
TEE-SHirT: Scalable Leakage-Free Cache
Hierarchies for TEEs

Kerem Arıkan*, Abraham Farrell*, Williams Zhang Cen*, Jack McMahon*, Barry Williams*,
Yu David Liu*, Nael Abu-Ghazaleh�, and Dmitry Ponomarev*

*Binghamton University
�University of California, Riverside

Abstract—Protection of cache hierarchies from side-channel
attacks is critical for building secure systems, particularly the
ones using Trusted Execution Environments (TEEs). In this pa-
per, we consider the problem of efficient and secure fine-grained
partitioning of cache hierarchies and propose a framework, called
Secure Hierarchies for TEEs (TEE-SHirT). In the context of
a three-level cache system, TEE-SHirT consists of partitioned
shared last-level cache, partitioned private L2 caches, and non-
partitioned L1 caches that are flushed on context switches and
system calls. Efficient and correct partitioning requires careful
design. Towards this goal, TEE-SHirT makes three contributions:
1) we demonstrate how the hardware structures used for holding
cache partitioning metadata can be effectively virtualized to avoid
flushing of cache partition content on context switches and system
calls; 2) we show how to support multi-threaded enclaves in TEE-
SHirT, addressing the issues of coherency and consistency that
arise with both intra-core and inter-core data sharing; 3) we
develop a formal security model for TEE-SHirT to rigorously
reason about the security of our design.

I. INTRODUCTION

Cache hierarchies are the target of many recent side-channel
attacks that leak critical information from systems [4], [11],
[19], [29]–[31], [36], [43], [45], [49]–[52], [59], [64], [65],
[70], [72], [74]. These attacks enable a malicious process to
infer secret information about a victim process by observing
the performance of its memory accesses as they interact with a
shared cache. Side-channel information leakage also enables
dangerous transient execution attacks [42], [43], [64], [70],
where the attacker forces speculatively accessed secrets to
be exposed through cache side-channels. Cache-based side-
channel attacks also compromise Trusted Execution Environ-
ments (TEEs) such as Intel SGX [17]. While TEEs provide
logical isolation, they are still vulnerable due to the physical
sharing of resources. Indeed, a number of recent cache-based
attacks have been demonstrated against SGX [11], [19], [29],
[50], [51], [64]. It is therefore critical to integrate leakage-free
cache hierarchies into TEEs, augmenting the logical isolation
with physical isolation to eliminate side-channel leakage.

In this paper, we investigate cache partitioning mechanisms
for TEE systems with the goal of protecting the entire cache
hierarchy, and not just a single cache level. Cache partitioning
is a principled approach to security that physically isolates
applications from each other eliminating leakage due to con-
tention on shared resources. Since cache partitions belong-
ing to different applications (or enclaves in TEE systems)
are isolated, the behavior of the victim process does not
impact any cache-related observations by attackers, making
attacks impossible. Existing secure cache partitioning schemes
consider only a single level of caches, either private upper-
level caches [23] or shared LLC [41], [44], [56], [63]. These
schemes partition caches by ways [23], [41], sets [21], [56],
or both [63]. Without loss of generality, we study fine-grained
approaches that partition caches by both ways and sets [63].

Various levels of the cache hierarchy require different
approaches to achieve security. It has been established that
cache partitioning is an effective approach for shared last-level
caches [56], [63]. At the same time, prior research demon-
strated that L1-caches can be flushed on context switches
to prevent leakage with minimal loss in performance [28].
In this paper, we also make a case that private L2 caches
have to be partitioned, and present TEE-SHirT, a security
framework for multi-level cache hierarchies that combines a
shared partitioned LLC, private partitioned L2 caches, and
private L1 caches that are flushed on context switches and sys-
tem calls. Partitioning private caches introduces performance,
consistency, and coherence challenges, especially with multi-
threaded workloads. To ensure high performance, correctness,
and security of the entire memory hierarchy with TEE-SHirT,
this paper makes the following key contributions.

First, to avoid scalability limitations due to the limited
capacity of cache partitioning logic, we propose to virtualize
the cache partitioning metadata to enable partitions to be
tracked and maintained even when their respective enclave
is not actively running. Specifically, we integrate cache par-
titioning metadata into an enclave context that can be saved
and restored on context switches using mechanisms available
in Intel SGX. We augment existing SGX data structures to
include information about cache partitioning metadata, making
partitioned caches an integral part of the SGX ecosystem.
Once this support is established, the number of enclaves
simultaneously sharing the cache space is limited only by

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24390
www.ndss-symposium.org

L1 Cache

...

T
h
re

a
d

s

Cores

C
o
h
e
re

n
t

O
n

-C
h
ip

 I
n

te
rc

o
n
n

e
ct LLC - L3

Cache

M
e
m

o
ry

 M
a
n
a
g
e
m

e
n

t
U

n
it

...

To
 O
ff

-C
h
ip

 M
e
m

o
ry

..
.

L2 Cache

L1 Cache L2 Cache

L1 Cache L2 Cache

T
h
re

a
d

s
T
h
re

a
d

s

Fig. 1: A conventional 3-level cache hierarchy.

the total cache capacity, and not by the number of physical
instances of hardware structures used to support partitioning.

Second, we address new consistency and coherence prob-
lems with multi-threaded enclaves when they use multiple
levels of partitioned caches. When multiple threads of an
enclave are scheduled on the same core, multiple partitions
(one for each thread) for the same enclave can be formed
within a single private L2 cache. Maintaining coherence of
data within the same cache is not supported by traditional
cache coherence protocols since they assume that at most a
single copy of a cache line exists in each cache. Furthermore, it
can also be possible that some private caches can maintain the
most recent copy of shared data, but the partitioning metadata
of the enclave that produced this data while executing on that
core is currently context-switched out. In this case, the cache
coherence protocol would be missing the metadata to perform
the cache query correctly and will need to be augmented.We
describe our solutions to both of these problems to provide
a coherent and consistent memory system in the presence of
shared and private partitioned caches.

Third, we prove security guarantees of TEE-SHirT through
a formal security analysis that is based on cache-aware and
enclave-aware operational semantics to account for the alloca-
tion across multiple levels of cache. Our analysis accounts for
enclave behavior in a variety of settings, including enclave
creation and destruction, and a full consideration of cache
coherence and context switch.

We evaluated the performance of TEE-SHirT using various
benchmarks, including MiBench [34], SPEC2017 [12], and
WolfSSL [2] functions, using gem5 [7] cycle-accurate microar-
chitectural simulator. To estimate the area overhead of TEE-
SHirT, we implemented parts of our design within the open-
source cache subsystem of the open ESP project [46]. We
integrated a prototype of TEE-SHirT with a 4-core CPU in an
open-source System on Chip (SoC) platform, demonstrating
an overhead of less than 2% relative to the baseline system.

II. BACKGROUND AND THREAT MODEL

In this section, we provide background on modern cache
hierarchies and the concept of cache partitioning for security,
overview relevant components of Intel SGX’s ecosystem, and
describe our threat model.

A. Cache Hierarchies

Figure 1 shows a typical three-level cache hierarchy of a
modern CPU. Each core has private L1 and L2 caches, and the
L3 cache (also called LLC interchangeably) is shared among

Tag Set Index Offst.

CPT

Partition Idx Way Mask

New Tag

Cache Lines

Partition Offset

 1 1 1 0
x

Tag Matching

Cache Partition

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

Fig. 2: Enclave address remapping in partitioned caches

all cores/threads running in the system. This is representative
of recent designs from major CPU manufacturers [13], [24],
[35], [38], [61]. While L1 and L2 caches can be shared
by threads simultaneously running on the same core in a
simultaneously multithreaded (SMT) processor, we do not
consider SMT in this paper — it is often disabled for security.
However, even if SMT is used, private caches can be statically
partitioned by ways across threads to provide isolation. Note
that the number of simultaneous threads is typically smaller
than the number of cache ways at the levels of private caches.
If such provisions are implemented, then the rest of our
design applies even to SMT systems (each thread works within
its own partition). In some designs, L2 caches are shared
by multiple neighboring cores. While we do not explicitly
evaluate such systems (due to the limitation of our gem5-based
simulation infrastructure), our partitioning principles apply to
them as well.

B. Partitioned Caches for Security

We consider TEE-SHirT in the context of hardware-
supported cache partitioning schemes, in particular in the
context of Composable Cachelets [63]. The key idea is to
create isolated cache partitions (CPs) for each enclave running
on a TEE system. Each CP is composed of the number of
consecutive sets and one or more ways. At a high level, a
hardware component is added to the cache circuitry to control
accesses to CPs. This component is called the Cache Partition
Table (CPT) and it holds the metadata related to cache
partitions. Specifically, this metadata includes the mappings
between the original set indices to the indices within allocated
CPs, and the way mask to indicate which cache ways belong to
this partition. This information is maintained at the granularity
of partition sizes in terms of the number of sets. By going
through the CPT, the original memory address generated by
an enclave can be remapped to a cache location within the
allocated CP.

Figure 2 shows the address remapping mechanism for cache
accesses from enclaves. Entries of the CPT are accessed with
the higher bits of the set index. The accessed CPT entry’s
partition index points to a group of sets that belong to the
enclave’s CP. Depending on the desired partition size and
shape, one or more of the CPT entries can be established by an
enclave, thus appropriately deflecting the initial addresses to
physical cache indexes within the boundary of the allocated
CP. The set index’s lower bits are used as partition offset,
where they point to the specific set within the CP. The way

2

mask determines which cache ways belong to this CP and
therefore should be checked. For example, in Figure 2, the
way mask is set as 1110, which denotes that ways zero, one,
and two belong to the CP being accessed, and way three does
not (in a 4-way cache).

C. Relevant Intel SGX Data Structures

One of our contributions is to build support for saving cache
partitioning metadata on context switches and system calls.
We demonstrate it using Intel SGX as a target TEE. In this
section, we provide relevant background on SGX and its data
structures.

In the memory layout of SGX, enclaves’ metadata is stored
in a dedicated data structure called Enclave Page Cache
(EPC) [17] within the Processor Reserved Memory (PRM).
SGX also deploys an architectural layer of integrity checks by
keeping a set of security records called the Enclave Page Cache
Map (EPCM). Each entry of the EPCM contains a pointer to
each EPC page, as well as the page type and permissions of
the corresponding EPC pages.

The EPC includes several pages that contain enclave meta-
data. The SGX Enclave Control Structure (SECS) page main-
tains a data structure that has basic information about an
enclave such as its size, Enclave ID (EID), and base address.
To support multithreaded enclaves, SGX maintains an EPC
page called the Thread Control Structure (TCS). The TCS
mostly contains the offsets of various EPC pages of the
corresponding thread (code pages, execution context, etc.). To
support context switches, SGX saves the enclave’s execution
context to a set of pages called the Save State Area (SSA) upon
a hardware exception. Each thread’s SSAs can be composed
of several pages called the SSA Frame Size. The SSA Frame
Size is held in SECS, while the offset of the last SSA page
is pointed to by the TCS. All of these structures are mostly
controlled by the hardware, mainly the Memory Management
Unit (MMU).

D. Threat Model

TEE-SHirT can be used to protect any program that uses
it, but we use a threat model that assumes a more powerful
adversary similar to the threat model of SGX [17]. Specifi-
cally, we assume that the system software, including OS and
hypervisors, is untrusted and that the attackers can exploit
any mechanisms available within these privileged software
layers to amplify their attacks. We also assume that the
attacker can mount any cache side-channel attack strategy such
as Prime+Probe [39], [45]. Importantly, TEE-SHirT protects
from situations where simultaneous attacks on multiple cache
levels are possible and the attacker can leverage multiple
threads (or enclaves) executing on multiple cores in the system,
including the core on which the victim application executes.

While we do not directly address denial-of-service attacks,
we limit the cache space that can be allocated to enclaves by
reserving at least one or more ways for non-enclave programs.
This reservation also has the important effect of allowing non-
enclave programs to access the cache without going through

fft jpeg lame rijndael sha susan0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 IP
C Performance Impact of L1 Data Cache Flushes

Baseline Time Quantum = 1ms Time Quantum = 10ms Time Quantum = 25ms

fft jpeg lame rijndael sha susan
Benchmarks

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 IP
C Performance Impact of L2 Cache Flushes

Fig. 3: Performance impact of private cache flushes in inclu-
sive hierarchies

the process of index remapping since at least one way is
always available for non-enclave programs in every set.

III. A CASE FOR PARTITIONING L2 CACHES IN INCLUSIVE
HIERARCHIES

Previous efforts convincingly established that partitioning
of the LLC and flushing of private L1 caches are attractive
solutions for securing those cache levels [10], [28]. In this sec-
tion, we explain in more detail why private L2 caches should
also be partitioned. Flushing a non-partitioned L2 on context
switches will have a more significant impact on performance
due to the larger size and higher miss latencies. To demonstrate
the performance impact of flushing L1 and L2 caches, we
performed experiments with six encryption benchmarks from
MiBench suite [34]. We account for invalidation and writeback
operations by blocking the cache until they are completed.
We also implement back-invalidations to ensure inclusivity.
Figure 3 shows the normalized commit IPC (Instructions per
Cycle) metric for scenarios where the L1 data cache and the
L2 cache are flushed on context switches with three different
time quantums. As observed, with L1 data cache flushes, IPC
impact does not exceed 2% for all benchmarks, whereas the
L2 cache flushes cause between 6% and 53% slowdown for
25ms time quantum. These results reassure the notion of L2
cache flushes being infeasible for performance.

Furthermore, if an L2 cache remains non-partitioned, an-
other performance and scalability problem arises in a system
with inclusive cache hierarchies. Inclusive cache hierarchies
ensure that data that resides in an upper-level cache (say, the
L2) also exists in a lower-level cache (say, the LLC). This
organization simplifies cache coherence hardware because the
absence of data in the LLC also indicates that the data is
not in the private caches, thus avoiding unnecessary snoops
and providing snoop filtering capabilities. Inclusive cache
hierarchies are commonly used in modern CPUs [33]. To
support inclusivity, the key additional mechanism used in such
systems is back-invalidation, where the eviction of data from
the LLC also caused the eviction of this data from all upper-
level private caches (note that the term ”upper-level” refers to
caches that are closer to the CPU).

In traditional cache hierarchies, the L3 cache (LLC) has
a larger size than the L2 cache. However, let us consider a
cache hierarchy where the L3 cache is smaller than the L2
cache in an inclusive cache hierarchy. A simplified example

3

A
A

access A
access B
access C
access D

access
sequence

load
data A to
L2 from the
main memory

load line A
to L2 from L3

L2 cache
L3 cache

A
A

access A
access B
access C
access D

access
sequence

load
data B to
L3 from the
main memory

load line B
to L2 from L3

L2 cache
L3 cache

B
B

A
C

access A
access B
access C
access D

access
sequence and load line C

and load line C
to L2 from L3

L2 cache
L3 cache

B
BC

delete line A

back-invalidate line A in L2

X
C

access A
access B
access C
access D

access
sequence

and load line D

and load line C
to L2 from L3

L2 cache
L3 cache

B
DC

delete line B

back-invalidate
line B

X
D

Fig. 4: An example of back-invalidation in inclusive cache
hierarchy

of this scenario is depicted in Figure 4, which represents a
cache hierarchy featuring fully associative L2 and L3 caches
with 4 and 2 lines respectively. The program accesses lines A
and B, which are loaded into both L2 and L3 caches. Later,
when line C is accessed, the least recently used line in the L3
cache (in this instance, line A) is evicted. As a result, line A
must also be back-invalidated in the L2 cache to sustain the
inclusivity with the L3 cache. The same sequence of events
occurs for line B when line D is accessed. As a result, the
effective capacity of L2 degenerates to that of L3 (2 lines).

Now let us project this example to a cache partitioning
system. Exactly this situation would happen (on a larger scale)
if the L3 cache is partitioned, the L2 cache is not, and the
size of the allocated L3 partition is less than the size of the
L2 cache. As a result, if only the LLC is partitioned, then
either the performance suffers due to the effective reduction
of the L2 capacity, or allocated partition sizes in the LLC are
constrained to be larger than the L2 size. Neither of these
scenarios is a desirable outcome in a high-performance and
scalable TEE system.

IV. TEE-SHIRT

Following the arguments presented above, TEE-SHirT em-
ploys partitioned LLC and L2 caches, and a non-partitioned
L1 that is flushed on time-driven context switches and system
calls. We now describe the architecture of TEE-SHirT, address
its complexity, correctness, and performance challenges, and
develop a formal model to demonstrate security.

A. TEE-SHirT Design Overview

TEE-SHirT partitions private L2 and shared L3 caches
into smaller CPs. The partition size at every cache level is
controlled independently depending on the size of the caches
and the performance demands of the application. Enclaves can
request the allocations of CPs through additional instructions.
Though specific details are beyond the scope of the paper,
some possible solutions are described by prior work [63].

The high-level architecture of a multi-core system with
TEE-SHirT is illustrated in Figure 5. In this example, the sys-
tem has four concurrent enclaves, with Enclave 0 and Enclave
1 currently executing on Core 0 and Core 1, respectively. L1
caches are flushed on context switches and system calls. Thus,
they do not need additional support for security. However,
in the L2 and L3 caches, all four enclaves have allocated

C
o
re

 1

Coherent Snooping Interconnect

L2 Cache

CP - E0

CPMU

C
o
re

 0

L2 Cache

CP-0 CP-1
X

CPMU

Enclave 0 Enclave 1

CPTC-E0
CPT

CP - E0

CPMU
CPTC-E1

CPT

CP - E1
X(E)

C
o
re

 1

L2 Cache

CPMU

C
o
re

 0

L2 Cache

CP-0 CP-1
X

CPMUCPMU
CPTC-E1

CPT

L3 Cache

CPMU

CPMUCPMU
CPTC-E1

CPTCPMUCPMU
CPTC-E0

CPT

Additional Partition Coherence Logic

Memory Management
Unit

CPTC Handler

L1 Cache

CP - E0

L1 Cache

CP-0 CP-1
X

CP - E0 CP - E1
X(E)

CP-0 CP-1
X

Occupied by
Enclave 0

Occupied by
Enclave 1

CP-E0

CP-E2

CP-E1

CP-E3

CPTC
Buffers

To/From Memory

Enclave 2 and 3

Pending to be
scheduled:

CPTC-E0
CPT-0

CPTC-E1
CPT-1

...

...

CP-E1

CP-E0 CP-
E3

CP-E2

Fig. 5: An overview of the TEE-SHirT architecture

CPs that are isolated from other enclaves and also from non-
enclave programs. This system creates separation for different
processes in the cache. Notably, programs do not have to be
actively running on a core to have partitions in L2 and L3
caches (i.e. Enclaves 2 and 3 in this example). We describe
support to enable this feature in detail in Section IV-B1.

To support TEE-SHirT-related operations, every cache level
except for L1s is equipped with a Cache Partitioning Manage-
ment Unit (CPMU). We assume that allocation requests are
specified in terms of the desired CP size without specifying
a particular shape for the CP. In turn, TEE-SHirT maps
allocation requests onto a specific way-set partition of the
cache. This partition is represented in the metadata for the
CP within the CPT. We refer to this metadata - the contents
of the CPT - as Cache Partition Table Context (CPTC). The
management of CPTC is done by the hardware and is not
visible to the OS. This is implemented through a CPTC
Handler that is integrated with the MMU.

When an enclave requests a CP allocation, a physical region
within the cache is assigned to it. However, the allocated
region is likely to contain data that was placed there by another
program prior to the allocation request. If this data is not
evicted from the cache, it will no longer be accessible by the
original program once a CP is established. As a result, all the
dirty data within the allocated region has to be written back to
the lower-level structure. We now explain how the boundary is
established and how the data is written back and invalidated.

After the CPTC is created, two other activities take place:
1) CPTC update when the CPMU sends the newly generated
CPTC to main memory to be stored, and 2) gang-invalidation
which is the invalidation and write-back of existing cache lines
within the allocated region. In case an invalidated cache line is
dirty, it is also written back. To support inclusivity in inclusive
cache hierarchies, the invalidated cache lines are also back-
invalidated in upper-level caches.

All cache accesses that are initiated after the CP allocation
request must wait until all allocation operations have been
completed. Consequently, TEE-SHirT-related requests should
be globally serialized with regular cache accesses. During CP
creation, the new CP mapping should not take effect until the

4

gang-invalidation process is completed, even though the CPTC
has already been created.

Another requirement is that before the gang-invalidation
process, the CPMU has to ensure that all pending cache misses
are handled. This is because if a cache line with a pending
miss status is invalidated before being updated, then the newly
received version of the cache line cannot be written to the
cache since it is now reserved for an enclave. These operations
ensure that consistency is maintained across all the levels of
the cache system during CP allocation.

In the rest of this section, we address two key issues in the
design and implementation of TEE-SHirT: 1) how to maintain
partition data in the caches on context switches and sys-
tem calls without significant additional hardware complexity;
2) how to support multi-threaded enclaves with partitioned
caches.

B. Partition-Aware Context Switches and System Calls

To securely support context switches and system calls under
the untrusted OS, leakage in caches has to be carefully
considered during these operations. One way to handle this
leakage is to flush the contents of enclave cache partitions on
every context switch and system call. However, this can get
expensive for larger lower-level caches. Ideally, we would like
to preserve the CP contents of the enclave in the caches across
context switches and especially system calls. However, to do
this, the partition metadata (the CPTC) has to also be retained
to appropriately link to the corresponding CP. If a large number
of enclaves are sharing a system, maintaining multiple CPTCs
at the same time in the cache requires significant complexity
in the form of an additional number of physical CPTs.

1) CPTC Virtualization: We now address the challenge
of supporting the scalable operation, where the number of
enclaves that can share the cache subsystem concurrently is
only limited by the cache capacity and not by the availability
of CPTs or other similar remapping hardware. Partitioning
metadata has to be maintained for every enclave. Maintaining
this information only in the cache system entails significant
hardware complexity or restricts the number of concurrent
enclaves that can be running in the system. We now show
how this partitioning metadata can be effectively saved into a
reserved memory following a timing interrupt-driven context
switch or a system call, to be restored when the enclave
is rescheduled for execution. We call this scheme CPTC
Virtualization.

The key idea behind CPTC Virtualization is to leverage ex-
isting TEE data structures (using Intel SGX as an example) and
MMU hardware to maintain partitioning information rather
than allocating a separate CPT for each enclave in the system.
We accomplish this goal by storing CPTCs in the Processor
Reserved Memory (PRM) of Intel SGX and reloading them
back only when the corresponding enclave is scheduled to
run. Figure 6 contrasts the hardware requirements between
the CPT-per-enclave approach and CPTC virtualization. In the
following example, there are n enclaves running in the system.
Keeping CPTCs exclusively in the remapping logic may result

Enclaves

Remapping
Logic Cache

Remapping
Logic

 CPT-1

 CPT-n

 CPT-0

 CPT-1

Main
Memory

meta-
data 0
CPTC

0

Processor
Reserved Memory

...

e-0
e-1 ...

e-n

 CPT-0

Cache

...

CP-0Enclaves

e-0
e-1 ...

e-n

CPTC
1CP-1

CP-n

...

CP-0

CP-1

CP-n

CPTC
n-1

CPTC
n

...

Fig. 6: CPT-per-enclave (top) vs. CPTC virtualization (bottom)

in two possible scenarios when an n+1-th enclave requests a
new CP allocation:
Scenario 1: The lack of available CPTs will result in the
enclave waiting until one of the existing enclaves terminates.
This approach limits the maximum number of concurrent
enclaves to the number of physical CPTs provided by the
cache.
Scenario 2: The CPTC and CP of an existing enclave are
removed to make space for the n+1-th enclave, leading to loss
of the enclave’s cache contents, thus limiting performance.

We address the issue in Scenario 2 as follows. CPTC
virtualization requires that a CPTC should be present in a CPT
only if the corresponding enclave is executing in the core. If
an enclave is context-switched out of the core, its CPTC is
removed from the CPT since it is already stored in the PRM
memory. And if the program running on the core is a non-
enclave program, then the corresponding CPT is unused.

Importantly, note that the contents of an enclave’s CP are
not invalidated upon a context switch even when its CPTC
is removed from the CPT. Therefore, the enclave’s data is
preserved in the cache, addressing the problem in scenario
2 and resulting in substantial performance improvement in
system call-intensive workloads. The CP remains isolated as
TEE-SHirT diverts cache accesses from non-enclave processes
and other enclaves from this enclave’s CPs. Furthermore,
this design allows the CPT to load the CPTC when it is
needed, which eliminates scenario 1 and reduces the CPTs
in the remapping logic by n-1. We evaluate the impact of
the number of CPTs on hardware complexity in Section VI,
as well as the performance improvement CPTC virtualization
provides.

2) Memory Layout Extensions for TEE-SHirT: TEE-SHirT-
related operations must be performed without relying on an
untrusted system software. With TEE-SHirT, the Memory
Management Unit (MMU) conducts CPTC virtualization with
additional hardware. TEE-SHirT does this by extending the
SGX-reserved memory areas — the TCS, SSA, and SECS
(introduced in Section II-C)— along with the corresponding
EPCM entries.

Every SGX enclave maintains the TCS and SSA pages for
every thread. The TCS includes a set of offsets that point to
the head of particular data structures. For example, the Offset
of the SSAs (OSSA) contains the head of the SSA pages. We

5

Main Memory

EPC

......
...

...
...

...
...

MMU

CPTC
Handler

CPTC
Buffers

LLC

CPMU

CPT-0

L2 Cache

CPMU

CPT

L2 Cache

CPMU

CPT

CP
(new)

L1 Cache

L1 Cache

CP
(old)

Core 1

CP
(idle)

3 Allocate
CP in L1

6
Update L2

CPTC

5
Allocate

CP

7
Load

the CPTC
to MMU

9
Update CPTC

8
Fetch SSA

Offset

10
CPTC

Update
Response

11
Notify

Completion

...

EPCM

PT_TCS - - -

PT_REG r w -...
...

...
...

...

SECS ...

PT_SECS r - -

CPMU

CPMU

CPT-1...

CPT-n

SSA Pages

TCS

OSSA

OCPTCSSA

SSA Page 0

CPTCSSA
Page 0

Code and
Data Pages

CP
(old)

1
Context
Switch

2

Notify Context
Switch

Core 0

Old CP
Information

Baseline
Context
(old) X

X

PT_REG r - -

CPALLOCATED 1MB-3MB

Deallocate
the Old CP

Flush the
L1 Cache

CP Alloc.
Request

Baseline
Context
(new)

Update
L2 CPTC

4

12
Notify Completion

13
Notify Completion

Fig. 7: Context switching example for enclaves with CPs. White and yellow colored structures represent the standard logic.
Light blue represents structures associated with the CPTC of the enclave being switched out; while dark blue represents
additional logic and structures. Red arrows are related to the operations that are performed in the background and not a part
of the main workflow.

extend the MMU and the aforementioned areas to store the
CPTC alongside the traditional thread context.

We extend the TCS with the Offset of the CPTC State Save
Area (OCPTCSSA), which contains the relative address to
the head of the CPTCSSA pages. Considering that there is
a separate TCB for each thread of an enclave process, TEE-
SHirT can provide a non-uniform allocation to threads as an
additional feature, meaning that threads of the same enclave
can allocate differently sized CPs. In terms of composition,
there is no difference between regular SSA and CPTCSSA
pages. The only divergence between them stems from the
contents and corresponding permission bits in the EPCM,
which has rw- permissions for the regular SSA pages. Due
to security implications, we cannot let any software explicitly
modify the CPTCSSA; that task is handled only by TEE-
SHirT. Hence, we reduce the permissions on CPTCSSA pages
to r- - for ”read-only”, making them non-cacheable and
accessible only by the hardware.

To store the combined CP size allocated by an enclave, we
can also add an auxiliary field called CPALLOCATED to SECS
to store the total CP sizes for the enclave on each cache level.
In the figure, the CPALLOCATED indicates 1MB and 2MB CP
allocation for L2 and L3 caches, respectively.

3) Partition-Aware Context Switches: Figure 7 illustrates
the cross-core context switch process of a single-threaded
enclave with pre-allocated CPs along with the memory layout
extensions to SGX. In 1 , the baseline context switch is
initiated, which is followed by an enclave allocation instruction
in 2 . After the allocation request is processed by the L1
cache, the L1 cache is flushed to avoid leakage in 3 . The
request received by the L1 cache contains the allocation data
for both of the lower-level caches, so it can be forwarded to
the L2 cache in 4 . The allocation process in 5 involves the
CPMU in the L2 cache checking for available cache space
and filling the CPT with the new CPTC. When caches receive
a context switch-related allocation request, they send a CP
deallocation message to other same-level caches in the system.

When caches create a new CPTC, they forward it to the
lower-level structure in the hierarchy. So, in 6 , the L2 cache

sends its newly created CPTC to the LLC. Since all of the
cores share the LLC, we do not need to update the CPTC at
that level. The LLC propagates the request to the MMU in 7 .
Before updating the CPTCSSA pages in 9 , we have to load
the OCPTCSSA in 8 . The CPTC Handler is equipped with
a state machine and dedicated CPTC buffers that carry out
the CPTC Update operation which reads the OCPTCSSA and
updates the CPTCSSA pages. Once the MMU is done with
the updating process, it sends a ”completion” response in 10 .
11 , 12 , and 13 forward events to notify completion of the
CPTC-update operation to the core.

Still, the core has to wait until existing non-enclave data
within the boundary that is now allocated to the program
are gang-invalidated so that the data integrity of non-enclave
processes is retained.

C. Multithreaded Enclaves with Partitioned Caches

A distinct problem with cache partitioning is how to cor-
rectly and efficiently support enclave data sharing with multi-
threaded enclaves. Modern TEEs such as Intel SGX offer
support for multi-threaded enclaves, where threads within
an enclave are mutually trusted. These threads can naturally
access shared memory locations. While this programming
model does not pose challenges for LLC-only partitioning
schemes, consistency and coherence problems can occur when
multiple levels of the cache hierarchy are partitioned, including
private caches. We explore this challenge under two scenarios:
1) Inter-core sharing, when threads of an enclave are being
executed in separate cores, and 2) Intra-core sharing when
threads belonging to the same enclave are being context-
switched in and out within the same core. In this section,
we initially focus on snooping-based [25] MOESI coherence
protocols [62], and then we discuss the implications of these
scenarios for directory-based coherence [16].

1) Challenge 1 - Inter-Core Data Sharing: Traditional
cache coherence protocols are built on the premise that cache
accesses can be performed solely based on the cache line’s
address. This assumption does not apply to the design principle
of TEE-SHirT, as we rely on the CPTCs to deflect the access

6

C
o
re

 1

Coherent Snooping Interconnect

L2 Cache

CP - E0

CPMU

C
o
re

 0
L2 Cache

CP-0 CP-1
X

CPMU

Thread of Enclave 0 Thread of Enclave 1

CPTC-E0
CPT

CP - E0

CPMU
CPTC-E1

CPT

CP - E1

?

X(E)

snoop request... ...

C
o
re

 1

Coherent Snooping Interconnect

L2 Cache

CP - E0

CPMU

C
o
re

 0
L2 Cache

CP-0 CP-1
X

CPMU

Thread of Enclave 0 Thread of Enclave 1

CPTC-E0
(Core 0)

CPT

CP - E0

CPMU
CPTC-E1

CPT

CP - E1

?

X(E)

snoop request... ...

(a) Snoop request for X fails due to
the lack of required CPTC in Core 1

C
o
re

 1

L2 Cache

CP - E0

CPMU

C
o
re

 0

L2 Cache

CP-0 CP-1
X

CPMU

Thread of Enclave 0 Thread of Enclave 1

CPTC-E0
CPT

CP - E0

CPMU
CPTC-E1

CPT

CP - E1
X(E)

C
o
re

 1

Coherent Snooping Interconnect

L2 Cache

CP - E0

CPMU

C
o
re

 0

L2 Cache

CP-0 CP-1
X

CPMU

Thread of Enclave 0 Thread of Enclave 1

CPTC-E0
(Core 0)

CPT

CP - E0

CPMU
CPTC-E1

CPT

CP - E1
X(E)

CPTC-E0
(Core 1)

CPT ...CPTC-E1
(Core 3)

CPT

✓

(b) The snooping CPT embedded in
the interconnect is used to access CPs
in other core’s L2 cache

L2 Cache

CP - E0

CPMU

C
o
re

 0

Thread 0 of Enclave 0

CPTC-E0
CPT

Coherent Snooping Interconnect

L2 Cache

CP - T0

CPMU

C
o
re

 0

CPTC-T0
CPT

CPTC-T2
CPT

CP - T1

X(E)

?

Thread 1 of Enclave 0
(not scheduled)

(c) Snooping broadcast cannot
cannot retrieve X from other
cores when caches are parti-
tioned

L2 Cache

CP - E0

CPMU

C
o
re

 0

Thread 0 of Enclave 0

CPTC-E0
CPT

Coherent Snooping Interconnect

L2 Cache

CP - T0/1

CPMU

C
o
re

 0

CPTC-T0/1
CPT

CPTC-T2
CPT

X(E)

Thread 1 of Enclave 0
(not scheduled)

✓ CPTC-T0/1

CPTC-T0

CPTC-T1

Upon scheduling

(d) Merged partitions effec-
tively resolve the intra-core co-
herence issue.

Fig. 8: The illustration of TEE-SHirT-related snooping challenges and respective solutions

to the CPs held by an enclave. Therefore, when a cache is
snooped in TEE-SHirT, only lines within the enclave’s CPTC
should be accessed.

This challenge is illustrated in Figure 8(a), where threads
of different enclaves run on Core 0 and Core 1. The thread of
Enclave 0 tries to access the line X, which is in an Exclusive
state only in Core 1. Therefore, the read request in Core 0
results in a snooping broadcast to all other cores and the L3
cache. When the snoop request reaches Core 1, where a thread
of Enclave 1 is currently running, the L2 cache cannot access X
in the partition boundary. At this point, Core 1 has two options:
it can either wait for the corresponding thread of Enclave 0 to
be scheduled, or it can manually load the CPTC of Enclave
0 each time it gets snooped; both of these alternatives would
incur significant performance overhead.

To address this issue, we propose including additional CPTs
for each core, embedded in the cross-core interconnect fabric,
which we call snooping-CPTs. Snooping-CPTs serve as a
cache-like optimization for coherence interconnects, allowing
them to store frequently accessed CPTCs and access them
quickly. In cases where a CPTC is not found in the snooping-
CPT during a coherence query, it needs to be loaded from
CPTCSSA pages. As they contain the CPTCs of L2 caches
of other cores, their size is the same as regular CPTs in L2
caches. This mechanism improves performance by reducing
the latency associated with fetching CPTCs from memory.

Figure 8(b) depicts this strategy, where following the L2
cache miss, Core 0 accesses its snooping-CPT entry associated
with X, and subsequently, the interconnect broadcasts the
snoop with the retrieved entry to all other cores. As a result of
this broadcast, Core 1 successfully retrieves X by utilizing the
snooping-CPT entry served from the interconnect. However, if
Core 0 tries to access a cache line that exists in another core
than Core 1, its snooping-CPT has to replace its CPTC, which
causes some performance overhead. We evaluate snooping-
CPT hit rates and compare the average snooping delay inflicted
by snooping-CPT and load-CPTC-on-snoop approaches in
Section VI-C.

2) Challenge 2 - Intra-Core Data Sharing: Threads within
an enclave execute separate workflows once they are initi-
ated, resulting in disjointed execution paths. This implies that
enclave threads, in conjunction with TEE-SHirT, can invoke
allocation instructions with individual parameters, enabling

them to independently allocate cache partitions of varying
sizes while concurrently sharing data. This allows enclaves
to create threads with diverse workloads to meet their varying
resource requirements. However, when multiple threads of a
single enclave are scheduled into a single core, consistency
issues emerge when they access the same address through
separate partitions that reside in a single cache.

An illustrative example of such a scenario is depicted in
Figure 8(c), which showcases the execution of Thread 0 and
Thread 1 of an enclave, both scheduled on Core 0. Both
threads have CPs in the L2 cache and are running concurrently.
Thread 1, again, has an instance of X in its CP. After Thread
0 gets context switched in the core, it attempts to load X.
The load request leads to a cache miss, triggering a snooping
broadcast. However, the queries to all cores result in a miss,
indicating that the system is unable to retrieve the most recent
version of X.

Hence, if cache partitions are maintained separately, the sys-
tem needs to employ a mechanism that iterates through each
partition individually, resulting in a significant cost. Instead,
we propose partition merging where threads belonging to the
same enclave all access the same CPs. To do this, when two
threads of the same enclave are scheduled in the same core,
the CPMU has to combine the CPTCs of the threads into
one and update the changes in the CPTCSSA pages of both
threads. This ensures that there is at most a single instance of
a data line in each cache. This approach not only addresses the
cost issue but also aligns with our threat model since threads
are permitted to access the same enclave pages. The CPMUs
in caches are responsible for handling the merging process
during cross-core context switches and updating the CPTCs
accordingly.

We demonstrate the efficacy of partition merging in Fig-
ure 8(d). When Threads 0 and 1 are scheduled in Core 0,
CPMU combines CPTC-T0 and CPTC-T1 in a merged CPTC
(denoted as CPTC-T0/1). This way, X can be serviced from
the common partition. By having a shared partition for all
threads within an enclave, TEE-SHirT ensures that a cache line
does not have multiple instances in a single cache, preventing
version inconsistencies.

3) Considerations for directory-based coherence: Similar
challenges also arise for directory-based coherence mech-
anisms for the two scenarios. For example, for intra-core

7

sharing, a cache still has to have the CPTC of the cache
line after a directory query. However, in systems with a
directory, TEE-SHirT can utilize the directory entries to in-
clude supplementary CPT entries as an additional field. By
adding the corresponding CPT entry of the cache line to the
directory entries, probes to cache lines can be served upon
request. Directory entries need to exclusively store the CPT
entry for cache lines in the Modified, Owned, and Exclusive
states, as they indicate that the cache line has an updated
version present in only one cache. Notably, this approach
does not introduce additional cycles during coherence-related
probes but incurs additional hardware overhead. Intra-core
sharing with directories can also be efficiently supported with
a partition merging approach as described above

While these solutions handle coherence challenges, it has
been previously shown that directories are also prone to side-
channel attacks [72]. As we do not alter the remapping of
the directory, proposed directory defense mechanisms such as
SecDir [73] can be cleanly integrated with TEE-SHirT.

V. A FORMAL SECURITY ANALYSIS

We now rigorously establish the security guarantees pro-
vided by TEE-SHirT. We present an outline of the formal
model here, with the full model included in the Appendix.
Our approach is to define the essential TEE-SHirT-aware
program behavior through small-step operational semantics,
whose metatheory confirms the desirable properties of TEE-
SHirT. This is a non-trivial task: our semantic system captures
a rich yet essential set of features — such as cache hierarchy
access and replacement, cache coherence, enclave lifecycle,
and hardware/OS context switch — and it reasons about the
properties of cache isolation and side-channel immunity.

A. Definitions

a) Common Notations: Notation X
m

represents the se-
quence of [X1, . . . , Xm] for some m ≥ 0. When the length
of a sequence does not matter, we also shorthand X

m
as X .

We use ∅ to represent an empty sequence and comma (,) as
the binary operator for sequence concatenation. We also call
a special form of sequences, X 7→ Y , a mapping when the
elements in X are distinct. For any mapping, we use notations
M [X 7→ X ′], MX , dom(M), ran(M) to refer to the update,
restriction, domain, and range of mapping M with standard
definitions.

b) Physical Cache Hierarchy and CPU Cores: For con-
venience, we associate identifiers to both physical cache units
(λ ∈ PCU) and CPU cores (q ∈ CORE). The cache hierarchy
is captured by a static structure H : PCU ∪ CORE →
PCU ∪ {⊤}, which maps a “child” cache unit in the cache
hierarchy to its “parent” cache unit, where a “child” cache unit
is closer to the CPU core than its “parent”. For completeness,
we use ⊤ to represent the “imaginary” parent of the physical
cache unit at the root of the cache hierarchy.

Top-Level Structures
Σ ::= ⟨κ;µ; ρ;π⟩ runtime state
µ ::= b 7→ D memory
ρ ::= r 7→ v registers
π ::= p 7→ ⟨ϵ; l; q⟩ program store
Multi-Level Cache
κ ::= λ 7→ ψ multi-level cache
ψ ::= ⟨F ;V ;C;R⟩ single-level cache unit
PCU-Related Structures
F ::= c free list
V ::= e 7→ L CPT
C ::= c 7→ ⟨vb; t;D⟩ way-set cache
L ::= s → W remapping list
D ::= δ 7→ v data block
c ::= ⟨w; s⟩ CP index
vb ::= M | O | E | S | I coherence bit
W ::= w way mask
Memory/Register-Related Structures
v ::= ι | n memory value
ι ∈ INST instruction
n ∈ DATA data
Enclave-Related Structures
ϵ ::= ⟨e;E⟩ enclave state
E ::= e 7→ ⟨l;n⟩ enclave memory range
e ::= e | ⊥ enclave ID
Access and Observations
a ::= R | W access type
ot ::= a | LM | GM observation type
o ::= ⟨ot; c;λ⟩ observation
O ::= o observation trace
τ ::= ⟨l; a; ϵ⟩ access descriptor
Identifiers and Atomic Values
q ∈ CORE core ID
λ ∈ PCU physical cache unit ID
w ∈ WAY way ID
s ∈ SET set ID
b ∈ BLOCK block ID
r ∈ REG register ID
e ∈ ENCLAVE raw enclave ID
δ ∈ Z∗ data offset
t ∈ TAG cache tag value
l ∈ ADDR memory address

Fig. 9: Runtime Definitions

Example V.1 (Cache Topology). For a two-core CPU (q1 and
q2) with 2 L1 private caches (λ1 and λ2) and 1 L1 shared
cache (λ3), H is defined as

q1 7→ λ1, q2 7→ λ2, λ1 7→ λ3, λ2 7→ λ3, λ3 7→ ⊤

In line with the notion of the cache hierarchy, we further
require that H be a total and surjective function, and the
relation it defines forms a poset. Since H is static for a
concrete machine, the definitions for the rest of this paper
are implicitly parameterized by this structure.

c) Runtime State: As shown in Fig. 9, the runtime
state (Σ) consists of the TEE-SHirT (κ), the memory (µ),
the register file (ρ), and the program store (π). For cache
lines, note that a cache coherence bit (vb) is associated; our
operational semantics is fully compliant of the MOESI cache
protocol [62]. Each entry in our program store π is aligned
with our intuitive notion of a thread. Our formal system
considers the general model where multiple applications may
co-run on the same system, and each application may be
multi-threaded. Our operational semantics makes the common
assumption that different applications (such as the victim and
attacker) do not share memory locations, but the threads within
an application may share memory, where cache coherence is at
work. Given a memory address l, we define a bijective function
α : ADDR ⇌ BLOCK×Z∗ to compute its block index b and

8

offset δ in the block. We use µ{l} to refer to µ(b)(δ) where
α(l) = ⟨b; δ⟩. We use µ{l 7→ v} to refer to µ[b 7→ D′] and
D′ = D[δ 7→ v] where α(l) = ⟨b; δ⟩.

B. Observation and Observation Traces

To reason about side channels, what can be observed is
important and must be clearly defined.

Definition V.1 (Observation and Observation Trace). We
define an observation o as a tuple ⟨ot; c;λ⟩. It says CP
c ∈ WAY × SET residing in physical cache unit λ ∈ PCU
is accessed with observation type ot ∈ {R,W,LM,GM}. The
identifiers correspond to a hit-read, a hit-write, a level-scoped
miss (the content is only available in a peer cache on the same
cache level), a global miss (the content is not available in any
cache of the same cache level), respectively. An observation
trace O is defined as a sequence of observations.

Example V.2 (Observation Trace). Observation trace
[⟨R; ⟨w1; s1⟩;λ1⟩, ⟨LM; ⟨w1; s2⟩;λ1⟩, ⟨W; ⟨w3; s3⟩;λ2⟩] says
in physical cache unit λ1, CP ⟨w1; s1⟩ is first hit-read and its
CP ⟨w1; s2⟩ access leads to a cache miss but found in another
cache unit on the same cache level; afterward, in physical unit
λ2, CP ⟨w3; s3⟩ is hit-written.

Our definition of observations is fine-grained: an attacker
can observe not only the timing/power/magnetic-field differ-
ence of hit-reads/hit-writes/local-misses/global-misses but also
where they happen: a specific CP in a specific physical cache
unit (level). As we shall see, our theorems state that despite
strong assumptions about the attacker’s observation capability,
our system can guarantee that an attacker cannot use such
observations to infer program values.

With parallelism inherent in our scope, the observation
trace generated by individual threads may be interleaved when
taking a global view. To capture this, we introduce

Definition V.2 (Global Observation and Observation Trace).
A global observation ω is a tuple ⟨p; o⟩, where p is the thread
where the observation o is observed. A global observation
trace Ω is a sequence of global observations.

C. Operational Semantics

a) Multi-Level Access: For convenience, we define ac-
cess through an access descriptor τ , defined as a triple ⟨l; a; ϵ⟩,
including the address to be accessed l, the access mode itself
a, and the enclave where the access is initiated.

The behavior of intra-level and inter-level cache access is
defined in Fig. 10. Relation κ, µ

λ,v,τ
===⇒

O
κ′, µ′ says that a

multi-level cache κ and main memory µ transitions to κ′

and µ′ respectively, when cache unit λ subjects to access
defined by access descriptor τ . v computes the read result
when the access is a read, and it carries the value to be
written when the access is written. The access produces a set
of observations in O. The first rule demonstrates the intra-level
behavior, including both a hit to the requested cache unit, or
a localized miss where the content can be found in a peer
cache unit on the same cache level. This rule is defined over

κ
λ,v,τ−−−−→

O
κ
′ O ̸= {⟨GM; c;λ

′⟩} for any c and λ′

κ, µ
λ,v,τ
====⇒

O
κ
′
, µ

κ
λ,v,τ−−−−→

O
κ
′′

O = {⟨GM; c;λ
′⟩} for some c and λ′

κ
′′
, µ

H(λ),v,τ
=======⇒

O′
κ
′
, µ

′

κ, µ
λ,v,τ
====⇒

O∪O′
κ
′
, µ

′

τ = ⟨l; R; ϵ⟩

κ, µ
⊤,µ{l},τ
=======⇒

∅
κ, µ

τ = ⟨l; W; ϵ⟩

κ, µ
⊤,v,τ
====⇒

∅
κ, µ{l 7→ v}

Fig. 10: TEE-SHirT Multi-Level Cache Access

[MULTI]
κ, µ, ρ, ϵ, µ(l)

O−−→
q,n

κ
′
, µ

′
, ρ

′
, ϵ

′
µ(l + n) = ι for some ι

κ, µ, ρ, π[p 7→ ⟨ϵ; l; q⟩] O@p
===⇒ κ

′
, µ

′
, ρ

′
, π[p 7→ ⟨ϵ′; l + n, q⟩]

[CONTEXTSWITCH]
q ̸= q

′

κ, µ, ρ, π[p 7→ ⟨ϵ; l; q⟩] ∅
=⇒ κ, µ, ρ, π[p 7→ ⟨ϵ; l; q′⟩]]

Fig. 11: Parallel Operational Semantics

another relation Relation κ
λ,v,τ−−−→

O
κ′. It corresponds to the

“intra-level” behavior when cache unit λ is accessed; we defer
this definition to the Appendix, which captures the essence of
MOESI. The second rule shows the inter-level behavior if a
miss cannot be resolved at one cache level. The third and
fourth rules define the read and write behavior when main
memory is (ultimately) accessed.

b) A Parallel Model with Context Switches: We discuss
the small-step operational semantics of programs running
on TEE-SHirT next (they are defined in Figure 11 in the
appendix). Reduction relation Σ

Ω
=⇒ Σ′ says that runtime state

Σ reduces to Σ′, producing global observation trace Ω.
A simple but important observation is that parallelism

support is inherent in our formal system: different threads
may be executed in parallel on multi-core CPUs where SMT
is allowed. Any thread in π may take a reduction step (the
[MULTI] rule described in the appendix). Some of these
threads may host the victim execution, while others may
host the attacker execution. The reduction sequences of these
parallel threads may interleave in an arbitrary manner allowed
by the SMT hardware, OS scheduler, and program logic
of the application. With minimal restrictions on the parallel
semantics, the properties we formally establish make minimal
assumptions on the software side, regardless of, e.g., what
victim programs are run, how the attacker constructs her
program, how many attacker threads may collude, and how
the victim program and the attacker program interleave.

As context switches have non-trivial implications on secure
cache hierarchy design, a [CONTEXTSWITCH] rule captures
this behavior: the CPU core a thread resides on may change
at any arbitrary reduction step, either due to the SMT-level
context switches or OS scheduler.

9

[LOAD]
τ = ⟨l; R; ϵ⟩ κ, µ

H(q),v,τ
=======⇒

O
κ
′
, µ

′

κ, µ, ρ, ϵ, LOAD l r
O−−→

q,1
κ
′
, µ

′
, ρ[r 7→ v], ϵ

[STORE]
τ = ⟨l; W; ϵ⟩ κ, µ

H(q),ρ(r),τ
=========⇒

O
κ
′
, µ

′

κ, µ, ρ, ϵ, STORE r l
O−−→

q,1
κ
′
, µ

′
, ρ, ϵ

Fig. 12: Selected Reduction Rules of Single-Process Opera-
tional Semantics

The [MULTI] rule also shows the program counters at
work. In our system, program counters are memory addresses
pointing to the instruction sequence. Whenever a program
executes a step, the reduction system tracks what the offset
of the program counter should be for the next instruction. For
convenience, we use • to represent the program counter when
the program halts. We define O@p as [⟨p; o1⟩, . . . , ⟨p; on⟩]
where O = [o1, . . . on] for some n ≥ 0.

c) Instruction-Specific Behaviors: The parallel reduction
system bridges with the single-thread reduction system, which
defines the behavior of a thread over a single-thread state
σ. The latter is defined as ⟨κ;µ; ρ; ϵ⟩, where κ, µ, and ρ
are the states of the TEE-SHirT , memory, and registers
respectively, while ϵ is the enclave that is currently under
execution. Reduction relation σ, ι

O−−→
q,n

σ′ says single-thread

state σ reduces to σ′ while executing instruction ι at CPU
core q, producing global observation trace O.

Our formal system defines the behavior of the enclave life-
cycle (CREATE, ENTER, EXIT, DESTROY), memory/cache
access (LOAD and STORE), and control flow (BR). A selected
subset of the reduction rule is shown at the bottom of Fig. 12,
with the rest deferred to the appendix. Our semantic model
treats dynamic partitioning as the default behavior. Static
partitioning is a restrictive form of semantics where the initial
number of CPs is equal to the number of threads, and CP al-
location/deallocation happens at the program start/termination
time. As a result, our metatheory below subsumes the practical
design where L1 undergoes static partitioning.

D. Metatheory

Theorem V.1. The TEE-SHirT design is immune against side
channel attacks.

We defer the rigorous statement of this important theorem to
the appendix. Formally, the theorem resembles the “Immunity
Against Side Channel Attacks” theorem in prior work [63], but
under the more realistic assumption that a cache hierarchy and
a cache coherence protocol are at work, and parallel program
executions are supported.

VI. EVALUATION

A. Experimental Methodology

To evaluate the performance of TEE-SHirT, we imple-
mented our design in gem5 [7] cycle-accurate simulator with
system call emulation mode. Since gem5 does not have support

for simulating native-SGX enclaves [1], we simulated the
scenario where the entire program executes in an enclave,
but without modeling SGX interfaces. The only impact that
our design has on SGX interfaces is the time to store parti-
tioning metadata on a context switch out of an enclave. We
account for this by adding an additional memory access(es) to
store/retrieve partitioning metadata.

To evaluate the impact on the performance of enclave
programs, we simulated a variety of benchmark suites, namely
SPEC2017 [12], MiBench [34], PARSEC [6], and three im-
portant functions from the WolfSSL cryptography library [2]
(fp gcd, fp gcd, and wc ecc mulmod ex, all executed repeat-
edly in a loop). This range of programs allows us to evaluate
the impact of TEE-SHirT on applications with various memory
demands. The primary metric we track for performance is
Instructions Committed Per Cycle (IPC).

TABLE I: Parameters of the Simulated System
Hardware Parameters

Core x86 ISA Out-of-Order cores
Cache Hier-
archy

Snooping-based MOESI coherence policy, inclusive
write-back caches

L1i/d
Caches

32KB total size, 8-ways, 4-cycle access latency (one for
each core)

L2 Cache 512KB total size 8-ways, 16-cycle access latency (one
for each core)

L3 Cache 4MB total size 16-ways, 32-cycle access latency (shared)
DRAM 32GB size, 4GB channel capacity, DDR4-2400 x64 chan-

nel, 4 devices per rank, 1 rank per channel, 1GB per
device

Mixes of SPEC2017 Benchmarks
Mix-1 cam4, perlbench, bwaves, fotonik3d
Mix-2 mcf, exchange2, blender, cactusBSSN
Mix-3 nab, x264, namd, parest
Mix-4 povray, imagick, omnetpp, gcc
Mix-5 wrf, lbm, xalancbmk, leela

For the CPTC virtualization experiments, we execute single-
core simulations of SPEC2017 and MiBench benchmarks. To
emulate context switches, we assumed three time quantum
values: 1ms, 10ms, and 25ms, and extended the simulator to
emulate the gang-invalidation process including write-backs
of dirty data, as described in detail in Section IV-A. We also
flush the caches in system calls as well as emulated context
switches. We block the caches from being accessed until all
the data is written back.

For TEE-SHirT performance experiments, we simulated a
4-core system in gem5’s system call emulation mode where
all four cores execute five mixes of SPEC2017 programs
concurrently. The mixes are specified in Table I. In this
design, we assume that every enclave access is extended by
two extra cycles to the cache latency at L2 and L3 levels
- one cycle for the extra delay through the remapping logic
and one cycle to account for the extra complexity in cache
replacement logic. This is consistent with the estimates in prior
work [56], [63]. Saileshwar et al. [56] showed that when the
extra LLC latency due to partitioning increases from 1 to 6
cycles, performance decreases minimally - from 1% to 2%.
Therefore, the additional latency at the level of L2/L3 caches
has minimal impact on the overall program throughput. The
L1 cache is flushed with a time quantum of 25ms to simulate

10

xz

cactuBSSN
omnetpp wrf

xalancbmk
blender

cam4

deepsjeng
imagick leela nab

exchange2
fotonik3d fft sha

rijndael
blowfish avg

Benchmark

0.0

2.5

5.0

7.5

10.0

Sl
ow

do
w

n
(%

)
Slowdown Inflicted by Context Switches and System Calls Without CPTC Virtualization

 Slowdown with OS Time Quantum: 1ms
 Slowdown with OS Time Quantum: 10ms
 Slowdown with OS Time Quantum: 25ms

0

10000

20000

30000

N
um

ber of System
 Calls

Number of System Calls

Fig. 13: The slowdown percentage inflicted by cache flushing when CPTC virtualization is not implemented. The yellow plot
indicates the number of system calls invoked by the benchmark on the right-hand side y-axis.

a Linux context switch interval.
We enhanced gem5’s snooping-based classic cache hierar-

chy to emulate our coherence optimizations as outlined in
Section IV-C. We utilize PARSEC [6] benchmarks with four
threads on a 4-core system with full system simulation. We
allocate a quarter of the capacity in all caches for each of
the threads, where the L3 CP is utilized by all threads due to
partition merging. We perform detailed simulations until any
of the threads reach 100 million instructions after the kernel
boot.

We evaluated multi-core system performance using both
small crypto programs and larger SPEC 2017 benchmarks.
First, to evaluate the cache impact of the mixed crypto and
regular workloads, we combined three cryptography programs
(from Mibench suite and WolfSSL functions) and the xz
benchmark (from SPEC2017). Furthermore, to evaluate cache
performance for more memory-intensive workloads, we ran
five mixes from the SPEC2017 suite (specified in Table I)
under different L2 and L3 configurations. We fast-forwarded
the execution for the first one billion instructions and per-
formed detailed simulations for the one billion instructions.
We had to limit the number of instructions executed because
of the simulation time. Skipping the first Billion instructions
bypasses the initial phase of the program and warms up caches,
branch predictors and other microarchitectural structures of
the processor. Simulating for one billion instructions provides
sufficient statistics and is in line with the size of simulation
samples used by typical computer architecture studies [20],
[21], [56], [63], while all cryptography benchmarks were run
to completion.

To evaluate TEE-SHirT’s impact on area, we implemented it
in the cache subsystem of the open-source ESP SoC platform
[47]. Our implementation consists of a configurable number
of CPTs in the L2 caches and the LLC. As a metric for
hardware area overhead estimation, we measure the increase
in the utilization of FPGA resources relative to the baseline
SoC, which has one 512KB L2 cache per core, and a shared
4MB LLC in a 4-core LEON3 [27] CPU. We used the Vivado
Design Suite [26] to synthesize an FPGA prototype of the
design and collected utilization values for several different
configurations. As our target platform, we used the AMD
Virtex UltraScale+ VCU118.

B. Performance of CPTC Virtualization

Figure 13 shows the performance advantage that can be
gained by CPTC virtualization over Scenario 2 in Section
IV-B1. Recall that this scenario requires flushing the LLC
partition on a context switch to preserve cache consistency.
The baseline shown in this figure is the CPTC virtualization
(zero across all benchmarks), where the data is kept in the LLC
across context switches. As expected, the largest performance
gain was observed for 1ms time quantum, where benchmarks
such as cactusBSSN, omnetpp, wrf, xalancbmk, and cam4 yield
4.4%, 10.8%, 4.5%, 3.7%, and 10.4% speedup, respectively.
For a more conventional 25ms time interval, omnetpp gener-
ated the highest speedup of 10.3%.

The main takeaway from these results is that the system call
intensity of a benchmark is more correlated to the speedup it
gains from CPTC virtualization compared to context switches.
Most benchmarks with infrequent system calls have modest
performance losses. On the other hand, system call intensive
benchmarks such as omnetpp and cam4 tend to experience
performance degradation even when the time quantum is
increased (at around 10% and 4% respectively). These re-
sults indicate that workloads that frequently invoke kernel
operations experience the greatest benefit from data retention
achieved through CPTC virtualization.

C. Performance of Cache Coherence Optimizations

Figure 15 shows the average normalized snooping time be-
tween different approaches. We selected a baseline case where
snoops between threads do not introduce any additional delays.
In the remaining bars of the graph, we present the snooping
delays incurred when implementing different configurations:
snooping-CPT and loading the CPTC upon a snoop.

Among the workloads examined, the benchmarks fluidan-
imate and raytrace exhibit a significant number of snoops
between L2 caches, resulting in higher average snoop delays.
Specifically, fluidanimate demonstrates an average snoop delay
of 1.91 times that of the baseline, while raytrace exhibits an
average snoop delay of 2.11 times the baseline. However, when
snooping-CPTs are employed, these benchmarks experience
improved performance, with average snoop delays reduced to
1.08 times and 1.09 times the baseline for these workloads
respectively. This is due to high snooping-CPT hit rates across

11

blowfish rijndael sha
xz (with MiBench)

Benchmark

0

50

100

Sl
ow

do
w

n
(%

)

0.0
5

0.3
7

0.0
1

0.0
2

0.0
7

0.0
9

0.0
1

0.0
2

0.0
8

0.0
1

0.0
2

0.0
4

0.0
1

0.0
2

0.0
5

0.0
1

0.0
2

0.0
7

MiBench

fp_gcd fp_invmod
wc_ecc_mulmod_ex

xz (with WolfSSL)

Benchmark

0

50

100

Sl
ow

do
w

n
(%

)

0.0
4

0.0
4

0.0
9

0.0
4

0.0
4

0.0
7

0.0
2

0.0
2

0.0
5

0.0
1

0.0
1

0.0
4

0.0 0.0 0.0
3

0.0 0.0
2

WolfSSL
L2 CP: 16KB L3 CP: 16KB
L2 CP: 16KB L3 CP: 32KB
L2 CP: 32KB L3 CP: 32KB
L2 CP: 64KB L3 CP: 128KB
L2 CP: 128KB L3 CP: 128KB
L2 CP: 256KB L3 CP: 256KB
L2 CP: 512KB L3 CP: 1024KB

Performance Impact of TEE-SHirT on Cryptography Programs

Fig. 14: Multi-core simulation for MiBench and WolfSSL. The legend shows CP sizes for L2 and L3 caches

blackscholes facesim fluidanimate raytrace swaptions
Benchmark

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

N
or

m
al

iz
ed

 S
no

op
in

g
D

el
ay Impact of TEE-SHirT on Snooping Delay for PARSEC Benchmarks

Baseline Snooping-CPT Load CPTC upon snooping

0.9

1.0

Snooping-CPT H
it Rate

Snooping-CPT Hit Rate

Fig. 15: Normalized average snoop delay for PARSEC bench-
marks under three conditions. The yellow plot indicates the
Snooping-CPT hit rate on the right-hand side y-axis

the board, all of them being between 91.5% and 93.7%. These
results show the effectiveness of the caching mechanism for
CPTCs.

D. Overall Performance of TEE-SHirT

Figure 14 shows the results for cryptography programs,
which may often be isolated in TEEs. The four leftmost
bar groups show the MiBench experiments, while the four
rightmost ones show the WolfSSL functions. The smallest
overall configuration we provide is 16KB CPs for both L2 and
L3 caches, which produces the highest slowdown percentages:
1.2%, 32.2%, 6.4%, 96.3%, 9.5%, 9.6%, 24.7%, and 96.9% for
blowfish, rijndael, sha, xz (with MiBench), fp gcd, fp invmod,
wc ecc mulmod ex, and xz (with WolfSSL), respectively. How-
ever, the large slowdowns decrease significantly once we
increase the L3 cache’s CP to 32KB. In this case, all security
benchmarks exhibit a slowdown below 0.5%. These results
demonstrate that some benchmarks can perform very well with
small CPs at the LLC level - something that would not be
practical if L2 caches were not partitioned as well.

One of the key insights from these results is that when L2
and L3 CPs are the same sizes, they seem to perform worse
than the cases where the L2 cache’s CP is smaller. For xz in
both runs, when CPs in L2 and L3 are 128KB, the overall
slowdown is higher than in the case with 64KB L2 CP and
128KB L3 CP (5.3% and 1.3% respectively). This is due to the
inclusivity effect we discussed in Section III, where the miss
penalty in the L2 cache effectively increases by the redundant
L3 access latency since the cache line is not present in L3.
This result shows that arbitrarily increasing the size of CPs
without considering the interaction of cache levels can have a
detrimental performance impact.

Figure 16 shows the performance impact of TEE-SHirT on
large SPEC2017 programs, where individual benchmarks in-
cluded in the mixes are outlined in Table I. The highest

mix-1 mix-2 mix-3 mix-4 mix-5
Benchmark

0.6
0.7
0.8
0.9
1.0

W
ei

gh
te

d
Av

er
ag

e
N

or
m

al
iz

ed
 IP

C

Performance Impact of TEE-SHirT on SPEC2017 Benchmarks
baseline
L2 CP: 64kB L3 CP: 128kB

L2 CP: 64kB L3 CP: 1024kB
L2 CP: 128kB L3 CP: 512kB

L2 CP: 256kB L3 CP: 512kB
L2 CP: 256kB L3 CP: 1024kB

Fig. 16: Multi-core simulation results for mixes of SPEC2017
benchmarks. We use the number of committed instructions by
the benchmarks as the weights for the average IPC. The legend
shows CP sizes for L2 and L3 caches.

degradation is observed for mix-2 and mix-4, where even in the
smallest configuration they have 26.4% and 28% performance
loss respectively. However, when a 256KB CP is allocated
in the L2 cache and 512KB is allocated in the L3 cache (a
quarter of the total both cache sizes) per enclave, all of the
benchmarks experience slowdowns lower than 3%. This shows
that TEE-SHirT can be implemented with modest slowdowns
even for large workloads.

E. Area Overhead

Table II shows the LUTs and FFs utilized for several
possible configurations of TEE-SHirT. Each row corresponds
with a separate hardware synthesis run. The CPT
Configuration values are in the format (x, y), where
there are x CPTs for each L2 and y CPTs in the LLC.
Each CPT has 16 entries, and half the ways of each cache
are allocable to enclaves. With a (1, 4) configuration, the
modifications incur only 0.7% additional LUTs and 1.3%
additional FFs. Though this configuration can support fewer
concurrently executing enclaves (i.e., one enclave using
the L2 and four using the LLC), it requires less hardware
overhead than a (4, 16) configuration (1.4%-3.7%). CPTC
virtualization enables the use of low-area configurations such
as (1, 4) or (2, 8) with minimal performance impact.

TABLE II: Area estimates for TEE-SHirT configurations
CPT Configuration Total LUTs Total FFs

Baseline 209972 (100%) 151304 (100%)
(1, 4) 211476 (+0.7%) 153299 (+1.3%)
(2, 8) 211986 (+1.0%) 154475 (+2.1%)

(4, 16) 212798 (+1.4%) 156851 (+3.7%)
(8, 32) 214297 (+2.1%) 161500 (+6.7%)

Notably, the additional FFs required to implement more
CPTs outpace the additional LUTs. This is expected due to
the register-related components of the CPT being structurally

12

assigned to FFs. Hence, for our largest configuration, (8,
32), TEE-SHirT causes a 6.7% increase in FFs, but only a
2.1% increase in LUTs. The increased LUT and FF utilization
overhead both track the exponential spacing of the number of
CPTs, thus maintaining a near-linear relationship. Note that the
cache’s data and metadata are stored in Block RAMs, which
have separate utilization figures that are not affected by our
implementation.

VII. RELATED WORK

Recent research efforts addressed cache side-channel leak-
age using primarily two approaches: partitioning [20], [21],
[23], [41], [44], [63], [66], [67] and randomization [8], [9],
[22], [53], [54], [68], [69]. While both lines of research
produced insightful defenses, randomization-based approaches
have several limitations. First, security guarantees of random-
ization schemes are often probabilistic and even advanced
schemes are not immune from elaborate attacks [3], [60].
Second, randomization-based schemes can be susceptible to
attacks using low-resolution channels such as cache occupancy
attacks [59]. In contrast, partitioning schemes that completely
isolate applications from one another in the cache provide
more robust security guarantees, and can even be backed up
by formal security guarantees [63].

Existing efforts in cache partitioning for security mostly
targeted single cache levels, either private caches or a shared
LLC. Not all of these schemes can be trivially applied to
multiple cache levels; some rely on the support of trusted
system software, and some have high partitioning granularity
that impedes their scalability. DAWG [41] and CATalyst [44]
rely on the OS to participate in partitioning decisions, which
is problematic for TEE-based systems. NoMo [23] is a way-
based partitioning scheme that does not rely on software
support altogether, but the high granularity of allocations does
not make it applicable to LLCs because of scalability and
susceptibility to multi-threaded attacks. In addition, as some
cache ways are shared in NoMo, leakage can occur if the
victim’s accesses spill into the shared portion of the cache.
Other partitioning schemes, like Intel’s CAT [37], [55], [57],
[71], were designed for quality of service and do not guarantee
isolation between processes occupying different partitions.
Some partitioning approaches divide caches by sets through
page coloring [10], [18], [40], [58]; however, in this case,
large regions of data may need to be moved around in memory
when allocating cache sets since the set allocation is bound to
physical addresses.

HybCache [20] provides soft cache partitions for codes
requiring isolated execution protection. HybCache requires a
fully associative search within the subcache ways - this is
expensive and may not easily scale to large LLCs. Moreover,
HybCache does not enforce strict isolation, as normal pro-
grams can still access the entire cache. CURE [5] proposed
a customizable architecture for securing enclaves from side-
channel attacks. However, cache partitioning is also done at the
way granularity. Bespoke Cache Enclaves is a set-based cache
partitioning scheme where the cache space is divided into

non-overlapping clusters composed of multiple consecutive
sets [56]. A similar principle is used in Chunked-Cache [21]
- a design for trusted execution environments that allows each
program to have its own dedicated cache sets. Composable
Cachelets [63] introduced the concept of cachelets at the LLC
level, and partitioned LLC across both ways and sets.

In summary, [5], [21], [56], [63] only address security of
shared last-level cache through various partitioning schemes
as described above. In contrast, the key contribution of TEE-
SHirT is in coordinated partitioning of shared and private
cache levels. Our design addresses non-trivial issues of co-
herence and scalability that arise as an effect of implementing
partitioning in private caches (such as level-2 caches in our
experimental framework). Specifically, from the scalability
standpoint, we demonstrated how partitioning metadata can
be naturally integrated into the context of an enclave using
existing SGX structures (supporting scalability at low hard-
ware complexity). From the coherence standpoint, we showed
how existing cache coherence mechanisms can be augmented
to properly work with partitioned multi-level caches. We also
offered a formal security model of a multi-level partitioned
cache system.

The TEE-SHirT formal system is complementary to existing
formal cache models designed for single-level cache units. For
example, the multi-level cache =⇒ relation is unique to our
model, defined over the single-level cache −→ relation deferred
to the appendix. We hope this modular formal development
can serve as the first step for a framework to reason about
a large family of cache designs against side-channel attacks.
Compared with formalisms on single-level cache [63], our
formal system is also unique in its support of context switches
and cache coherence; both are non-trivial features critical
for multi-level caches. More broadly, formal systems exist to
reveal and defend against side-channels, such as those in the
presence of speculation [14], [15], [32], [48].

VIII. CONCLUDING REMARKS

This paper demonstrates the importance of considering the
entire cache hierarchy when reasoning about side-channel pro-
tection. TEE-SHirT is a novel design that allows the creation
of arbitrary small isolated cache partitions across L3/L2 caches
to support leakage-free execution of security-sensitive code,
making caches a first-class citizen in the TEE ecosystem
and eliminating cache side channels by design. TEE-SHirT is
seamlessly integrated with existing Intel SGX data structures
to support enclave context switching that preserves the TEE-
SHirT state. TEE-SHirT is accompanied by a formal model to
rigorously reason about the security guarantee of partitioning
solutions across multiple cache levels with the support of cache
coherence.

ACKNOWLEDGEMENTS

We would like to thank anonymous reviewers and the
shepherd for their insightful feedback. This research was
supported in part by NSF Awards CNS-2053391 and CNS-
2053383.

13

REFERENCES

[1] https://www.mail-archive.com/gem5-users@gem5.org/msg19592.html.
[2] Wolfssl. https://github.com/wolfSSL/wolfssl, 2013.
[3] Andreas Abel and Jan Reineke. Reverse engineering of cache replace-

ment policies in intel microprocessors and their evaluation. In 2014
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 141–142, 2014.

[4] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innova-
tive technology for cpu based attestation and sealing. In Proceedings of
the 2nd international workshop on hardware and architectural support
for security and privacy, volume 13. ACM New York, NY, USA, 2013.

[5] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig,
Matthias Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf.
{CURE}: A security architecture with customizable and resilient en-
claves. In 30th {USENIX} Security Symposium ({USENIX} Security
21), 2021.

[6] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
parsec benchmark suite: Characterization and architectural implications.
Technical Report TR-811-08, Princeton University, January 2008.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH
computer architecture news, 39(2):1–7, 2011.

[8] Rahul Bodduna, Vinod Ganesan, Patanjali Slpsk, Chester Rebeiro, and
V Kamakoti. Brutus: Refuting the security claims of the cache timing
randomization countermeasure proposed in ceaser. IEEE Computer
Architecture Letters, 2020.

[9] Thomas Bourgeat, Jules Drean, Yuheng Yang, Lillian Tsai, Joel Emer,
and Mengjia Yan. Casa: End-to-end quantitative security analysis of
randomly mapped caches. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1110–1123, 2020.

[10] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Srinivas
Devadas, et al. Mi6: Secure enclaves in a speculative out-of-order
processor. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 42–56. ACM, 2019.

[11] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure:
Sgx cache attacks are practical. arXiv preprint arXiv:1702.07521,
page 33, 2017.

[12] James Bucek, Klaus-Dieter Lange, and Jóakim V Kistowski. Spec
cpu2017: Next-generation compute benchmark. ICPE: ACM/SPEC
International Conference on Performance Engineering, pages 41–42,
2018.

[13] Thomas Burd, Wilson Li, James Pistole, Srividhya Venkataraman,
Michael McCabe, Timothy Johnson, James Vinh, Thomas Yiu, Mark
Wasio, Hon-Hin Wong, Daryl Lieu, Jonathan White, Benjamin Munger,
Joshua Lindner, Javin Olson, Steven Bakke, Jeshuah Sniderman, Carson
Henrion, Russell Schreiber, Eric Busta, Brett Johnson, Tim Jackson,
Aron Miller, Ryan Miller, Matthew Pickett, Aaron Horiuchi, Josef
Dvorak, Sabeesh Balagangadharan, Sajeesh Ammikkallingal, and Pankaj
Kumar. Zen3: The amd 2nd-generation 7nm x86-64 microprocessor
core. In 2022 IEEE International Solid- State Circuits Conference
(ISSCC), volume 65, pages 1–3, 2022.

[14] Sunjay Cauligi, Craig Disselkoen, Klaus von Gleissenthall, Dean M.
Tullsen, Deian Stefan, Tamara Rezk, and Gilles Barthe. Constant-time
foundations for the new spectre era. In Proceedings of the 41st ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2020, London, UK, June 15-20, 2020, pages
913–926. ACM, 2020.

[15] Kevin Cheang, Cameron Rasmussen, Sanjit A. Seshia, and Pramod
Subramanyan. A formal approach to secure speculation. In Proceedings
of the Computer Security Foundations Symposium (CSF), 2019.

[16] Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak,
and Bill Hughes. Cache hierarchy and memory subsystem of the amd
opteron processor. IEEE Micro, 30(2):16–29, 2010.

[17] Victor Costan and Srinivas Devadas. Intel sgx explained, 2016.
[18] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal

hardware extensions for strong software isolation. In 25th {USENIX}
Security Symposium ({USENIX} Security 16), pages 857–874, 2016.

[19] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin,
Nadia Heninger, Ahmad Moghimi, and Yuval Yarom. Cachequote:
Efficiently recovering long-term secrets of sgx epid via cache attacks.

IACR Transactions on Cryptographic Hardware and Embedded Systems,
2018(2):171–191, May 2018.

[20] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. Hyb-
cache: Hybrid side-channel-resilient caches for trusted execution envi-
ronments. 2020.

[21] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody, Ahmad-Reza
Sadeghi, and Emmanuel Stapf. Chunked-cache: On-demand and scalable
cache isolation for security architectures. The Network and Distributed
Systems Security Symposium, 2022.

[22] Peter W. Deutsch, Weon Taek Na, Thomas Bourgeat, Joel S. Emer, and
Mengjia Yan. Metior: A comprehensive model to evaluate obfuscating
side-channel defense schemes. ISCA ’23, New York, NY, USA, 2023.
Association for Computing Machinery.

[23] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and
Dmitry Ponomarev. Non-monopolizable caches: Low-complexity miti-
gation of cache side channel attacks. ACM Transactions on Architecture
and Code Optimization (TACO), 8(4):35, 2012.

[24] Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat,
Anirudha Rahatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, and
Adi Yoaz. Inside 6th-generation intel core: New microarchitecture code-
named skylake. IEEE Micro, 37(2):52–62, 2017.

[25] S. J. Eggers and R. H. Katz. Evaluating the performance of four
snooping cache coherency protocols. SIGARCH Comput. Archit. News,
17(3):2–15, apr 1989.

[26] Tom Feist. Xilinx WP416 Vivado Design Suite, 2012.
[27] Cobham Gaisler. Leon3. www.gaisler.com/index.php/products/

processors/leon3.
[28] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time

protection: The missing os abstraction. In Proceedings of the Fourteenth
EuroSys Conference 2019, EuroSys ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[29] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller.
Cache attacks on intel sgx. In Proceedings of the 10th European
Workshop on Systems Security, EuroSec’17, New York, NY, USA, 2017.
Association for Computing Machinery.

[30] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the line: Practical cache attacks on the MMU.
In 24th Annual Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017.
The Internet Society, 2017.

[31] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive Last-Level caches. In 24th
USENIX Security Symposium (USENIX Security 15), pages 897–912,
Washington, D.C., August 2015. USENIX Association.

[32] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and
Andrés Sánchez. SPECTECTOR: principled detection of speculative
information flows. CoRR, abs/1812.08639, 2018.

[33] Part Guide. Intel® 64 and ia-32 architectures software developer’s
manual. Volume 3B: System programming Guide, Part, 2(11), 2011.

[34] M. Guthaus, T. Austin, D. Ernst, R. Brown, T. Mudge, and J. Rin-
genberg. Mibench: A free, commercially representative embedded
benchmark suite. In Workload Characterization, Annual IEEE Inter-
national Workshop, pages 3–14, Los Alamitos, CA, USA, dec 2001.
IEEE Computer Society.

[35] Per Hammarlund, Alberto J. Martinez, Atiq A. Bajwa, David L. Hill,
Erik Hallnor, Hong Jiang, Martin Dixon, Michael Derr, Mikal Hunsaker,
Rajesh Kumar, Randy B. Osborne, Ravi Rajwar, Ronak Singhal, Reynold
D’Sa, Robert Chappell, Shiv Kaushik, Srinivas Chennupaty, Stephan
Jourdan, Steve Gunther, Tom Piazza, and Ted Burton. Haswell: The
fourth-generation intel core processor. IEEE Micro, 34(2):6–20, 2014.

[36] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade,
and Juan Del Cuvillo. Using innovative instructions to create trustworthy
software solutions. HASP@ ISCA, 11, 2013.

[37] CAT Intel. Improving real-time performance by utilizing cache alloca-
tion technology. Intel Corporation, April, 2015.

[38] Ronald Kalla and Balaram Sinharoy. Power7: Ibm’s next generation
server processor. In 2009 IEEE Hot Chips 21 Symposium (HCS), pages
1–12, 2009.

[39] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. A high-resolution side-channel attack on last-level cache. In
Proceedings of the 53rd Annual Design Automation Conference, page 72.
ACM, 2016.

[40] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. Stealthmem:
System-level protection against cache-based side channel attacks in the

14

https://www.mail-archive.com/gem5-users@gem5.org/msg19592.html
https://github.com/wolfSSL/wolfssl
www.gaisler.com/index.php/products/processors/leon3
www.gaisler.com/index.php/products/processors/leon3

cloud. In Proceedings of the 21st USENIX Conference on Security Sym-
posium, Security’12, pages 11–11, Berkeley, CA, USA, 2012. USENIX
Association.

[41] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas De-
vadas, and Joel Emer. Dawg: A defense against cache timing attacks
in speculative execution processors. Proceedings of the 51st Annual
IEEE/ACM International Symposium on Microarchitecture, 2018.

[42] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre attacks: Exploiting speculative execution.
arXiv preprint arXiv:1801.01203, 2018.

[43] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, et al. Meltdown: Reading kernel memory from user space. In
27th USENIX Security Symposium (USENIX Security 18), pages 973–
990, 2018.

[44] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas,
Gernot Heiser, and Ruby B Lee. Catalyst: Defeating last-level cache side
channel attacks in cloud computing. In High Performance Computer
Architecture (HPCA), 2016 IEEE International Symposium on, pages
406–418. IEEE, 2016.

[45] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
Last-level cache side-channel attacks are practical. In 2015 IEEE
Symposium on Security and Privacy, pages 605–622, 2015.

[46] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni,
Joseph Zuckerman, Emilio G. Cota, Michele Petracca, Christian Pilato,
and Luca P. Carloni. Agile soc development with open esp. In
Proceedings of the 39th International Conference on Computer-Aided
Design, ICCAD ’20, New York, NY, USA, 2020. Association for
Computing Machinery.

[47] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni,
Joseph Zuckerman, Emilio G. Cota, Michele Petracca, Christian Pilato,
and Luca P. Carloni. Agile soc development with open esp. In
Proceedings of the 39th International Conference on Computer-Aided
Design, ICCAD ’20, New York, NY, USA, 2020. Association for
Computing Machinery.

[48] Ross McIlroy, Jaroslav Sevcı́k, Tobias Tebbi, Ben L. Titzer, and Toon
Verwaest. Spectre is here to stay: An analysis of side-channels and
speculative execution. CoRR, abs/1902.05178, 2019.

[49] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. Inno-
vative instructions and software model for isolated execution. HASP@
ISCA, 10, 2013.

[50] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom:
How sgx amplifies the power of cache attacks. In International
Conference on Cryptographic Hardware and Embedded Systems, pages
69–90. Springer, 2017.

[51] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk Sunar.
Memjam: A false dependency attack against constant-time crypto imple-
mentations. International Journal of Parallel Programming, 47:538–570,
2019.

[52] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Ange-
los D. Keromytis. The spy in the sandbox: Practical cache attacks in
javascript and their implications. CCS ’15, page 1406–1418, New York,
NY, USA, 2015. Association for Computing Machinery.

[53] Antoon Purnal, Giner Lukas, Daniel Gruss, and Ingrid Verbauwhede.
Systematic analysis of randomization-based protected cache architec-
tures. In IEEE Symposium on Security and Privacy, pages 469–486,
2021.

[54] Moinuddin K. Qureshi. New attacks and defense for encrypted-address
cache. In Proceedings of the 46th International Symposium on Computer
Architecture, ISCA ’19, pages 360–371, New York, NY, USA, 2019.
ACM.

[55] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache par-
titioning: A low-overhead, high-performance, runtime mechanism to
partition shared caches. In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 39, pages 423–
432, Washington, DC, USA, 2006. IEEE Computer Society.

[56] Gururaj Saileshwar, Sanjay Kariyappa, and Moinuddin Qureshi. Be-
spoke cache enclaves: Fine-grained and scalable isolation from cache
side-channels via flexible set-partitioning. In 2021 International Sym-
posium on Secure and Private Execution Environment Design (SEED),
pages 37–49. IEEE, 2021.

[57] Daniel Sanchez and Christos Kozyrakis. Vantage: scalable and efficient
fine-grain cache partitioning. In ACM SIGARCH Computer Architecture
News, volume 39, pages 57–68. ACM, 2011.

[58] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang. Limiting cache-
based side-channel in multi-tenant cloud using dynamic page coloring.
In Proceedings of the 2011 IEEE/IFIP 41st International Conference
on Dependable Systems and Networks Workshops, DSNW ’11, pages
194–199, Washington, DC, USA, 2011. IEEE Computer Society.

[59] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser,
Prateek Mittal, Yossef Oren, and Yuval Yarom. Robust website fin-
gerprinting through the cache occupancy channel. In USENIX Security
Symposium, 2019.

[60] Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao Wang, and Peng
Liu. Randomized last-level caches are still vulnerable to cache side-
channel attacks! but we can fix it. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 955–969. IEEE, 2021.

[61] David Suggs, Mahesh Subramony, and Dan Bouvier. The amd “zen 2”
processor. IEEE Micro, 40(2):45–52, 2020.

[62] P. Sweazey and A. J. Smith. A class of compatible cache consistency
protocols and their support by the ieee futurebus. In Proceedings of
the 13th Annual International Symposium on Computer Architecture,
ISCA ’86, page 414–423, Washington, DC, USA, 1986. IEEE Computer
Society Press.

[63] Daniel Townley, Kerem Arıkan, Yu David Liu, Dmitry Ponomarev, and
Oguz Ergin. Composable cachelets: Protecting enclaves from cache
side-channel attacks. In 2022 USENIX Security Symposium, 2022.

[64] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
intel {SGX} kingdom with transient out-of-order execution. In 27th
{USENIX} Security Symposium ({USENIX} Security 18), pages 991–
1008, 2018.

[65] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael B. Abu-Ghazaleh,
Srikanth V. Krishnamurthy, Edward J. M. Colbert, and Paul L. Yu. Un-
veiling your keystrokes: A cache-based side-channel attack on graphics
libraries. Proceedings 2019 Network and Distributed System Security
Symposium, 2019.

[66] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C. Myers, and
G. Edward Suh. Secdcp: Secure dynamic cache partitioning for efficient
timing channel protection. In Proceedings of the 53rd Annual Design
Automation Conference, DAC ’16, pages 74:1–74:6, New York, NY,
USA, 2016. ACM.

[67] Zhenghong Wang and Ruby B Lee. New cache designs for thwarting
software cache-based side channel attacks. In ACM SIGARCH Computer
Architecture News, volume 35, pages 494–505. ACM, 2007.

[68] Zhenghong Wang and Ruby B Lee. A novel cache architecture with
enhanced performance and security. In Proceedings of the 41st annual
IEEE/ACM International Symposium on Microarchitecture, pages 83–
93. IEEE Computer Society, 2008.

[69] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, and Stefan Mangard. Scattercache: thwarting cache attacks
via cache set randomization. In 28th {USENIX} Security Symposium
({USENIX} Security 19), pages 675–692, 2019.

[70] Johannes Wikner and Kaveh Razavi. RETBLEED: Arbitrary speculative
code execution with return instructions. In 31st USENIX Security
Symposium (USENIX Security 22), pages 3825–3842, Boston, MA,
August 2022. USENIX Association.

[71] Yuejian Xie and Gabriel H. Loh. Pipp: Promotion/insertion pseudo-
partitioning of multi-core shared caches. In Proceedings of the 36th
Annual International Symposium on Computer Architecture, ISCA ’09,
pages 174–183, New York, NY, USA, 2009. ACM.

[72] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher,
Roy Campbell, and Josep Torrellas. Attack directories, not caches:
side-channel attacks in a non-inclusive world. In Proceedings of IEEE
Symposium on Security and Privacy. IEEE, 2019.

[73] Mengjia Yan, Jen-Yang Wen, Christopher W. Fletcher, and Josep Torrel-
las. Secdir: A secure directory to defeat directory side-channel attacks.
ISCA ’19, page 332–345, New York, NY, USA, 2019. Association for
Computing Machinery.

[74] Yuval Yarom and Katrina Falkner. Flush+ reload: A high resolution, low
noise, l3 cache side-channel attack. In USENIX Security Symposium,
pages 719–732, 2014.

15

APPENDIX

In this appendix, we present additional definition elided in
the main text, and formally state the theorems presented in the
paper. A detailed full proof can be found online 1.

A. Runtime State Details

Program Store and Enclave State Program store π is a
mapping from thread IDs to thread states. Specifically, each
thread state is a triple: its enclave state (ϵ), its program counter
(l), and the CPU core it resides on (q).

As each thread may create multiple enclaves, the enclave
state keeps track of both the active enclave — the enclave
whose access is currently under execution — and all enclave-
private memory regions (E). When no enclave is active, we
set e as ⊥. We further use metavariable ε for this special form
of enclave state.

We define Ω|p as the longest sequence om where ⟨p; oi⟩ and
i = [1, ..m] appears in Ω, and for any 1 ≤ i < j ≤ m, ⟨p; oi⟩
appears before ⟨p; oj⟩ in Ω.

B. Cache Replacement

Cache Replacement Structures
R ::= s 7→ T set-indexed PLRU
T ::= ⟨ς; e;T ;T ⟩|A PLRU tree
A ::= ⟨w; e⟩ PLRU leaf
ς ::= LMRU | RMRU selection bit

Function replace(T, e) computes the way to be evicted for
enclave e given the current state of the PLRU tree T . Function
update(T,w, e) computes the updated PLRU tree given the
original one being T . Both functions have been defined in the
CC paper, so we defer it to the online supplementary material
here. With these definitions, the cache lookup given an acesss
descriptor is defined in Fig. 22.

C. Cache Coherence

In this section, we define relevant definitions related to
MOESI cache coherence. For MOESI, the transitions related
to state bit setting upon a CPU request is defined in Fig. 23.
The transitions related to state bit setting upon a bus request
is defined in Fig. 24. To support write-back, we extend the
coherence bit with label B, which can be viewed as a form of
invalid state (I) before cache line write-back. The label change
from B to I will be handled by the write-back relation which
we will show in a later subsection.

The behavior of a single cache unit in the presence of a CPU
request is defined in Fig. 25. The behavior of a single cache
unit in the presence of a bus request is defined in Fig. 26. The
behavior of all cache units on a single level in the presence
of a bus request is defined in Fig. 27.

Finally, the behavior of a cache unit responding to a CPU
request by coordinating all cache units on the same level —
in conformance of MOESI — is defined in Fig. 28.

1https://www.cs.binghamton.edu/∼davidl/papers/NDSS24-Long.pdf

ψ{c 7→ vb′} △
= ⟨F ;V ;C[c 7→ ⟨vb′; t;D];R⟩

ψ{c 7→ D′} △
= ⟨F ;V ;C[c 7→ ⟨vb; t;D′];R⟩

ψ{c, δ 7→ v} △
= ⟨F ;V ;C[c 7→ ⟨vb; t;D[δ 7→ v]];R⟩

ψ{s 7→ T} △
= ⟨F ;V ;C;R[s 7→ T]⟩

ψ|e
△
= ⟨F ;V ′;C|ran(V ′);R⟩
if V ′ = V |e

ψ#ψ′ △
= (dom(V) ∩ dom(V ′) = ∅)

∧(dom(C) ∩ dom(C′) = ∅)
if ψ′ = ⟨F ′;V ′;C′;R′⟩

Fig. 17: Functions on Physical Cache Unit. For all definitions,
ψ = ⟨F ;V ;C;R⟩, and C(c) = ⟨vb; t;D⟩

κ{λ, c 7→ vb} △
= κ[λ 7→ κ(λ){c 7→ vb}]

κ{λ, c 7→ D} △
= κ[λ 7→ κ(λ){c 7→ D}]

κ|e
△
= λ 7→ ψ|e
if κ = λ 7→ ψ

κ#κ′ △
= ∀ λ ∈ dom(κ) ∩ dom(κ′).κ(λ)#κ′(λ)

Fig. 18: Functions on Multi-Level Cache

µ|E
△
= µ|⟨l1;n1⟩ · · · ∪ µ|⟨ln;nn⟩
if E = [e1 7→ ⟨l1;n1⟩, . . . , en 7→ ⟨ln;nn⟩]

µ|⟨l;n⟩
△
= µ|{l,l+1,...,l+n−1}

▽e
ϵµ

△
= µ{l 7→ 0} . . . {l + n− 1 7→ 0}
if ϵ = ⟨e;E⟩, E(e) = ⟨l;n⟩

µ1#µ2
△
= dom(µ1) ∩ dom(µ2) = ∅

Fig. 19: Functions on Memory

ϵµ{e 7→ ⟨l;n⟩} △
= ⟨e;E[e 7→ ⟨l;n⟩]⟩
if ϵ = ⟨e;E⟩, e /∈ dom(E),

µ{l} = µ{l + 1} . . . µ{l + n− 1} = 0

⟨e′;E⟩ ◀ e
△
= ⟨e;E⟩
if e ∈ dom(E) ∪ {⊥}

⟨e;E⟩ − e
△
= ⟨e;E\e⟩

Fig. 20: Functions on Enclave

Σ[l 7→ n]
△
= ⟨κ;µ{l 7→ n}; ρ;π⟩

Σ|p
△
= ⟨κ|dom(E);µ|E ; ρ|p; p 7→ π(p)⟩
if π(p) = ⟨ϵ; l; q⟩, ϵ = ⟨e;E⟩

Fig. 21: Convenience Functions on Runtime States. For all
definitions, Σ = ⟨κ;µ; ρ;π⟩

τ = ⟨l; a; ϵ⟩
ψ = ⟨F ;V ;C;R⟩ α(l) = ⟨b; δ⟩ β(b) = ⟨s; t⟩ w ∈ C(ϵ)(s)

c = ⟨w; s⟩ C(c) = ⟨vb; t;D⟩ T = update(R(s), w, ϵ)

ψ♢τ
△
= (c, δ, vb, D, ψ{s 7→ T})

τ = ⟨l; a; ϵ⟩ ψ = ⟨F ;V ;C;R⟩ α(l) = ⟨b; δ⟩
β(b) = ⟨s; t⟩ ∀w ∈ C(ϵ)(s).t ̸= t

′ where C(⟨w; s⟩) = ⟨vb; t′;D′⟩
w

′
= replace(R(s), ϵ) c = ⟨w′

; s⟩
C(c) = ⟨I; t′′;D′′⟩ for some t′′ and D′′

T = update(R(s), w
′
, ϵ)

ψ♢τ
△
= (c, δ, vb, ∅, ψ{s 7→ T})

Fig. 22: Location-Cache Lookup (In the first case, the location
l is already cached in ψ, within any of the MOESI state. In
the second case, the location l is not cached in ψ at all.)

We define peers(λ) as {λ′ | H(λ) = H(λ′), λ′ ̸= λ}. Note

16

https://www.cs.binghamton.edu/~davidl/papers/NDSS24-Long.pdf

that if λ represents an LLC, the function still works, except
that it computes ∅.

D. PCU Behavior

Structurally, a single-level physical cache unit consists of
the CPT (V), way-set cache (C), replacement logic (R), and
free list (F). Given a memory block ID b, we define a bijective
function β : BLOCK ⇌ SET×TAG to compute its set index
s and the tage value t.

Fig. 29 and Fig. 30 define CP allocation and deallocation
respectively, where

⟲ F
△
= ⟨w; s⟩ where ∀⟨w′; s′⟩ ∈ F.w′ >= w

we further define ⟲ ∅ as ⊥.

E. TEE-SHirT Behavior

The definitions of TEE-SHirT allocation and deallocation
can be found in Fig. 31 and Fig. 32. The write-back reduction
is defined in Fig. 33.

F. Full Operational Semantics

The reduction rules are shown in Fig. 34. We use Σ
Ω
=⇒

∗
Σ′

to represent the reflexive and transitive closure of Ω
=⇒, where Ω

is “concatenated”: (1) If Σ Ω
=⇒ Σ′, then Σ

Ω
=⇒

∗
Σ′. (2) If Σ Ω

=⇒

Σ′ and Σ′ Ω′

==⇒
∗
Σ′′, then Σ

Ω,Ω′

===⇒
∗
Σ′′. For convenience,

we further include an imaginary instruction NOP to take the
behavior of cache/memroy write-back. This instruction can be
inserted at any step of the reduction.

G. Properties

Definition A.1 (Enclave-Private Location). epriv(l, e, p,Σ)
hold iff Σ = ⟨κ;µ; ρ;π⟩ and π(p) = ⟨ϵ; l′; q⟩ and ϵ = ⟨e0;E⟩
and E(e) = ⟨l0;n0⟩ and l0 ≤ l < l0 + n0.

Theorem A.1 (Immunity Against Side-Channel Attacks).
Given Σ and some l, e, p s.t. epriv(l, e, p,Σ), some n1 ̸= n2,
p′ ̸= p, two reductions Σ[l 7→ ni]

Ωi==⇒
∗
κi, µi, ρi, πi where

πi(p
′) = ⟨ϵi; •⟩ for i = 1, 2, then ϵ1 = ϵ2, Ω1|p′ = Ω2|p′ .

M R
⇀ M

.M W
⇀ M

O R
⇀ O

O W
⇀ M

E R
⇀ E

E W
⇀ M

S R
⇀ S

S W
⇀ M

Fig. 23: Cache Coherence State Transition with MOESI Pro-
tocol: Core Behavior (Relation vb1

a
⇀ vb2 says that cache

coherence state vb1 transitions to cache coherence state vb2

when the CPU core itself encounters an event of a.)

M R
⇁ O

.M W
⇁ E

O R
⇁ B

O W
⇁ M

E R
⇁ S

E W
⇁ B

S R
⇁ S

S W
⇁ I

Fig. 24: Cache Coherence State Transition with MOESI Pro-
tocol: Bus Behavior (Relation vb1

a
⇁ vb2 says that cache

coherence state vb1 transitions to cache coherence state vb2

when the bus transmits an event of a to the core.)

ψ♢τ = (c, δ, vb, D, ψ′
) vb W

⇀ vb′

ψ
D′,W,v,λ
↪−−−−−−→

⟨W;c;λ⟩
ψ

′{c 7→ D[δ 7→ v]}{c 7→ vb′}

ψ♢τ = (c, δ, vb, D, ψ′
) vb R

⇀ vb′ v = D(δ)

ψ
D′,R,v,λ
↪−−−−−−→

⟨R;c;λ⟩
ψ

′{c 7→ vb′}

ψ♢τ = (c, δ, vb, D, ψ′
) vb = I or B D

′ ̸= ∅

ψ
D′,W,v,λ
↪−−−−−−→

⟨LM;c;λ⟩
ψ

′{c 7→ D
′
[δ 7→ v]}{c 7→ S}

ψ♢τ = (c, δ, vb, D, ψ′
) vb = I or B D

′ ̸= ∅ v = D
′
(δ)

ψ
D,R,v,λ
↪−−−−−→
⟨LM;c;λ⟩

ψ
′{c 7→ S}

ψ♢τ = (c, δ, vb, D, ψ′
) vb = I or B

ψ
∅,a,v,λ
↪−−−−−−→
⟨GM;c;λ⟩

ψ
′{c 7→ E}

Fig. 25: PCU Access when Request Comes from CPU

τ = ⟨l; a; ϵ⟩ ψ♢τ = (c, δ, vb, D, ψ′
) vb a

⇁ vb′

ψ ⊗ τ
△
= (ψ

′{c 7→ vb′}, vb, D)

ψ♢τ = (c, δ, vb, D, ψ′
) vb = I or B

ψ ⊗ τ
△
= (ψ

′
, vb, ∅)

Fig. 26: PCU Access When Request Comes from Bus

ψ = {ψ1, . . . , ψn}
ψi ⊗ τ = (ψ

′
i, vbi, Di) ∃j ∈ [1..n].vbj = M,E, or O

ψ ⊗ τ
△
= (ψ′, Dj)

ψ = {ψ1, . . . , ψn} ψi ⊗ τ = (ψ
′
i, vbi, Di)

∄j ∈ [1..n].vbj = M,E, or O ∃k ∈ [1..n].vbk = S

ψ ⊗ τ
△
= (ψ′, Dk)

ψ = {ψ1, . . . , ψn}
ψi ⊗ τ = (ψ

′
i, vbi, Di) ∀j ∈ [1..n].vbj = I or B

ψ ⊗ τ
△
= (ψ′, ∅)

Fig. 27: Single Cache Level Access When Request Comes
from Bus

17

peers(λ) = λ κ(λ) ⊗ τ = (ψ′, D)

κ(λ)
D,a,v,λ
↪−−−−−→

o
ψ

κ
λ,v,τ−−−−→
{o}

κ[λ 7→ ψ][λ 7→ ψ′]

Fig. 28: Single Cache Level Access

c =⟲ F e /∈ dom(V) c = ⟨w; s⟩ T = update(R(s), w, e)

⇑n
e ⟨F ;V ;C;R⟩ △

=⇑n−1
e ⟨F − c;V [e 7→ (s 7→ {w})];C;R[s 7→ T]⟩

c =⟲ F
V (e) = L s /∈ dom(L) c = ⟨w; s⟩ T = update(R(s), w, e)

⇑n
e ⟨F ;V ;C;R⟩ △

=⇑n−1
e ⟨F − c;V [e 7→ L[s 7→ {w}]];C;R[s 7→ T]⟩

c =⟲ F
V (e) = L L(s) = W c = ⟨w; s⟩ T = update(R(s), w, e)

⇑n
e ⟨F ;V ;C;R⟩ △

=⇑n−1
e ⟨F − c;V [e 7→ L[s 7→ W ∪ {w}]];C;R[s 7→ T]⟩

⇑0
e ψ

△
= ψ

Fig. 29: CP Allocation in a PCU

V (e) = L L(s) = W,w for some s, w c = ⟨w; s⟩
T = update(R(s), w, e) ψ = ⟨F, c;V [e 7→ L[s 7→ W − w]];C;R⟩

⇓e ⟨F ;V ;C;R⟩ △
=⇓e ψ{c 7→ I}{s 7→ T}

V (e) = L L(s) = ∅

⇓e ⟨F ;V ;C;R⟩ △
=⇓e ⟨F ;V [e 7→ L\s];C;R⟩

V (e) = ∅

⇓e ⟨F ;V ;C;R⟩ △
= ⟨F ;V \e;C;R⟩

Fig. 30: CP Deallocation in a PCU

n = n, n′ ⇑n
e κ(λ) = ψ κ

′
= κ[λ 7→ ψ]

⇑ n

e
⟨κ;λ⟩ △

= ⇑ n′

e
⟨κ′

;H(λ)⟩

⇑ ∅
e
⟨κ;⊤⟩ △

= κ

Fig. 31: TEE-SHirT Allocation

⇓e κ(λ) = ψ κ
′
= κ[λ 7→ ψ] ⇓ e⟨κ

′
;H(λ)⟩ = κ

′′

⇓ e⟨κ;λ⟩
△
= κ

′′

⇓ e⟨κ;⊤⟩ △
= κ

Fig. 32: TEE-SHirT Deallocation

H(λ1) = λ2 κ(λi) = ⟨Fi;Vi;Ci;Ri⟩ for i = 1, 2
Ci(ci) = ⟨vbi; t;Di⟩ for i = 1, 2 and some t

ci = ⟨wi; s⟩ for i = 1, 2 and some s vb1 = B
κ, µ →wb κ{λ1, c1 7→ I}{λ2, c2 7→ B}{λ2, c2 7→ D1}, µ

H(λ) = ⊤ κ(λ) = ⟨F ;V ;C;R⟩
C(c) = ⟨B; t;D⟩ c = ⟨w; s⟩ µ(b) = D

′
β(b) = ⟨s; t⟩

κ, µ →wb κ{λ, c 7→ I}, µ[b 7→ D]

Fig. 33: TEE-SHirT Write-Back

[LOAD]
τ = ⟨l; R; ϵ⟩ κ, µ

H(q),v,τ
=======⇒

O
κ
′
, µ

′

κ, µ, ρ, ϵ, LOAD l r
O−−→

q,1
κ
′
, µ

′
, ρ[r 7→ v], ϵ

[CREATE]
ϵ
′
= ϵµ{ρ(r1) 7→ ⟨ρ(r2); ρ(r3)⟩}

κ, µ, ρ, ϵ, CREATE r1 r2 r3 r
∅−−→

q,1
⇑ ρ(r)

ρ(r1)
(κ,H(q)), µ, ρ, ϵ

′

[STORE]
τ = ⟨l; W; ϵ⟩ κ, µ

H(q),ρ(r),τ
=========⇒

O
κ
′
, µ

′

κ, µ, ρ, ϵ, STORE r l
O−−→

q,1
κ
′
, µ

′
, ρ, ϵ

[DESTROY]

κ, µ, ρ, ε, DESTROY r
∅−−→

q,1
⇓ρ(r)(κ,H(q)),▽ρ(r)

ε µ, ρ, ε− ρ(r)

[ENTER]

κ, µ, ρ, ε, ENTER r
∅−−→

q,1
κ, µ, ρ, ε ◀ ρ(r)

[EXIT]

κ, µ, ρ, ϵ, EXIT
∅−−→

q,1
κ, µ, ρ, ϵ ◀ ⊥

[BRTRUE]
ρ(r) ̸= 0

κ, µ, ρ, ϵ, BR r r′
∅−−−−−→

q,ρ(r′)
κ, µ, ρ, ϵ

[BRFALSE]
ρ(r) = 0

κ, µ, ρ, ϵ, BR r r′
∅−−→

q,1
κ, µ, ρ, ϵ

[WB]
κ, µ →wb κ

′
, µ

′

κ, µ, ρ, ϵ, NOP
∅−−→

q,0
κ
′
, µ

′
, ρ, ϵ

[NOP]

κ, µ, ρ, ϵ, NOP
∅−−→

q,0
κ
′
, µ

′
, ρ, ϵ

Fig. 34: Single-Process Operational Semantics

18

	Introduction
	Background and Threat Model
	Cache Hierarchies
	Partitioned Caches for Security
	Relevant Intel SGX Data Structures
	Threat Model

	A Case for Partitioning L2 Caches in Inclusive Hierarchies
	TEE-SHirT
	TEE-SHirT Design Overview
	Partition-Aware Context Switches and System Calls
	CPTC Virtualization
	Memory Layout Extensions for TEE-SHirT
	Partition-Aware Context Switches

	Multithreaded Enclaves with Partitioned Caches
	Challenge 1 - Inter-Core Data Sharing
	Challenge 2 - Intra-Core Data Sharing
	Considerations for directory-based coherence

	A Formal Security Analysis
	Definitions
	Observation and Observation Traces
	Operational Semantics
	Metatheory

	Evaluation
	Experimental Methodology
	Performance of CPTC Virtualization
	Performance of Cache Coherence Optimizations
	Overall Performance of TEE-SHirT
	Area Overhead

	Related Work
	Concluding Remarks
	References
	Appendix
	Runtime State Details
	Cache Replacement
	Cache Coherence
	PCU Behavior
	TEE-SHirT Behavior
	Full Operational Semantics
	Properties

