by calculating the maximum
number of leading zeros in the binary representation of each
number in the set. If the maximum number of leading zeros
observed is l, then the number of distinct elements in the
multiset is approximately 2l. In order to obtain a uniformly
distributed random number multiset, a hash function is applied
to the elements in the original multiset, which is the DNS
stream in this case. HLL’s data is stored in counter arrays,
which are called registers, and the size of the arrays depends
on the number of bits allocated for the registers p. In this
research, we fix p at 12, in order to achieve optimal memory
consumption while achieving highly accurate cardinality ap-
proximations. In the proposed method, we use a variation of
the original HLL, known as HyperLogLog++ (HLL++) [42],
which provides better accuracy and uses less memory than the
original design.

HLL++ is designed to approximate the distinct number
of elements in a stream, while our goal is to approximate
the amount of distinct information in a stream. Therefore, we
modify the insertion operation of HLL++, such that for each
DNS query stream element (domain, subdomain) instead of
adding subdomain to domain’s HLL++ instance, for each
integer i in the range of (0, length(subdomain)), we add
the concatenated string subdomain||i to domain’s HLL++
instance; thus, we are able to approximate the amount of
distinct information associated with domain. The element
insertion operation of the modified HLL++ structure is denoted
as Add, while the information estimation operation is denoted
as InformationEst.

4) Processing Elements with ibHH: Figure 2 presents
an example in which ibHH processes a DNS query. When
a DNS query, for example subdomain.example.com, is pro-
cessed by the DNS resolver, ibHH first extracts the do-
main, example.com, and subdomain, subdomain (Step 1 in
Figure 2). Then, ibHH calculates the hash value h =
Hash(example.com, subdomain) (Step 2). If example.com
is already cached in Counters (Step 3), ibHH adds subdomain
to the HLL++ instance of example.com (as described in Sec-
tion IV-B3) and updates seedexample.com to be the minimum
of the current seed value and h; in Figure 2, HLL++’s
InformationEst is increases by (approximately) 9, from 29
to 38, which is the length of subdomain. If example.com
is not cached and h < τ (Step 4), ibHH allocates a new
entry for it, initializes an HLL++ instance, adds subdomain
to it, and sets seedexample.com to be h; in Figure 2, HLL++’s
InformationEst is (approximately) 9, which is the length of
subdomain. Next, ibHH checks if Counters has exceeded its
capacity k (Step 5). If it has, ibHH evicts the cached domain
with the largest seed value, denoted as seedmax, and updates τ
to be seedmax. Finally, ibHH estimates the information using
the InformationEst operation described in Section IV-B3. If
the estimated information exceeds the detection threshold, an
alert is raised for example.com (Step 6); otherwise, the DNS
resolver continues.
τ indicates the probability of inclusion in the ibHH cache.
Whenever the size of Counters exceeds k, τ decreases. Thus
it becomes “harder” for non-cached domains to be added to
it. Whenever a query of a cached domain is processed by
ibHH and the hash value of the (domain, subdomain) pair
is lower than the current seed value of the domain, the seed
is updated, ensuring that evicted domains are least likely to
be the information-heavy hitters, increasing the likelihood that
the cache primarily contains the most significant domains in
terms of information volume. This is based on the sampling
scheme introduced by Gibbons and Matias [43].
ibHH’s pseudocode is provided in Algorithm 1.

5

Algorithm 1 ibHH pseudocode
Input k - cache size, d - detection threshold, stream of

DNS queries
τ ← 1
Counters← {}
for stream element (domain, subdomain) do

N ← |subdomain|
h← Hash(domain, subdomain)
if domain is in Counters then

for i=0; i<N; i++ do
subdomaini ← subdomain||str(i)
Counters[domain].Add(subdomaini)

end for
seeddomain ← min{seeddomain, h}
if Counters[domain].InformationEst > d then

raise alert for domain
end if

else
if h < τ then

Counters[domain]← newHLLPlusP lus
seeddomain ← h
for i=0; i<N; i++ do

subdomaini ← subdomain||str(i)
Counters[domain].Add(subdomaini)

end for
if |Counters| > k then

ToDel← argmaxdom∈Countersseeddom
τ ← seedToDel

Delete Counters[toDel]
Delete seedToDel

end if
end if

end if
end for

C. ibHH Space and time complexity analysis

One of ibHH’s benefits is the fact that it has sublinear (in
fact, logarithmic) space complexity in the DNS stream length
n, as well as constant query classification time complexity,
which means that it satisfies the real-time criteria defined in
Section II-B:

1) Memory Analysis: For our cache structure, we store
k HLL++ instances. Using the (ϵ, δ) model [42], each
HLL++ instance requires O(ϵ−2loglog(mdom) + log(mdom))
space [42], where mdom is the number of distinct el-
ements associated with key dom. We denote m =
maxdom∈Countersmdom for readability; thus the total space
complexity of ibHH is O(k · ϵ−2loglog(m) + log(m)), which
is logarithmic in the cardinality of the data stream and there-
fore logarithmic in the entire data stream size, given that
m = O(n).

2) Time Analysis (processing a query): When processing
a DNS stream element (domain, subdomain), we calculate
the hash value h = Hash(domain, subdomain), which has
a time complexity of O(1). If domain is already cached,
we proceed with adding subdomain to domain’s HLL++
instance. The add operation of the HLL++ algorithm has a time
complexity of O(1), and given that a domain name is limited
to 255 characters, as described in the original DNS RFC [2],
the subdomain is also necessarily limited to 255 characters;
therefore the time complexity of the add operation is O(1).
Following the add operation, ibHH performs a count operation

to determine if an alert should be raised for the domain. The
count operation has a time complexity that depends on the
number of register bits allocated to the HLL++ instance p.
We fix p at 12; therefore this operation has a time complexity
of O(1). We conclude that processing a query and classifying
it has a constant time complexity.

D. Reset mechanism

Given the conditional probabilistic nature of the method
(which derives from the need to calculate a hash function and
compare it to the value of τ), domains that appear earlier in
the stream are much more likely to be included than later
ones (due to the decreasing nature of τ); thus, the confidence
interval of the counters depends on τ and decreases over time.
This was also mentioned in [39], however the authors did
not introduce a way of dealing with the counters’ decreasing
confidence intervals. In order to avoid missing information
heavy hitters that appear later in the stream, we propose a
reset mechanism, where the ibHH cache is flushed and reset at
constant intervals, which allows us to identify DNS exfiltration
events that occur long after the deployment of the ibHH
algorithm in the network.

E. Allowlists

Patterns of legitimate use resembling that of DNS exfil-
tration makes it difficult to distinguish between benign and
malicious DNS traffic. Anti-malware agents are known to
use the DNS protocol to send signatures of suspected files
to the DNS zone of the anti-malware service provider for
inspection [44]. Other services, such as search engines, social
networks, and streaming services are known to use disposable
domains for purposes of signaling [45], [46]. In order to handle
false positive domains and avoid raising many false alarms, we
present two simple lightweight allowlisting approaches based
on the concept of global and local reputation, as described
in [47]. Globally reputable domains are domains listed in
publicly available lists associated with benign domains (such as
TRANCO) and therefore should be trusted. Locally reputable
domains, are domains queried by a large portion of hosts in
the local enterprise network and therefore should be trusted.
Using the allowlists in a pre-filtering phase is also important
for preventing known benign domains that have many distinct
subdomains from being cashed and ensuring that they do not
take up cache space. In our evaluation, we apply the allowlists
as a post-filter (instead of a pre-filter), in order to evaluate the
effectiveness of the proposed approaches on the false positive
rate of ibHH and the compared methods.

1) TRANCO: The use of top-ranking domain lists for
allowlist purposes is very common in DNS exfiltration detec-
tion [19], [18], [13]. In this paper, we use TRANCO [48], an
approach for ranking websites’ popularity, to generate a top
1M list that allows us to filter out popular websites, reducing
the number of false positive domains.

TABLE II: A summary of the datasets used in this study.

Dataset Name # DNS Queries # Unique 2LD # Org # Hosts
DSf 50,853,030,033 43,310,209 753 Unknown
DSp 5,069,006,334 668,456 223 129,528

Ziza et al. [49] 35,074,149 12,844 N/A 35,989
DSr 255,750,980,779 463,122,409 753 Unknown

6

2) Peacetime/Wartime: Using the peacetime/wartime
model, which was first introduced in [39], we execute ibHH
in a non-enforcing mode for a limited period of time. During
this execution (called peacetime (PT)), we assume that
the presence of DNS exfiltration traffic in the network is
negligible (inspired by the idea of [18]), and therefore any
domain that is detected as malicious by ibHH during this time
is actually benign and should be allowlisted. We collect these
domains in an allowlist called the peacetime allowlist. After
that, ibHH is deployed in an enforcing mode (called wartime
(WT)), filtering out domains that appear in the peacetime
allowlist. This approach is model-agnostic; therefore we use
it for ibHH and the compared methods in our evaluation. As
will be shown, this approach is simple yet very effective.
The amount of time the algorithm should run in peacetime
mode depends on the network. In Section V-G, we describe
an experiment performed to determine the frequency at which
the peacetime list should be generated, as well as the amount
of time it should run for.

V. EVALUATION

A. Overview

The evaluation is divided into two parts, namely parameter
tuning and comparison with other methods.

Parameter tuning. We compare the effect of different
detection threshold values on the number of alerted queries
and domains, as well as the effect of employing the proposed
allowlist techniques. The method of Paxson et al. is tuned
similarly and serves as a baseline.

In addition, we present two deployment settings for ibHH;
one simulates consolidation of data to a single point and its
analysis (similar to other offline methods), and the other is a
deployment setting that simulates ibHH’s execution right on
the enterprise DNS gateway, and compare their performance.

Comparison with other methods. In this step, we evaluate
our method’s detection capabilities and compare it with the
capabilities of methods proposed in earlier studies, namely
the studies of Paxson et al. [13], Nadler et al. [18], and
Ahmed et al. [19]. Our evaluation includes both detection
efficacy comparison (the ability to properly identify DNS
exfiltration domains and avoid misclassification of benign DNS
domains), as well as a performance evaluation, comparing the
classification time and memory use of the compared methods.

B. Datasets

The DNS traffic datasets used in this study were collected
from DNS servers operated by a large CDN (content delivery
network) provider. These datasets were used with the per-
mission of the CDN’s enterprise customers, and measures to
ensure privacy were taken (e.g., identities of organizations and
IP addresses of source machines were hashed and anonymized
properly). In addition, a publicly available dataset published by
Ziza et al. in 2022 [49] was used as an independent dataset.

First dataset. The first dataset, denoted as DSf , consists
of 50.85 billion DNS queries from 753 real-world enterprise
organizations whose traffic is monitored by the CDN provider.
The queries were collected over the course of eight days,
beginning on December 28, 2021. Accordingly, the average

number of queries per hour is 260 million. The dataset contains
one domain suspected of DNS exfiltration (as alerted by
the CDN provider’s proprietary DNS exfiltration detection
algorithm), joinsanjose[.]com. Due to the scarcity of data
exfiltration events and the fact that the dataset consists of
monitored data, we presume that the rest of the dataset has
at most just a negligible amount of malicious traffic, and we
thus treat it as benign. Note that while the queries can be
associated with a specific source enterprise network, not all of
the queries can be associated with the specific machine they
were generated by.

Identifiable dataset. We sample a subset of DSf , denoted
as DSp, which contains 5.06 billion DNS queries. In contrast
to the full dataset, all of the DNS queries in DSp can be
attributed to a specific host among nearly 130,000 host IP
addresses. The IP addresses are hashed to preserve the privacy
of the end users. The DSp subset is generated to evaluate
the methods’ ability to detect compromised hosts (see the
evaluation presented in Section V-J). Although DSp accounts
for 10% of the total traffic obtained, this dataset is still larger
than most datasets used in previous studies.

Real-world dataset. The second dataset, denoted as DSr,
consists of 255 billion DNS queries collected in a similar
fashion to the collection process of DSf and is provided by
the same source. The queries were collected over the course
of 21 days, beginning on February 28, 2023. Accordingly, the
number of queries per hour is 507 million; to the best of our
knowledge, this is the largest dataset ever used to evaluate DNS
exfiltration detection methods. This dataset will be used in our
real-world evaluation of ibHH and the compared methods in
Section V-L.

Public dataset. We perform our evaluation on a third,
publicly available dataset [49], denoted as ZIZA. This dataset
was constructed by collecting more than 35M DNS queries
from an Internet service provider’s (ISP) DNS server over the
course of 26 hours. Accordingly, the average number of queries
per hour is 1.9 million. The dataset also contains exfiltration
queries to three distinct domains. The queries are generated
by the Iodine [50] and DNSExfiltrator tools [51], both freely
available on GitHub. A summary of the datasets is provided
in Table II.

C. Parameter tuningThe objective of this tuning phase is to find the lowest
detection threshold that produces a practical number of false
positive domains. While this definition may vary between
different enterprises, in this study we consider 15 false alerts
per week (just over two alerts per day) to be practical.

The detection threshold was tuned between 0 bytes/sec
(B/s) and 400 B/s. As a baseline, we chose the method of
Paxson et al. [13], an information-based threshold detection
method, which is the SOTA for such methods. ibHH’s cache
size was fixed at 1,000, and the reset interval was fixed at
120 seconds. The parameters were set based on the sensitivity
analysis performed in Section V-F, which shows that a com-
bination of a window size of 120 seconds and a cache size
of 1,000 records obtains the best performance in terms of true
positive and false positive alerts.

In addition, we examine the effect of using the allowlisting
methods described in Section IV-E. To do so, we generate a PT

7

joinsanjose[.]com

0 50 100 150 200 250 300 350 400

Threshold (B/s)

1010

2×1010

3×1010

F
a
ls
e
P
o
s
it
iv
e
Q
u
e
ri
e
s
(#

Q
u
e
ri
e
s
)

Paxson et al. (Baseline)

ibHH

(a) False positive queries

0 50 100 150 200 250 300 350 400

Threshold (B/s)

102

103

F
a
ls
e
P
o
s
it
iv
e
D
o
m
a
in
s
(#

D
o
m
a
in
s
)

Paxson et al. (Baseline)

ibHH

(b) False positive domains

Fig. 3: Parameter tuning without allowlists.

0 50 100 150 200 250 300 350 400

Threshold (B/s)

106

107

F
a
ls
e
P
o
s
it
iv
e
Q
u
e
ri
e
s
(#

Q
u
e
ri
e
s
)

Paxson et al. +PT/WT (Baseline)

ibHH +PT/WT

(a) False positive queries

0 50 100 150 200 250 300 350 400

Threshold (B/s)

101

102

103

F
a
ls
e
P
o
s
it
iv
e
D
o
m
a
in
s
(#

D
o
m
a
in
s
)

Paxson et al.+ PT/WT (Baseline)

ibHH + PT/WT

(b) False positive domains

Fig. 4: Parameter tuning with peacetime allowlist.

allowlist for both ibHH and the method of Paxson et al. method
using data from the first day. As can be seen in Figures 3-6,
ibHH consistently produces less false positive detections than
the method of Paxson et al., across all allowlist combinations.
ibHH with the TRANCO and PT/WT allowlists obtains a total
of 10 false alerts over all 753 organizations, but it also results
in a high threshold of 250 B/s. In Figure 6, it can be seen that a
much lower threshold of 15 B/s results in about 80 alerts over

the course of seven days (an average of 0.015 alerts per day
per organization), which is an acceptable alert rate for many
organizations. We can also see an exponential growth in the
number of alerted domains in the lower threshold values.

D. Analysis of alerted domains

Based on the results presented in Section V-C, we man-
ually inspect the domains for which ibHH raised an alert
(Table IV summarizes our findings). This analysis is performed
on the positive alerts produced by theibHH + TRANCO +
PT/WT with a detection threshold of 250 B/s configuration.
As noted, 10 domains out of 43 million unique domains in the
dataset (representing 0.00002% of the unique domains in the
dataset) were marked as suspected for DNS exfiltration. Out
of the 10 domains, six domains are registered and operated
by known security vendors. sophosxl[.]com, appsechcl[.]com,
barracudabrts[.]com, dnsbl[.]org, and softsqr[.]com are do-
mains used by DNS anti-malware list (DNSAML) service
providers [44]. cnr[.]io is a domain used for honeypot [52]
services. Security vendors’ AV clients send DNS requests with
their current signature ruleset version or suspicious file hashes
encoded within the DNS request subdomains, which results in
a high number of subdomains [44].

0 50 100 150 200 250 300 350 400

Threshold (B/s)

2×109

3×109
F
a
ls
e
P
o
s
it
iv
e
Q
u
e
ri
e
s
(#

Q
u
e
ri
e
s
)

Paxson et al.+ TRANCO (Baseline)

ibHH + TRANCO

(a) False positive queries

0 50 100 150 200 250 300 350 400

Threshold (B/s)

102

103

F
a
ls
e
P
o
s
it
iv
e
D
o
m
a
in
s
(#

D
o
m
a
in
s
)

Paxson et al.+ TRANCO (Baseline)

ibHH + TRANCO

(b) False positive domains

Fig. 5: Parameter tuning with TRANCO allowlist.

Three domains, pldtgroup[.]net, cnsevrx[.]com, and
kfcmsp[.]com, are domains associated with a large number
of unique (and occasionally, long) subdomains; therefore,
the method marked them as suspected DNS exfiltration
domains. We looked these domains up with the WHOIS [53]
protocol (a query/response protocol that is widely used to
obtain information about registered domain names). All
three domains were registered at least five years ago (which
considerably lowers the likelihood that they have been used
for DNS exfiltration), and pldtgroup[.]net is registered to the
Philippine Long Distance Telephone Company, a reputable

8

sophosxl[.]com
appsechcl[.]com
barracudabrts[.]com
dnsbl[.]org
softsqr[.]com
cnr[.]io
pldtgroup[.]net
cnsevrx[.]com
kfcmsp[.]com
pldtgroup[.]net

0 50 100 150 200 250 300 350 400

Threshold (B/s)

105

106

F
a
ls
e
P
o
s
it
iv
e
Q
u
e
ri
e
s
(#

Q
u
e
ri
e
s
)

Paxson et al. + PT/WT + TRANCO (Baseline)

ibHH + PT/WT + TRANCO

(a) False positive queries

0 50 100 150 200 250 300 350 400

Threshold (B/s)

100

101

102

F
a
ls
e
P
o
s
it
iv
e
D
o
m
a
in
s
(#

D
o
m
a
in
s
)

Paxson et al. + PT/WT + TRANCO (Baseline)

ibHH + PT/WT + TRANCO

(b) False positive domains

Fig. 6: Parameter tuning with TRANCO & peacetime allowlist.

company. We thus conclude that these cases are false positive
alerts. The last alerted domain, joinsanjose[.]com, was
also classified as DNS exfiltration by the CDN provider’s
algorithm. Being a newly registered domain strengthened
suspicion that it was a true positive, however VirusTotal
scan did not provide any supportive indications. We were
also unable to identify a DNS-tunneling tool that could
produce queries like the ones observed in joinsanjose[.]com’s
subdomains. Therefore, we could not label this case an
exfiltration attempt. As such, we classify it as unknown.

TABLE III: Sensitivity analysis for ibHH.

Detection
window
size (sec)

Cache
size (#
entries)

Num. of
alerts (#
domains)

Num. of
alerts with
PT allowlist

Num. of alerts
with TRANCO
allowlist

Num. of alerts
with both al-
lowlists

Num. of
true posi-
tives

120 100 34 8 15 3 3
120 1000 41 11 19 4 3
120 10000 41 11 19 4 3
600 100 23 4 6 3 3
600 1000 26 4 6 3 3
600 10000 26 4 6 3 3
1800 100 13 3 3 2 2
1800 1000 14 4 4 3 3
1800 10000 14 4 4 3 3

E. Mitigating the need for data consolidation

To provide real-time DNS exfiltration detection, the solu-
tion needs to avoid collecting and consolidating data into a
single point. In order to demonstrate that ibHH satisfies this
requirement, we compare two deployment settings:

1) Global - All the enterprise’s data is processed by a single
instance of ibHH (simulates consolidation of data to a
single point).

2) Local - An instance of ibHH is allocated per enterprise
(simulates deployment of ibHH right on the DNS gateway
of the enterprise, i.e., data is not consolidated).

Similar to Section V-C, we tune the detection threshold

TABLE IV: Summary of domains alerted by ibHH.
Domain Category Frequency Subdomain Example

cnr[.]io Honeypot
Service 1 out of 10

7zn28g
.2.592
.ZPQXSURLT7IU5YQFCOS2S76N
GVNZHVA2MSZE6JIBXZ2B3EES2BORGPHCI2G6FDC
.KQRC5YIEIXH5UBLYRSTQ3C4B
ZNNTAD7OVOQUIOD3KEP5JQLEOVGTS2F3HFS7ZGO
.YMJULMS26QIC7RLPXGYOZHQA888888.ef584e16

dnsbl[.]org 2FWww.wayfAIr.cOm.IN
barracudabrts[.]com 01143c071e01.t-164113145.id135d030.prizelabs.com.d.bl

sophosxl[.]com DNSAML [44]
Services 5 out of 10 adfba15d2df0b4465475c420f2a2137d.sigv2.vir1

appsechl[.]com v3-query-13018-40e9142bf
-95c2-41e5-87e7-d6a7c536a2e4.securityip

softsqr[.]com

id-c55c08e136af19b29d1a33684e2f7100.
4efeac399c6095bf867256d4529f4f1ef257
a677c3e2e207472.fde9-0050-06cd
-aa55d1-1BS80I039724-61cac413.f

joinsanjose[.]com 519b67d9b7487348793fefdc4e9728a12e48b30af66a6ac685e
.606.xkgoz0.hex.a10c0458d0

pldtgroup[.]net Unknown 4 out of 10 cqgvrnyjrqlaxcppf.pldt
cnsevrx[.]com tb-024753-wan2
kfcmsp[.]com D212146-wan1

and compare the number of alerted domains produced for
each deployment setting. TRANCO and PT/WT allowlists are
applied in both settings. As can be seen in Figure 8, the results
are almost identical; thus, we conclude that both deployment
settings are equally viable. Therefore, for ibHH, the data does
not need to be consolidated, and it can be deployed right on
the enterprise DNS gateway.

F. Sensitivity analysis

We perform a sensitivity analysis of ibHH’s detection win-
dow size and cache size parameters, while setting the detection
threshold at 10 B/s. The values examined for the window size
are 120, 600, and 1,800 seconds, and the examined cache size
values are 100, 1,000, and 10,000. This analysis complements
the detection threshold tuning step described in Section V-C.
It can be seen that increasing the detection window causes a
reduction in the number of alerts. This is expected, as a longer
detection window results in a higher detection threshold for the
window. This can have both a positive effect on the detection
of false positives (reducing the number of false positive alerts)
and a negative effect on the detection of true positives (when
the attacker exfiltrates data in short bursts), as can be seen
in the case in which the detection window is 1,800 and the
cache size is 100. Increasing the cache size also affects the
number of alerts. This can be attributed to the fact that in the
case of a smaller cache size, a cached domain is more likely
to be evicted, and thus it might not remain in the ibHH cache
long enough to be considered an information heavy hitter. On
the other hand, an increased cache size also means that more
memory is required to store the ibHH cache. Based on this
analysis, we recommend setting the detection window in the
range of 120 to 600 seconds, and the cache size should be set
between 1,000 and 10,000 (see Table III for a summary of the
results of our analysis).

G. Frequency of peacetime list generation

To determine the frequency at which the peacetime list
generation procedure should run and the amount of time it
should run for, we conducted an experiment using DSf . We
examined the rate of new observed domains per enterprise
organization as a function of the number of days passed. We
found that for 90% of the organizations, over 90% of the
domains observed over the period of eight days, were observed
in the first day. This means that a peacetime list produced for

9

joinsanjose[.]com

one day covers more than 90% of the DNS domain names for
the week that follows, making it a good baseline for the PT
generation list (i.e., generating one peacetime list every eight
days). Figure 7 illustrates our findings.

0 1 2 3 4 5 6 7
Number of days assed

10−4

10−3

10−2

10−1

100

Ra
te
 o
f n

ew
 d
om

ai
ns
 se

en
 (L
og
)

Percentile of
 Organizations
 in the Dataset

90th
95th
99th

Fig. 7: Rate of new observed domains for 90, 95 and 99% of
the organizations in the dataset.

H. Compared methods

1) Information-based Heavy Hitters for DNS Exfiltration
Detection: This is the method proposed in this paper. The
reset interval was fixed at 120 seconds, and the cache size
was set to 1,000 entries, similar to the configuration used in
Section V-C.

2) Practical Comprehensive Bounds on Surreptitious Com-
munication over DNS: The method of Paxson et al., which
was used in the parameter tuning section V-C, is also used to
evaluate our proposed method; it will be denoted as Paxson
for the rest of the paper. Paxson is selected as it is the
SOTA information estimation-based DNS exfiltration detection
technique, and the most similar to our proposed method.

3) Detection of Malicious and Low Throughput Data Exfil-
tration Over the DNS Protocol: Nadler et al. [18] presented an
unsupervised anomaly detection model based on the isolation
forest algorithm [29] In this method, DNS queries are collected
from recursive DNS servers at a frequency of λ time units, and
feature extraction is performed on a window size of λ ∗ ns,
and fed to the pre-trained isolation forest model. Despite not
being a real-time solution, we chose to compare our method’s
performance to it, since it has the ability to detect DNS
exfiltration campaigns with exfiltration rates as slow as 0.11
B/s, up to six hours after the traffic is collected. To the best
of our knowledge, this is the SOTA in terms of near-real-time
detection capabilities. In the remainder of the paper, we refer to
this method as IF. We configured IF according to the authors’
recommendation, setting λ = 60 and ns = 6.

4) Real-Time Detection of DNS Exfiltration and Tunneling
from Enterprise Networks: Ahmed et al. [19] presented an
unsupervised anomaly detection model for real-time DNS
exfiltration from enterprise networks based on the isolation
forest algorithm. As noted in Section III, it is a true real-time
method, and to the best of our knowledge, it is the SOTA
real-time detection solution. In the remainder of the paper,
this method will be referred to as RT-IF. We configured IF
according to the authors’ recommendation, fixing the number
of trees at two and limiting the tree height to 18. All of
the methods described were implemented in Python, and the

experiments on the DSp dataset were performed on Azure
Databricks Runtime version 10.3 [54]. IF and RT-IF were both
implemented using SynapseML [55].

0 50 100 150 200 250 300 350 400

Threshold (B/s)

101

102

103

F
a
ls
e
P
o
s
it
iv
e
D
o
m
a
in
s
(#

D
o
m
a
in
s
)

Global ibHH + PT/WT + TRANCO

Host-based ibHH + PT/WT + TRANCO

Fig. 8: Global vs local false positive domains for various
thresholds (# domains).

I. Methodology

DSp is divided into training, peacetime, and test sets. The
training set consists of 790M queries from 112K unique hosts
from the first day in the dataset. The peacetime set consists
of 720M queries from the next day in the dataset. The rest
of the dataset (six days of data) composes the test set, with
a total of 3.8B queries from 115K unique hosts. Malicious
DNS exfiltration traffic is synthetically generated, similarly to
previous research [18], [19]. The attacks are generated based
on three well-known DNS exfiltration tools and attacks:
1) Iodine [50] - Iodine is an open-source DNS tunneling tool,
mainly used to bypass Wi-Fi paywalls, like the ones that
can be found in hotels. This simulates high throughput DNS
exfiltration campaigns.
2) FrameworkPOS [7] - the FrameworkPOS malware was used
in a targeted attack on the American retailer, Home Depot. The
malware extracted credit card information from compromised
machines’ memory, encoded the data, and sent it to a remote
server in the following format: < encoded credit card >
.domain.com. We generate FrameworkPOS queries at a fre-
quency of three queries per second to simulate the original
malware’s throughput of 56 million credit cards in six months.
3) Backdoor.Win32.Denis - The Trojan malware Back-
door.Win32.Denis was used in Operation Cobalt Kitty, a large-
scale Asian APT [6], [56]. Denis enables an intruder to
manipulate the file system and run arbitrary commands and
loadable modules. Denis uses the DNS as a bidirectional C&C
communication channel with its operator. In this paper, we
simulate the malware’s keep-alive instructions. We generate
the requests every 1.5 seconds, conforming to Cobalt Kitty’s
operation security report analysis.

In each experiment, 1% of the client hosts (i.e., 1,300
hosts) are sampled. Queries are generated using one of the
DNS exfiltration tools, with the sampled client hosts as the
source of the DNS queries. We evaluate the detection abilities
of each of the methods based on the following metrics: number
of overall hosts alerted (i.e., number of hosts suspected as
being infected), hosts’ TPR (true positive rate, hosts which are
truly infected and for which alerts are raised for), hosts’ FPR
(hosts which are not infected but for which alerts are raised).
Each host is infected with a random number of malicious
queries in the range of 100 to 10,000, where the queries are

10

injected at random start times in the test set. To identify the
infected hosts, each host is associated with a distinct malicious
primary domain. We want to compare the methods’ abilities
to detect compromised client hosts. Therefore, the compared
methods are trained with different acceptable false positive
rate (FPR) values: 0.01 (1,300 clients), 0.001 (130 clients),
0.0001 (13 clients), 0.00001 (1-2 clients). In each experiment,
IF and RT-IF are trained by setting the isolation forest’s
contamination rate to be the experiment’s acceptable FPR
value. For ibHH and Paxson, the algorithms are executed on
the training dataset, and the detection threshold is tuned to be
the minimum value for which the acceptable FPR is achieved.
For each of the compared methods, we generate a peacetime
allowlist by feeding the peacetime dataset to the trained model.
The peacetime allowlist is composed of alerted domains in the
peacetime dataset. The TRANCO allowlist is applied to all the
compared methods.

J. Results

Table V presents the compared methods’ detection abilities
with different acceptable FPR values. For an acceptable FPR of
0.01 (1%), ibHH’s detection threshold is 0.7B/s, meaning it can
detect exfiltration rates as slow as 0.7 B/s while producing 1%
FP alerts on the training set. Based on our evaluation, it can be
inferred that the detection time for DNS exfiltration is quick. In
fact, considering the Track 2 format commonly used for credit
card data, which requires at least 40 bytes of information per
credit card [57], our method is capable of detecting and raising
an alert within a timeframe that would typically allow for the
exfiltration of at most three credit card details. This highlights
ibHH’s effectiveness and efficiency in limiting the potential
impact of data exfiltration incidents.

It should be noted that the FPR on the test set is just under
0.004, which is less than the acceptable FPR of the training
set. This difference can be attributed to the allowlists, and it is
observed in the rest of the methods. It should be noted that for
the very low acceptable FPR value of 0.00001, RT − IF is
unable to detect any exfiltration events except for Iodine, while
ibHH is able to detect the slower exfiltration rate domains used
for FrameworkPOS and Denis communication. Unsurprisingly,
the lower the acceptable FPR is set, the higher the detectable
exfiltration rate (DER) gets. ibHH and Paxson’s have a
similar DER, which is to be expected, as they are both based
on a similar idea of quantifying the amount of information and
comparing it against a predefined threshold.

Measuring the DER value of IF and RT − IF is
tricky, since they are traffic-based and payload-based machine
learning models, respectively. IF collects features in a sliding
window of size λ time units, and classification is performed
based on the last ns time windows. This means that exfiltration
events are detected between λ and ns · λ time units after
they occur (disregarding the time it takes to consolidate the
logs into a single point, as well as the feature extraction and
classification time). In the authors’ recommended setup, λ is
set to 60 minutes, and ns is set to six, meaning up to six
hours can pass until the detection time. Still, the theoretical
detectable exfiltration rate is as slow as 0.11 B/s, making IF
a practical complementary solution for offline analysis.

Because RT − IF operates on single DNS queries, it can
detect DNS exfiltration events on the first packet inspected

(so theoretically, it can stop DNS exfiltration by the time it
starts); in practice we can see that only the model trained for
an acceptable FPR of 0.01 achieves a competitive detection
rate, and the method becomes less practical for acceptable FPR
values of 0.001 and lower. While this method may be useful
on small networks where 1% FPR may be acceptable, it is not
practical for large-scale networks like the one the dataset used
in this research comes from, where an FPR of 1% results in
over 40,000 false alerts per week.

K. Evaluation on the ZIZA dataset

We perform an additional evaluation on a public dataset,
ZIZA (described in Section V-B). Because ZIZA was col-
lected over the course of 26 hours, we use the first 10 hours
as a training set; the following two hours are used to generate
the peacetime allowlist, and the final 14 hours are used as the
test set. We train the different detection methods similarly to
the way described in Section V-I and evaluate their ability to
detect DNS exfiltration domains with different acceptable FPR
values. The methods were compared on a single machine in
order to evaluate the resource use of each method.

The results on the public dataset are similar to those
obtained on DSp. For an acceptable FPR of 1%, the detection
threshold of ibHH is 0.6 B/s, and it is able to detect all
three DNS exfiltration domains with 62 false positive domains.
While this is quite a large number, it is significantly better
than that obtained by both IF (140 false positive domains),
RT − IF (119), and Paxson (87). For the acceptable FPR
of 0.01%, ibHH has only a single false positive while still
detecting all the exfiltration domains. IF is able to detect only
one malicious domain, and Paxson detects two. RT − IF is
unable to detect any malicious activity in this scenario. See
Table V for a summary of the results.

L. Real-world evaluation

We perform a real-world evaluation of the compared meth-
ods on the DSr dataset. We partition the dataset into training,
peacetime allowlist generation, and test sets, similar to the
partitioning described in Section V-I. The first seven days serve
as training data, followed by one day of peacetime allowlist
generation, and the rest of the data is dedicated to test the
trained models. Because this evaluation is performed on non-
labeled real-world DNS queries, we cannot provide TPR and
FPR estimations. Instead, we perform manual inspection of
alerted domains and queries and determine if the alerts are
true positives (TPs) or false positives (FPs) and provide these
counts. All methods have been trained under an acceptable
FPR of 0.001 (0.1%), as it showed promising results in the syn-
thetic dataset evaluation results for all the compared methods
in Section V-J. The detectable exfiltration rate (DER) ibHH
obtained in the training phase is 6 B/s (18 credit card numbers),
while Paxson’s DER is 11B/s (33 credit card numbers).

ibHH generated a total of 17 alerts, out of which two are
true positive detections (so, 15 are false positive alerts; this is
the lowers number of FP alerts for all the compared methods).
IF and Paxson both successfully detected the two domains,
yet with more FP alerts, while RT-IF successfully detected
only one of the domains. The results show that ibHH and IF
have a similar number of TP queries, where IF classifies about
400 more TP queries, however with the cost of over 55,000

11

TABLE V: Comparison of the evaluated methods based on the TPR and FPR.
Method Dataset FPR=0.01 FPR=0.001 FPR=0.0001 FPR=0.00001

TD1 FPR TPR DER1 TD1 FPR TPR DER1 TD1 FPR TPR DER1 TD1 FPR TPR DER1

ibHH
DSp + I 1734 0.0037 1.0 0.7 1420 0.001 1.0 5 1343 <0.001 1.0 65 1300 0 1.0 275
DSp + F 1743 0.0038 1.0 0.7 1430 0.001 1.0 5 1298 <0.001 0.98 65 1280 0 0.97 275
DSp + D 1728 0.0037 1.0 0.7 1417 0.001 1.0 5 1252 <0.001 0.98 65 1214 0 0.92 275
ZIZA 65 0.005 (62) 1.0 (3) 0.6 12 0.0007 (9) 1.0 (3) 4 4 0.000085 (1) 1.0 (3) 15 N/A N/A N/A N/A

DSp + I 3015 0.007 1.0 2132 0.0012 1.0 1342 <0.001 1.0 1300 0 1.0
IF DSp + F 3015 0.007 0.99 N/A 2085 0.0012 0.96 N/A 1267 <0.001 0.98 N/A 1279 0 0.97 N/A

DSp + D 3015 0.007 0.98 2058 0.0012 0.94 1240 <0.001 0.97 1183 0 0.91
ZIZA 143 0.012 (140) 1.0 (3) 24 0.0017 (22) 0.67 (2) 1 0.0 (0) 0.33 (1) N/A N/A N/A

DSp + I 3200 0.008 1.0 2659 0.014 1.0 1314 <0.001 1.0 1250 0 0.96
RT-IF DSp + F 3214 0.008 1.0 N/A 2631 0.014 0.98 N/A 1107 <0.001 0.85 N/A 0 0 0 N/A

DSp + D 3170 0.008 0.98 2599 0.014 0.95 1039 <0.001 0.8 0 0 0
ZIZA 122 0.01 (119) 1.0 (3) 21 0.015 (19) 0.67 (2) 0 0.0 (0) 0.0 (0) N/A N/A N/A

DSp + I 1927 0.0041 1.0 0.9 1771 0.0023 1.0 12 1314 <0.001 1.0 70 1300 0 1.0 300
Paxson DSp + F 1927 0.0041 1.0 0.9 1771 0.0023 1.0 12 1249 <0.001 0.96 70 1270 0 0.96 300

DSp + D 1927 0.0041 0.98 0.9 1771 0.0023 1.0 12 1230 <0.001 0.95 70 932 0 0.72 300
ZIZA 87 0.0071 (84) 1.0 (3) 1 14 0.0009 (11) 1.0 (3) 6 3 0.000085 (1) 0.67 (2) 32 N/A N/A N/A N/A

1 Total Detections (#Distinct Hosts)
2 Detectable Exfiltration Rate (B/s)

more FP queries than ibHH. An analysis of the TP domains is
provided in Section V-L1, and a summary table of the results
is provided in Table VI.

1) True Positive Domain Analysis: The first TP domain
we inspect is cymulatedlp[.]com which was detected by all
models except RT-IF. This domain name is registered by
a cybersecurity vendor of a similar name and is used by
enterprises to simulate exfiltration campaigns to assess data
exfiltration defense mechanisms employed by the enterprises.
While this is a simulated attack, we treat it as a true positive
detection given the fact that the data is unlabeled. This attack
consists of quite short subdomains (of length 64). The average
time between two consecutive queries is approximately two
seconds. This might explain why RT-IF was not able to detect
it, as it simulates a rather stealthy DNS exfiltration campaign.
The second domain, detected by all methods, is q2t[.]nl. The
data seems to be base64 encoded, with subdomain’s lengths
ranging between 30 and 144, and queries are sent quickly one
after the other (an average of 0.01 second between consecutive
queries). This domain represents a high throughput exfiltration
campaign and is detected by all methods. We discovered with
WHOIS that the domain is owned by your-freedom[.]net [58],
a VPN provider that supports tunneling over DNS, which
further supports the classification of the domain as TP.

TABLE VI: Real-world evaluation results.

Method FP Domains TP Domains FP Queries TP Queries DER
ibHH 15 2 2,043 17,441 6
IF 31 2 57,125 17,820 N/A
RT-IF 20 1 5,093 12,391 N/A
Paxson 17 2 2,677 15,570 11

M. Resource Use

We evaluate the average runtime and average memory
consumption of each method on a single machine with a 6 core
CPU and 16GB RAM, representing a high-performance DNS
server hardware specification. IF and RT-IF were both imple-
mented with the scikit-learn library [59]. We measured the
total runtime for each method to train, generate the peacetime
allowlist, and classify the test dataset. The ZIZA dataset was
used in this evaluation. We assess the runtime by measuring
the processing time for each method. The experiments are
performed five times, and the average runtime is calculated
based on the outcomes of these five runs.

ibHH and RT-IF, as methods with real-time capabilities,
both use about 1.5MB memory, but ibHH is significantly faster,
with an average runtime of 58 seconds compared to the 857
second runtime of RT-IF. This can be explained by the fact
that RT − IF needs to generate a large number of features to
classify a DNS query.

The offline methods (Paxson and IF) have a notable
disadvantage in that they need to store all the queries in
a specified inspection window. This requirement leads to a
considerably larger memory footprint and longer runtime,
rendering them unsuitable for real-time deployment on the
resolver. Implementing these methods on the resolver would
negatively affect the rate at which the DNS resolver performs
DNS resolution. A summary of the resource analysis is pro-
vided in Table VII.

VI. DISCUSSION

A. Limitations

1) Allowlisting: To distinguish between benign and mali-
cious data exchange over DNS, we described two allowlisting
methods in Section IV-E. As noted in Figure 3, our allowlisting
approaches significantly reduce the number of FP alerts. Dif-
ficulty in distinguishing between malicious and benign DNS
exfiltration traffic is common among DNS exfiltration detection
algorithms, and allowisting methods are often employed to
cope with this issue [19], [18], [13], [21]. Maintenance of these
lists can be automated thus easing the process of incorporating
them in the DNS exfiltration detection pipeline.

2) Resilience against an aware attacker: An aware attacker
can circumvent detection by configuring malware to exfiltrate
data at rates below the detection threshold. While this is a
valid concern, we show that exfiltration campaigns as slow
as 0.7 B/s can be detected by ibHH with less than 0.04% of
benign domains misclassified. An IT organization that wants to
detect very slow campaigns, may choose to lower the detection
threshold; this will come with the cost of possibly having to
deal with more false alarms. Another challenge is the attacker’s
ability to use encrypted DNS requests, such as DNS over
TLS [60] and DNS over HTTPS [61], to evade detection.
Enterprises can deal with this issue by blocking encrypted
DNS traffic that is not resolved by an enterprise DNS resolver,
as recommended by the National Security Agency [62], and
only allow encrypted DNS if it is resolved by the enterprise’s
internal recursive DNS resolver (which allows inspection of
the raw DNS packet).

12

TABLE VII: Comparison of the evaluated methods based on
runtime and memory consumption, on the ZIZA dataset.

Method Avg. Runtime
(Second)

Avg. Memory
Usage (MB)

Avg. Queries per
Second

ibHH 58 1.6 603,448
IF 2,738 102 12,783
RT-IF 857 1.5 40,840
Paxson 3,642 237 9,610

While ibHH primarily focuses on detecting DNS exfil-
tration through the query name, it is important to note that
attackers can use other information vectors like query type and
timing, thus avoid detection by ibHH. However, these vectors
have limitations, such as restricted information capacity and
vulnerability to inaccuracies. Despite these alternatives, the
query name remains the most commonly exploited vector.
By effectively detecting information conveyed through the
query name, ibHH serves as a valuable defense against DNS
exfiltration.

To the best of our knowledge, the query name has been the
primary (or only) information vector utilized by all publicly
available DNS exfiltration tools and known DNS exfiltration
campaigns. The method of Paxson et al. is designed to detect
DNS exfiltration events regardless of the information vector,
which is a strength of that approach.

Another way the attacker can try to bypass ibHH is to break
the exfiltrated data down into single character queries (e.g., in-
stead of sending “exfiltration.domain.com,” the attacker would
send “e.domain.com,” “x.domain.com,” ... , “n.domain.com”).
Because ibHH only accounts for distinct subdomains, it might
miss this exfiltration scenario. However, it should be noted that
this approach also results in a significantly lower rate of data
exfiltration. In addition, DNS resolvers have a cache struc-
ture [2] that stores resolved DNS queries for a limited time.
That can be problematic for the attacker, because subsequent
requests for the same query will be served from the cache
instead of being sent to the authoritative DNS server. Finally,
the number of requests required to exfiltrate a given message
increases linearly based on the message size. This increases
the risk of DNS queries failing to reach the attacker because
of DNS throttling, which is widely employed on public DNS
servers [63], [64] (and can easily be implemented on internal
enterprise DNS resolvers).

The attacker may also intentionally send queries with
short subdomain (which have low information weights) before
sending the actual DNS exfiltration traffic (which has a high
information weight) in an attempt to fill the cache before
the actual attack starts. For the attack to succeed, the short
subdomain queries’ hash values (computed by the uniform
hash function) need to be very low in every reset period; in
addition, the long queries’ hash values need to be over the τ
threshold. Even if the attacker knows the hash function used,
there is no certainty that low hash values will be consistently
obtained, since this is a matter of chance. Therefore, while it
is a clever attack, we deem its impact and the risk it poses to
be minor.

3) Intentional false positives: An aware attacker could
trigger an intentional false positive by sending queries with

long random subdomains targeted at a legitimate registered
domain. This might cause ibHH to trigger an alert that the
benign domain is being used for DNS exfiltration, which
could prevent the host machines from accessing legitimate
services. However, this pertains to domains that are not on the
allowlists (peacetime or global allowlists), limiting its impact.
This limitation is not unique to our approach and is relevant
to all DNS exfiltration detection techniques, as they struggle
to distinguish benign and malicious tunnels.

B. Wildcard subdomain resolution

There are multiple services that use subdomains to host
multiple services or deliver user-generated content (UGC).
Notable examples include dropbox.com and googledocs.com,
which organize their content under different subdomains and
URLs for better isolation and network load distribution. These
UGC services are sometimes incorrectly classified as DNS
exfiltration despite being legitimate due to their extensive
use of unique subdomains, as reported by [44]. This is a
limitation of all existing methods given their inherent inability
to distinguish between legitimate and malicious cases of DNS
exfiltration, and it also applies to our proposed method, which
attempts to overcome this limitation by using allowlists. This
situation is suboptimal but arguably acceptable, since the rate
of false alerts reported in our real-world, representative dataset
of 750 organizations indicates there are, on average, less than
0.1 cases like this weekly per organization.

C. Deployment considerations

Given the low time and memory complexity of ibHH
(theoretically proven in Section IV-C and shown in practice
in Section V-M), an organization may benefit from the de-
ployment of multiple ibHH instances with different threshold
values in order to cover different potential data exfiltration
attacks over DNS and improve performance. This approach
is also aligned with our evaluation results (see Section V-J),
where we present different models with different detection
thresholds.

D. Amount of malicious activity found in real-world traffic

Despite the fact that DSf contains more than 50B queries,
and DSr comprises over 250B queries, the amount of ma-
licious activity found by ibHH and the other methods was
relatively small. This is due to the fact that the datasets
were collected from security-aware enterprises with various
defense mechanisms deployed on their networks. Naturally,
those enterprises are less likely to be victims of cyber-threats
like data exfiltration. Similar exfiltration frequencies were
seen by Nadler et al. [18], where datasets of security-aware
enterprises were used as well.

VII. CONCLUSIONS AND FUTURE WORK

We present ibHH, a simple yet effective method capable
of both detecting DNS exfiltration events in real time, by
estimating the amount of unique information conveyed to
registered domains through query subdomains. We perform a
comprehensive evaluation, comparing the proposed method’s
performance to that of prominent SOTA methods, including
the real-time machine learning based solution that ibHH was

13

shown to outperform. In the future, we plan to adapt ibHH for
the detection of cross-domain exfiltration events, for example,
by changing the information quantification so that it is per
source user IP instead of per target registered domain. We
also plan to explore a possible variation of ibHH capable of
detecting other information vectors used for DNS exfiltration
(such as the data exfiltration based on the query type field), as
well as consider the DNS response (which can help in the
detection of bidirectional communication). We also plan to
deploy ibHH on DNS resolvers and evaluate its performance
on online DNS query streams.

REFERENCES

[1] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G.
Pennington, and C. B. Thomas, “Mitre att&ck: Design and philosophy,”
in Technical report. The MITRE Corporation, 2018.

[2] P. Mockapetris, “Domain names - concepts and facilities,” RFC 1034,
Nov. 1987. [Online]. Available: https://www.rfc-editor.org/info/rfc1034

[3] M. Lyu, H. H. Gharakheili, and V. Sivaraman, “A survey on dns encryp-
tion: Current development, malware misuse, and inference techniques,”
ACM Computing Surveys (CSUR), 2022.

[4] S. Bromberger, “Dns as a covert channel within protected networks,”
National Electronic Sector Cyber Security Organization (NESCO)(Jan.,
2011), 2011.

[5] C. G. Girling, “Covert channels in lan’s,” IEEE Transactions on
software engineering, vol. 13, no. 2, p. 292, 1987.

[6] A. Dahan, “Operation cobalt kitty: A large-scale apt in asia car-
ried out by the oceanlotus group,” https://www.cybereason.com/blog/
operation-cobalt-kitty-apt, 2017, [Online].

[7] P. Rascagneres, “New frameworkpos variant exfiltrates data
via dns requests,” https://www.gdatasoftware.com/blog/2014/10/
23942-new-frameworkpos-variant-exfiltrates-data-via-dns-requests,
2014, [Online].

[8] R. Falcone, “Dns tunneling in the wild: Overview of
oilrig’s dns tunneling,” https://unit42.paloaltonetworks.com/
dns-tunneling-in-the-wild-overview-of-oilrigs-dns-tunneling/, 2019,
[Online].

[9] F. Gutierrez, “Please confirm you received our apt,” https://www.
fortinet.com/blog/threat-research/please-confirm-you-received-our-apt,
2022, [Online].

[10] A. Turing, H. Wang, “New threat: B1txor20, a linux backdoor using
dns tunnel,” https://web.archive.org/web/20220407213839/https://blog.
netlab.360.com/b1txor20-use-of-dns-tunneling en/, 2022, [Online].

[11] D. Fisher, “Ransomware actors leaning on dns tunneling,” https://duo.
com/decipher/ransomware-actors-leaning-on-dns-tunneling, 2023, [On-
line].

[12] Y. Wang, A. Zhou, S. Liao, R. Zheng, R. Hu, and L. Zhang, “A
comprehensive survey on dns tunnel detection,” Computer Networks,
vol. 197, p. 108322, 2021.

[13] V. Paxson, M. Christodorescu, M. Javed, J. Rao, R. Sailer, D. L. Schales,
M. Stoecklin, K. Thomas, W. Venema, and N. Weaver, “Practical
comprehensive bounds on surreptitious communication over {DNS},”
in 22nd USENIX Security Symposium (USENIX Security 13), 2013, pp.
17–32.

[14] N. Ishikura, D. Kondo, V. Vassiliades, I. Iordanov, and H. Tode, “Dns
tunneling detection by cache-property-aware features,” IEEE Transac-
tions on Network and Service Management, vol. 18, no. 2, pp. 1203–
1217, 2021.

[15] C. Qi, X. Chen, C. Xu, J. Shi, and P. Liu, “A bigram based real time
dns tunnel detection approach,” Procedia Computer Science, vol. 17,
pp. 852–860, 2013.

[16] I. Homem, P. Papapetrou, and S. Dosis, “Information-entropy-based dns
tunnel prediction,” in Advances in Digital Forensics XIV: 14th IFIP WG
11.9 International Conference, New Delhi, India, January 3-5, 2018,
Revised Selected Papers 14. Springer, 2018, pp. 127–140.

[17] A. Almusawi and H. Amintoosi, “Dns tunneling detection method based
on multilabel support vector machine,” Security and Communication
Networks, vol. 2018, 2018.

[18] A. Nadler, A. Aminov, and A. Shabtai, “Detection of malicious and
low throughput data exfiltration over the dns protocol,” Computers &
Security, vol. 80, pp. 36–53, 2019.

[19] J. Ahmed, H. H. Gharakheili, Q. Raza, C. Russell, and V. Sivaraman,
“Monitoring enterprise dns queries for detecting data exfiltration from
internal hosts,” IEEE Transactions on Network and Service Manage-
ment, vol. 17, no. 1, pp. 265–279, 2019.

[20] F. Palau, C. Catania, J. Guerra, S. Garcia, and M. Rigaki, “Dns
tunneling: A deep learning based lexicographical detection approach,”
arXiv preprint arXiv:2006.06122, 2020.

[21] S. Chen, B. Lang, H. Liu, D. Li, and C. Gao, “Dns covert channel
detection method using the lstm model,” Computers & Security, vol.
104, p. 102095, 2021.

[22] K. Wu, Y. Zhang, and T. Yin, “Tdae: Autoencoder-based automatic
feature learning method for the detection of dns tunnel,” in ICC 2020-
2020 IEEE International Conference on Communications (ICC). IEEE,
2020, pp. 1–7.

[23] T. Locher, “Finding heavy distinct hitters in data streams,” in Pro-
ceedings of the twenty-third annual ACM symposium on Parallelism
in algorithms and architectures, 2011, pp. 299–308.

[24] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm,” in Discrete
Mathematics and Theoretical Computer Science. Discrete Mathematics
and Theoretical Computer Science, 2007, pp. 137–156.

[25] P. Indyk, “Sketching, streaming and sublinear-space algorithms,” Grad-
uate course notes, available at, vol. 33, p. 617, 2007.

[26] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, 2002, pp. 1–16.

[27] Internet Systems Consortium, “Resource requirements,” https://bind9.
readthedocs.io/en/v9.18.20/chapter2.html, 203, [Online].

[28] CloudBlue Commerce, “Hardware requirements for bind dns
servers,” https://docs.cloudblue.com/cbc/21.0/DNS-Hosting-Services/
Hardware-Requirements-for-BIND-DNS-Servers.htm, 2022, [Online].

[29] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 eighth
ieee international conference on data mining. IEEE, 2008, pp. 413–
422.

[30] J. Zhang, L. Yang, S. Yu, and J. Ma, “A dns tunneling detection
method based on deep learning models to prevent data exfiltration,” in
International Conference on Network and System Security. Springer,
2019, pp. 520–535.

[31] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[32] A. R. Mohammed, S. A. Mohammed, and S. Shirmohammadi, “Ma-
chine learning and deep learning based traffic classification and pre-
diction in software defined networking,” in 2019 IEEE International
Symposium on Measurements & Networking (M&N). IEEE, 2019, pp.
1–6.

[33] A. L. Buczak, P. A. Hanke, G. J. Cancro, M. K. Toma, L. A. Watkins,
and J. S. Chavis, “Detection of tunnels in pcap data by random forests,”
in Proceedings of the 11th Annual Cyber and Information Security
Research Conference, 2016, pp. 1–4.

[34] P. Yang, X. Wan, G. Shi, H. Qu, J. Li, and L. Yang, “Naruto: Dns covert
channels detection based on stacking model,” in Proceedings of the 2nd
World Symposium on Software Engineering, 2020, pp. 109–115.

[35] G. Ruiling, D. Jiawen, C. Xiang, and S. Shouyou, “A dns-based data
exfiltration traffic detection method for unknown samples,” in 2022 7th
IEEE International Conference on Data Science in Cyberspace (DSC).
IEEE, 2022, pp. 191–198.

[36] C. E. Shannon, “A mathematical theory of communication,” The Bell
system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[37] K. Schomp, O. Bhardwaj, E. Kurdoglu, M. Muhaimen, and R. K.
Sitaraman, “Akamai dns: Providing authoritative answers to the world’s
queries,” in Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the applications, technolo-
gies, architectures, and protocols for computer communication, 2020,
pp. 465–478.

14

https://www.rfc-editor.org/info/rfc1034
https://www.cybereason.com/blog/operation-cobalt-kitty-apt
https://www.cybereason.com/blog/operation-cobalt-kitty-apt
https://www.gdatasoftware.com/blog/2014/10/23942-new-frameworkpos-variant-exfiltrates-data-via-dns-requests
https://www.gdatasoftware.com/blog/2014/10/23942-new-frameworkpos-variant-exfiltrates-data-via-dns-requests
https://unit42.paloaltonetworks.com/dns-tunneling-in-the-wild-overview-of-oilrigs-dns-tunneling/
https://unit42.paloaltonetworks.com/dns-tunneling-in-the-wild-overview-of-oilrigs-dns-tunneling/
https://www.fortinet.com/blog/threat-research/please-confirm-you-received-our-apt
https://www.fortinet.com/blog/threat-research/please-confirm-you-received-our-apt
https://web.archive.org/web/20220407213839/https://blog.netlab.360.com/b1txor20-use-of-dns-tunneling_en/
https://web.archive.org/web/20220407213839/https://blog.netlab.360.com/b1txor20-use-of-dns-tunneling_en/
https://duo.com/decipher/ransomware-actors-leaning-on-dns-tunneling
https://duo.com/decipher/ransomware-actors-leaning-on-dns-tunneling
https://bind9.readthedocs.io/en/v9.18.20/chapter2.html
https://bind9.readthedocs.io/en/v9.18.20/chapter2.html
https://docs.cloudblue.com/cbc/21.0/DNS-Hosting-Services/Hardware-Requirements-for-BIND-DNS-Servers.htm
https://docs.cloudblue.com/cbc/21.0/DNS-Hosting-Services/Hardware-Requirements-for-BIND-DNS-Servers.htm

[38] A. M. Kara, H. Binsalleeh, M. Mannan, A. Youssef, and M. Debbabi,
“Detection of malicious payload distribution channels in dns,” in 2014
IEEE International Conference on Communications (ICC). IEEE,
2014, pp. 853–858.

[39] Y. Afek, A. Bremler-Barr, E. Cohen, S. L. Feibish, and M. Shagam,
“Efficient distinct heavy hitters for dns ddos attack detection,” arXiv
preprint arXiv:1612.02636, 2016.

[40] L. Yang, B. Ng, and W. K. Seah, “Heavy hitter detection and identi-
fication in software defined networking,” in 2016 25th International
Conference on Computer Communication and Networks (ICCCN).
IEEE, 2016, pp. 1–10.

[41] A. Rajaraman and J. Ullman, “Mining data streams,” in Mining of
Massive Datasets, 2nd ed., Cambridge University Press, 2014, pp. 165–
173.

[42] S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in practice:
Algorithmic engineering of a state of the art cardinality estimation
algorithm,” in Proceedings of the 16th International Conference on
Extending Database Technology, 2013, pp. 683–692.

[43] P. B. Gibbons and Y. Matias, “New sampling-based summary statistics
for improving approximate query answers,” in Proceedings of the 1998
ACM SIGMOD international conference on Management of data, 1998,
pp. 331–342.

[44] A. Nadler, R. Bitton, O. Brodt, and A. Shabtai, “On the vulnerability
of anti-malware solutions to dns attacks,” Computers & Security, vol.
116, p. 102687, 2022.

[45] Y. Chen, M. Antonakakis, R. Perdisci, Y. Nadji, D. Dagon, and W. Lee,
“Dns noise: Measuring the pervasiveness of disposable domains in
modern dns traffic,” in 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. IEEE, 2014, pp.
598–609.

[46] Y. Zeng, X. Yun, X. Chen, B. Li, H. Tsang, Y. Wang, T. Zang,
and Y. Zhang, “Finding disposable domain names: A linguistics-based
stacking approach,” Computer Networks, vol. 184, p. 107642, 2021.

[47] X. Hu, J. Jang, M. P. Stoecklin, T. Wang, D. L. Schales, D. Kirat, and
J. R. Rao, “Baywatch: robust beaconing detection to identify infected
hosts in large-scale enterprise networks,” in 2016 46th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks
(DSN). IEEE, 2016, pp. 479–490.

[48] V. L. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński,
and W. Joosen, “Tranco: A research-oriented top sites ranking hardened
against manipulation,” arXiv preprint arXiv:1806.01156, 2018.

[49] Ziza, Kristijan and Vuletić, Pavle and Tadić, Predrag, “Dns exfiltration
dataset,” 2023. [Online]. Available: https://data.mendeley.com/datasets/
c4n7fckkz3/3

[50] E. Ekman, B. Andersson, “Iodine (ip-over-dns, ipv4 over dns tunnel),”
https://code.kryo.se/iodine/, 2022, [Online].

[51] Arno0x, “Iodine (ip-over-dns, ipv4 over dns tunnel),” https://github.
com/Arno0x/DNSExfiltrator, 2022, [Online].

[52] A. Mairh, D. Barik, K. Verma, and D. Jena, “Honeypot in network
security: a survey,” in Proceedings of the 2011 international conference
on communication, computing & security, 2011, pp. 600–605.

[53] L. Daigle, “WHOIS Protocol Specification,” RFC 3912, Sep. 2004.
[Online]. Available: https://www.rfc-editor.org/info/rfc3912

[54] Databricks and Microsoft, “Azure databricks,” 2022, [Online]. [Online].
Available: https://azure.microsoft.com/en-us/services/databricks/

[55] Microsoft, “Synapseml,” 2022, [Online]. [Online]. Available: https:
//microsoft.github.io/SynapseML/

[56] S. Y. A. Shulmin, “Use of dns tunneling for c&c communications,”
https://securelist.com/use-of-dns-tunneling-for-cc-communications/
78203/, 2017, [Online].

[57] “Magnetic Stripe Track Format,” 9 2015. [Online].
Available: https://orangetags.com/smart-card-reader/magnetic-stripe/
magnetic-stripe-track-format/

[58] “Your Freedom - VPN, tunneling, anonymization, anti-
censorship. Windows/Mac/Linux/Android.” [Online]. Available:
https://www.your-freedom.net/

[59] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[60] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and
P. E. Hoffman, “Specification for DNS over Transport Layer
Security (TLS),” RFC 7858, May 2016. [Online]. Available:
https://www.rfc-editor.org/info/rfc7858

[61] P. E. Hoffman and P. McManus, “DNS Queries over HTTPS (DoH),”
RFC 8484, Oct. 2018. [Online]. Available: https://www.rfc-editor.org/
info/rfc8484

[62] Agency, N.S., “Adopting encrypted dns in enterprise environments,”
https://media.defense.gov/2021/Jan/14/2002564889/-1/-1/0/CSI
ADOPTING ENCRYPTED DNS U OO 102904 21.PDF, 2021,
[Online].

[63] Unknown, “Security benefits,” https://developers.google.com/speed/
public-dns/docs/security, 2023, [Online].

[64] ——, “How can i determine whether my dns queries to the
amazon-provided dns server are failing due to vpc dns throttling?”
https://aws.amazon.com/premiumsupport/knowledge-center/
vpc-find-cause-of-failed-dns-queries/, 2023, [Online].

15

https://data.mendeley.com/datasets/c4n7fckkz3/3
https://data.mendeley.com/datasets/c4n7fckkz3/3
https://code.kryo.se/iodine/
https://github.com/Arno0x/DNSExfiltrator
https://github.com/Arno0x/DNSExfiltrator
https://www.rfc-editor.org/info/rfc3912
https://azure.microsoft.com/en-us/services/databricks/
https://microsoft.github.io/SynapseML/
https://microsoft.github.io/SynapseML/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://orangetags.com/smart-card-reader/magnetic-stripe/magnetic-stripe-track-format/
https://orangetags.com/smart-card-reader/magnetic-stripe/magnetic-stripe-track-format/
https://www.your-freedom.net/
https://www.rfc-editor.org/info/rfc7858
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/info/rfc8484
https://media.defense.gov/2021/Jan/14/2002564889/-1/-1/0/CSI_ADOPTING_ENCRYPTED_DNS_U_OO_102904_21.PDF
https://media.defense.gov/2021/Jan/14/2002564889/-1/-1/0/CSI_ADOPTING_ENCRYPTED_DNS_U_OO_102904_21.PDF
https://developers.google.com/speed/public-dns/docs/security
https://developers.google.com/speed/public-dns/docs/security
https://aws.amazon.com/premiumsupport/knowledge-center/vpc-find-cause-of-failed-dns-queries/
https://aws.amazon.com/premiumsupport/knowledge-center/vpc-find-cause-of-failed-dns-queries/

	Introduction
	Background
	DNS stream model
	Real-time DNS exfiltration detection

	Related Work
	Information-Based Heavy Hitters for DNS Exfiltration Detection
	Definitions
	Information-based Heavy Hitters
	ibHH Components
	Information Quantification
	Optimized Counting with HLL++
	Processing Elements with ibHH

	ibHH Space and time complexity analysis
	Memory Analysis
	Time Analysis (processing a query)

	Reset mechanism
	Allowlists
	TRANCO
	Peacetime/Wartime

	Evaluation
	Overview
	Datasets
	Parameter tuning
	Analysis of alerted domains
	Mitigating the need for data consolidation
	Sensitivity analysis
	Frequency of peacetime list generation
	Compared methods
	Information-based Heavy Hitters for DNS Exfiltration Detection
	Practical Comprehensive Bounds on Surreptitious Communication over DNS
	Detection of Malicious and Low Throughput Data Exfiltration Over the DNS Protocol
	Real-Time Detection of DNS Exfiltration and Tunneling from Enterprise Networks

	Methodology
	Results
	Evaluation on the ZIZA dataset
	Real-world evaluation
	True Positive Domain Analysis

	Resource Use

	Discussion
	Limitations
	Allowlisting
	Resilience against an aware attacker
	Intentional false positives

	Wildcard subdomain resolution
	Deployment considerations
	Amount of malicious activity found in real-world traffic

	Conclusions and Future Work
	References

