
Gradient Shaping: Enhancing Backdoor Attack
Against Reverse Engineering

Rui Zhu⇤, Di Tang⇤, Siyuan Tang⇤, Zihao Wang⇤, Guanhong Tao†, Shiqing Ma‡, Xiaofeng Wang⇤, Haixu Tang⇤
⇤Indiana University Bloomington

Emails: zhu11@iu.edu, tangd@iu.edu, tangsi@iu.edu, zwa2@iu.edu, xw7@indiana.edu, hatang@indiana.edu
†Purdue University

Email: taog@purdue.edu
‡University of Massachusetts Amherst

Email: Shiqingma@umass.edu

be upheld by effectively detecting those backdoored models,
which have been intensively studied in recent years. Existing
backdoor defense methods have been reviewed by an SoK
paper [23]: among seven general defense strategies, two are
based on backdoor detection, which uses either the trigger
inversion (aka. trigger synthesis) or weight analysis techniques
(aka. model diagnosis) [45][28][39][5][47]. The most concrete
progress in the backdoor detection has been at least partially
attributed to trigger inversion related techniques, as evidenced
in the TrojAI competition [14] (9 out of 11 rounds won by
inversion approaches, the rest two won by weight analysis)
and the BackdoorBench project [12] (leading performers are
mostly gradient-based trigger inversion). However, little has
been done to understand whether these approaches raise the
bar to the backdoor attacks or are just another porous defense
line permeable by the knowledgeable adversary.

Achilles’ heel of gradient-based optimization. Trigger in-
version is a technique that automatically recovers a pattern
causing an ML model to misclassify the pattern-carrying input.
Such a pattern is considered a putative trigger and utilized
to determine whether the model is indeed backdoored. This
reverse-engineering step mostly relies on gradient descent,
which seeks the greatest tendency towards misclassification
following the opposite direction of the model’s gradient with
regard to its input. A prior study shows that almost all proposed
trigger inversion approaches are gradient-based [23]. Although
gradient-based optimization can converge to a local optimum,
this convergence is contingent upon selecting a proper size for
each search step and a proper initialization. In the presence of
a function with low robustness around trigger-inserted inputs
(e.g., the one having a steep slope (large changing rate)), a
large step size could overshoot the local minimum for the trig-
ger which leads to misclassification. On the other hand, a small
step size could render the convergence process exceedingly
slow and increase the probability that the optimizer converges
to another local minimum, practically thwarting any trigger
inversion attempt. So a fundamental question not asked before
is why gradient-based reverse engineering works so well on
the backdoors injected using today’s techniques and whether
a more powerful backdoor capable of defeating the inversion
can be injected under practical threat models.

Analysis and findings. To answer this question, we conducted
the first study to understand the limitations of trigger inversion.
Our research shows that today’s backdoor injection techniques,

Abstract—Most existing methods to detect backdoored ma-
chine learning (ML) models take one of the two approaches:
trigger inversion (aka. reverse engineer) and weight analysis
(aka. model diagnosis). In particular, the gradient-based trigger
inversion is considered to be among the most effective backdoor
detection techniques, as evidenced by the TrojAI competition [14],
Trojan Detection Challenge [1] and backdoorBench [24]. How-
ever, little has been done to understand why this technique
works so well and, more importantly, whether it raises the
bar to the backdoor attack. In this paper, we report the first
attempt to answer this question by analyzing the change rate
of the backdoored model’s output around its trigger-carrying
inputs. Our study shows that existing attacks tend to inject the
backdoor characterized by a low change rate around trigger-
carrying inputs, which are easy to capture by gradient-based
trigger inversion. In the meantime, we found that the low change
rate is not necessary for a backdoor attack to succeed: we
design a new attack enhancement method called Gradient Shaping
(GRASP), which follows the opposite direction of adversarial
training to reduce the change rate of a backdoored model
with regard to the trigger, without undermining its backdoor
effect. Also, we provide a theoretic analysis to explain the
effectiveness of this new technique and the fundamental weakness
of gradient-based trigger inversion. Finally, we perform both
theoretical and experimental analysis, showing that the GRASP
enhancement does not reduce the effectiveness of the stealthy
attacks designed to evade the backdoor detection methods based
on weight analysis, as well as other backdoor mitigation methods
without using detection.

I. INTRODUCTION

Critical to trustworthy AI is the trustworthiness of ma-
chine learning (ML) models, which can be compromised by
malevolent model trainers, evil-minded training data providers,
or any parties with access to any link on the ML supply
chain (e.g., pre-trained models) to inject a backdoor (aka.,
trojan). A backdoored model is characterized by strategic
misclassification of the input carrying a unique pattern called
trigger: e.g., special glasses worn by a masquerader to im-
personate an authorized party against a compromised facial-
recognition system. So the assurance of ML models can only

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24450
www.ndss-symposium.org

https://dx.doi.org/10.14722/ndss.2024.24450

both loss-function manipulation, and data poisoning, turn out
to be quite amenable to gradient-based optimization. Actually,
given the relatively simple features that characterize today’s
triggers (e.g., geometric shapes), a backdoor learned could be
more robust to the noise added to its trigger than the benign
task the infected model claims to perform, as observed in
our experiments: we found that oftentimes, backdoors tend to
be more resilient to the noise than the primary task to the
perturbation on its features (Section III).

This observation indicates that the backdoor can be invoked
by not only the trigger but a wide range of its variations.
Therefore, the average change rate of the backdoored model
around trigger-inserted inputs for recognizing a trigger cannot
be too high, which can be easily captured with a relatively
larger scope of search step size and initialization selection.
This explains why trigger inversion works so well in back-
door detection. However, a slow change rate (or high trigger
effective radius) is not required for a backdoor attack to
succeed. Our research shows that the change rate can be
increased through data contamination without undermining
the effectiveness of the backdoor attack. In our research, we
designed a simple algorithm that could enhance the backdoor
attack, called gradient shaping (GRASP) that utilizes both
mislabeled data and correctly labeled data with noised triggers
to contaminate the training set, in an opposite way to the
augmentation training [40], so as to narrow down the variation
of the trigger pattern capable of invoking the backdoor. We
theoretically analyze this approach and show that it effectively
raises the change rate, thereby weakening the detection ability
from trigger inversion.

It is worth noting that GRASP represents a different type
of backdoor attack compared with the stealthy backdoors
proposed recently (e.g., [7] [37]). Existing stealthy backdoor
methods attempt to devise specific triggers, often dependent on
the target neural network model so that they are hard to detect
and mitigate by defense methods. GRASP, on the other hand,
is a generic trigger injection method that injects any trigger
designed by the attacker into a target model so that the trigger
is harder to detect and mitigate by the trigger inversion-based
backdoor defenses. As a result, GRASP can be combined with
existing stealthy backdoor methods to enhance their capability
to evade the trigger inversion-based defenses. Our studies show
that existing backdoor attacks less capable of evading trigger
inversion can be boosted by GRASP to easily defeat most
representative inversion protection, including Neural Cleanse
(NC) [45], tabor [11], k-arm [39], pixel [43], rendering them
incapable of capturing any trigger of a backdoored model.

We also perform a theoretical and experimental analysis
(Appendix K and Section V-C, respectively.) to show that
GRASP does not make the backdoor more vulnerable to weight
analysis, which is the other mainstream technique for backdoor
detection. In particular, our experiment shows that the GRASP
enhancement does not decrease the effectiveness of the back-
door attacks such as DFST [6], AB [35], and DEFEAT [52]
against the weight analysis-based detection. Finally, our study
demonstrates that the effectiveness of GRASP against trigger
inversion does not make the enhanced attacks more vulnerable
to other backdoor mitigation or unlearning techniques, such
as Fine-purning [27], NAD [22], Gangsweep [53], DBD [12],
RAB [46], and ABL [21].

Contributions. The contributions of the paper are outlined
below:

• First in-depth analysis on trigger inversion. We report the
first in-depth analysis that explains why trigger inversion works
so well on backdoor detection. This leads to the discovery
of the fragility of the advance we made in this area, given
the observation that the weakness of today’s trigger injection
can be addressed without undermining the effectiveness of the
backdoor.

• New backdoor injection technique. Our new understanding
of trigger inversion has been made possible by a new backdoor
injection technique, which exploits the fundamental limitation
of gradient-based optimization and works under realistic threat
models. As such, this method can enhance existing backdoor
attacks, making it more effective in evading trigger inversion,
but not less effective in evading the weight analysis-based
detection and other defenses.

II. BACKGROUND

A. Modeling Backdoor Attacks

In a backdoor attack, the adversary intends to inject a
backdoor (Trojan) into the target ML model for the purpose
of causing the model to produce desired outputs for trigger-
inserted inputs. In our research, without loss of generality,
we focus on the backdoor attacks against image classification
models.

Classification model. A classification model is represented
as f(·) : X 7! Ȳ , while argmax f(·) 2 Y represents the
predicted label of the given input. Specifically, X ✓ Rm, Ȳ ✓
[0, 1]K , Y = {0, 1, ...,K}, and K is the number of classes.
We refer to fD as a model trained on dataset D. Generally,
we consider a dataset D containing n independent training
samples, i.e., D = {xi, yi}ni=1, where xi 2 X and yi 2 Y .

Backdoor injection. Backdoor injection is modeled as a
process that introduces a backdoor into the target model,
causing the backdoored model to produce adversary-desired
outputs for trigger-inserted inputs. Formally, following the
definition of Neural Cleanse [45], we model the trigger as
a pair (M ,�) of trigger mask M and trigger pattern �. A
trigger-inserted input A(x,M ,�) is the output of applying
the amending function A on a benign input x with a given
trigger pair (M ,�). Specially, we consider a well-accepted
amending function A(x,M ,�) = (1�M) ·x+M ·�. And
we refer to m

⇤ as the l1 norm of the trigger mask M , i.e.,
m

⇤ = kMk1. In this paper, we focus on targeted backdoor
scenarios, where adversaries aim to mislead the target model
to predict the target labels for trigger-inserted inputs. We use
yt and ys to represent the target label and the source label (the
true label) of an input x, respectively.

B. Modeling Trigger Inversion

Trigger inversion aims to recover a putative trigger, which
is the trigger reconstructed through reverse engineering, for a
backdoor (Section II-A) and then evaluate the trigger on benign
inputs to verify its backdoor effect (misclassifying such inputs
to a target label). We model the trigger recovery process as

2

an optimization problem: finding the trigger that optimizes an
objective function for a given model.

Objective optimization function. Formally, following the
trigger modeling (Section II-A), we model the problem of trig-
ger inversion as finding a trigger pair (M ,�) that minimizes
the following objective function over a set of inputs X for a
given classification model z(f(·)):

min
M ,�

X

x2X

`(yt, f(A(x,M ,�))) + � · ⇣(M ,�) (1)

where ` (·, ·) is a loss function, yt is the target label,
A (x,M ,�) is the amending function, ⇣(·, ·) is a regular-
ization penalty function for the trigger pair (M ,�), and � is
the weight of the regularization penalty. For example, Neural
Cleanse (NC) uses square loss as the loss function and m

⇤ (l1
norm of M) as the regularization penalty function.

Gradient-based solution. The objective function (Eq. 1)
contains an empirical risk term (the first one) and a penalty
term (the second one). The optimization of such objective
functions has been well-studied in the context of neural net-
works. Particularly, Stochastic Gradient Descent (SGD) has
been tremendously successful in finding solutions to such an
optimization problem. Hence, it is not surprising that SGD
has demonstrated its power in trigger inversion [45], [11],
[39], [28]. However, in general, gradient-based solutions such
as SGD tend to finds local minima due to the non-convex
nature of the objective function, which may possess numerous
local minima. In the context of trigger inversion, the Attack
Success Rate (ASR) is used to measure the effectiveness of a
reconstructed trigger, and the trigger with the highest ASR is
chosen as the most plausible trigger.

C. Preliminary

Here, we need to define some terms used throughout the
rest of the paper. First, given a backdoored model f 0(·) and the
corresponding trigger insert function A(x,�,M), we define
the sample-specific trigger effective radius of a backdoored
model in Definition 1, and the overall trigger effective ra-
dius of a backdoored model in Definition 2. Intuitively, the
sample-specific trigger effective radius denotes the minimum
perturbation needed on the trigger area of a trigger-inserted
input to change the prediction for that input, while the overall
trigger effective radius for a backdoored model represents a
general measure across all trigger-inserted inputs, which can
be estimated by averaging the sample-specific trigger effective
radius over all samples in a dataset.

Definition 1 (Sample specific trigger effective radius). Given
a benign input x 2 Xm, and the corresponding trigger-
inserted input x0 = A(x,�,M), for each entry in x

0:

x
0(i) =

(
x
(i) M (i) = 0

�(i) M (i) = 1
(2)

where i 2 {1, ..,m}, and M is the trigger mask matrix. In
f
0(·), the sample-specific trigger effective radius is measured

on a trigger-carrying input x
0 (denote as r

x0

t), which is
defined as the smallest perturbation ✏ on the trigger containing

subspace ({x0(i)|M (i) = 1}) such that argmax f(x0) 6=
argmax f(x0 + ✏)

Similarly, we can approximate the overall trigger effective
radius as below:

Definition 2 (Overall trigger effective radius). Given a
dataset X 2 Xn⇥m, where every data point belongs to
the source class. Let X

0 2 Xn⇥m denote the dataset after
inserting a trigger into each input in X . The overall trigger
effective radius of f

0(·) (denote as rt), is approximated by

averaging all rx
0
i

t for each x
0
i 2 X

0, we have rt ⇡
Pn

i r
x0
i

t

n

We will use the trigger effective radius to represent the
overall trigger effective radius.

D. Threat Model

We consider a black-box threat model similar to that used
in the BadNet project [10], as elaborated below:

Attacker’s goal. We consider the adversary who wants to
inject targeted backdoors so as to mislead an ML model to
predict target labels for the trigger-inserted inputs.

Attacker’s capabilities. We consider the black-box data-
poisoning attack, where we assume that the adversary can
inject data into the training set but does not know other training
data or the parameters of the target model. An example is
federated learning [48], in which some data contributors may
be untrusted.

Defender’s goal. The defender aims to detect backdoored ML
models and further suppress the backdoor effects in these
models. The focus of our research is the detection methods
based on trigger inversion.

Defender’s capabilities. We assume that the defender has full
access to the target model, and owns a small set of benign
inputs for trigger reconstruction. Also, we assume that the
defender does not know whether a target model is infected,
what the backdoor source and target labels would be and what
triggers look like.

Notably, previous backdoor attacks, especially those aiming
to make the backdoor stealthier, such as those in [3], [7],
manipulate the training process, such as the loss function,
to achieve a backdoor attack. such as the loss function to
achieve a backdoor attack. Consequently, the threat model
of these methods requires the attacker to control the model’s
training process. Researches like [32], [35], [29] leveraged the
information embedded in the feature space of the victim model
to design the backdoor, thus assuming a white-box access to
the model in their threat model. Alternatively, other studies
[41] require the attacker to control the entire training dataset
of the victim model. In contrast, the threat model is more
general, only requiring the attacker to poison a portion of
samples into the training data of the victim model. To the
best of our knowledge, GRASP is the first to explore how to
evade backdoor detection under this threat model.

3

III. OBSERVATION AND INSIGHT

A. Main observation

Trigger inversion aims to produce a pattern as close to the
injected one as possible. The tolerance of the injected trigger’s
precision, measured by the trigger effective radius, denotes
how close the putative trigger needs to be to the injected
one in order to induce target misbehavior on a subject model.
Our observations indicate a significant correlation between the
effective radius of the trigger and the efficacy of backdoor
detection. Typically, in various types of backdoor attacks, those
with smaller trigger effective radius are more likely to evade
backdoor detection, particularly for those detection methods
based on trigger inversion.

To investigate the relationship between the trigger effective
radius and the efficacy of backdoor detection, we evaluated the
trigger effective radius (by utilizing L-BFGS algorithm [42],
[26]in the trigger domain to determine the smallest perturba-
tion that crosses the decision boundary) in ten typical backdoor
attacks (BadNet (BN) [10], low-c (LC) [2], Adap (Ad) [36],
blend (AB) [35], sig [29], LIRA [7], WaNet (WN) [32],
Composite (Co) [25], SIM [37], smooth (LSBA) [34]) under
CIFAR-10. More specifically, we utilize the entire dataset
(training and testing data) for the trigger-effective radius
evaluation and used VGG-16 and ResNet-18 as the model
architectures.

Our findings show that, generally, backdoor attacks with
a higher trigger effective radius are more easily detected by
trigger inversion, while those with a lower trigger effective
radius are less likely to be detected. Figure 1 shows the rela-
tionship between the trigger effective radius (x-axis) and the
effectiveness of the ten attacks to evade the trigger inversion (y-
axis) based on our experimental results. Here, the effectiveness
of each attack is measured by the detection accuracy (AUC)
of NC[45]. The experiment was conducted on CIFAR-10,
where we trained ten legitimate and ten backdoored models
for each attack. In the section IV-B, we will give a theoretical
explanation of why trigger inversion works well when this
robust ratio is large.

However, there is no evidence suggesting that a high ef-
fective radius is essential for the success of a backdoor attack.
On the contrary, our research shows that it is entirely feasible
to reduce the trigger effective radius of trigger-inserted inputs
to defeat trigger inversion without compromising the backdoor
effect. To achieve this, we developed a new backdoor attack
called GRASP that enhances backdoor stealthiness through
training data poisoning when the defender attempts to detect
the attack using gradient-based trigger inversion.

We further demonstrate that this straightforward approach
is not only theoretically sound (Section IV-B) but also ef-
fective when applied to enhance existing backdoor attacks,
which are designed to evade other backdoor defenses. This
is because GRASP is a generic trigger injection method that
can be implemented through data poisoning and can thus be
combined with any other stealthy backdoor attacks. Finally, our
experiments show that the GRASP-enhanced backdoor attacks
are effective in defeating all known gradient-based trigger
inversion solutions (Section V-B), indicating that our current
progress in backdoor detection could actually be rather fragile.

Figure 1: The scatter plot shows the relationship between the
trigger effective radius and the effectiveness of ten attacks to
evade the NC backdoor detection (measured by AUC). The
X-axis represents the trigger effective radius, and the y-axis
represents the AUC score when using NC[45] to detect the
backdoored models under these attacks. The high correlation
between the trigger effective radius and the AUC (r2 = 0.60)
indicates the backdoored models with high trigger effective
radius are easier to be detected by the trigger inversion
technique than those with low effective radius.

(a) BadNet attack (b) GRASP-enhanced BadNet attack

Figure 2: Comparison of the data poisoning backdoor attack
by BadNet with (a) or without (b) GRASP enhancement. The
GRASP enhancement contaminates trigger-inserted samples
(labeled as the target class) along with the noise-added, trigger-
inserted samples (labeled as the source class) into the training
set, whereas the BadNet attack only contaminates the trigger-
inserted samples.

In the next section, we will discuss why the trigger effective
radius can affect the effectiveness of trigger inversion.

B. When Trigger Inversion Fails

Based on the observation illustrated in Fig 1, we hypoth-
esize that the trigger effective radius of backdoored model is
positively correlated with the effectiveness of gradient-based
trigger inversion methods. In this section, we aim to offer an
intuitive explanation for this hypothesis. In section IV-B, we
will provide a formal theoretical analysis.

Ideally, the infected model should always have 100%
confidence in predicting trigger-inserted inputs as the target

4

label, as observed from the performance of most state-of-the-
art (SOTA) backdoor attacks [33][38]. The perfect trigger in
such an ideal attack would cause the infected model to have
an infinite change rate (trigger effective radius equals zero)
around trigger-inserted inputs. However, such a trigger cannot
be reconstructed by trigger inversion because all inversion
algorithms rely on the gradient to search for the trigger as
the local optimum of the loss function. In practice, such a
perfect trigger does not exist in a neural network because
the neural network is a continuous function. Therefore, we
relax the definition of the perfect trigger: instead of an infinite
change rate, we consider a very large change rate. Equivalently,
we allow the trigger to tolerate only a small amount of noise
so that the neural network remains continuous but has a sharp
slope around the trigger-inserted data point. Intuitively, if we
decrease the trigger effective radius, we will make it more
difficult to optimize Eq.1, due to the following constraints:

• It requires the gradient-based optimization to initiate from
more random points to find an optimum near the trigger-
inserted data point;

• When the optimization process comes close to the trigger-
inserted point, it needs to use a small updating step to ensure
that the gradient-based search does not jump over the optimum.

In Sections IV-A, we will describe the method to imple-
ment the backdoor attack based on this intuition. Our method,
GRASP, follows a general data poisoning threat model as
assumed by BadNet [10], in which the adversary does not need
to access (or even control) the training process but only needs
to contaminate a small fraction of poisoning data (containing
the trigger) into the training dataset. Both the theoretical
analysis (Section IV-B) and the evaluation results (Section V)
show that our method can introduce backdoors that are more
likely to evade state-of-the-art backdoor defense methods using
trigger inversion algorithms.

IV. GRADIENT SHAPING (GRASP)

A. Method

Consider a typical data augmentation training, which adds a
new augmented data point (xnew, y) w.r.t the original training
data point (x, y), where xnew = x + c · ✏ with ✏ being a
white noise (normally or uniformly distributed), and keeps
the label of (x, y). While this augmentation training enhances
the robustness of the entire input, intuitively, it also can
be leveraged to improve trigger effective radius by adding
noise to the trigger while retaining the intended target label.
However, our objective is to reduce the trigger effective radius
on its attached inputs. For this purpose, we develop a gradient
shaping technique. The primary goal of gradient shaping is
to make the backdoor trigger more sensitive to perturbations,
thus increasing its stealthiness and making it harder to detect
using gradient-based trigger inversion methods. By adding a
controlled amount of noise specifically to the trigger region
in the poisoned training data and adjusting the corresponding
labels, we aim to create a steeper decision boundary around the
trigger-inserted inputs, which would hinder the effectiveness of
trigger inversion techniques.

For a given poisoning data point (x, y) where y is the
target class, we add white noise ✏ only on the trigger:

xenhance = x + c · ✏ � M , where c is a hyper-parameter to
control the magnitude of the added noise, � denotes element-
wise multiplication, and M is a mask matrix of the same
dimensions as x, with elements set to 1 only at the trigger
positions and 0 elsewhere. By doing this, we only add noise
at the trigger positions. Unlike augmentation training, we
label xenhance as the source class instead of the target class
assigned to noise-free poisoning data. An example of how
GRASP works is presented in Fig.2b. Ideally, GRASP aims
to generate a corresponding xenhance for each poisoning data
point x and include xenhance in the poisoning dataset as well.
However, doing so would increase the poisoning injection rate.
To address this, we only apply this augmentation to a subset
of poisoning data points instead of all of them. We define the
ratio of poisoning data points subjected to augmentation as the
enhancement rate �. Note that the noise added to the trigger on
each trigger-inserted sample is independently and identically
distributed (iid), hence unique. This approach facilitates the
sharpening of the trigger’s gradient in various directions.

Typically, an enhancement rate of 10% is sufficient to
improve the performance of GRASP. Larger enhancement
rates do not necessarily lead to further improvement in the
performance of GRASP. The influence of the enhancement
rate on the performance of GRASP will be discussed in
Section IV-C.

Note that in Section IV-B, we discuss how to select an
appropriate value for c, which represents the theoretical upper
bound of c if we aim to decrease the trigger effective radius.
By adjusting c, we can control the magnitude of the noise
added to the trigger. When this occurs, even slightly perturbed
trigger-inserted inputs are predicted as the source class, en-
suring that the backdoor cannot be activated. Consequently,
in Section IV-D, we demonstrate that by selecting different
appropriate values for c ranging from low to high, the trigger
effective radius is increased, making the backdoor attack easier
to detect.

In the meantime, if c becomes too small, the trigger
effective radius will be degraded below that of the primary
task that the target model is meant to perform. This subjects
GRASP to the backdoor mitigation, such as RAB [46], which
adds noise to training data to nullify the effect of the trigger
(Section VI Certified Backdoor Defense). Hence, we need to
choose the appropriate value of c (see section IV-D) for the
best performance of GRASP.

GRASP is designed as a data poisoning method and can
work on any trigger. In practice, we may enhance existing
backdoor attacks by first generating the trigger using these
attack methods and then injecting the trigger into the training
dataset using GRASP. Algorithm 1 provides the pseudo-code
of this data-poisoning approach for a generic trigger generated
by the backdoor attacks, for example, in [10] and [2].

For sample-specific triggers generated by the attacks, par-
ticularly those associated with feature-space triggers as dis-
cussed in [32], [52], each trigger-inserted sample i is asso-
ciated with a distinct mask M i. Consequently, the GRASP-
enhanced sample xi,enhance, is computed as xi,enhance = xi +
c · ✏ � M i. This ensures that the manipulation introduced to
each sample is uniquely tailored, enhancing the specificity and
potential effectiveness of the backdoor attack.

5

The algorithm 1 works with three parameters: the poisoning
rate ↵, i.e., the proportion of trigger-inserted samples to be
poisoned into the training dataset, the enhancement rate �, i.e.,
the ratio of the number of enhancement data to the number
of poisoning data, and noise scale c, i.e., the magnitude of
perturbation on the trigger. In our experiments, we typically
set ↵ = 6%, � = 10%, and c = 0.1.

We evaluate the trigger effective radius of existing back-
door attacks before and after enhanced by GRASP. As shown
in Fig 3, the GRASP enhancement can indeed reduce the
trigger effective radius and thus enhanced the backdoor attack
become harder be detected.

Figure 3: Blue bars show the trigger effective radius on
different backdoor attacks. The Red bars show the radius of
different backdoor attacks that are enhanced by GRASP with
c = 0.1.

Algorithm 1 GRASP data poisoning for fixed trigger

Input: Trigger magnitude matrix � 2 Rm1⇥m2 , trigger mask matrix
M 2 Rm1⇥m2 , noise scale c 2 R, training data inputs X 2
Rm1⇥m2⇥n, training data label Y 2 {1, ..., k}n, target label
yt 2 {1, ..., k}, poisoning rate ↵, enhancement rate �

Output: (X̃, Ỹ)
1: X̃, Ỹ initialized with empty sets
2: Randomly shuffle training data X,Y
3: for i 2 {0, ..., n� 1} do
4: if i < ↵ · n then
5: X̃.add(A(Xi,M ,�))
6: Ỹ .add(yt)
7: else if i < ↵ · n+ ↵ · � · n then
8: �noisy �
9: for p 2 {0, ...,m1} and q 2 {0, ...,m2} do

10: if Mpq 6= 0 then
11: �noisy,pq add a value from N (0, 1)
12: end if
13: end for
14: X̃.add(A(Xi,M ,�noisy))
15: Ỹ .add(Yi)
16: end if
17: end for

B. Theoretical Analysis of GRASP

In this subsection, we present the theoretical analysis of
GRASP, aiming to answer two main questions: 1) Why are
gradient-based trigger inversion methods effective on triggers
with high effective radius? and 2) Why can GRASP render

trigger inversion ineffective, even though these techniques
perform exceedingly well on existing backdoor attacks?

More specifically, in Section IV-B1, we attempt to bridge
the relationship between trigger effective radius and the ef-
ficiency of gradient-based trigger inversion methods. Due to
the challenging nature of theoretical analyses for the opti-
mization of a generic target function (approximated by a
deep neural network), our analysis focuses on optimization
functions that are high dimensional non-convex but satisfy
the PL condition [13], as well as one-dimensional piece-wise
linear (non-convex) functions, which represent neural networks
using activation functions such as ReLU.

Next, in Section IV-B2, we address the second question. By
proving Theorem 2, we demonstrate that when using GRASP
to inject a trigger, the backdoored model exhibits a higher
local Lipschitz constant around the trigger-inserted points,
effectively reducing the trigger’s effective radius and rendering
trigger inversion less effective.

1) Why Inversion Works on Large Effective Radius: To
gain insights into the effectiveness of gradient-based trigger
inversion methods on triggers with large effective radius, we
analyze the optimization behavior of two types of functions
under different constraints. These functions serve as simplified
approximations of the target functions in deep neural networks.

First, we study the gradient-based optimization of a non-
convex function, starting with a one-dimensional function. In
this scenario, we consider the target function as a piece-wise
linear function, representing a neural network that employs
activation functions such as ReLU. Theorem 1 establishes
the positive relationship between the effective radius of a
trigger (as the global optimum of the target function) and the
probability that the gradient-based optimizer converges to the
trigger.

Theorem 1. Given a piece-wise linear function `(·) : [a, b] !
[0, 1] with global optimum on a convex hull (there exist a c

in this convex hull, such that `(c) > `(x) for any x 2 [a, b]),
after n iterations, a gradient-based optimizer starting from
a random initialization converges to the optimum with the
probability:

1�B
�1
1 (b� a)�1(4�B1B2)

n(1�B1B2)] (3)

where B1 > 0 is a component indicating the area under the
desired convex hull and B2 > 0 is a component indicating
the likelihood of the linear pieces outside the convex hull
jumping into the convex hull during a gradient-based iteration.
We present an example in Appendix Fig 34 to provide a visual
illustration of the intuition behind the desired convex hull and
the area outside of the desired convex hull. (For details, see
the proof of Theorem 1 in Appendix A.)

Notably, in the gradient-based optimization for trigger
inversion, the optima represent the desirable trigger-inserted
points. A larger convex hull is positively correlated with a
larger effective radius of the trigger, increasing the probability
that the gradient-based trigger inversion identifies the trigger.

Additionally, in the Appendix C, we prove in Theorem 3
that, when the target function is high dimensional non-convex
but satisfies the PL condition [13], the gradient-based opti-
mization algorithms converge faster to the desirable optimum

6

(i.e., the trigger-inserted point) if the local Lipschitz constant
near the optimum is lower. As shown in recent research [44],
[16], the neural network with high robustness tends to have a
lower local Lipschitz constant. Our analysis further illustrates
the high correlation between the trigger effective radius and
the effectiveness of gradient-based trigger inversion methods.

2) Why Inversion Fails under GRASP: In this section, we
analyze the local Lipschitz constant around trigger-inserted
samples, specifically how it is influenced by the noise level
(measured by the parameter c) in the GRASP algorithm. A
greater local Lipschitz constant implies steeper output around
trigger-inserted points, leading to a smaller trigger effective
radius, which in turn makes trigger inversion less effective.
Theorem 2 demonstrates that when each of the two typical
noise distributions is used, the GRASP-poisoned model will
have a greater local Lipschitz constant around x than the model
under the data poisoning attack without using GRASP, such
as BadNet[10].

Formally, consider a single case in GRASP data poi-
soning: a trigger (M ,�) is injected into a single normal
data point (x, y), resulting in the trigger-inserted data point
(x0

, yt), where x
0 = A(x,M ,�). Let (x⇤

, y) be the trigger-
inserted data point with noise ✏ added on the trigger part,
which is sampled from the chosen noise distribution. Hence,
x
⇤ = A(x,M ,�) + c · ✏ ·M . Let f be the GRASP-poisoned

classification model, which we assume is astute at (x, y),
(x⇤

, y) and (x0
, yt).

Theorem 2. If the noise ✏ ⇠ N (0, 1) (i.e., the white noise),

and c < kx0 � xk2 ·
�
⇣

|m⇤|
2

⌘

p
2�

⇣
|m⇤|+1

2

⌘ , where |m⇤| is the l1 norm

(i.e., the size) of the trigger, � is the Euler’s gamma function. A
model attacked by a backdoor attack and enhanced by GRASP
using the training data points (x, y), (x0

, yt) and (x⇤
, y) has

a greater local Lipschitz constant around x than the model
backdoored by the same attack without the enhancement by
GRASP using the training data points (x, y), (x0

, yt).

Similarly, if ✏ ⇠ uniform(�1, 1), and c < kx0 � xk2, the
GRASP-enhanced model has greater local Lipschitz constant
around x than the model without the enhancement.

The proof of Theorem 2 is provided in Section B of the Ap-
pendix. This theorem establishes a theoretical foundation for
understanding how the magnitude of noise impacts the trigger
effective radius when using the GRASP-enhanced backdoor.
Specifically, it demonstrates that if the level of noise utilized in
GRASP is bounded by the l2-distance between a normal data
point x and a trigger-inserted point x

0, the model poisoned
by GRASP will exhibit a greater local Lipschitz constant in
the vicinity of x

0. Intuitively, this results in a steeper output
around x

0 compared to the model compromised by traditional
backdoor attacks, such as BadNet. However, deriving the direct
relationship between the magnitude of noise and the trigger
effective radius is challenging. Instead, we present a relation-
ship between the magnitude of noise and the local Lipschitz
constant around the trigger area, as the local Lipschitz constant
serves as an upper bound reflecting the trigger’s effective
influence. Integrating the insights from Theorem 2 with those
from Theorems 1 in Section IV-B1, we infer that GRASP has
the potential to reduce the effectiveness of trigger inversion

techniques, thereby enhancing the stealthiness of the backdoor
attack.

C. Impact of Enhancement Rate in GRASP

In GRASP, the enhancement rate � is used to control the
proportion of augmentation data within the poisoning process:
� = Ne

Np
where Ne denotes the number of enhanced data points,

and Np denotes the number of poisoned data points.

In general deep learning augmentation training, the overall
robustness of the model can be improved by introducing more
augmented data into the training dataset through techniques
such as flipping, translating, masking, and adding noise to
all training data. However, in GRASP, our goal is to reduce
the trigger effective radius. Since the trigger’s characteristics
are much simpler compared to the entire model, reducing
the trigger effective radius is much easier than enhancing the
model robustness. Therefore, augmenting only a portion of
the poisoning data can effectively reduce the trigger effective
radius.

To demonstrate this point, we conduct an experiment on
CIFAR-10 to enhance the BadNet attack with GRASP using
different � values, while keeping c = 0.1. The results are
shown in Fig. 4, where the x-axis denotes the enhancement rate
�, and the y-axis on the left presents the fold-change of the
average trigger effective radius of trigger-inserted data points,
indicating the effective radius of the trigger. The blue line in
the figure shows the relationship between � and the effective
radius. We observe that an increase in the enhancement rate
� will only lead to the decrease in the trigger effective radius
when � < 10%. When � > 10%, further increasing � values
do not affect the trigger effective radius. These results suggest
adding 10% enhanced data points into the poisoning data will
reach the optimal enhancement effect on the BadNet attack.
We observe similar results on the other backdoor attacks as
well. We also present the test accuracy (ACC; the red line) and
the attack success rate (ASR; the yellow line) of backdoored
models, as well as the detection performance of NC (AUC;
the green line) Fig. 4.

In the Appendix, we further elaborate on the impact of
� under conditions involving more complex trigger types.
Broadly, for more intricate trigger types like those cited in
[29], [25], a � value reaching 10% is sufficient to substantially
reduce the trigger effective radius to a low enough point,
thereby allowing evasion of backdoor detection.

Figure 4: The fold-change of the average trigger effective ra-
dius of the trigger-inserted data points in the GRASP attacked
models compared with the BadNet attacked models.

7

D. Impact of Noise Level in GRASP

Figure 5: The fold-change of the average trigger effective ra-
dius of the trigger-inserted data points in the GRASP attacked
models compared with the BadNet attacked models.

In this section, we investigate the impact of the noise level
c on the trigger and the backdoored model. We systematically
alter the magnitude of c to generate the backdoors with
different trigger effective radius. Subsequently, we evaluate
their susceptibility or resilience to evasion detection, aiming to
investigate the relation between the magnitude of the trigger’s
effective radius and the ability to evade detection of backdoor
attacks. More specifically, as explained in Section IV-A, the
noise added to a trigger reduces its effective radius, and the
magnitude of the additive noise introduced by GRASP is
controlled through the parameter c. The smaller the magnitude
of the noise (controlled by c), the smaller effective radius of the
trigger is. Following Section IV-C, we conduct an experiment
on CIFAR-10 to enhance the BadNet attack by using GRASP
with different noise level c, but the same poison rate of 10%.
The results are shown in Fig. 5, where the x-axis denotes
the noise level c, and the y-axis on the left denotes the fold-
change of the average trigger effective radius in trigger-inserted
samples, which indicates the effective radius of the trigger. The
blue line in the figure shows the relationship between c and the
effective radius. We observe that with the increase of the noise
level c, the trigger effective radius increases. We also present
the test accuracy (ACC; the red line) and the attack success
rate (ASR; the yellow line) of backdoored models, as well as
the detection performance of NC (AUC; the green line) in the
figure.

When the noise level is low (< 0.075), ACC and ASR are
slightly affected. As discussed earlier, a very small c makes the
trigger effective radius degrade below that of the primary task
of the target model (Details in Section VII), subjecting GRASP
to backdoor mitigation techniques such as RAB [46] that nul-
lify the effect of the trigger. The detection effectiveness of NC
improves with the increase of c. This echoes our observation in
Section III that the detection performance positively correlates
with the trigger effective radius. However, existing inversion-
based detection methods, such as NC [45] used in this example,
are less effective against GRASP as the AUC remains low in
Fig. 5 under different noise levels. In the following section,
we will further evaluate the capability of GRASP in evading
backdoor detection methods.

E. Impact on Learning Optimizer

In this chapter, we investigate the effectiveness of trigger
inversion employing three distinct optimizers: SGD (a first-
order method), Adam [15] (a first-order method augmented
with momentum), and AdamHessian [50] (a second-order
method also incorporating momentum). Specifically, we ad-
here to the evaluation framework delineated in Section V,
applying the Neural Cleanse (NC) method to reverse po-
tential backdoor in models potentially compromised by the
GRASP-enhanced BadNet on the CIFAR-10 dataset. For the
momentum-inclusive optimizers, we fix the momentum param-
eter at 0.9, exploring a range of learning rates (step sizes)
including 0.0001, 0.0005, 0.001, 0.0015, and 0.002. Note that,
under conventional experimental settings, the learning rate is
typically selected within the range of 0.001 to 0.005. Here, we
deliberately choose considerably lower learning rates, aiming
to underscore the remarkable stealthiness of GRASP-enhanced
BadNet, even when subjected to trigger inversion with small
learning rates. Figure 6 illustrates the variation of the Detection
AUC in response to changing step sizes, revealing that even at
an exceptionally small step size (learning rate = 0.0001), the
GRASP-enhanced BadNet sustains a relatively low detection
AUC (around 55%), thereby demonstrating its resilience to
various settings of optimization methods.

Figure 6: Impact of optimizers and learning rate

We also investigate whether the decay of the learning rate
would impact the performance of GRASP. Specifically, we
follow the setup in Section IV-C to evaluate the GRASP-
enhanced BadNet attack on CIFAR-10 with different decay
rates of the learning rate (ranging from 0.001 to 0.01) while
using NC for detection (with lr = 1e-3). It’s worth noting that
in this case, we set the epoch of NC as 100, indicating that
in the most extreme case (decay rate = 0.01), the learning
rate would decrease by half (to lr = 5e-4). Fig 35 in the
Appendix illustrates the AUC, ASR, and the trigger effective
radius under various decay rates of the learning rate. Overall,
the decay rate of the learning rate does not significantly impact
the performance of GRASP.

F. Impact on Environmental Factors

In this subsection, we analyze the potential impact of
GRASP on the trigger effectiveness under various background
factors. Specifically, we investigate whether the trigger effec-
tiveness, measured by the ASR, is compromised under natural
disturbances (corruptions) affecting the entire image, such as
the brightness, the contrast, and the color.

8

To address this issue, we have devised experiments to eval-
uate the Impact of Environmental Factors on the robustness of
the backdoor mechanism. To ensure a fair and comprehensive
assessment, we employ the imagecorruptions [31] benchmark
to test the backdoor’s effectiveness against corrupted trans-
formations. The imagecorruptions benchmark encompasses
15 types of algorithmically generated corruptions, spanning
categories of noise, blur, weather, and digital alterations. Each
corruption type is graded on a severity scale from 1 to 5,
where a severity of 1 represents relatively mild corruption,
and a severity of 5 indicates more severe corruption. In here,
we present the results for the three most common types of cor-
ruptions: Brightness, Contrast, and JPEG Compression, which
are pivotal in understanding the robustness of the backdoor
under varying conditions.

In this study, we employed the ResNet-101 neural network
architecture to train two distinct models on the CIFAR-10
dataset: one model contaminated with a backdoor through
the BadNet methodology, and another utilizing a backdoor
implemented via the GRASP-enhanced BadNet approach. As
depicted in Table I, we present the Attack Success Rate (ASR)
of these corrupted testing data, subjected to three different
types of corruption and five varying degrees of severity on
trigger-inserted testing data.

Upon examination, it is discernible that under varying
levels of brightness and JPEG compression corruption, the
performance of the BadNet model and the GRASP-enhanced
BadNet model are relatively similar, with a general disparity
of around 2%. However, under contrast corruption, a marked
improvement is observed in the performance of the GRASP-
enhanced BadNet model compared to the BadNet model, with
differences ranging from 4% to 16%.

A comprehensive comparison encompassing all 15 types
of corruption from the imagecorruptions benchmark is docu-
mented in the Appendix. It is noteworthy that in the majority
of corruption scenarios, the performance of the two models is
comparable.

Table I: Backdoor effectiveness Comparison: ASR of the
BadNet model and the GRASP-enhanced BadNet model across
various corruption types and severity levels

Corruption Severity

1 2 3 4 5

BadNet

Brightness 91.2% 88.7% 85.6% 81.0% 74.6%
Contrast 70.0% 55.2% 16.8% 8.9% 6.9%

JPEG comp. 71.4% 61.2% 59.2% 44.3% 39.2%

GRASP

Brightness 90.0% 88.2% 84.9% 78.7% 69.2%
Contrast 76.6% 59.4% 33.2% 16.9% 13.6%

JPEG comp. 69.4% 64.1% 60.1% 50.9% 42.5%

V. AGAINST BACKDOOR DETECTION

In this section, we evaluate the effectiveness of GRASP
against two types of backdoor detection methods: inversion-
based and weight analysis-based backdoor defenses. We com-

pare the performance of these detection methods against dif-
ferent attacks before and after being enhanced by GRASP.

A. Datasets and Settings

Datasets. We analyzed backdoor attacks on the models trained
using three public datasets: MNIST [19], CIFAR10 [17], and
Tiny ImageNet [18], as shown in Table II. Our experiments
were conducted on a server with one AMD Ryzen 3980X 3.2
GHz 48-core processor and one NVIDIA RTX 3090 GPU.

Dataset → MNIST Tiny ImageNet CIFAR10

Training samples (#) 60,000 160,000 50,000
Testing samples (#) 10,000 40,000 10,000

Table II: Datasets statistics

Backdoor Attacks. We considered seven existing backdoor
attacks: BadNet [10], LSBA [34], Composite [25], clean
label [38], DEFEAT [52], IMC [33], and adaptive-blend [35].
These backdoor attacks fall into four general categories: patch
trigger, clean label, imperceptible, and latent space inseparable.
For each attack, we generated and evaluated 24 backdoored
models: for each of the three different datasets (MNIST,
CIFAR-10, and Tiny ImageNet), we generated two models us-
ing each of four different neural network architectures (VGG-
16, ResNet-101, ShuffleNet, and ResNet18, respectively).

• Patch Trigger. Patch triggers typically utilize a small pattern
as the trigger for the backdoor attack. We selected BadNet [10],
LSBA [34], and Composite [25] in this category and used two
patterns (as shown in Fig. 32 in the Appendix) as the patch
triggers in the backdoor attack.

• Clean Label. Clean-label backdoor attacks contaminate the
training dataset with clean-label data. We selected Latent [38]
to represent the attacks in this category.

• Imperceptible. An imperceptible backdoor attack aims to
design a backdoor trigger that can evade human inspection.
Most of these attacks enhance backdoor stealthiness through
universal adversarial perturbation (UAP). We selected DE-
FEAT [52] and IMC [33] in this category for our experiments.

• Latent Space Inseparable. A latent space inseparable back-
door attack aims to design a backdoor trigger so that in the
target model’s latent space, the trigger-inserted samples are
close to the clean samples in the target class. We selected
Adaptive-Blend [35] in this category for our experiment.

• Attack Parameters.We inserted 3,600, 3,000, and 9,600
poisoning data samples (i.e., a poisoning rate of ↵ = 6%) into
the CIFAR-10, MNIST, and Tiny ImageNet training datasets,
respectively. These samples were uniformly selected from
each class, establishing source-agnostic backdoors. Following
the methods in the original papers, the trigger in IMC was
synthesized as described in [33], and the trigger in Latent was
randomly initialized as detailed in [38].

• GRASP. For each attack mentioned above, we combine them
with GRASP by algorithm 1. More specifically, we set ↵ = 0.6
and � = 10% (Algorithm 1).

9

Trigger inversion. We implemented and tested four back-
door countermeasures based upon trigger inversion: Neural
Cleanse [45], TABOR [11], K-arm [39], and Pixel [43]. In
our experiments, we utilized 10% of the training data and the
default hyper-parameters provided in the original papers for
trigger reconstruction.

B. Putative Trigger Effectiveness

Existing methods measure the effectiveness of trigger inver-
sion by computing the similarity between the reconstructed and
real triggers, e.g., based on l1 distance, which is insufficient
since a similar pattern may not have a similar backdoor
effect (i.e., ASR). We propose a set of metrics to measure
trigger accuracy. Below we present our experimental results
on the effectiveness of backdoor detection by four trigger
inversion algorithms: (NC [45], TABOR [11], Pixel [43], and
K-arm [39]), by comparing the effectiveness of the backdoor
attacks before and after the enhancement by GRASP. More
specifically, after the trigger is generated by each backdoor
attack method, we use GRASP to enhance this trigger as
described in section IV-A. Here, we append a symbol “*” to
the name of each backdoor attack to indicate the respective
attack enhanced by GRASP. For example, “BadNet*” indicates
BadNet enhanced by GRASP.

Metrics. In our experimental study, we utilize four quantitative
metrics to measure the effectiveness of a backdoor in evading a
gradient-based inversion algorithm (for reconstructing a trigger
(�,M) in a model f):

• ✏1: The difference between the real trigger’s ASR on
the backdoored model and that on the “sanitized” model
retrained to unlearn the reconstructed trigger: that is, ✏1 =
|ASRunlearn �ASR|. A smaller difference indicates that the
reconstructed trigger is less accurate, thus, unlearning is less
effective.

• ✏2: The Jaccard distance between the trigger mask of the
reconstructed trigger M

0 and of the real trigger M can be
calculated as J(M 0

,M) = |M 0\M |
|M 0|+|M |�|M 0\M | .

• ✏3: The ASR of the reconstructed trigger (M 0
,�0) on a

clean model f⇤: ✏4 = ASR
0
f⇤ . A large ASR

0
f⇤ indicates that

the reconstructed trigger is likely a natural trigger [29], not the
real one meant to be recovered.

• ✏4: AUC score of backdoor detection. The trigger inversion
methods often use the l0 norm of the reconstructed trigger
as the measurement to distinguish backdoored models from
benign models: the lower of the l0 norm, the more probable
the model has been backdoored. An AUC score of 50% in
backdoor model detection suggests that the backdoored model
is indistinguishable from benign models.

Notably, for a trigger inversion algorithm with ideal per-
formance, ✏3 is anticipated to be close to 0, while ✏1,✏2 and
✏4 are anticipated to be close to 1.

Experimental results. Here we present our results as mea-
sured by the aforementioned metrics. Due to the space limit,
we defer our complete experimental results to Table XI in
Appendix and only report representative results (✏4) in this
section.

• ✏1: effectiveness of unlearning. The reconstructed trigger
can be used for backdoor unlearning [45], [11], [39]. After
we reconstructed the trigger for a given backdoored model
during the unlearning procedure, we first built an unlearning
dataset, including randomly selected 10% of the training data
(6,000 in MNIST, 5,000 in CIFAR-10, and 16,000 in Tiny
ImageNet). Then, we added the reconstructed trigger onto 10%
of the unlearning dataset (600 in MNIST, 500 in CIFAR-
10, and 1,600 in Tiny ImageNet) while keeping their class
labels intact (the original source class). After that, we fine-
tuned the model on this unlearning dataset. We used SGD
as the optimizer in the experiment and set the learning rate
= 0.01 and momentum = 0.9. As shown in Table XI, after
unlearning with the reconstructed trigger by various trigger
inversion algorithms, most models poisoned by the attack
enhanced by GRASP still preserve much higher ASRs (almost
identical to those before unlearning), so that the GRASP-
enhanced attacks achieve lower ✏1 than respective backdoor
attack. TableXI shows that on CIFAR-10, BadNet achieves
the worse performance against the trigger inversion defense
of Tabor (✏1 = 97.5%), which is significantly enhanced by
GRASP (✏1 = 1.5%). Among other attacks, LSBA* has the
best performance under pixel as 0.6%.

• ✏2: distance between trigger masks. We observed that the
reconstructed triggers from the models poisoned by GRASP-
enhanced attacks have very low similarity with the real triggers
(i.e., the overlap between the real and the reconstructed triggers
are less than 20%). By comparison, the reconstructed triggers
from the models under the backdoor attacks without GRASP
enhancement overlap with the real triggers by about 10% -
60%. On CIFAR-10, when enhanced by GRASP, DEFEAT*
has worse performance against pixel (✏2 = 0.13). While
BadNet* has the best performance against NC (✏2 = 0.00)
(Table XI).

• ✏3: ASR of the reconstructed triggers on a clean model.

We also computed ✏3, the ASR of the reconstructed triggers
from the poisoned models on a clean model for the same
task. In our experiment, we used CIFAR-10, MNIST, and Tiny
ImageNet as the clean datasets to train the clean models. After
a trigger is reconstructed from a poisoned model, we randomly
select 500 images (200 from Tiny ImageNet) from the source
class of the clean dataset and insert the trigger on them. The
ASR was then measured on this set of trigger-inserted samples
on the clean model. As shown in Table XI, the reconstructed
triggers from the models poisoned by GRASP-enhanced at-
tacks have a relatively high ASRs on the clean model, almost
comparable with their ASRs on the poisoned models, whereas
the reconstructed triggers from the models poisoned by the
attack without GRASP enhancement have much lower ASRs.
This indicates that any useful trigger recovered from the
models poisoned by GRASP-enhanced attacks are likely to be
a natural trigger introduced by the legitimate learning process
that has nothing to do with the injected triggers. On dataset
CIFAR-10, when enhanced by GRASP, LSBA* has worse
performance against pixel (✏3 = 42.1%) while Adaptive-Blend
has the best performance against (✏ = 28.3%).

• ✏4 AUC. As mentioned earlier, our research shows that trigger
inversion algorithms are unlikely to effectively reconstruct and
remove the triggers injected by GRASP, even though they are
largely successful on the triggers injected by existing backdoor

10

attacks. In some cases, however, the backdoor defense methods
just need to detect the infected models (and discard them
afterward), even though they cannot accurately reconstruct the
real trigger. Our research evaluated how successfully these
trigger inversion methods can detect the models poisoned
by GRASP-enhanced attacks. Specifically, we train 24 clean
models; for each of the three different datasets (MNIST,
CIFAR-10, and Tiny ImageNet), we generate two clean models
using each of four different neural network structures (VGG-
16, ResNet-101, ShuffleNet, and ResNet18, respectively) to
analyze their detection accuracy. Similarly, we train 24 models
for each attack on three datasets using four neural network
structures. In our research, we measured the AUC score of
NC, TABOR, K-arm, and Pixel on these 48 models (24 clean
models and 24 backdoored models). As shown in Table III, we
present the result of using VGG-16 network structure (Delay
rest of the results in Appendix F). Generally speaking, the AUC
scores of different defense strategies from the models poisoned
by different backdoor attacks with GRASP enhancement are
significantly smaller than those from the models poisoned by
the same attack without GRASP enhancement, which indicates
the better effect of the GRASP-enhanced attacks to evade
the detection by all tested triggers inversion algorithms. In
particular, LSBA enhanced by GRASP successfully evades the
detection by the trigger inversion algorithms with AUCs below
65% for all of them.

Additionally, we delve deeper into the exploration of
backdoor removal using putative triggers in Appendix F, where
we present a comparative experimental analysis. The results
from these experiments demonstrate that backdoor attacks
enhanced by GRASP are more resilient to removal attempts
using reverse-engineered putative triggers.

C. Against Weight Analysis Detection

Weight analysis aims to distinguish backdoor and benign
models by analyzing the signals in model parameters. Specif-
ically, such distinguishable signals are first retrieved, often
through training a classifier on the parameters of some sample
models, which are subsequently utilized to predict whether any
given model is backdoored [9][5][8]. In this section, we eval-
uated the effectiveness of GRASP against the weight analysis-
based backdoor detection methods, which have been shown to
perform well in the recent backdoor competitions [14], [1]. In
the Appendix, through the theoretical analysis, we show that
the backdoored models poisoned by GRASP-enhanced attacks
are not further away from the benign models for the same
primary task than the backdoored model poisoned by the same
attack without GRASP enhancement.

Here we selected Trojan Signature (TS)[9], MNTD[47],
Activation Clustering (AC) [5] , Beatrix [30] and ABS [28], the
representative methods based on weight analysis. We computed
their AUCs on 20 models using VGG16, including ten clean
models and ten backdoored models, respectively, trained on
each of the three datasets (CIFA-10, MNIST, and Tiny Im-
ageNet). The backdoored models were poisoned by the five
backdoor attacks with or without the GRASP enhancement,
respectively. Here, the five attacks were selected because they
were shown to be effective against the weight analysis-based
backdoor defense. Due to the space limit, we only present
the most important results in Table IV, the entire results are

presented in Table XII. In general, the detection ability (AUC)
by the weight analysis methods is lower or comparable on the
five attacks when they are enhanced by GRASP, indicating
GRASP enhancement does not reduce the effectiveness of
these attacks against the weight analysis backdoor defense.

VI. RESILIENCE TO BACKDOOR MITIGATION

In this section, we evaluated the resilience of GRASP to
backdoor defense methods that do not rely on backdoor detec-
tion. In our experiments, we considered not only the five types
of backdoor defenses (mitigation or unlearning) as summarized
in [23]: Preprocessing-based Defenses, Model Reconstruction,
Poison Suppression, and Certified Backdoor Defense, which
are not based on backdoor detection techniques such as trigger
inversion or weight analysis, but also an emerging category,
Training Procedure Defense. We selected a total of seven rep-
resentative defense methods across these six types: DeepSweep
(DS)[51], Fine-pruning (FP)[27], NAD [22], GangSweep
(GS)[53], DBD[8], RAB [46], ABL [21], and compared their
performance in defending against the chosen backdoor attacks
before and after the GRASP enhancement.

We measured the ASRs of backdoors after the backdoor
mitigation on the models (VGG16) poisoned by the selected
backdoor attacks with or without the GRASP enhancement,
respectively. Here, for each defense method, we selected a
backdoor attack that has been shown to effectively evade
the respective defense in previous studies to demonstrate the
enhancement by GRASP does not reduce its effectiveness to
evade the respective defense methods.

We summarize the results from both experiments in Ta-
ble V. Except for special notes, all backdoored models before
mitigation achieve an ASR above 95%. Here, the notations
are the same as used in Section V: a symbol “*” is appended
to the name of the backdoor attack to indicate the respective
attack enhanced by GRASP. Below, we discuss the results of
different defense methods in detail.

Preprocessing-based Defenses. Preprocessing-based defenses
aim to remove the putative poison samples in the training
dataset. DeepSweep (DS) [51] is selected as the representative
in this category. We tested the average ASR against the models
infected by HaS-Net [2], which is a low-confidence backdoor
attack. The ASRs of the models poisoned by the GRASP-
enhanced HaS-Net attack (HaS-Net*) after the DeepSweep
mitigation is comparable with those on the model poisoned
by the HaS-Net attack (Table V), which indicates GRASP
enhancement did not make the Has-Net backdoored models
more easily mitigated by the DeepSweep.

Model Reconstruction. Fine-pruning [27] and NAD [22] are
two typical model reconstruction methods to remove the back-
door. We conducted an experiment to compare the performance
of Fine-pruning and NAD to defend against DEFEAT [52] with
or without GRASP enhancement (DEFEAT or DEFEAT*).
Table V shows the ASRs of the injected trigger after fine-
pruning and NAD on the respective backdoored models. Note
that the model reconstruction methods typically strike a trade-
off between the accuracy of the primary task (ACC) and ASR.
In our experiment, to keep the fidelity of the mitigation, we
control the mitigation procedure such that the ACC does not

11

CIFAR-10 MNIST Tiny ImageNet

NC Tabor K-arm Pixel NC Tabor K-arm Pixel NC Tabor K-arm Pixel

✏4: AUC

BadNet 79.9% 84.0% 85.3% 91.8% 78.6% 81.0% 82.7% 90.3% 75.6% 77.8% 80.4% 84.9%
BadNet* 54.7% 56.1% 60.1% 80.2% 54.0% 55.0% 60.5% 83.9% 55.7% 56.7% 57.5% 78.5%
LSBA 66.5% 68.2% 72.1% 81.0% 67.7% 69.6% 70.7% 78.4% 63.5% 70.0% 70.5% 85.8%
LSBA* 55.1% 55.8% 58.8% 63.7% 53.2% 57.3% 55.8% 62.7% 55.8% 52.0% 56.8% 64.6%

Composite 67.9% 65.9% 70.1% 85.2% 66.4% 65.0% 68.8% 82.5% 65.0% 65.0% 65.9% 81.7%
Composite* 53.5% 58.6% 61.0% 72.9% 52.5% 52.8% 59.5% 71.8% 54.5% 53.7% 58.1% 70.5%

Latent 79.2% 77.1% 78.8% 87.9% 79.9% 78.8% 81.1% 89.5% 73.6% 79.2% 74.9% 83.5%
Latent* 52.5% 54.5% 59.8% 76.0% 54.2% 54.8% 59.0% 74.6% 53.9% 56.0% 56.5% 70.8%

DEFEAT 65.2% 63.2% 77.8% 69.6% 67.0% 69.8% 80.5% 71.1% 63.6% 67.3% 77.0% 67.6%
DEFEAT* 58.8% 59.9% 71.6% 61.4% 58.9% 58.5% 70.9% 59.7% 58.3% 58.9% 72.0% 62.6%

IMC 68.0% 64.2% 76.9% 79.8% 66.6% 68.8% 76.7% 80.2% 67.5% 73.9% 76.3% 78.0%
IMC* 55.9% 55.3% 71.9% 71.1% 54.7% 52.9% 74.0% 73.6% 64.8% 64.7% 71.8% 75.1%

Adaptive-Blend 67.1% 66.5% 68.2% 76.9% 59.9% 62.5% 66.0% 81.5% 62.9% 65.0% 65.5% 76.8%
Adaptive-Blend* 54.2% 56.3% 57.2% 62.8% 55.1% 57.1% 62.0% 73.2% 54.5% 53.5% 54.8% 68.2%

Table III: The AUCs of backdoor detection by trigger inversion methods on the backdoored models poisoned by different backdoor
attacks with and without the enhancement of GRASP. The attack with the GRASP enhancement is denoted by the symbol “*”
appended to the name of the respective attack.

CIFAR-10 MNIST Tiny ImageNet

ABS DFST 67.4% 65.0% 67.2%
DFST* 63.1% 62.7% 61.4%

AC AB 68.4% 69.1% 66.6%
AB* 57.2% 59.0% 60.1%

TS DEFEAT 68.9% 67.3% 66.2%
DEFEAT* 60.5% 68.0% 65.1%

MNTD DEFEAT 69.2% 73.1% 70.9%
DEFEAT* 66.0% 72.9% 69.4%

Beatrix Low-c 58.3% 72.3% 68.1%
Low-c* 56.9% 72.4% 67.3%

Table IV: The AUCs of weight analysis-based backdoor detec-
tion methods on the benign and backdoored models poisoned
by DFST, AB, MNTD, Beatrix and DEFEAT with and without
GRASP enhancement.

decrease by more than 5%. We use 10% of clean training data
for mitigation, and for fine-pruning, we set 10% activation
pruning.

Overall, the ASRs of the Fine-prune and NAD on the
DEFEAT* attacked models are comparable with the DEFEAT
attacked models, indicating the DEFEAT attack with and
without GRASP enhancement are similarly effective against
the Fine-pruning and NAD mitigation methods.

Non-Gradient Based Trigger Synthesis. Gangsweep [53] is
a non-gradient-based trigger synthesis defense that used the
reconstructed trigger for backdoor mitigation. We performed
an experimental study to confirm Adaptive-blend enhanced by
GRASP (Adaptive-Blend*) does not generate the backdoors
that can be easily mitigated by Gangsweep (GS). Table V
shows the ASRs after the mitigating of Gangsweep on the
backdoored models created by using Adaptive-Blend (AB)

CIFAR-10 MNIST Tiny ImageNet

DS HaS-Net 67.2% 68.9% 65.1%
HaS-Net* 65.1% 68.3% 66.1%

FP DEFEAT 81.4% 87.6% 80.3%
DEFEAT* 83.2% 88.0% 81.9%

NAD DEFEAT 79.2% 81.1% 80.3%
DEFEAT* 79.6% 80.3% 80.7%

DBD IMC 54.2% 59.7% 55.0%
IMC* 63.5% 64.0% 62.6%

GS AB 64.9% 59.3% 62.1%
AB* 65.4% 63.2% 63.5%

RAB DFST 95.3% 94.1% 91.2%
DFST* 94.6% 91.2% 91.4%

ABL AB 91.6% 93.6% 92.5%
AB* 95.2% 96.7% 93.4%

Table V: The ASRs of the backdoored models after the
mitigation by the backdoor mitigation methods, Note that the
high ASR indicates that a backdoor attack is more resilient
to the respective defense method. Here, all models are trained
using three different datasets, and the backdoored models are
infected by different attacks with and without the enhancement
of GRASP. (The attacks enhanced by GRASP is denoted by
“*”).

with or without GRASP enhancement. The ASR on the model
attacked by GRASP-enhanced AB (AB*) is comparable (for
the Tiny ImageNet dataset) or lower (for the CIFAR and
MNIST dataset) than the ASRs on the models attacked by
AB, indicating GRASP enhancement does not make the attack
more easily to be mitigated by the Gangsweep.

Poison Suppression. For poison suppression defense, most
methods (e.g., DBD [12]) learn a backbone of a DNN model

12

via self-supervised learning based on training samples without
their labels to capture those suspicious training data during
the training process. We tested the performance of DBD [12]
defense against models attacked by IMC[33] with and without
GRASP enhancement. As shown in Table V, the ASR of the
DBD in the IMC* attacked models are higher than the IMC
attacked models, indicating GRASP enhancement does not
make the attack more easily to be mitigated by the DBD.

Certified Backdoor Defense. As previously discussed in
Section IV-D, if the value of c in GRASP is chosen to be too
small, specifically leading the trigger effective radius below the
model’s robustness, GRASP might be susceptible to nullifica-
tion by backdoor certification methods. However, the model’s
robustness is typically much larger than the trigger effective
radius, a point we have illustrate and discuss in Section IV-D.
Owing to this fact, GRASP can preserve its stealthiness (by
significantly reducing c) while circumventing nullification by
certification methods (by ensuring that the trigger effective
radius stays larger than the model’s robustness). RAB [46] is
a certified defense method that aims to eliminate the backdoor
in the target model. We performed an experimental study to
confirm GRASP enhancement does not generate the backdoor
that is more easily mitigated by RAB. TableV shows the
ASR of the injected trigger after RAB on the same models
which attacked by DFST[6] and DFST enhanced by GRASP
(DFST*). The ASR on DFST* is comparable to that on
the DFST attacked models (MNIST has the most significant
difference, which DFST* is 2.9% lower than DFST), indicating
combing GRASP backdoored models are not easier to mitigate
by the RAB than the model infected by DFST.

Training procedure Defense Apart from the five types of
mitigation techniques summarized by [23], we observe the
emergence of a new mitigation approach that aims to remove
backdoors during the training process. Notably, ABL[21] seeks
to identify backdoored inputs during the early training stages.
This is because, in a typical backdoored training scenario,
trigger-inserted samples (backdoor task) often learn much
faster than clean data (legitimate task), as the backdoor task
is generally easier than the legitimate task. Based on this
observation, ABL mitigates backdoors by eliminating those
training samples with small losses during the early stages
of the training process. However, we argue that GRASP can
potentially evade ABL. This is because training on the GRASP
poisoned dataset increases the loss for both poisoned and
enhanced data during the initial phase of training. By injecting
both poisoning and enhancement data, GRASP makes the
backdoor task more challenging to learn. Consequently, during
the early training phase, GRASP assists data poisoning in
evading mitigation from ABL.

We conducted an experiment to verify that GRASP en-
hancement does not produce a backdoor that is more easily
mitigated by ABL. Table V displays the ASR of the in-
jected trigger following ABL on the same models attacked
by AB [35] and those enhanced by GRASP (AB*). The ASR
on AB* models is higher than that on the AB-attacked models
(with the least significant difference on CIFAR-10, where AB
is 1.9% lower than AB*), indicating that combining GRASP
with backdoored models does not make them more susceptible
to ABL-based mitigation than models infected by AB.

In summary, we find that for the attacks that effectively
evade backdoor mitigation, the GRASP enhancement will not
make the mitigation less effective. This means that GRASP
enhancement can effectively fend off the existing backdoor
defenses even though it is designed for evading trigger mitiga-
tion. For some mitigation methods like DBD, the IMC attack,
the GRASP enhancement in fact increases their effectiveness.

VII. MITIGATION AND LIMITATION

GRASP can successfully increase the change rate around
the trigger-inserted inputs, effectively reducing the trigger
effective radius of these inputs. Note that the trigger effective
radius should not be reduced to be lower than the primary
task model robustness (primary task effective radius) since
otherwise, the backdoor attack may be defended by a straight-
forward strategy during inference: one can add the noise at
the level above the robust radius of the backdoor task but
below the robust radius of the primary task into each input;
as such, the trigger-inserted inputs will not be predicted as the
target class while the prediction of the benign input will not be
changed, indicating the backdoor is removed without affecting
the primary task. In practice, we found it is easy to reduce the
trigger effective radius while keeping it above the primary task
effective radius, as we observed that in the BadNet backdoor
attack, the trigger robustness is always much greater than the
primary task effective radius (as shown in Fig. 7). Therefore,
it is always possible for GRASP to generate backdoors more
effectively to evade the trigger-inversion algorithms while not
affecting the performance of the primary task.

Figure 7: Blue bars show the ratio between the trigger effective
radius and the primary task effective radius on different
backdoor attacks. The Red bars show the ratio of different
backdoor attacks that are enhanced by GRASP.

In Section IV, we assume the model will always give
approximately 100% confident prediction (as the target class)
on all trigger-inserted inputs. In practice, when this assumption
does not hold, for example, in [2], where a low confidence
backdoor is injected into the model by manipulating the logits
of the poisoning data, the change rate around a perfect trigger
may not be very large. Specifically, the trigger-inserted inputs
may be predicted as the target class with the lowest confidence
in the backdoored model, which turns out to be a perfect
trigger without any constraints on the local Lipschitz constant.
For such backdoors, GRASP cannot further enhance their
stealthiness.

13

VIII. RELATED WORK

The prior study [33] showed that robust learning on the
primary task (i.e., to increase its effective radius) can enhance
the stealthiness of backdoor attacks. However, comparing with
GRASP, this method is less effective because even when it is
difficult to further increase the effective radius of the primary
task, the stealthiness is still insufficient for the backdoor
to evade current detection methods. More importantly, this
method requires the adversary to control the model training
procedure, which is often impractical in real-world attack
scenarios. In comparison, GRASP can be achieved through
data contamination as shown here.

IX. CONCLUSION

In this paper, we analyzed the efficacy of trigger inversion
algorithms in backdoor defense, finding that current backdoor
attacks inject noise-robust triggers, facilitating reconstruction
via gradient-based algorithms. Consequently, we introduced
a gradient shaping (GRASP) strategy to improve backdoor
attacks by diminishing trigger robustness using data poison-
ing, thus evading defenses using trigger inversion. Through
theory and experiments, we showed GRASP’s enhancement
of top stealthy backdoor attacks’ effectiveness against trigger
inversion, without impairing their resistance to other defenses,
including those based on weight analysis.

REFERENCES

[1] “Tdc 2022,” https://trojandetection.ai/, accessed: 2022-09-30.
[2] H. Ali, S. Nepal, S. S. Kanhere, and S. Jha, “Has-nets: A heal and select

mechanism to defend dnns against backdoor attacks for data collection
scenarios,” arXiv preprint arXiv:2012.07474, 2020.

[3] E. Bagdasaryan and V. Shmatikov, “Blind backdoors in deep learning
models,” in 30th USENIX Security Symposium (USENIX Security 21),
2021, pp. 1505–1521.

[4] C. Cartis, N. I. Gould, and P. L. Toint, “Worst-case evaluation
complexity and optimality of second-order methods for nonconvex
smooth optimization,” in Proceedings of the International Congress of
Mathematicians: Rio de Janeiro 2018. World Scientific, 2018, pp.
3711–3750.

[5] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee,
I. Molloy, and B. Srivastava, “Detecting backdoor attacks on deep neural
networks by activation clustering,” arXiv preprint arXiv:1811.03728,
2018.

[6] S. Cheng, Y. Liu, S. Ma, and X. Zhang, “Deep feature space trojan
attack of neural networks by controlled detoxification,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, no. 2, 2021,
pp. 1148–1156.

[7] K. Doan, Y. Lao, W. Zhao, and P. Li, “Lira: Learnable, impercepti-
ble and robust backdoor attacks,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 11 966–11 976.

[8] M. Du, R. Jia, and D. Song, “Robust anomaly detection and
backdoor attack detection via differential privacy,” arXiv preprint
arXiv:1911.07116, 2019.

[9] G. Fields, M. Samragh, M. Javaheripi, F. Koushanfar, and T. Javidi,
“Trojan signatures in dnn weights,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 12–20.

[10] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

[11] W. Guo, L. Wang, X. Xing, M. Du, and D. Song, “Tabor: A highly
accurate approach to inspecting and restoring trojan backdoors in ai
systems,” arXiv preprint arXiv:1908.01763, 2019.

[12] K. Huang, Y. Li, B. Wu, Z. Qin, and K. Ren, “Backdoor defense
via decoupling the training process,” arXiv preprint arXiv:2202.03423,
2022.

[13] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient
and proximal-gradient methods under the polyak-łojasiewicz condition,”
in Joint European conference on machine learning and knowledge
discovery in databases. Springer, 2016, pp. 795–811.

[14] K. Karra, C. Ashcraft, and N. Fendley, “The trojai software framework:
An opensource tool for embedding trojans into deep learning models,”
arXiv preprint arXiv:2003.07233, 2020.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[16] V. Krishnan, A. Makdah, A. AlRahman, and F. Pasqualetti, “Lipschitz
bounds and provably robust training by laplacian smoothing,” Advances
in Neural Information Processing Systems, vol. 33, pp. 10 924–10 935,
2020.

[17] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[18] Y. Le and X. S. Yang, “Tiny imagenet visual recognition challenge,”
2015.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[20] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein, “Train-
ing quantized nets: A deeper understanding,” Advances in Neural
Information Processing Systems, vol. 30, 2017.

[21] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Anti-backdoor
learning: Training clean models on poisoned data,” in Advances
in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, 2021, pp. 14 900–14 912. [Online].
Available: https://proceedings.neurips.cc/paper/2021

[22] ——, “Neural attention distillation: Erasing backdoor triggers from
deep neural networks,” in 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021, 2021. [Online]. Available: https://openreview.net/forum?id=
9l0K4OM-oXE

[23] Y. Li, B. Wu, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor learning: A
survey,” arXiv preprint arXiv:2007.08745, 2020.

[24] Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu, “Backdoorbench: a
comprehensive benchmark of backdoor attack and defense methods,”
in https://github.com/SCLBD/BackdoorBench, 2021.

[25] J. Lin, L. Xu, Y. Liu, and X. Zhang, “Composite backdoor attack
for deep neural network by mixing existing benign features,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 113–131.

[26] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical programming, vol. 45, no. 1-3,
pp. 503–528, 1989.

[27] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending
against backdooring attacks on deep neural networks,” in International
Symposium on Research in Attacks, Intrusions, and Defenses.
Springer, 2018, pp. 273–294.

[28] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang, “Abs:
Scanning neural networks for back-doors by artificial brain stimulation,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1265–1282.

[29] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural
backdoor attack on deep neural networks,” in European Conference on
Computer Vision. Springer, 2020, pp. 182–199.

[30] W. Ma, D. Wang, R. Sun, M. Xue, S. Wen, and Y. Xiang, “The”
beatrix”resurrections: Robust backdoor detection via gram matrices,”
arXiv preprint arXiv:2209.11715, 2022.

[31] C. Michaelis, B. Mitzkus, R. Geirhos, E. Rusak, O. Bringmann, A. S.
Ecker, M. Bethge, and W. Brendel, “Benchmarking robustness in object
detection: Autonomous driving when winter is coming,” arXiv preprint
arXiv:1907.07484, 2019.

[32] A. Nguyen and A. Tran, “Wanet–imperceptible warping-based backdoor
attack,” arXiv preprint arXiv:2102.10369, 2021.

[33] R. Pang, H. Shen, X. Zhang, S. Ji, Y. Vorobeychik, X. Luo, A. Liu,
and T. Wang, “A tale of evil twins: Adversarial inputs versus poisoned
models,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020, pp. 85–99.

14

https://trojandetection.ai/
https://proceedings.neurips.cc/paper/2021
https://openreview.net/forum?id=9l0K4OM-oXE
https://openreview.net/forum?id=9l0K4OM-oXE

[34] M. Peng, Z. Xiong, M. Sun, and P. Li, “Label-smoothed backdoor
attack,” arXiv preprint arXiv:2202.11203, 2022.

[35] X. Qi, T. Xie, S. Mahloujifar, and P. Mittal, “Circumventing back-
door defenses that are based on latent separability,” arXiv preprint
arXiv:2205.13613, 2022.

[36] A. Rajabi, B. Ramasubramanian, and R. Poovendran, “Trojan horse
training for breaking defenses against backdoor attacks in deep learn-
ing,” arXiv preprint arXiv:2203.15506, 2022.

[37] Y. Ren, L. Li, and J. Zhou, “Simtrojan: Stealthy backdoor attack,”
in 2021 IEEE International Conference on Image Processing (ICIP).
IEEE, 2021, pp. 819–823.

[38] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumi-
tras, and T. Goldstein, “Poison frogs! targeted clean-label poisoning
attacks on neural networks,” Advances in neural information processing
systems, vol. 31, 2018.

[39] G. Shen, Y. Liu, G. Tao, S. An, Q. Xu, S. Cheng, S. Ma, and
X. Zhang, “Backdoor scanning for deep neural networks through k-
arm optimization,” in International Conference on Machine Learning.
PMLR, 2021, pp. 9525–9536.

[40] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of big data, vol. 6, no. 1, pp. 1–48,
2019.

[41] I. Shumailov, Z. Shumaylov, D. Kazhdan, Y. Zhao, N. Papernot, M. A.
Erdogdu, and R. J. Anderson, “Manipulating sgd with data ordering
attacks,” Advances in Neural Information Processing Systems, vol. 34,
pp. 18 021–18 032, 2021.

[42] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, “Intriguing properties of neural networks,” arXiv
preprint arXiv:1312.6199, 2013.

[43] G. Tao, G. Shen, Y. Liu, S. An, Q. Xu, S. Ma, P. Li, and X. Zhang,
“Better trigger inversion optimization in backdoor scanning.”

[44] D. Terjék, “Adversarial lipschitz regularization,” arXiv preprint
arXiv:1907.05681, 2019.

[45] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 707–723.

[46] M. Weber, X. Xu, B. Karlaš, C. Zhang, and B. Li, “Rab: Provable
robustness against backdoor attacks,” arXiv preprint arXiv:2003.08904,
2020.

[47] X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and B. Li, “Detecting
ai trojans using meta neural analysis,” in 2021 IEEE Symposium on
Security and Privacy (SP). IEEE, 2021, pp. 103–120.

[48] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Federated
learning,” Synthesis Lectures on Artificial Intelligence and Machine
Learning, vol. 13, no. 3, pp. 1–207, 2019.

[49] Y.-Y. Yang, C. Rashtchian, H. Zhang, R. Salakhutdinov, and K. Chaud-
huri, “Adversarial robustness through local lipschitzness,” 2020.

[50] Z. Yao, A. Gholami, S. Shen, M. Mustafa, K. Keutzer, and M. Mahoney,
“Adahessian: An adaptive second order optimizer for machine learning,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 12, 2021, pp. 10 665–10 673.

[51] Y. Zeng, H. Qiu, S. Guo, T. Zhang, M. Qiu, and B. Thuraisingham,
“Deepsweep: An evaluation framework for mitigating dnn backdoor
attacks using data augmentation,” arXiv e-prints, pp. arXiv–2012, 2020.

[52] Z. Zhao, X. Chen, Y. Xuan, Y. Dong, D. Wang, and K. Liang, “Defeat:
Deep hidden feature backdoor attacks by imperceptible perturbation
and latent representation constraints,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
15 213–15 222.

[53] L. Zhu, R. Ning, C. Wang, C. Xin, and H. Wu, “Gangsweep: Sweep out
neural backdoors by gan,” in Proceedings of the 28th ACM International
Conference on Multimedia, 2020, pp. 3173–3181.

APPENDIX

Due to space constraints, this Appendix contains only a
selection of supplementary materials(Section A to E). For the

rest set of appendices (Section F to J), please refer to the
supplementary document available at this link1.

A. Proof of Theorem 1

Theorem 1

Given a piece-wise linear function `(·) : [a, b] ! [0, 1]
with a global optimum sit on a convex hull. Assume such a
convex hull satisfies the largest update (step size times the
largest gradient) in the convex hull is smaller than the shortest
linear piece in the convex hull. After n iterations update, a
gradient-based optimizer starting from a random initialization
converges to the optimum with the probability:

1�B
�1
1 (b� a)�1(4�B1B2)

n(1�B1B2)]

Proof:

As the input space is one-dimension, a gradient-based
optimization on a piece-wise linear loss function can then be
considered as a Markov chain(MC) [20]; If we use A to denote
the equivalent MC, each linear piece represents a state (or
node) in A. The transition probability between two nodes is the
probability that after one update step, the optimization could
jump from the first node to the other one. Specifically, consider
any two nodes (linear-piece), i and j, in A, the transition
probability of ith node to the j

th means when the optimization
is in the i

th node, the probability that after one step update,
the optimization could move to the j

th linear piece. We use
i connected with j to denote if the transition probability from
i to j is not equal to zero. Then the adjacent matrix A can be
written as:

Ai,j =

(
lj

↵ri
i connected with j

0 o.w
(4)

where Ai,j indicate the transition probability of i
th node

to the j
th, ↵ is the update step size, lj is the length of j

th

linear piece in domain [a, b], and ri is the gradient of i
th

linear piece.

The probabilities that the optimization converges to each
linear piece could then be computed by the stationary distri-
bution S of A:

P = lim
n!1

⇡0A
n (5)

where ⇡0 is the initial distribution, which is the initial proba-
bility for each linear piece: li

b�a .

Directly computing A
n is not easy; it requires diagonaliza-

tion on a conditional Adjencent matrix. We then simplify A
to a two-state MC.

Since the largest update (step size times the largest gra-
dient) in the desired convex hull is smaller than the shortest
linear piece in the desired convex hull. This indicates all nodes
which represent those linear pieces in the desired convex hull
formed a recurrent state; The transition probability that nodes
from the desired convex hull to the node outside the desired

1https://drive.google.com/file/d/12EVjcrznWnhT-lpdLex8 eaZr3g11t M/
view?usp=sharing

15

https://www.example.com/full-appendix
https://drive.google.com/file/d/12EVjcrznWnhT-lpdLex8_eaZr3g11t_M/view?usp=sharing
https://drive.google.com/file/d/12EVjcrznWnhT-lpdLex8_eaZr3g11t_M/view?usp=sharing

convex hull are zero. We then can collapse every linear region
in the desired convex hull into one state P.

Similarly, we can collapse those linear regions which are
not in the desired convex hull into one another state Q; this is
because our goal is to compute the stationary probability of P,
the details of the stationary probability for each linear regions
which are not in the desired convex hull is not necessary. Then
we can simplify our A into two states P,Q. The simplified MC
is shown in Fig 8:

Figure 8: A Two-state Markov Chain. State P represents the
linear regions in the desired convex hull, and state Q represents
the linear region outside the desired convex hull.

The initial distribution can be written as follows:

⇡0 = [⇡(P)
0 ,⇡

(Q)
0] = [

P
i2P

li

b� a
,

P
i2Q

li

b� a
] (6)

We now consider the 2⇥2 adjacent matrix AP,Q. Since the
desired convex hull satisfies the largest update in the convex
hull is smaller than the shortest linear piece in the convex hull.
It can be infers that AP!P = 1, and AP!Q = 0.

And now let’s consider the entry AQ!P,

AQ!P =

P
i2Q & connect P

li

P
i2Q

li
·

X

i2Q & connect P

liP
j2Q & connect P

lj
· li

↵ri

=
1P

i2Q
li
·

X

i2Q & connect P
li ·

li

↵ri

=
1P

i2Q
li
·

X

i2Q & connect P

l
2
i

↵ri

(7)

The last entry AQ!Q then becomes:

AQ!Q = 1� 1P
i2Q

li
·

P
i2Q & connect P

l2i
↵ri

Then the adjacent matrix becomes:

AP,Q =
0

@
1 0

1P
i2Q

li
·

P
i2Q & connect P

l2i
↵ri

1� 1P
i2Q

li
·

P
i2Q & connect P

l2i
↵ri

1

A

As a 2⇥2 matrix, We can apply Hamilton-Cayley theorem
to compute A

n
P,Q:

A
n
P,Q = Trn(AP,Q) ·AP,Q

= (4� 1P
i2Q

li
·

X

i2Q & connect P

l
2
i

↵2r2
i

)n ·AP,Q (8)

To make the equation more compact, we denote

B1 = 1P
i2Q

li
, which indicate the extent of area under the

convex hull

B2 =
P

i2Q & connect P

l2i
↵ri

, indicates the extent of the likeli-

hood the linear pieces outside the convex hull can jump into
the convex hull.

Then the stationary distribution of A after n iteration will
be:

P = ⇡0A
n
P,Q

= ⇡0

✓
(4�B1B2)n 0

(4�B1B2)nB1B2 (4�B1B2)n(1�B1B2)

◆

= [1�B
�1
1 (b� a)�1

, B
�1
1 (b� a)�1]·✓

(4�B1B2)n 0
(4�B1B2)nB1B2 (4�B1B2)n(1�B1B2)

◆

= [
(4�B1B2)2n(B2 �B

�1
1)

b� a
,

B
�1
1 (b� a)�1(4�B1B2)

n(1�B1B2)]
(9)

The stationary probability for state Q is equal to B
�1
1 (b�

a)�1(4 � B1B2)n(1 � B1B2). This shows a negative rela-
tionship between the stationary probability for state Q and
B1, B2. Similarly, stationary probability for state P is equal to
1�B

�1
1 (b�a)�1(4�B1B2)n(1�B1B2). It shows a positive

relationship between the stationary probability for state P and
B1, B2.

After the optimization jump into the desired convex hull,
state P and the step size followed by the assumption in the
theorem, as long as n is large enough and the step size
followed by the assumption in the theorem, the optimization
will converge to the desired optimum.

We further illustrate Theorem 1 using a piecewise linear
loss function in one-dimensional input space (Fig 34):

Each linear piece represents one state on the MC.

We can further reduce the MC by collapsing the desired
convex hull into one single state P.

16

For the rest of the nodes not in the desired convex hull,
we can reduce them into one state Q (Fig 8).

End of proof.

B. Proof of Theorem 2

Before we elaborate our theorem, we need to first formally
define some concepts and a Lemma from [49]:

Definition 3 (Astuteness). A classifier f : X ! Y is astute
at an input sample x, if the predicted label by f is the same
as the true label: ŷ = z(f(x)) = y.

Definition 4 (r-local minimum). A function f : X ! R has
a (unique) r-local minimum at x?, if there is no other x on
which f gets lower or equal value than what can get on x

⇤,
within the ball centered on x

⇤ with radius r, i.e., f(x) >

f(x⇤), 8x, kx� x
⇤k2 r.

Definition 5 (Increasing rate and relaxation function).
Given a function f : X ! R with a r-local minimum
at x

?, we define that f has an increasing rate of at
x
?, if there exists some � 0 and c � 0, such that

f(x)� f (x?) � supc, c · kx� x
?k2 , when kx� x

?k r.
Accordingly, we refer the function ḡ(x) = c · kx� x

?k2 as
the relaxation function of f at x.

Definition 6 (Local Lipschitz constant). For a function
f : X ! Y , a given input x and a pre-defined radius r, if
L(f,Xx,r) exists and is finite, where Xx,r = {x0 : kx0�xk2 <

r} and

L(f,Xx,r) = supx1,x22Xx,r

||f(x2)�f(x1)||2
||x2�x1||2 , (10)

we define L(f,Xx,r) as the local Lipschitz constant of x with
radius r for function f .

Lemma 1. Consider the data distribution X , and assume the
minimum l2 norm between any two different class data is r.
If a function is astuteness in X , then f has a local Lipschitz
constant of r0 around any x 2 X such that r0 � r

Theorem 2

If the noise ✏ ⇠ N (0, 1) (i.e., the white noise), and

c < kx0 � xk2 ·
�
⇣

|m⇤|
2

⌘

p
2�

⇣
|m⇤|+1

2

⌘ , where |m⇤| is the l1 norm (i.e.,

the size) of the trigger, � is the Euler’s gamma function. a
model backdoor attacked by a backdoor attack and enhanced
by GRASP using the training data points (x, y), (x0

, yt) and
(x⇤

, y)) has a greater local Lipschitz constant around x than
the model backdoored by the same attack without the GRASP
enhancement using the training data points (x, y), (x0

, yt).

Similarly, if ✏ ⇠ uniform(�1, 1), and c < kx0 � xk2, the
GRASP-enhanced model has greater local Lipschitz constant
around x than the model without the enhancement.

Proof:

Consider in the BadNet data contamination, recall that
trigger l1 norm is m

⇤, the subspace V 2 Rm⇤
is set of those

dimensions which the mask matrix M has non-zero entry.

E(||A(x,M ,�)� x||2) = 2rBadNet

where rBadNet is the expectation of robust radius, which is
defined in model contaminated by BadNet and trigger-inserted
data

In GRASP, we can choose a random noise ✏. First let’s
consider ✏ = cN (0, I) is added to trojan input only on the
subspace V . Then, the expectation of magnitude of this noise
is:

E(k✏k2) =

p
2�

⇣
|m⇤|+1

2

⌘

�
⇣

|m⇤|
2

⌘ cI = 2rGRASP

which implies:

rGRASP = c ·

p
2�

⇣
|m⇤|+1

2

⌘

2�
⇣

|m⇤|
2

⌘

Similarly, when ✏ = c · unif(�1, 1):

E(k✏k2) =
c

2
= 2rGRASP

And
rGRASP =

c

4

where � is the Euler’s gamma function, rGRASP is the
expectation of robust radius, which is defined in model con-
taminated by GRASP and trigger-inserted data. And c is the
noise scalar parameter.

When ✏ = cN (0, I) and let c :

c < ||x0 � x||2 ·
�
⇣

|m⇤|
2

⌘

p
2�

⇣
|m⇤|+1

2

⌘

when ✏ = c · unif(�1, 1), we let:

c <
||x0 � x||2

4

Then we have,

2rGRASP = E(k✏k2)
< E(||A(x,M ,�)� x||2) = 2rBadNet

According to the Lemma 1, we have the local lipchitz
constant around A(x,M ,�) for GRASP is 1

rGRASP
, and for

the BadNet contaminating backdoor attack is 1
rBadNet

. And
since rGRASP < rBadNet, so 1

rGRASP
>

1
rBadNet

. So GRASP
can achieve a larger local lipschitz constant around trojan
data than badNet.

End of proof.

17

C. PL Condition and Convergence Rate in High-Dimensional
Non-Convex Optimization

Now we consider the target function as high-dimensional
non-convex but satisfies the proximal-PL condition [13], which
is often considered in the theoretical analysis of neural net-
works. Formally, the proximal-PL condition is defined below.

Definition 7 (Proximal-PL condition). We consider the opti-
mization problem in the form:

argmin
x2Rd

F (x) = f(x) + g(x), (11)

where f is a differentiable function with an L-Lipschitz con-
tinuous gradient and g is a simple but potentially non-smooth
convex function 2. To analyze the proximal-gradient algorithms
(i.e., a more general form of the Projected Gradient Descent
(PGD)), a natural generalization of the PL inequality is that
there exists µ > 0 satisfying:

1

2
Dg(x, L) � µ (F (x)� F

⇤) (12)

where

Dg(x,↵)⌘�2↵miny[hrf(x),y�xi+↵
2 ky�xk2+g(y)�g(x)].

We now present Theorem 3 from [13], which demonstrates
that the proximal-PL condition is sufficient for the proximal-
gradient method to achieve a global linear convergence rate.

Theorem 3. Consider the optimization problem in Eq. 11,
where f has an L-Lipschitz continuous gradient (Eq. 12), F
has a non-empty solution set X ⇤

, g is convex, and F satisfies
the proximal-PL inequality. Then the proximal gradient method
with a step size of 1/L converges linearly to the optimal value
F

⇤:
F (xk)� F

⇤
⇣
1� µ

L

⌘k
[F (x0)� F

⇤e (13)

Theorem 3 indicates a negative relationship between the
Lipschitz constant (L) of the target function and the conver-
gence rate to the local optimum (trigger), i.e., the difference
in target function values between the optimal point and the
actual trigger-inserted point. Previous research [4] has shown
that the second-order optimizer has the same lower bound
of convergence rate as the first-order optimizer under the PL
condition. Many existing studies [49], [44], [16] have demon-
strated that in neural networks, a lower Lipschitz constant
implies higher robustness of the model. Therefore, combining
these findings with Theorem 3, we conclude that gradient-
based trigger inversion methods perform well on triggers with
large effective radius.

D. Impact on � with More Complexity Trigger Type

In this section, we primarily continue the discussion about
the choice of � from Section IV-C, and further test two more
complex trigger patterns (composite [25], and reflection [29]).
As depicted in Fig 9, 10, the complexity of the trigger pattern

2Typical examples of the simple function g include a scaled `1-norm of the
parameter vectors (the size of the trigger), g(x) = �kxk1, and indicator
functions that are zero if x lies in a simple convex set, and are infinity
otherwise.

does not significantly impact the choice of �. A � value of
10% remains suitable even with these complex triggers.

Figure 9: Impact of � with the composite [25] trigger pattern.

Figure 10: Impact of � with the Reflection [29] trigger pattern

E. Impact on Different Type of Corruption

Figures 17 to 31 document the comparative impact of
15 different types of corruptions from the imagecorruptions
benchmark on a GRASP-enhanced BadNet versus BadNet.
More specifically, we employed the ResNet-101 neural net-
work architecture to train two distinct models on the CIFAR-10
dataset: one contaminated with a backdoor using the BadNet
methodology, and another utilizing a backdoor implemented
via the GRASP-enhanced BadNet approach. we present the
ASR for these corrupted testing data, subjected to 15 corrup-
tions in five varying degrees of severity on trigger-inserted
testing data.

18

	Introduction
	Background
	Modeling Backdoor Attacks
	Modeling Trigger Inversion
	Preliminary
	Threat Model

	Observation and Insight
	Main observation
	When Trigger Inversion Fails

	Gradient Shaping (GRASP)
	Method
	Theoretical Analysis of GRASP
	Why Inversion Works on Large Effective Radius
	Why Inversion Fails under GRASP

	Impact of Enhancement Rate in GRASP
	Impact of Noise Level in GRASP
	Impact on Learning Optimizer
	Impact on Environmental Factors

	Against Backdoor Detection
	Datasets and Settings
	Putative Trigger Effectiveness
	Against Weight Analysis Detection

	Resilience to Backdoor Mitigation
	Mitigation and Limitation
	Related Work
	Conclusion
	References
	Appendix
	Proof of Theorem 1
	Proof of Theorem 2
	PL Condition and Convergence Rate in High-Dimensional Non-Convex Optimization
	Impact on with More Complexity Trigger Type
	Impact on Different Type of Corruption
	Additional Comparison Results
	Feasibility of Black-box Attacks and Feature-space Attacks
	Additional results from Section IV
	Additional Figures
	Putative Trigger Effectiveness
	Theoratical Analysis on GRASP Against Weight Analysis Detection

