
DeGPT: Optimizing Decompiler Output with LLM

Peiwei Hu1,2, Ruigang Liang1,2, and Kai Chen1,2,⋆
1Institute of Information Engineering, Chinese Academy of Sciences, China

2School of Cyber Security, University of Chinese Academy of Sciences, China
{hupeiwei,liangruigang,chenkai}@iie.ac.cn

Abstract—Reverse engineering is essential in malware anal-
ysis, vulnerability discovery, etc. Decompilers assist the reverse
engineers by lifting the assembly to the high-level programming
language, which highly boosts binary comprehension. However,
decompilers suffer from problems such as meaningless variable
names, redundant variables, and lacking comments describing
the purpose of the code. Previous studies have shown promising
performance in refining the decompiler output by training the
models with huge datasets containing various decompiler outputs.
However, even datasets that take much time to construct cover
limited binaries in the real world. The performance degrades
severely facing the binary migration.

In this paper, we present DeGPT, an end-to-end frame-
work aiming to optimize the decompiler output to improve its
readability and simplicity and further assist the reverse engi-
neers in understanding the binaries better. The Large Language
Model (LLM) can mitigate performance degradation with its
extraordinary ability endowed by large model size and training
set containing rich multi-modal data. However, its potential is
difficult to unlock through one-shot use. Thus, we propose the
three-role mechanism, which includes referee (R_ref), advisor
(R_adv), and operator (R_ope), to adapt the LLM to our
optimization tasks. Specifically, R_ref provides the optimization
scheme for the target decompiler output, while R_adv gives the
rectification measures based on the scheme, and R_ope inspects
whether the optimization changes the original function semantics
and concludes the final verdict about whether to accept the
optimizations. We evaluate DeGPT on the datasets containing
decompiler outputs of various software, such as the practical
command line tools, malware, a library for audio processing,
and implementations of algorithms. The experimental results
show that even on the output of the current top-level decompiler
(Ghidra), DeGPT can achieve 24.4% reduction in the cognitive
burden of understanding the decompiler outputs and provide
comments of which 62.9% can provide practical semantics for the
reverse engineers to help the understanding of binaries. Our user
surveys also show that the optimizations can significantly simplify
the code and add helpful semantic information (variable names
and comments), facilitating a quick and accurate understanding
of the binary.

I. INTRODUCTION

Reverse engineering, aiming to obtain the program logic
and algorithms of target software through reverse analysis,
has received increasing attention for its role as an enabler in

⋆ Corresponding Author

vulnerability discovery [28, 33, 43, 48, 53, 62, 67], malware
analysis [22, 26, 39, 60], closed-source comprehension [20,
31, 38, 50], etc. For example, security researchers leverage
disassemblers to obtain the assembly code of malware samples
that do not have available source code for further analysis.
However, as the mnemonic, assembly code is closer to machine
code than high-level Program Language (PL), which is more
conducive to human understanding. Decompilers, such as Hex-
Rays [13] and Ghidra [11], appear to convert the low-level
assembly language to high-level PL, which is more conducive
to human understanding.

State-of-the-art decompilers can recover the control flow
structures and guess the possible primitive variable types based
on the memory layout. However, since the binary does not
contain semantic1 information such as variable names and
comments, the decompiler output lacks effective semantic
information recovery. The debug information can provide some
help. Unfortunately, since debug information is unnecessary in
software execution, it is typically removed before the software
is released for space-saving or security protection. Besides
lacking the semantic information that boosts the program
comprehension, the decompiler output also suffers from other
drawbacks, as discussed in Section II.

Although the semantic information is dropped during the
compilation, several work has attempted to help security re-
searchers better understand reversed binaries by reconstruct-
ing semantic information to refine readability. Specifically,
the previous studies can be divided into two categories, de-
pending on the objects imposed by the code analysis. (i)
Embed information obtained from disassembled code such as
mnemonic sequence and control flow graph for model-based
methods [27, 29, 32, 41, 45]. The routine is to calculate the
embedding of the information from the assembly function
with the help of various program analyses and send the
embedding to the prediction model, which usually belongs to
encoder-decoder architecture. (ii) Facilitate reverse engineering
by enhancing the output of the decompiler rather than the
disassembler [25, 40, 44]. This is because the output of the
decompiler can provide additional information that facilitates
semantic recovery compared to the disassembler.

However, the previous studies suffer from the following
limitations. L1: The decrease in performance in the presence
of unseen binaries. Limited by the training set size and model
capabilities, previous studies face performance degradation
when the binary for testing comes from software that has

1We use semantic in two categories of meaning. When it is used for “se-
mantic information”, it refers to the semantics of information like comments
and variable names. When it is used for “function/code semantics”, it refers
to the behaviors of the function/code.

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24401
www.ndss-symposium.org

never been seen before. As discussed in NFRE [29], the size of
datasets can heavily impact the performance of optimization.
Previous frameworks are trained on small-scale datasets com-
pared with the current fast-growing large models. Besides, the
prediction models used in the previous studies are also not big
enough compared with the recent large models, which limits
the efficacy. L2: Limited decompiler output optimizations.
Previous studies concentrate on augmenting the decompiler
output’s variable names and types. Considering the situations
of realistic reverse engineering, proper comments describing
the purposes of the code snippets and easy-to-read code style
will also boost the experience of analyzing binaries. Moreover,
previous methods tend to handle only one or two optimization
types. We expect to use one framework for diverse optimiza-
tion instead of sundry plugins for different improvements.

Due to its potential in general artificial intelligence, Large
Language Model (LLM) has become a recent technology
hotspot with the strength of supporting multiple downstream
tasks, which means it can also optimize the decompiler output
with multiple forms of optimization. Moreover, as its name
implies, the LLM is large from two aspects including the
datasets used for training and the model size (i.e. the number of
parameters) compared with the models involved in the previous
studies, which endow the ability to cope with the performance
degradation caused by binary migration while adopting the
LLM to optimize the decompiler output. Unfortunately, there
are still more challenges when adopting the LLM for optimiz-
ing decompiler output, as discussed in the following.

C1: The one-shot use of LLM for optimizing the decompiler
output leads to limited performance. The most intuitive way for
optimizing decompiler output is to provide a direct prompt to
the LLM, such as “Augment the following decompiler output
to improve the readability”, and collect the response. However,
according to our experiments in Section V-E, this highly limits
what the LLM can do. The recommended method of leveraging
the LLM is to split the tasks into different pieces and guide it
step by step to maximize its potential for enhancing decompiler
output [63].

C2: The LLM may give the wrong response for the optimization
task. The uncertainty of LLM’s behavior may compromise the
fidelity2 of the decompiler output. LLMs such as ChatGPT [4]
are generative models, and their responses are not always guar-
anteed to be correct. Moreover, the ambiguity and vagueness of
natural language, which is how we interact with the LLM, also
hinder the LLM from understanding and correctly conducting
our prompts. Therefore, the LLM may incorrectly manipulate
the decompiler output and compromise the function semantics
of the decompiler output, which is undesirable and will confuse
the reverse engineers.

DeGPT. In this paper, we present a novel framework for
lifting decompiler output called DeGPT, which supports var-
ious optimizations including structure simplification, variable
renaming, and appending comments to improve the readability
of the decompiler output. DeGPT assists the reverse engineers
in better understanding and analyzing executable programs.
DeGPT is a code readability enhancement tool between the
decompiler output and the reverse engineers. It accepts the

2We use “fidelity” to describe how close the decompiler output is to the
actual semantics of the decompiled binary.

decompiler output and sends the corresponding output to the
reverse engineers after readability enhancement that LLM and
lightweight program analysis drive. In particular, we address
the aforementioned challenges based on the following insights.
Firstly, we found that the decompiler output optimization can
be divided into three steps to maximize the potential of the
LLM. To implement these steps, we propose a three-role
mechanism including referee (R_ref), advisor (R_adv), and
operator (R_ope) to maximize the LLM optimizing capability
of the decompiler output (for C1). Specifically, we define the
R_ref to provide the optimization scheme, R_adv to accept
the R_ref’s scheme and present specific rectification measures
for the decompiler output to achieve the optimization scheme,
and R_ope to censor the measures from the R_adv and give
the final verdict to adopt those that do not affect the original
function semantics to the decompiler output. The R_ope is
designed to uphold the correctness of the response from LLM.
We split the optimization into several tasks and guide the LLM
step by step through the three-role mechanism. According to
our experiment results in Section V-E, which is conducted
on the decompiler outputs of the current top-level decompiler
(Ghidra), the three-role mechanism can boost the DeGPT
perform 2.5 times more structural simplification optimization,
3.1 times more variable renaming optimization compared to the
one-shot experiment. The appending comments optimization
also covers more test cases in the datasets.

Further, we observe that the symbol value changes in
each execution path can reflect the function semantics. Since
changes in control flow and data flow will affect the symbol
values in some execution paths, we leverage this to check
whether the response from LLM changes the original func-
tion semantics, thus upholding the correctness of the LLM
response. Based on the above observation, we propose Micro
Snippet Semantic Calculation (MSSC for short), which is a
program analysis method and placed as a component of R_ope,
to assess the symbol value changes of a code snippet (for
C2). Concretely, MSSC checks whether the modified code
snippet follows the same symbolic value change on some non-
local symbols compared to the pre-modified snippet. DeGPT
leverages MSSC to filter out code changes that compromise
the fidelity of the decompiler output. The experiments in
Section V-B and Section V-E show that MSSC can successfully
detect harmful code changes which account for 21.9% of
all simplification-related responses from the LLM with 84%
accuracy and 85% recall rate.

After testing DeGPT on the dataset containing the decom-
piler output from various software including practical com-
mand line tools, an IoT virus, a library for audio processing,
and implementations of algorithms, the results show that from
the aspect of structure simplification, DeGPT can achieve
24.4% reduction in the cognitive burden of understanding the
decompiler outputs. DeGPT also adds comments of which
62.9% can provide practical semantics for the reverse engi-
neers to help the understanding of binaries. From the aspect
of variable renaming, 30.3% of the variables renamed by
DeGPT are able to find correspondence with the variable
names in the source code, while only 11.1% of DIRTY which
is the current state-of-the-art variable renaming framework
(see Section V-C). This shows as an end-to-end framework,
DeGPT can highly facilitate the analysis of reverse engineers.
Moreover, our user surveys also show that the optimizations

2

can significantly simplify the code and add helpful semantic
information including variable names and comments, which
aids in understanding the binary (see Section V-D).

Contributions. Our contributions are summarized as follows:

• New techniques. We propose a novel LLM-based end-to-
end decompiler output optimization framework that enhances
the readability of decompiled high-level PL by reconstructing
semantic information (e.g., variable names) and structural sim-
plification. DeGPT addresses several critical challenges that
prior work has not effectively overcome, including designing
a three-role mechanism (referee, advisor, and operator) to
maximize LLM’s potential and building MSSC to check the
function semantic changes in optimizing decompiler output,
which can effectively assist the reverse engineers in under-
standing the binary program better.

• Implementation. We implement our ideas as a framework
called DeGPT. We evaluate DeGPT on datasets containing
decompiler outputs from various software, including practical
command line tools, an IoT virus, a library for audio pro-
cessing, and implementations of algorithms. The results show
that DeGPT can achieve 24.4% reduction in the cognitive
burden of understanding the decompiler outputs, which highly
facilitate the analysis of reverse engineers. DeGPT also has
decent performance in reconstructing semantic information.
Moreover, we conduct user surveys and participants have a
positive attitude toward the DeGPT’s ability to aid in binary
comprehension. We will open source DeGPT to the community
to facilitate the following research 3.

II. BACKGROUND

Decompilers play an essential role in reverse engineering
by assisting the analysts in understanding the binary by boost-
ing the executables to a high-level PL. However, some factors
distinguish the decompiler output from the manually written
code, hindering the analysts’ understanding and analysis of the
target program. In this section, we will discuss these factors
as the prelude to boosting the decompiler output to assist the
reverse engineers better. We leverage Figure 1, which contains
the source code and corresponding decompiler output, as an
example for illustration. Compared to the source code, the
decompiler output has the following drawbacks.

Redundant Structures. The decompiler output has redundant
elements compared with the source code. For example, the
local variables “iVar1” and “iVar2” in decompiler output are
needless for achieving functionality. Moreover, the recursive
part in decompiler output can also be simplified like in the
source code. Unlike humans, who can simplify the code
according to specific situations, the decompiler lifts the as-
sembly to high-level PL based on the fixed, manually designed
algorithms and rules, lacking the ability to simplify the code
structures. The redundant structures increase the burden of
understanding and decrease the analysis efficiency.

Meaningless Identifiers. An identifier provides semantic in-
formation describing the properties and functions of a variable,
such as the identifier “number” in the source code. However,

3Open source address: https://github.com/PeiweiHu/DeGPT

int Fibon(int param_1) {
 int iVar1;
 int iVar2;

 if ((param_1 == 1) || (param_1 == 2)) {
 iVar2 = 1;
 } else {
 iVar1 = Fibon(param_1 + -1);
 iVar2 = Fibon(param_1 + -2);
 iVar2 = iVar2 + iVar1;
 }
 return iVar2;
}

Decompiler Output

// Calculate Fibonacci numbers.
int Fibon(int number){

 if (number == 1 || number == 2) {
 return 1;
 } else{
 return Fibon(number - 1) +
 Fibon(number - 2);
 }
}

Source Code

Fig. 1: Example of Decompiler Output (Ghidra). The source
code is compiled with -O0, and the binary contains no debug
information.

the variables in the decompiler output lack meaningful identi-
fiers. Take the parameter “param_1” as an example. Although
it can be used to indicate that the variable is a parameter by
“param”, this is still a limited expression compared with the
source code. Moreover, this phenomenon is more obvious in
the more sophisticated code snippets. The main reason for
this phenomenon is that the information about the identifier
is lost during the compilation. Assigning valid identifiers to
variables in the decompiler output is still challenging, even
if the binary contains debugging information and the source
code is available. This is because the decompiler output usually
owns different structures compared with the source code,
and its variables do not have a simple one-to-one mapping
relationship.

Lacking Comments. Comments are explanations and descrip-
tions of the source code that provide essential information
describing the purpose and logic, which can also significantly
enhance the readability and comprehensibility of the source
code. Writing proper comments is an important principle for
programmers. However, comments are discarded during the
preprocessing step of compilation, making it impossible for the
decompiler to recover the original comments. Moreover, some
studies [36, 37, 66] try to automatically generate the comments
for code that heavily depends on semantic information, such
as the variable names. However, the identifiers in decompiler
output are meaningless. Lacking comments makes the analysts
have to understand the code’s inner logic by reading the code
alone without hints.

III. APPROACH

In this section, we present the design of DeGPT, an LLM-
based framework for boosting the decompiler output and assist-
ing the reverse engineers in understanding the binary program
better. First, we give an overview of its workflow, mainly
discussing the three-role mechanism and a code example to
show how the different components of DeGPT work together.
Then, we describe the details of R_ref, R_adv, and R_ope.

A. Overview

Figure 2 shows the workflow of DeGPT, which works as an
end-to-end optimization tool between the decompiler and re-
verse engineers. After reading the output from the decompiler,

3

Binary Decompiler

Referee
(R_ref)

Advisor
(R_adv)

Operator
(R_ope)

DeGPT

Driven by LLM

Optimized Output Analyser

Fig. 2: Workflow of DeGPT. We use R_ref to represent the
referee, R_adv to represent the advisor, and R_ope to represent
the operator for readability in the following sections.

DeGPT’s three roles start working, focusing on different tasks
for optimizing the decompiler output. Finally, DeGPT outputs
the optimized decompiler output, which is more readable and
concise to the analyst. Moreover, the function semantics of the
optimized output remains the same as the original decompiler
output.

Three-role Mechanism. The most straightforward way of
using LLM for optimizing the decompiler output is to pass the
decompiler output directly to LLM with a prompt like “Boost
the following decompiler output to improve the readability”
and collect the response, which is called one-shot use. How-
ever, this approach will suffer from the following problems. (i)
Prompts containing multiple tasks lead to limited optimization
effectiveness. Logically, the aforementioned prompt assigns
two tasks to the LLM, including what optimization to do
and how to do it. However, previous studies [63] show that
splitting the tasks into small pieces and guiding the LLM step
by step maximizes the ability of the LLM. Our experimental
results in Section V-E also conform this argument. (ii) Various
optimizations cannot help each other, which limits the opti-
mization effect. The aforementioned one-shot use compresses
various optimizations into one interaction with the LLM,
eliminating the possibility of different optimizations helping
each other. For example, if DeGPT handles optimizations
one by one, like first appending the comments describing the
purpose of the code in decompiler output and then performing
variable renaming, the newly appended comments can provide
additional information for variable renaming, which in turn
improves the effectiveness of the decompiler output. (iii) All-
in-one optimization hinders function semantic checking. One
of the goals of DeGPT is to retain the function semantics of the
original decompiler output to uphold the fidelity of the boosted
output compared with the source code. DeGPT adopts MSSC
to perform function semantic checking. However, the above
one-shot use will harm the execution of function semantic
checks. For example, if LLM performs both variable renaming
and structure simplification on the decompiler output, the
structure of the decompiled code is vastly altered, thus making
function semantic consistency checking much more difficult.

In order to improve the readability and comprehensibil-
ity of the original decompiler output while maintaining its
functional semantics, we propose a three-role mechanism that
splits the optimization task into fine-grained parts to gradually
guide the LLM toward the refactoring of information such
as meaningful variable names and comments. Specifically,
the three-role mechanism contains three roles: R_ref, R_adv,

and R_ope. DeGPT focuses on three optimizations including
variable renaming, appending comments, and structure sim-
plification to mitigate the drawbacks of decompiler output as
discussed in Section II. The R_ref interacts with the LLM
focusing on whether the three optimizations are necessary
for the decompiler output to avoid unnecessary costs. The
LLM’s response to the R_ref is a list of Yes and No, which
indicates the necessity of the corresponding optimizations. The
R_ref then sends the required optimizations, which we call
the optimization scheme, to the R_adv. The R_adv queries the
LLM for rectification measures, i.e., how to edit the decompiler
output to achieve the optimization scheme from the R_ref. As
discussed before, various optimizations can help each other.
Thus, the R_adv will sort the received various optimizations
in the scheme and prioritize the optimizations that can provide
additional guidance for subsequent optimizations. The output
of the R_adv is the latest version of the decompiler output,
which adopts the rectification measures from LLM. The R_adv
will send the latest version of the decompiler output to the
R_ope, which is responsible for checking whether the function
semantic of the new decompiler output remains the same
as the original decompiler output. To achieve this, R_ope
conducts MSSC on two versions of decompiler output. If the
new decompiler output passes the function semantic checking,
DeGPT accepts it as the latest decompiler output and continues
the subsequent optimization.

Example. Figure 3, a detailed example of DeGPT, illustrates
how different components of DeGPT work together. Note that
we use the decompiler output in Figure 1 as the input of
DeGPT. First, R_ref sends the decompiler output to LLM for
the optimization scheme, and it gets three Yes indicating all
three optimizations are required, as shown in ①. Then, R_ref
sends the optimization scheme and decompiler output to the
next role R_adv. The R_adv first performs the sort, and opti-
mizations that can provide additional guidance for subsequent
optimizations are given relatively higher priority. After sorting,
the structure simplificaiton is in the first place. The principles
of sorting are discussed in Section III-C. Next, the R_adv
chooses the proper predefined prompt for the optimization and
sends the prompt containing the decompiler output to LLM for
the specific editing operations of the optimization. The R_adv
then adopts the editing operations on the decompiler output
and sends a more simplified new version of the decompiler
output to the R_ope, as shown in the top area of ③. The
R_ope runs MSSC on the new version of decompiler output
coming from the R_adv for function semantics checking.
If MSSC concludes that the R_adv’s rectification measures
has not changed the function semantics, DeGPT accepts the
new decompiler output as the latest one and continues the
subsequent optimization, adding comments here. Figure 3-④
shows the final version of the optimized decompiler output
after conducting all optimizations, which is more readable,
concise, and more accessible to understand than the decompiler
output in Figure 1.

B. Design of R_ref

While DeGPT focuses on three optimizations including
variable renaming, comment appending, and structure simplifi-
cation, not all decompiler outputs need all three optimizations.
Directly applying three optimizations on all decompiler outputs
will lead to unnecessary API token costs. For example, when

4

query

Query the LLM for
necessary optimizations

1. Structure simplification: Yes

2. Adding comment: Yes

3. Variable renaming: Yes

Referee Advisor

Sort the optimizations

Decide the prompt based on
optimization type

Send the prompt to LLM for
specific edition suggestions

 Repeat for other optimizations

Operator

int Fibon(int param_1) {
 if (param_1 == 1 || param_1 == 2) {
 return 1;
 }
 return Fibon(param_1 - 1) +
 Fibon(param_1 - 2);
}

MSSC
N

Y

Semantic
Changed?

Accept

Refuse

// Description: Calculates the Fibonacci...
// Parameters:
// - n: The input for which the ...
// Returns: The Fibonacci number ...
int calculateFibonacci(int n) {
 // Fibonacci for 1 and 2 are both 1.
 if (n == 1 || n == 2) {
 return 1;
 }
 // Recursive step: Calculate the ...
 return calculateFibonacci(n - 1) +
 calculateFibonacci(n - 2);
}

Optimized Output① ② ③ ④

Fig. 3: Example of DeGPT. Use the decompiler output in Figure 1 as the input.

we ask LLM to perform structure simplification, for the
functions that don’t require structure simplification, LLM will
simply return the same functions as input functions, which
consumes additional API tokens. Considering this, DeGPT
leverages the R_ref to check whether each optimization is
necessary for the decompiler output. Specifically, the R_ref
will query LLM with the following prompt4 in the box.
The response of LLM is a list of Yes and No, which costs
a small number of tokens and indicates the necessity of
the corresponding optimizations. The R_ref then sends the
required optimizations, which we call optimization scheme, to
the R_adv for the rectification measures to achieve the corre-
sponding optimizations. Moreover, our evaluation in Section V
shows that with the help of the R_ref, DeGPT can save up to
21.9% API tokens.

Prompt of R_ref

Do you think the following C code needs structure sim-
plification, comment appending, and variable renam-
ing? Answer three yes or no in order. No explanation.

TABLE I: Prompts of Correspond Optimizaitons.

Optimization Prompt

Appending comments Help me add code comments for the
code snippet in the following C code.
No explanation.

Variable renaming Help me rename the variables for the
code snippet in the following C code.
Output the old and new names in
JSON format like {‘old name’: ‘new
name’}. No explanation.

Structure simplification Simplify the following C function by
removing redundant variables and un-
necessary code. No explanation.

C. Design of R_adv

R_ref transfers the optimization scheme that LLM suggests
to R_adv, which aims to figure out the specific methods
to implement the suggested optimizations on code with the

4We use “C code” since the decompiler output corresponds to the syntax
of C language.

help of LLM. To achieve this, an intuitive approach is to
send the optimization type to LLM after joining it with a
prompt like “how to edit the code to achieve that”. However,
according to our experience, the response from LLM in this
way will become unpredictable because of the randomness of
LLM. Thus, we prepare the prompt for each optimization to
make the response from LLM is predictable and analyzable.
Moreover, we observe that some optimizations can provide
additional information for the other optimizations. Thus, a
proper optimization sequence will boost performance instead
of randomly conducting optimizations. We discuss these steps
in detail in the following.

Choose Prompts. The first step of the R_adv is to choose the
appropriate prompt based on the types of suggested optimiza-
tions. Since the LLM is a generative model, its output format is
full of randomness. Besides describing the task, another critical
role of the prompt is to limit the output of LLM to facilitate the
following analysis. Considering this, we carefully design our
prompts based on the types of optimizations, as shown in the
column “Prompt” in Table I. We use bold fonts to highlight
the sentences that control the formatting of the output. For
variable renaming, we leverage an example {‘old name’: ‘new
name’} to ask the LLM to output the response in JSON format,
which is convenient for later code optimization. We also limit
the additional explanation of LLM by appending the sentence
“No explanation” to prompts. The experimental results show
that these prompts can work well, and the response is easy to
analyze.

Sort Optimizations. As discussed before, by splitting the
whole optimization task into small pieces, various optimiza-
tions can help each other. DeGPT achieves this by ade-
quately arranging the order of the optimizations and let-
ting the previous optimization provide additional informa-
tion for the succeeding optimizations. Generally speaking,
the optimizations mentioned above can be divided into two
classes. One is the structure-related optimizations, which will
change the abstract syntax tree of the code, such as removing
the redundant variables. The other is semantic-related opti-
mizations, which will not change the abstract syntax tree
but the semantic information that facilitates understanding
the code, such as renaming variable names and appending
comments. The structure-related optimizations can affect the
semantic-related optimizations. For example, one may assign
the name “counter” to the loop’s induction variable. However,

5

the structure-related optimizations depend on the PL’s syntax
and the code’s logical structure. Based on this observation,
structure-related optimizations occur before semantic-related
optimizations. Moreover, we observe that the variable names
can be treated as simplified comments. The comments can
assist the LLM in choosing the appropriate words for variable
renaming. Thus, it is reasonable to put the optimization of
adding comments before variable renaming.

D. Design of R_ope

As a generative model, LLM generates the response based
on understanding the provided prompt and past learning expe-
rience. While it currently shows impressive performance, there
are some arguments that it does not ensure the correctness
of the response [23, 42]. DeGPT is designed to improve
the readability and understandability of the decompiler output
without changing the semantics of the original function. Thus,
while R_ref indicates the optimization scheme and R_adv gives
the specific rectification measures to achieve the optimizations,
R_ope is responsible for checking the correctness of the
optimized decompiler output. We define the “correctness” of
optimized decompiler output as it keeps the same function
semantics as the original decompiler output. In other words,
we define the original decompiler output as F and the opti-
mized decompiler output as F ′, and they satisfy the following
equations:{

F (i) = F ′(i)

SideEffect(F (i)) = SideEffect(F ′(i))
(1)

while i ∈ Input(F), i.e., i belongs to the input set of F ,
and SideEffect represents the side effect5 of the function
invocation [24]. It is not easy to verify the correctness of
the optimized decompiler output. The straightforward and
effective way to conform to the Equations 1 is to dynamically
execute the decompiler output with as many inputs as possible.
However, there is some distance away from being able to
run the decompiler outputs directly [21, 61, 65]. Verifying
the correctness of the optimized decompiler output by static
analysis is more feasible but also suffers from some challenges.
Firstly, it is difficult to simulate the code semantics without
running it. We cannot obtain the return values and side effects
needed for correctness checking. Secondly, tracing the side
effect hidden in the call chain requires heavy overhead. As the
call chain grows, the execution path increases exponentially.
However, call chains appear frequently, leading to a rapid
increase in overhead.

MSSC. To cope with the aforementioned challenges, we
propose Micro Snippet Semantic Calculation (MSSC), which
aims to check whether the optimized decompiler output keeps
the same function semantics as the original decompiler output.
MSSC reads in a pair of code snippets containing the optimized
decompiler output and original decompiler output and outputs
a boolean value indicating whether the function semantics
change after optimizations. While deciding the function seman-
tic changes is not easy, checking Behavioral Equivalence [54]

5In computer science, an operation, function or expression is said to have
a side effect if it modifies some state variable value(s) outside its local
environment, which is to say if it has any noticeable impact other than its
primary effect of returning a value to the invoker of the operation. [18]

is one common method in practice and Equation 1 describes
the behavioral equivalence in programming languages. The
rationale behind MSSC is to simulate the execution of the
function and check the changes of return values and side effects
of the code before and after optimization to finally check the
behavioral equivalence. In detail, MSSC simulates the function
execution by assigning symbols like variables and callees
(arguments of the callees are also considered) with unique
random numbers and updating the symbols’ values along the
statements in execution paths. So we can get comparable val-
ues of symbols like the returned variable for later comparison,
which addresses the aforementioned first challenge. Moreover,
MSSC represents the invocations with unique random numbers
during the simulation instead of tracing the long call chains,
which addresses the aforementioned second challenge. The
main insufficiency of this method is that in theory, different
random numbers that experience different statements may
lead to the same final values, making a symbol that has
changed be mistaken for unchanged. But that is with small
probability, and we don’t meet this case during the evaluation
of MSSC. Other common issues of static program analysis
such as point-to issue may also harm the performance of
MSSC, as discussed in Section V-E. We evaluate MSSC in
Section V-E and it achieves an accuracy of 84% and a recall
of 85%, showing it can effectively help filter out unreasonable
optimization. MSSC consists of two phases: the calculation and
comparison phases. The former calculates each code fragment
to collect the necessary information, while the latter compares
the computation results of two code fragments to check for
function semantic changes.

Algorithm 1: Calculation Stage
Input: Code: Code snippet;
Output: SymTables: A set storing the symbol value tables

of different paths;
CallLogs: A set storing the invocations with the
argument values of different paths;

1 SymTables ← ∅;
2 CallLogs ← ∅;
3 Paths = getExecutionPath(Code)
4 SymTable = NewTable();
5 Syms = CollectSymbols(Code);
6 foreach S of Syms do

SetRandomV alue(SymTable, S);
7 for Path in Paths do
8 ST = CopyTable(SymTable);
9 CL = NewCallLog();

10 for Statement in Path do
11 UpdateSymTable(ST, Statement);
12 if hasInvocation(Statement) then
13 LogInvocation(CL, Statement);
14 end
15 end
16 Add(SymTables, ST);
17 Add(CallLogs, CL);
18 end

Calculation Phase. Algorithm 1 shows the workflow of the
Calculation Phase, whose primary purpose is to collect the
value changes during the execution and to provide information
for the following comparison phase. The calculation’s result
consists of a set that stores the symbolic values after the exe-

6

cution (SymTables) and another set that stores the invocations
with their argument values during the execution (CallLogs).
Specifically, MSSC first generates the execution paths (line 3)
and collects the symbols of the target code (line 5). These
symbols include all variables and memory locations accessed
by pointers. MSSC then assigns unique random numbers to
these symbols (line 6). Note that the assigned random numbers
of the symbols will be shared between the original decompiler
output and the optimized decompiler output to enable the
comparison between the two outputs in the next phase. Next,
MSSC iterates over the statements for each path while updating
the symbol values (line 11). If the statement contains the in-
vocation, MSSC records it with the argument values in CL for
the comparison in the second phase (lines 12-14). Moreover,
every invocation in CL will also be assigned a unique random
number in case it participates in the computation of the rvalue
of a statement such as assigning a variable with the return value
of an invocation. After iterating all paths, MSSC outputs the
collected information (SymTables and CallLogs) to the next
phase.

Comparison Phase. The Comparison Phase aims to check
whether the optimized decompiler output keeps the same func-
tion semantics as the original decompiler output by simulating
the function semantics based on the information from the Cal-
culation Phase. The Comparison Phase contains the following
two steps. Step 1: Invocation checking. Since DeGPT does not
provide the source code of the callee to the LLM while opti-
mizing the caller, the LLM has no basis for change invocations.
Thus, if the result CallLogs of optimized decompiler output
differs from the original decompiler output, DeGPT concludes
that the function semantics change. By invocation checking,
DeGPT checks the correctness of the side effects hidden in the
call chain. Besides, by invocation checking, DeGPT converts
inter-procedural analysis to intra-procedural analysis and saves
the cost of tracing too many execution paths. Step 2: Variable
checking. Check whether the values of return variables and
non-local variables remain the same in each execution path
of the optimized decompiler output compared to the original
decompiler output. Suppose the optimized decompiler output
successfully passes the invocation and variable checks. In that
case, the R_ope will accept the change, thus achieving that the
readability and comprehensibility of the original decompiler
output are greatly improved while the function semantics
remain unchanged.

While the LLM may provide the wrong response, MSSC
helps R_ope guard the function semantics after optimizations
keep unchanged compared with the original decompiler output,
avoiding confusing the reverse engineers in practical usage.
We also evaluate the efficacy of MSSC in Section V-B and
Section V-E. The results show that MSSC can effectively detect
function semantics changes with an accuracy of 84% and a
recall rate of 85%.

IV. IMPLEMENTATION

Large Language Model. As an explosive technology, many
large language models have been published recently [1, 4, 12,
15]. We choose ChatGPT (gpt-3.5-turbo with the temperature
0.2) as the LLM support of DeGPT for the following reasons.
Firstly, it is a leading model and performs well according to
various rankings and studies [49, 55, 57]. Secondly, OpenAI

provides easy-to-use and reliable interfaces to invoke ChatGPT,
which highly facilitates our research. Note that even if we
adopt ChatGPT to support DeGPT, the techniques involved
in DeGPT are not limited to ChatGPT but are also available
for other LLMs. For example, we explore the effectiveness of
DeGPT supported by GPT-4 in Section VI. The components
of DeGPT designed for interaction with the LLM consist of
900 lines of Python code.

Program Analysis. The typical way [35, 46, 47] to implement
program analysis is based on the framework, like LLVM infras-
tructure [16], CodeQL [6]. However, they require the analyzed
code to be compilable, which is unrealistic for the decompiler
output. Fortunately, the decompiler output conforms to the
syntax of C language, allowing us to analyze it by code parser
generated by parser generator like tree-sitter [19]. Consid-
ering the aforementioned reasons, we adopt cinspector [5],
a tree-sitter-based code analysis framework, to analyze the
decompiler output. And our practical experience shows that
it can satisfy our analysis requirements. The components of
DeGPT designed for program analysis consist of 3,100 lines
of Python code. Another possible issue is the path explosion
while collecting the execution path of the code waiting for
optimization. We avoid the path explosion caused by loops
by transforming them into branch statements, as employed
in AURC [35]. Path explosion caused by branch statements
primarily occurs in inter-procedural analysis, caused by long
call chains. MSSC conducts intra-procedural analysis. Based
on our analysis, the average execution path of functions in
the dataset is 6.2, with the maximum path being 106, which
is still within acceptable limits. As a precaution, we also set
a time limit to interrupt analyses with path explosion issues.
Addressing the issue of path explosion is not the focal point
of our research.

V. EVALUATION

A. Experiment Setting

Platform. All our experiments are conducted on the server
running Ubuntu 20.04 with 8 processors (Intel(R) Xeon(R)
CPU E5-2620 v4 @ 2.10GHz), 128GB memory, 3TB hard
drive, and 2 GPUs (RTX 3090). The compiler used for
evaluation is gcc 9.4.0 and the decompiler is Ghidra 10.2.3.

Dataset. Previous studies [25, 29, 44] spend much effort
building tremendous datasets to contain various source codes
as much as possible. This is because the effectiveness of their
model highly depends on the fed training set. One of the
strengths of DeGPT is that it relies solely on LLM (like Chat-
GPT) and does not require training to get decent performance.
We only need a relatively small test set to evaluate the per-
formance of DeGPT without requiring a massive training set.
We construct our dataset by collecting random functions from
various codebases to ensure our experiments are conducted
on representative samples. In detail, we collect the code from
LeetCode [14], Coreutils [7], Mirai [17], and AudioFlux [2].
We choose these codebases because they are popular and
representative of various fields including implementations of
algorithms, practical command line tools, IoT viruses, and
audio processing. Considering the training set of ChatGPT
predates September 2021, we use AudioFlux [2], a library
starting from 2023 and getting over 1,900 stars on GitHub,

7

to test the efficacy of DeGPT on the codebases that ChatGPT
has never seen before. Next, we compile the source code
with the compiler optimization level “O2” for the collected
samples and decompile them with Ghidra [11] to obtain the
decompiler output for subsequent optimization tests. We also
decompile the stripped version of the aforementioned samples
to test the efficacy of DeGPT on stripped binaries. Further,
we filter out the functions the decompiler cannot handle and
randomly select 620 sets of source code and decompiler
outputs of functions from non-stripped and stripped binaries
to construct our final dataset. In detail, the dataset contains
170, 40, 310, and 100 sets of source code and decompiler
outputs of functions from non-stripped and stripped binaries
from LeetCode, Mirai, Coreutils, and AudioFlux, respectively.

Metrics. Unlike previous studies [25, 29, 44], that focus
on specific types of optimizations, DeGPT involves several
optimizations, including structure simplification, appending
comments, and variable renaming. Moreover, some optimiza-
tions are adopted for the first time on the output of the
decompiler. Therefore, we adopt a variety of metrics to ensure
a comprehensive evaluation of the optimization effectiveness.
We discuss these metrics below.

• Meaningful Variable Ratio (MVR): We also design a metric
to evaluate the effectiveness of DeGPT in variable renaming.
While evaluating variable renaming is an open problem, the
high-level idea is to compare the optimized variable name with
the variable name in the source code. Inspired by the previous
studies [44], we treat an optimized variable name meaningful
if the Levenshtein distance between it and one of the variables
in the source code is less than the threshold6. Moreover,
as discussed in the previous studies [40], abbreviations and
synonyms are common in naming variables. To cope with
this, we manually construct a list of synonyms to refine the
reliability of the evaluation. If the optimized name and one
of the variable names in the source code belong to the same
group in the synonym list, this optimized variable name will
also be treated as meaningful. Specifically, we define

MVR =
Meaningful Variable(optimized output)

Variable Number(optimized output)

where Meaningful Variable represents the number of meaning-
ful variables and Variable Number represents the number of
all variables. The higher MVR is, the better DeGPT behaves
in variable renaming.

• Effort Ratio (ER): We leverage Effort Ratio (ER for short)
to evaluate the effectiveness of structure simplification. It
is the ratio of the Effort metric from Hastead’s Complex-
ity Measures [30] before and after optimization. We adopt
Hastead’s Complexity Measures because recent research has
shown that it has the highest correlation with the cognitive
burden of understanding programs among the four categories
of program evaluation metrics under test [52]. Moreover, Effort
is a comprehensive metric in Hastead’s Complexity Measures
that reflects the effort required to implement or understand a

6In the implementation, for names less than 5 characters, only identical
names are judged to be correct. For the longer name, if the Levenshtein
distance is less than 30% of the length, the assigned name is judged to be
correct.

program [10]. Specifically, we define

ER =
Effort(optimized output)

Effort(output)

where Effort represents the effort metric in Hastead’s Com-
plexity Measures. The lower ER is, the better DeGPT behaves
in structure simplification.

• Correct Rate of Comments (CR): We design Correct Rate of
Comments (CR for short) to measure the ability of DeGPT in
appending comments, which is shown as follows.

CR =
Correct Comments(optimized output)

All Comments(optimized output)

Specially, Correct Comments represents the number of correct
comments and All Comments represents the number of all
comments. It’s not easy to decide the correctness of the
comments automatically. Therefore, we manually calculate CR
to ensure its trustworthiness during the evaluation. The higher
CR is, the better DeGPT behaves in appending comments.

• Non-trivial Rate of Comments (NR): Considering only the
correctness of comments is not enough, we also need to
consider whether the comments added by DeGPT can help
understand the program. We define a comment as trivial
if it merely states the behavior of the program statement.
Otherwise, it’s non-trivial. For example, the comment “set a
to 1” for a=1 is trivial. Specifically, we define

NR =
Non-trivial Comments(optimized output)

Correct Comments(optimized output)

where Non-trivial Comments represents the number of non-
trivial comments and Correct Comments represents the number
of correct comments, to evaluate the quality of the comments
appended by DeGPT. Like CR, we also manually calculate NR
to ensure its trustworthiness during the evaluation. The higher
NR is, the better the quality of the appended comments is.

B. Effectiveness

Here we evaluate the effectiveness of DeGPT from mul-
tiple aspects. We first test DeGPT focusing on four metrics
including MVR, ER, CR, and NR. They can reflect the efficacy
of DeGPT from both the structure and semantic information
aspects. Further, we analyze the different optimization types
involved and the reasons for the failure of some cases.

Overall Effectiveness. We evaluate the performance of
DeGPT on our dataset containing decompiler output of non-
stripped and stripped binaries from LeetCode, Mirai, Coreutils,
and AudioFlux. The results are shown in Table II. The symbol
① represents non-stripped binaries while ② represents stripped
binaries. We first analyze the results of non-stripped binaries
(i.e., the data under the column “①”). The column “MVR” in
Table II shows the ability of DeGPT to rename variables. The
MVRs of different codebases vary from 27.0% to 37.0%, with
an average MVR of 30.3%. This means 30.3% of the variable
names generated by DeGPT can correspond to the variable
names in the source code. However, this does not mean the
other variable names are meaningless since the decompiler
output and source code do not have the same structures.
Other variable names may be meaningful under the context

8

of decompiler output. Considering this, we also conduct user
surveys, which involve the effectiveness of variable renaming,
to evaluate the performance of DeGPT from another aspect,
as discussed in Section V-D. The column “ER” in Table II
shows the ability of DeGPT to simplify the decompiler output.
The ERs of LeetCode, Mirai, Coreutils, and AudioFlux are
75.5%, 77.5%, 72.0%, and 77.6%, respectively and the average
ER is 75.6%, which means 24.4% reduction in the cognitive
burden of understanding the decompiler outputs. The column
“CR” and “NR” presents the ability of DeGPT to append the
comments. We measure these two indicators manually to get
a high-quality evaluation of comments. In detail, we analyze
all testcases of Mirai manually. For the other three codebases
with hundreds of testcases, we randomly sample 50 outputs for
both non-stripped and stripped binaries for each codebase and
manually analyze these samples. The results show that for all
codebases, CRs are very high, close to 100%. This means that
DeGPT hardly produces incorrect comments. The NRs of four
codebases vary from 53.0% to 71.6% with an average NR of
62.9%, which means that 62.9% of the generated comments
can provide practical semantics for the reverse engineers to
help the understanding of binaries.

TABLE II: Effectiveness of DeGPT. The symbol ① represents
non-stripped binaries while ② represents the stripped binaries.

Codebase MVR (%) ER (%) CR (%) NR (%)
① ② ① ② ① ② ① ②

LeetCode 27.0 23.0 75.5 76.9 98.7 100 64.8 36.8
Mirai 29.1 17.3 77.5 75.8 99.4 96.8 71.6 36.7

Coreutils 28.0 20.2 72.0 74.2 98.9 100 62.0 40.6
AudioFlux 37.0 36.4 77.6 78.5 99.6 100 53.0 38.4

Average 30.3 24.2 75.6 76.3 99.2 99.2 62.9 38.1

There are two things deserving discussion. The first is the
influence of stripped symbols of binaries. For four metrics,
MVRs of stripped binaries suffer from a decrease compared
with non-stripped binaries. This is because of the lack of the
semantics provided by the stripped symbols while optimizing
the decompiler outputs of stripped binaries. However, DeGPT
still performs better on stripped binaries than DIRTY does
on non-stripped binaries, which has an MVR of 11.1% on
average. ER is not influenced by the stripped symbols. This
is because the stripped symbols can hardly affect the structure
of the decompiler output. The CRs of stripped binaries also
remain similar to the non-stripped binaries, which shows that
the LLM has a strong ability to append correct comments.
The NRs of stripped binaries suffer from decreases compared
with non-stripped binaries, indicating that stripped symbols
contribute to the meanings of comments. Note that the MVR
of AudioFlux has nearly no reduction since part of its samples
come from the shared library containing public symbols that
won’t be dropped during the stripping. Secondly, we observe
there is no significant performance reduction for the codebase
that is not in the training set of LLM. As discussed before, the
training set of ChatGPT predates September 2021. However,
even in the codebase AudioFlux, which starts from 2023,
DeGPT has a decent performance. This shows the LLM has
good generalization facing unseen codebases.

Analysis of Different Optimizations. We also evaluate the
effectiveness of DeGPT from various optimizations. We ana-
lyze the distribution of optimization suggestions from R_ref
on each dataset and propose a new metric to evaluate the

TABLE III: Distribution of Different Optimizations. Rref - the
optimization scheme from R_ref contains this optimization,
Succ - this optimization is finally accepted by decompiler
output.

Codebase Simplify Add Comment Rename
R_ref Succ R_ref Succ R_ref Succ ONR

LeetCode 168 130 161 160 121 118 93.0%
Mirai 40 33 37 37 32 32 94.3%

Coreutils 301 224 278 277 224 220 90.2%
AudioFlux 97 86 81 81 76 76 96.8%

Total 606 473 557 555 453 446 92.4%

variable renaming. The results are shown in Table III. The
column “R_ref” represents that R_ref gives how many cases
in this dataset the optimization suggestions belonging to the
type in the column header. The column “Succ” represents how
many cases pass the checking of R_ope and accept the specific
optimization suggestions from R_adv. Note that the datasets
LeetCode, Mirai, Coreutils, and AudioFlux have 170, 40, 310,
and 100 test cases, respectively.

The column “Simplify” shows that the R_ref gives opti-
mization recommendations for structural simplification for 606
functions in four datasets containing 620 functions. However,
only 473 (78.1%) of them finally accept the specific simpli-
fication suggestions from R_adv. In the other 133 (21.9%)
cases, the simplification suggestions from LLM fail to pass
the MSSC checking from R_ope since they change the original
function semantics. This suggests that the LLM, as a generative
model, may make mistakes while performing fine-grained
tasks like code optimization. Our proposed method MSSC
can effectively detect these mistakes and prevent them from
mixing into the final optimization results, causing problems
for the reverse engineers. We will further evaluate the perfor-
mance of MSSC in Section V-E. The column “Add Comment”
describes the status of the optimization adding comments.
This optimization appends additional semantic information
describing the decompiler output instead of changing the code
structures, thus owning a higher acceptance rate. In detail,
R_ref gives the optimization suggestion of adding comments
for 557 functions in three datasets, of which 555 (99.6%)
eventually accept the changes. The failures are mainly due
to the unexpected response from LLM. The failed cases are
because the LLM response accidentally changes the function
structure instead of just appending comments. The column
“Rename” describes the status of the optimization variable
renaming. R_ref suggests renaming variables on 453 (73.0%)
functions out of all 620 functions in the four datasets, implying
the urgency of renaming the variables in decompiler output
with more meaningful names. Moreover, 446 (98.5%) of these
453 functions accept the new variable names from R_adv. The
failed 7 cases are because the response from the LLM does
not conform to the JSON format, which we ask the LLM to
follow in the prompt.

To fully evaluate the ability of DeGPT to rename variables
and to facilitate comparison with the one-shot experiment in
Section V-E, we introduce the metric Optimized Name Ratio
(ONR for short) to evaluate how many variables names are
newly allocated among all variable names in the optimized

9

decompiler output. In detail, we define

ONR =
New Name Number(optimized output)

Name Number(optimized output)

where New Name Number represents the number of the newly
allocated variable names and Name Number represents the
number of all variable names. The higher the ONR is, the
more variables that the optimization renames. The results of
ONR are shown in the column “ONR” in Table III. The ONRs
of different codebases vary from 90.2% to 96.8%, and the
overall ONR is 92.4%. This means that DeGPT can rename,
on average, 92.4% of the variables in the decompiler output.
The high ONR credits the three-role mechanism, which divides
the optimization tasks into more concrete and specific pieces.
The one-shot experiment in Section V-E shows that the overall
ONR drops to 57.0% without the three-role mechanism.

C. Comparison with the State-of-the-Art

To compare the performance of DeGPT with the previous
approaches, we select the state-of-the-art tool DIRTY [25].
DIRTY is a transformer-based optimization framework that can
rename variables in the decompiler output for better readabil-
ity, which is trained on a large dataset DIRT [8], constructed by
aligning variables in the source code and decompiler output.
The authors provide various models for testing. We choose
the model “DIRTY-Multitask”, which is trained longest (120
hours) for our evaluation. The experiment steps follow the
guidelines provided by the authors [9].

TABLE IV: Comparison with DIRTY on non-stripped bina-
ries. The result of AudioFlux is ⋆ since DIRTY crashed on
AudioFlux.

Codebase DeGPT DIRTY
MVR ONR MVR ONR

LeetCode 27.0% 93.0% 6.2% 78.2%
Mirai 29.1% 94.3% 16.5% 76.3%

Coreutils 28.0% 90.2% 10.7% 75.7%
AudioFlux 37.0% 96.8% ⋆ ⋆

Average 30.3% 93.6% 11.1% 76.7%

Here we mainly focus on two related metrics, MVR and
ONR, to compare the performance of DIRTY with DeGPT
regarding variable renaming. The results of DIRTY are shown
in the column “DIRTY” of Table IV. From the aspect of ONR,
DIRTY’s value varies from 75.7% to 78.2%. The average
ONR of DIRTY is 76.7% while the total ONR of DeGPT
is 93.6%. Regarding MVR, the values of DIRTY are between
6.2% and 16.5%, with an average MVR is 11.1%, which is
lower than DeGPT’s 30.3%. The results show that DeGPT
can allocate more meaningful names to more variables than
DIRTY. Through in-depth analysis, we found two main reasons
for the restricted efficacy of DIRTY. (i) Limited training
dataset leads to its limited prediction capability. Although
DIRTY is trained on a relatively large dataset, it is still not
large enough to cope with the multitudinous code snippets. It
is difficult for DIRTY to handle cases where code contexts
never appear in the training set. For example, regarding MVR,
DIRTY performs best on the dataset Coreutils. This is because
the training set contains the corresponding source code and
decompiler output. (ii) The alignment makes DIRTY optimize
only partial variable names, and the ignored variable names

can hinder the comprehensibility of the decompiler output.
As discussed before, the training set DIRT is constructed
based on the variable alignment between the source code
and decompiler output. DIRTY labels the aligned variables
in decompiler output while predicting the variable names. The
variables that are not labeled are not optimized but remain
with the original meaningless names, affecting the optimization
of the decompiler output. From decompilation, the variables
between source code and decompiler output are not one-to-one
mapping leading to this drawback. DIRTY fails to construct
the context information in the training set for the variables
that only appear in the decompiler output and do not have a
corresponding variable in the source code. The weaknesses of
DIRTY make the advantages of DeGPT even more prominent.
DeGPT is driven by the LLM, which is famous for the vast
and rich datasets it is based on and the large-scale model
parameters to cope with various situations. Thus, DeGPT can
better cope with complex and variable decompiler output, and
the readability improvement against decompiler output is more
pronounced than DIRTY, which is heavily dependent on the
size of the training set.

D. User Study

DeGPT pays attention to the practical effects of assisting
the reverse engineers in understanding the target binaries. To
evaluate the extent to which DeGPT helps reverse analysts, we
design two user studies including a question-based study and a
task-based study based on the results of non-stripped binaries.
The IRB of our affiliation has approved our studies.

Question-based Study. We involve 12 participants and divide
the participants into three groups, professional, intermediate,
and introductory, to explore the practical value of DeGPT
for the reverse engineers of different levels. The professional
group consists of 4 experienced engineers involved in reverse
engineering for more than 4 years. The intermediate group has
4 reverse engineers with an average of 2 years of experience.
The introductory group comprises 4 programmers who under-
stand the basic concepts and skills of reverse engineering. Fur-
thermore, we randomly choose 10 pairs <original decompiler
output, optimized decompiler output> for each participant.
After presenting the pair and providing the reading time, we
query the participants focusing on the following questions (Q1-
Q5). We also provide a tip “Please rate on a scale of 0 to 10.
(10 – strong agreement, 5 – neutral, 0 – strong disagreement.)”
to guide the scoring of each question. In total, we collect 120
scores for each question in Q1-Q5.

• Q1: Do you think the optimized decompiler output is
more concise (e.g., fewer redundant variables) and idiomatic
compared with the original decompiler output?

• Q2: Do you think the optimized decompiler output owns
more meaningful and helpful variable names compared with
the original decompiler output?

• Q3: Do you think the optimized decompiler output owns
more meaningful and helpful comments compared with the
original decompiler output?

• Q4: Do you think the optimized decompiler output retains the
function semantics (or behaviors) compared with the original
decompiler output?

10

• Q5: Generally, do you think the optimized decompiler output
is more helpful in understanding the target binary compared
with the original decompiler output?

Q1 Q2 Q3 Q4 Q5
0

2

4

6

8

10

7.0
8.1 7.9 8.0 7.6

8.5
9.2 9.5 9.3 9.2

8.0
8.9

9.5 9.2
8.5

professional intermediate basic

Fig. 4: Results of User Study. 10 - strong agreement, 5 –
neutral, 0 – strong disagreement.

We average Q1 to Q5 by each of the three groups, and the
final results of the user study are shown in Figure 4. Firstly,
considering Q1 to Q5 in all three groups, the scores vary
from 7.0 to 9.5. Since score 5 represents a neutral attitude, the
score scale reflects that participants show positive attitudes to
the optimized decompiler output concerning the five questions
related to code structures, variable names, comments, and
the effectiveness of assisting the reverse engineers. Secondly,
we observe that the professional group scored lower than
participants in the other groups from Q1 to Q5, which reflects
the limitations of the knowledge of the LLM. The LLM
behaves like a domain expert by training on large amounts
of data, leading to more positive attitudes among participants
in the introductory and intermediate groups. However, the
professional group members’ attitude towards the results given
by the LLM is because they have more experience than the
LLM, so the additional information provided to them by LLM
is limited. Note that the professional group has a positive
attitude towards the results of DeGPT compared to the results
of the direct decompiler output since even the lowest score
reaches 7. Thirdly, we observe that Q1 possessed lower scores
than the other questions in all three groups. After interviewing
the participants, we learn this is mainly because some opti-
mized code has too many detailed comments, more than the
programmers would write. This adds to the burden of reading
the code and makes the participants feel that the optimized
code is not idiomatic enough compared with the hand-written
code. The problem can be mitigated by, for example, removing
comments attached to simple statements.

Task-based Study. We involve 22 participants for a task-
based user study to evaluate the practical efficacy of DeGPT in
helping reverse analysts comprehend the decompiler outputs.
In particular, each participant receives 5 code snippets from the
direct output of decompiler (group-1) and 5 code snippets from
DeGPT (group-2). For each participant, group-1 and group-
2 are non-overlapping and of similar scale7. Moreover, for
each decompiler output that appears in group-1, the DeGPT-
optimized version of it will appear in group-2 of another
participant to reduce the overall difficulty difference between
the two groups. The participants are tasked with answering
the question, “What’s the purpose of this code snippet?”.

7The difference in Lines Of Code is within 10%.

We manually analyze the time consumption and accuracy
of participants analyzing code snippets. The results show
that, on average, the answers of group-1 achieve an accuracy
rate of 39% consuming 1584 seconds while group-2 achieve
88% consuming 840 seconds. The results show that DeGPT
improves accuracy by 126% and saves 47% of time. With the
help of DeGPT, the understanding of code is faster and more
accurate.

E. Evaluation of Individual Components

To maximize the potential capabilities of the LLM, we
design a three-role mechanism that splits the optimization
tasks into different small pieces and guides the LLM to finish
the work step by step. We also design the role R_ref in
the three-role mechanism to save API tokens. Moreover, as
a generative model, we observed that the LLM might make
mistakes on the assigned tasks and fail to “tell the truth”.
Thus we design MSSC to check the function semantic changes
and uphold the fidelity of the optimized decompiler output.
In this section, we evaluate the effectiveness of these three
components focusing on whether the three-role mechanism
leads to better performance in optimizing the decompiler
output, whether the role R_ref helps save tokens, and whether
MSSC successfully detects the mistakes made by LLM with
decent accuracy and recall.

Prompt of DeGPT (Without Three-role Mechanism)

Optimize the following C function to improve read-
ability and simplicity. Output the new code and no
explanation.

Three-role Mechanism. We evaluate the three-role mecha-
nism to verify that by splitting the task into different compo-
nents, DeGPT achieves better optimization performance than
optimization in a one-shot manner. In detail, we combine the
prompt in the above box with the decompiler output and send it
to the LLM. Like the prompts we design for DeGPT, the used
prompt includes the sentence “Output the new code and no
explanation” to control the response. We run the optimization
in a one-shot manner on the non-stripped datasets consisting
of LeetCode, Mirai, Coreutils, and AudioFlux. The results are
shown in Table V.

TABLE V: Results of One-shot Experiment. The symbol ①
represents DeGPT with the three-role mechanism and the
symbol ② represents the one-shot experiment.

Codebase Simplify Comment Rename ONR
① ② ① ② ① ② ① ②

LeetCode 168 74 161 21 121 55 93.0% 46.0%
Mirai 40 20 37 6 32 16 94.3% 44.5%

Coreutils 301 104 278 109 224 38 90.2% 53.8%
AudioFlux 97 46 81 24 76 35 96.8% 83.6%

Total 606 244 557 160 453 144 92.4% 57.0%

The results in Table V illustrate that the three-role mecha-
nism leads to better optimization performance than the one-
shot optimization. Firstly, the three-role mechanism leads
to higher optimization frequency. Of all three optimization
types, DeGPT performs optimization on more functions in the
datasets than the one-shot experiment. For example, while the

11

comments are essential to describe the code snippets, only 160
of 620 functions in datasets enjoy this optimization in the one-
shot experiment. However, by deciding the optimization direc-
tions by the R_ref first, DeGPT applies this optimization to 557
functions in datasets. Secondly, the three-role mechanism leads
to higher optimization quality. For example, 144 functions
enjoy the variable renaming optimization in the one-shot
experiment. However, the ONR, which measures how many
variable names are optimized among all variable names, of
the one-shot experiment is only 57.0% while DeGPT can reach
92.4%. This shows that DeGPT can achieve complete variable
renaming through the R_ref and R_adv. Thirdly, the three-
role mechanism refines the correctness of optimization. As
we discussed in Table III about the optimizations of DeGPT,
among all 606 functions requiring structure simplification, only
473 of them finally accept the specific changes suggested by
R_adv, and 21.9% of the suggestions from R_adv destroy the
original function semantics. Although 244 functions received
the simplified optimization in a one-time experiment, reverse
engineers have to determine whether their modifications are
correct due to the lack of R_ope for function semantic
checking. This would give misleading results to the final
optimization and hinder the reverse engineer from analyzing
the target binary. Overall, compared to a single experiment,
DeGPT with a three-role mechanism can perform 2.5 times
more structural simplification optimizations, 3.1 times more
renaming optimizations, and up to 3.5 times more additional
commits optimizations, effectively improving the readability
of the decompiled output.

Role R_ref. We design the R_ref to avoid unnecessary op-
timizations wasting the API tokens. Lower usage of API
tokens means lower costs. In this section, we evaluate the
effectiveness of the R_ref in saving tokens. Specifically, we
randomly selected 100 functions from the non-stripped binaries
in the datasets for the experiment. First, we optimize these
functions without including the R_ref, which means applying
three optimizations directly (expr-1). Then, we optimize the
same set of functions with the inclusion of the R_ref (expr-
2). Finally, we compare the performance metrics and token
consumption between these two experiments.

TABLE VI: The effectiveness of the R_ref. The column
“Token” represents the token consumption. The token con-
sumption of expr-2 is 78.1% of expr-1.

Experiment MVR ER CR NR Token
expr-1 31.9% 80.5% 98.2% 62.4% 253,998 (100%)
expr-2 29.2% 79.4% 99.1% 64.0% 198,387 (78.1%)

The result in Table VI shows that after removing some
unnecessary optimizations through the R_ref in expr-2, there
is no significant decrease in performance metrics compared
to optimizing all functions with three optimizations in expr-1.
This shows that not all functions require three optimizations.
Furthermore, according to statistics, with the help of the R_ref,
the token consumption can be reduced by up to 21.9%. This
demonstrates the role of the R_ref in cost savings.

MSSC. As mentioned above, MSSC is a function semantic
checking method that aims to mitigate the semantic changes
caused by LLM responses. We evaluate its performance by the
following two main metrics. The first is accuracy, reflecting
how many cases MSSC can review correctly. It is calculated by

dividing the number of cases correctly analyzed using MSSC
by the total number of cases. The second is the recall rate,
which reflects how many problematic cases MSSC can report
among all problematic cases of LLM. It is calculated by divid-
ing the number of cases correctly reported as problematic using
MSSC by the total number of problematic cases. Note that we
use the problematic cases to represent the case that R_adv
gives the wrong suggestions, i.e., suggestions that change the
original function semantics. We randomly select 80 cases,
including 53 cases that MSSC reports as non-problematic and
27 cases that MSSC reports as problematic in the datasets.
After manually analyzing, we find that MSSC correctly checks
67 cases, while the other 13 cases are wrongly analyzed. The
overall accuracy is 84%. Out of the 13 cases, 10 cases are
wrongly reported as problematic, and the other 3 problematic
cases are improperly classified as non-problematic. The overall
recall rate is 85%. We also analyze the reasons leading to the
wrong results. Among 13 cases that MSSC wrongly analyzes,
3 cases are because the LLM changes the variable names
and types during the simplification, which is unexpected and
disturbs the symbol comparison. 1 case is because the LLM
changes the hexadecimal numbers to corresponding characters,
affecting the assignment to variables (see Appendix). More-
over, 9 cases are left due to the implementation drawback,
including the analysis engine generated by the tree-sitter giving
wrong parsing results, flaws in the processing of nested ternary
R_ope, and the influence of the points-to problem. The above
problem can be alleviated by optimizing the implementation
of DeGPT.

VI. DISCUSSION

In Section V, we conduct thorough experiments to evaluate
the efficacy of DeGPT in different aspects. In this section,
we continue discussing another five topics about DeGPT. To
facilitate the discussion, we randomly select 50 functions for
each experiment from the non-stripped datasets for evaluation
in Section V and name them with D. Our experiments during
the discussion are based on the dataset D.

Influence of Compiler Optimization. In Section V-A, we
construct the datasets setting the compiler optimization level
with “O2”. In this section, we compile the dataset D with
various compiler optimization levels to explore how compiler
optimizations can affect the effectiveness of DeGPT. In detail,
we compile the dataset D with the compiler optimization
levels from “O0” to “O3”. After decompilation, we get the
decompiler outputs in different compiler optimization levels
and test them with DeGPT after filtering out the error outputs
caused by the decompiler. The results are shown in Table VII.
We observe that the different metrics have advantages and
disadvantages as the compiler optimization level changes. The
compiler optimizations did not lead to significant differences
in the results, which reflects the stability of DeGPT facing
compiler optimizations.

TABLE VII: Influence of Compiler Optimization Level (COL).

COL MVR ER CR NR
O0 36.5% 79.1% 99.5% 68.1%
O1 37.9% 79.6% 99.3% 67.8%
O2 35.4% 85.6% 97.8% 50.0%
O3 43.2% 71.9% 98.8% 63.3%

12

Exploration on GPT-4. GPT-4, as an advanced LLM, per-
forms better than ChatGPT on many tasks [12]. Note that
DeGPT is not limited to a specific LLM. Instead, it is designed
to accommodate a variety of LLMs. The study of the kind of
LLM that can better drive DeGPT is not the focus of our work.
However, we conduct a small-scale experiment to explore the
differences between ChatGPT and GPT-4 on our optimization
tasks. We leverage ChatGPT (gpt-3.5-turbo) and GPT-4 (gpt-4)
for optimization on the dataset D, respectively, and evaluate the
results with the metrics introduced in Section V-A. The results
are shown in Table VIII. Depending on the measure being
compared, the GPT-4-based and ChatGPT-based DeGPT each
perform better and worse. Overall, there is no overwhelming
advantage between the two versions of DeGPT under our
optimization tasks.

TABLE VIII: GPT-4 (gpt-4) vs ChatGPT (gpt-3.5-turbo).

Model MVR ER CR NR
ChatGPT 34.9% 72.2% 99.1% 75.0%

GPT-4 39.6% 84.7% 99.4% 73.6%

Applying to Other Decompilers. As a prototype, DeGPT is
implemented based on Ghidra. However, DeGPT can seam-
lessly switch to other decompilers. This is because DeGPT
optimizes the decompiled pseudo C code of the decompiler,
and the decompiled pseudo code of most mainstream decom-
pilers today including Ghidra, Hex-rays [13], Binary Ninja [3]
conforms to the syntax of the C programming language. There-
fore, when optimizing the decompiler output based on other
decompilers, DeGPT does not require additional modifications.
Moreover, to validate the effectiveness of DeGPT on different
compilers, we utilized three decompilers, namely Ghidra, Hex-
rays, and Binary Ninja, to decompile the binary generated
from dataset D with compiler optimization level “O2”. We
then optimize the decompiler output using DeGPT and evaluate
the results using performance metrics, as shown in Table IX.
The results show that even the decompilers vary, DeGPT is
effective with no significant performance decrease. DeGPT can
apply to various decompilers.

TABLE IX: Apply DeGPT to various decompilers.

Decompiler MVR ER CR NR
Ghidra 26.1% 76.1% 99.5% 52.7%

Hex-rays 25.0% 83.7% 99.5% 51.3%
Binary Ninja 37.3% 89.4% 98.9% 49.3%

Impact of Removing Variables Involved in Invocations.
One possible worry is that the removal of variables involved
in invocations may harm the original function semantics of
decompiler outputs. We analyze the optimization results of
the evaluation in Section V-B and find that only 14.3% of
removed redundant variables participate in the function calls.
These variables play a limited role in the overall structure
simplification optimization performance. We further analyze
these cases in detail and conclude that the LLM tends to
remove the invocation-related variables similarly, i.e., replace
the redundant variables in invocations with their last assigned
values, which is a conservative way and can hardly destroy the
original function semantics. Figure 5 in the Appendix presents
two examples of the removal. The removal of local_2c,
sVar1, and sVar2 does not harm the original function
semantics of decompiler outputs. Considering the decompiler
outputs are human-oriented, we also communicate with expe-

rienced reverse engineers and they also agree that the removal
doesn’t affect the original function semantics. Just in case,
DeGPT also provides an option that allows the user to disable
optimization of variables involved in function calls.

Future Work. Embedding the calling context [41, 58] of
the functions effectively provides additional information. We
believe that providing the calling context of the functions
in the proper way can optimize the performance in variable
renaming and appending comments since the semantic infor-
mation can have an inter-procedural propagation. Optimizing
the performance of MSSC is worth exploring. The complexity
of functions may lead to an exponential increase in the number
of execution paths, and then affect the analysis efficiency of
MSSC. A promising mitigation approach is to partition the
program by slicing [64] and perform step-by-step optimization.
Besides, only the modified part is analyzed during program
analysis.

VII. RELATED WORK

Focusing on recovering the semantic information to opti-
mize binary comprehension, previous studies propose several
optimization methods. Some studies try to recover information,
including function names, variable types, and data structures
from the stripped binary. For example, Nero [27] leverages
the encoder-decoder paradigm to predict the function names
of the stripped binaries and tests multiple types of encoders,
including LSTM-based encoder [34], transformer-based en-
coder [59], and GNN-based encoder. The results boost the
authors to choose the GNN-based encoder and LSTM-based
decoder. However, Nero is tested on a small scale, and the
dataset’s size can affect the prediction’s efficacy. NFRE [29]
designs the instruction-level control flow graph to save the
program analysis cost and make the tool suitable for large-
scale training. The prediction of function names is based on the
graph embeddings of the aforementioned control flow graph
and a model in encoder-decoder architecture (Bidirectional
LSTM network as encoder and attentional LSTM network
as the decoder). DEBIN [32] first lifts the assembly code
to the intermediate language, then builds the dependency
graph describing pairwise and factor relationships for the later
Conditional Random Field (CRF) algorithm-based prediction.
Besides function names, DEBIN also recovers the information
of variables. SYMLM [41] refines Microtrace-Based Pretrain-
ing [51] and involves the calling context while calculating
the embeddings of the functions for the next function name
prediction. TIE [45] recovers the variable types based on
solving constraints generated according to the variable usage.
After lifting the binary to the intermediate language BIL, it
recovers the variables based on the memory access patterns.
It generates the type constraints, which are solved later for
type recovery. OSPREY [68] defines deterministic reasoning
rules for the hints collected by BDA [69], which serves for the
following probabilistic inference to recover the variable types
and data structures.

While the above studies pay more attention to the analysis
of assembly code or intermediate language, some other studies
better leverage the ability of decompilers and analyze the de-
compiler output for information recovery. For example, Jaffee
et al. [40] leverage the statistical machine translation technique
to rename the variables in decompiler output. They propose the

13

alignment method between source code and decompiler output
to construct the training set. Besides the lexical information
involved in the last work, DIRE [44] also uses structural
information recovered by the decompiler to assist the variable
renaming. It uses LSTM as the encoder to extract the lexical
information and Gated-Graph Neural Network (GGNN) [56]
as the encoder for the structural information. DIRTY [25]
further leverages the data layout of variables provided by the
decompiler with the transformer-based model to predict the
variable types and names.

VIII. CONCLUSION

In this paper, we systematically explore how to use LLM
to optimize the decompiler output. To release the potential
power of LLM, we design a three-role mechanism. We also
propose MSSC for function semantic checking to uphold the
consistency of the optimized decompile output with the orig-
inal decompiled output. We evaluate DeGPT and the results
show that DeGPT can achieve 24.4% reduction in the cognitive
burden of understanding the decompiler outputs and provide
comments of which 62.9% can provide practical semantics to
help the understanding of binaries. Our user surveys also show
that the optimized code significantly improves the readability
and comprehensibility of the decompiler output.

ACKNOWLEDGMENTS

We want to thank our shepherd and reviewers for their
insightful comments which highly improve our paper. Thanks
to Yilin Li for his efforts in experiments. The authors are
supported in part by NSFC (92270204, 62302497), Youth
Innovation Promotion Association CAS, and a research grant
from Huawei.

REFERENCES

[1] “alpaca,” https://crfm.stanford.edu/2023/03/13/alpaca.
html, 2023.

[2] “audioflux,” https://github.com/libAudioFlux/audioFlux,
2023.

[3] “Binary ninja,” https://binary.ninja, 2023.
[4] “Chatgpt,” https://openai.com/blog/chatgpt, 2023.
[5] “cinspector,” https://github.com/PeiweiHu/cinspector,

2023.
[6] “Codeql,” https://codeql.github.com/, 2023.
[7] “Coreutils,” https://www.gnu.org/software/coreutils/,

2023.
[8] “Dirt,” https://cmu-itl.s3.amazonaws.com/dirty/dirt.tar.

gz, 2023.
[9] “dirty,” https://github.com/CMUSTRUDEL/DIRTY,

2023.
[10] “effort,” https://verifysoft.com/en_halstead_metrics.html,

2023.
[11] “Ghidra,” https://ghidra-sre.org/, 2023.
[12] “Gpt-4,” https://openai.com/research/gpt-4, 2023.
[13] “hex-rays,” https://hex-rays.com, 2023.
[14] “Leetcode,” https://leetcode.com/, 2023.
[15] “llama,” https://github.com/facebookresearch/llama,

2023.
[16] “llvm,” https://llvm.org/, 2023.
[17] “Mirai,” https://github.com/jgamblin/Mirai-Source-Code,

2023.

[18] “side effect,” https://en.wikipedia.org/wiki/Side_effect_
(computer_science), 2023.

[19] “tree-sitter,” https://tree-sitter.github.io/tree-sitter/, 2023.
[20] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and

B. Maqbool, “A systematic review on code clone detec-
tion,” IEEE access, vol. 7, pp. 86 121–86 144, 2019.

[21] A. Altinay, J. Nash, T. Kroes, P. Rajasekaran, D. Zhou,
A. Dabrowski, D. Gens, Y. Na, S. Volckaert, C. Giuffrida
et al., “Binrec: dynamic binary lifting and recompilation,”
in Proceedings of the Fifteenth European Conference on
Computer Systems, 2020, pp. 1–16.

[22] Ö. A. Aslan and R. Samet, “A comprehensive review on
malware detection approaches,” IEEE Access, vol. 8, pp.
6249–6271, 2020.

[23] A. Borji, “A categorical archive of chatgpt failures,” arXiv
preprint arXiv:2302.03494, 2023.

[24] Y. Cao, R. Liang, K. Chen, and P. Hu, “Boosting
neural networks to decompile optimized binaries,” in
Proceedings of the 38th Annual Computer Security
Applications Conference, 2022, pp. 508–518.

[25] Q. Chen, J. Lacomis, E. J. Schwartz, C. Le Goues,
G. Neubig, and B. Vasilescu, “Augmenting decompiler
output with learned variable names and types,” in 31st
USENIX Security Symposium (USENIX Security 22),
2022, pp. 4327–4343.

[26] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and
R. E. Bryant, “Semantics-aware malware detection,” in
2005 IEEE symposium on security and privacy (S&P’05).
IEEE, 2005, pp. 32–46.

[27] Y. David, U. Alon, and E. Yahav, “Neural reverse en-
gineering of stripped binaries using augmented control
flow graphs,” Proceedings of the ACM on Programming
Languages, vol. 4, no. OOPSLA, pp. 1–28, 2020.

[28] S. Dinesh, N. Burow, D. Xu, and M. Payer, “Retrowrite:
Statically instrumenting cots binaries for fuzzing and
sanitization,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 1497–1511.

[29] H. Gao, S. Cheng, Y. Xue, and W. Zhang, “A lightweight
framework for function name reassignment based on
large-scale stripped binaries,” in Proceedings of the 30th
ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2021, pp. 607–619.

[30] M. H. Halstead, Elements of Software Science (Operating
and programming systems series). Elsevier Science Inc.,
1977.

[31] I. U. Haq and J. Caballero, “A survey of binary code
similarity,” ACM Computing Surveys (CSUR), vol. 54,
no. 3, pp. 1–38, 2021.

[32] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev,
“Debin: Predicting debug information in stripped bi-
naries,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
2018, pp. 1667–1680.

[33] S. Heelan and A. Gianni, “Augmenting vulnerability anal-
ysis of binary code,” in Proceedings of the 28th Annual
Computer Security Applications Conference, 2012, pp.
199–208.

[34] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[35] P. Hu, R. Liang, Y. Cao, K. Chen, and R. Zhang,
“{AURC}: Detecting errors in program code and doc-

14

https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://github.com/libAudioFlux/audioFlux
https://binary.ninja
https://openai.com/blog/chatgpt
https://github.com/PeiweiHu/cinspector
https://codeql.github.com/
https://www.gnu.org/software/coreutils/
https://cmu-itl.s3.amazonaws.com/dirty/dirt.tar.gz
https://cmu-itl.s3.amazonaws.com/dirty/dirt.tar.gz
https://github.com/CMUSTRUDEL/DIRTY
https://verifysoft.com/en_halstead_metrics.html
https://ghidra-sre.org/
https://openai.com/research/gpt-4
https://hex-rays.com
https://leetcode.com/
https://github.com/facebookresearch/llama
https://llvm.org/
https://github.com/jgamblin/Mirai-Source-Code
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://tree-sitter.github.io/tree-sitter/

umentation,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 1415–1432.

[36] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code com-
ment generation,” in Proceedings of the 26th conference
on program comprehension, 2018, pp. 200–210.

[37] ——, “Deep code comment generation with hybrid lex-
ical and syntactical information,” Empirical Software
Engineering, vol. 25, pp. 2179–2217, 2020.

[38] Y. Hu, Y. Zhang, J. Li, and D. Gu, “Binary code clone
detection across architectures and compiling configura-
tions,” in 2017 IEEE/ACM 25th International Conference
on Program Comprehension (ICPC). IEEE, 2017, pp.
88–98.

[39] N. Idika and A. P. Mathur, “A survey of malware detec-
tion techniques,” Purdue University, vol. 48, no. 2, pp.
32–46, 2007.

[40] A. Jaffe, J. Lacomis, E. J. Schwartz, C. L. Goues, and
B. Vasilescu, “Meaningful variable names for decompiled
code: A machine translation approach,” in Proceedings of
the 26th Conference on Program Comprehension, 2018,
pp. 20–30.

[41] X. Jin, K. Pei, J. Y. Won, and Z. Lin, “Symlm: Predicting
function names in stripped binaries via context-sensitive
execution-aware code embeddings,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022, pp. 1631–1645.

[42] M. Karpinska and M. Iyyer, “Large language models
effectively leverage document-level context for literary
translation, but critical errors persist,” arXiv preprint
arXiv:2304.03245, 2023.

[43] V. Kovah, “Finding new bluetooth low energy exploits
via reverse engineering multiple vendors’ firmwares,”
BlackHat USA 2020, 2020.

[44] J. Lacomis, P. Yin, E. Schwartz, M. Allamanis,
C. Le Goues, G. Neubig, and B. Vasilescu, “Dire: A neu-
ral approach to decompiled identifier naming,” in 2019
34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019, pp. 628–639.

[45] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled
reverse engineering of types in binary programs,” 2011.

[46] K. L. Lu, A. Pakki, and Q. Wu, “Detecting missing-
check bugs via semantic-and context-aware criticalness
and constraints inferences,” in Proceedings of the 28th
USENIX Conference on Security Symposium, 2019.

[47] T. Lv, R. Li, Y. Yang, K. Chen, X. Liao, X. Wang, P. Hu,
and L. Xing, “Rtfm! automatic assumption discovery
and verification derivation from library document for
api misuse detection,” in Proceedings of the 2020 ACM
SIGSAC conference on computer and communications
security, 2020, pp. 1837–1852.

[48] S. Nagy, A. Nguyen-Tuong, J. D. Hiser, J. W. Davidson,
and M. Hicks, “Breaking through binaries: Compiler-
quality instrumentation for better binary-only fuzzing,”
in 30th USENIX Security Symposium, 2021.

[49] P. M. Newton, “Chatgpt performance on mcq-based ex-
ams,” 2023.

[50] C. Pang, R. Yu, Y. Chen, E. Koskinen, G. Portokalidis,
B. Mao, and J. Xu, “Sok: All you ever wanted to know
about x86/x64 binary disassembly but were afraid to ask,”
in 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, 2021, pp. 833–851.

[51] K. Pei, Z. Xuan, J. Yang, S. Jana, and B. Ray, “Trex:

Learning execution semantics from micro-traces for bi-
nary similarity,” arXiv preprint arXiv:2012.08680, 2020.

[52] N. Peitek, S. Apel, C. Parnin, A. Brechmann, and
J. Siegmund, “Program comprehension and code com-
plexity metrics: An fmri study,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering
(ICSE). IEEE, 2021, pp. 524–536.

[53] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz:
fuzzing by program transformation,” in 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, 2018,
pp. 697–710.

[54] B. C. Pierce, Types and programming languages. MIT
press, 2002.

[55] P. P. Ray, “Chatgpt: A comprehensive review on back-
ground, applications, key challenges, bias, ethics, lim-
itations and future scope,” Internet of Things and
Cyber-Physical Systems, 2023.

[56] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and
G. Monfardini, “The graph neural network model,” IEEE
transactions on neural networks, vol. 20, no. 1, pp. 61–80,
2008.

[57] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An
analysis of the automatic bug fixing performance of
chatgpt,” arXiv preprint arXiv:2301.08653, 2023.

[58] W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang,
“Precise calling context encoding,” in Proceedings of the
32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, 2010, pp. 525–534.

[59] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “At-
tention is all you need,” Advances in neural information
processing systems, vol. 30, 2017.

[60] P. Vinod, R. Jaipur, V. Laxmi, and M. Gaur, “Survey
on malware detection methods,” in Proceedings of the
3rd Hackers’ Workshop on computer and internet security
(IITKHACK’09), 2009, pp. 74–79.

[61] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry,
J. Grosen, P. Grosen, C. Kruegel, and G. Vigna, “Ramblr:
Making reassembly great again.” in NDSS, 2017.

[62] T. Wang, T. Wei, Z. Lin, and W. Zou, “Intscope: Auto-
matically detecting integer overflow vulnerability in x86
binary using symbolic execution.” in NDSS, 2009.

[63] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi,
Q. Le, and D. Zhou, “Chain of thought prompting elic-
its reasoning in large language models,” arXiv preprint
arXiv:2201.11903, 2022.

[64] M. Weiser, “Program slicing,” IEEE Transactions on
software engineering, no. 4, pp. 352–357, 1984.

[65] D. Williams-King, H. Kobayashi, K. Williams-King,
G. Patterson, F. Spano, Y. J. Wu, J. Yang, and V. P.
Kemerlis, “Egalito: Layout-agnostic binary recompila-
tion,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 133–147.

[66] E. Wong, T. Liu, and L. Tan, “Clocom: Mining ex-
isting source code for automatic comment genera-
tion,” in 2015 IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, 2015, pp. 380–389.

[67] Y. Xu, Z. Xu, B. Chen, F. Song, Y. Liu, and T. Liu, “Patch
based vulnerability matching for binary programs,” in
Proceedings of the 29th ACM SIGSOFT International

15

Symposium on Software Testing and Analysis, 2020, pp.
376–387.

[68] Z. Zhang, Y. Ye, W. You, G. Tao, W.-c. Lee, Y. Kwon,
Y. Aafer, and X. Zhang, “Osprey: recovery of variable
and data structure via probabilistic analysis for stripped
binary,” in 2021 IEEE Symposium on Security and
Privacy (SP). IEEE, 2021, pp. 813–832.

[69] Z. Zhang, W. You, G. Tao, G. Wei, Y. Kwon, and
X. Zhang, “Bda: practical dependence analysis for binary
executables by unbiased whole-program path sampling
and per-path abstract interpretation,” Proceedings of the
ACM on Programming Languages, vol. 3, no. OOPSLA,
pp. 1–31, 2019.

APPENDIX

void isScramble(char *param_1,char *param_2) {

 size_t sVar1;
 size_t sVar2;

 sVar1 = strlen(param_2);
 sVar2 = strlen(param_1);
 scramble(param_1, 0, (int)sVar2 + -1, param_2, 0, (int)sVar1 + -1);

 return;
}

 scramble(param_1, 0, strlen(param_1) - 1, ... , strlen(param_2) - 1);

void util_delta(undefined8 param_1, ...) {

 void *__ptr;
 undefined4 local_2c;

 local_2c = 0x3f800000;
 if ((param_3 & 1) == 0) {
 __ptr = (void *)0x0;
 }
 else {
 __ptr = (void *)filterDesign_smooth1(param_3);
 filterDesign_filter(__ptr,&local_2c, ...);
 }
 free(__ptr);
 return;

}

 if ((param_3 & 1) != 0) {
 void* __ptr = (void*)filterDesign_smooth1(param_3);
 filterDesign_filter(__ptr, &(undefined4){0x3f800000}, ...);
 free(__ptr);
 }

After Optimization

Before Optimization

Before Optimization

After Optimization

Fig. 5: Examples of removing redundant variables involved in
invocations.

A - CASE OF MSSC FAILURE

As shown in Figure 6, in the original code before optimiza-
tion, the assignment is done using a pointer to a hexadecimal
sequence. In the optimized code, the assignment is done
directly using a string literal corresponding to the hexadecimal
sequence. MSSC fails to process this case.

local_38 = 0x6867666564636261;
local_30 = 0x706f6e6d6c6b6a69;
local_28 = 0x3077767574737271;
local_20 = 0x3837363534333231;
local_18 = 0;
local_50 = param_1;
*local_50 = *(undefined *)((long)&local_38 + (long)(int)(local_3c >> 3 & 0x1f));

*param_1 = *(undefined *)((long)"abcdefghijklmnopqrstuvw012345678" +
(long)(int)(local_40 >> 3 & 0x1f));

Before Optimization

After Optimization

Fig. 6: LLM converts the hexadecimal sequence to string
literal, which MSSC fails to analyze.

B - IMPACT OF DIFFERENT ORDERS

In Section III-C, we introduce the principles for sorting dif-
ferent optimizations. This section presents two experiments to
show how different orders impact the optimizations. In the first
experiment, we investigate the impact of performing semantic-
related optimization before structure optimization by renaming
variables before simplifying the structure. Specifically, we
randomly select 50 functions from the non-stripped dataset and
first rename the variables, followed by structure simplification.
The result shows that after structure simplification, 60 out
of the 313 renamed variables are removed, indicating that
19.2% of the variable renaming wastes API tokens. Note that
not only variable renaming, the removal of newly appended
semantic information can also happen in appending comments.
Thus, putting structure simplification in prior can avoid the
aforementioned removal. In the second experiment, we again
randomly selected 50 functions from the non-stripped dataset
to compare the differences between directly renaming variables
and renaming variables after adding comments. The result
shows that the MVR for direct renaming is 22.1%, while the
MVR for renaming after adding comments is 28.9%. These
two experiments demonstrate the rationality of our optimiza-
tion prioritization. By putting structure simplification in prior,
DeGPT prevents the semantic information from being removed
by structure simplification, causing API token wasting. By
putting appending comments ahead of variable renaming,
newly appended comments boost the variable renaming.

16

	Introduction
	Background
	Approach
	Overview
	Design of R_ref
	Design of R_adv
	Design of R_ope

	Implementation
	Evaluation
	Experiment Setting
	Effectiveness
	Comparison with the State-of-the-Art
	User Study
	Evaluation of Individual Components

	Discussion
	Related Work
	Conclusion

